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SUPPLEMENTAL APPENDIX A: ESTIMATOR IMPLEMENTATION DETAILS

IN THIS APPENDIX, we present implementation details for our maximum likelihood esti-
mator. Additional details and code to run the estimator can be found at https://github.
com/palmercj/EIV-QR.

The main step is Step 5, the piecewise-linear sieve-ML estimator described in Sec-
tion 3.1. Because this piecewise-linear estimator is computationally intensive, we use a
series of preliminary steps to find start values in the neighborhood of the optimum.16

These steps significantly reduce the time required for convergence of the piecewise-linear
estimator.

(1) We estimate quantile regression on a grid of knots [t1� t2� � � � � tJ], where J is the
number of knots, and denote the estimate as β̂QR(·).

(2) We run 40 weighted least squares (WLS) iterations using β̂QR(·) from Step 1 as the
start value. Using WLS in some fashion is a common technique in quantile regres-
sion computational programs and in our case is motivated by the fact that under
a normality assumption of the EIV term ε, the maximum likelihood estimator is
equivalent to a weighted least squares one. Supplemental Material Appendix Sec-
tion A.1 demonstrates this equivalence and also specifies the weights for the WLS
iterations. We denote the weighted least squares estimate as β̂WLS(·).

(3) We estimate a piecewise-constant maximum likelihood estimator using (β̂WLS(·)�
σD) as the start value, where σD is a default start value for EIV parameters. In our
simulations, where we estimate EIVs as mixtures of three normals, our start values
for the EIV parameters specify three equally weighted mixtures with means −1,
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a piecewise-constant one is that we ensure β̂(·) is continuous at all knots t1� t2� � � � � tJ in the τ grid over (0�1). As
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the entire range of [t2�1]. This makes En[logg(y|x�β�σ)] a highly nonlinear function of bl , l = 1�2� � � � � J + 1
(the coefficients for the spline functions) with many interaction terms of bl .

© 2021 The Econometric Society https://doi.org/10.3982/ECTA14667

https://www.econometricsociety.org/suppmatlist.asp
https://github.com/palmercj/EIV-QR
mailto:jhausman@mit.edu
mailto:haoyang.liu@ny.frb.org
mailto:kurtluo@hku.hk
mailto:cjpalmer@mit.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA14667
https://github.com/palmercj/EIV-QR


2 HAUSMAN, LIU, LUO, AND PALMER

0, and 1 and 1 as the standard deviation of each mixture. We search for the log-
likelihood maximizer using an interior-point constrained optimizer, to which we
feed analytical gradients and Hessian matrix. We constrain the standard deviations
for the mixture components to be positive, the EIV distribution to be mean zero,
the weights to sum to 1, and require that the sum of the weights for the first and
second mixtures does not exceed 1 to ensure that the third weight is non-negative.
We denote the resulting estimates as (β̂PC(·)� σ̂PC).

(4) We then calculate start values for the piecewise-linear estimator by sorting β̂PC(·)
by En[x]T β̂PC(·) (Chernozhukov, Fernandez-Val, and Galichon (2009)). Note that
the log-likelihood of a piecewise-constant sieve in our setting is invariant to re-
arranging τ. For example, swapping the value of β̂PC(·) in [t1� t2] with the one in
[t2� t3] does not change the empirical log-likelihood Ln(θ) = En[logg(y|x�θ)] as
long as t3 − t2 = t2 − t1. We rearrange the elements of β̂PC(·) so that xT β̂PC(τ)
is monotonically increasing in τ at the mean of the covariates. Then we connect
(
tj+tj+1

2 � β̂PC(
tj+tj+1

2 )) with (
tj+1+tj+2

2 � β̂PC(
tj+1+tj+2

2 )), j = 1� � � � � J.17 We denote this con-
structed β(·) as β̃PL(·). We use (β̃PL(·)� σ̂PC) as the starting values for Step 5,
piecewise-linear estimation.

(5) We run a piecewise-linear maximum likelihood estimator, and denote the final es-
timate as (β̂PL(·)� σ̂PL). Implementation details for the piecewise-linear estimator
are similar to the ones in the piecewise-constant estimator, described in Step 4.
We have also found genetic-algorithm-based optimizers to perform well in some
applications.

A.1. Weighted Least Squares

Under a normality assumption of the EIV term ε, the maximization of En[logg(y|x�θ)]
reduces to the minimization of a simple weighted least squares problem. Suppose the
disturbance ε is modeled as a normal random variable. Then the maximization problem
(3.3) becomes the following, with the parameter vector θ = (β(·)�σ):

max
θ

En

[
logg(y|x�θ)]

:=En

[∫ 1

τ

f
(
y − xTβ(τ)|σ)∫ 1

0
f
(
y − xTβ(u)|σ)du

(
−1

2
log
(
2πσ2

)− (
y − xTβ(τ)

)2

2σ2

)
dτ

]
� (A.1)

Equation (A.1) demonstrates that the maximization problem of β(·) is to minimize the
sum of weighted least squares. As in standard normal MLE, the FOC for β(·) does not de-
pend on σ2. Given an initial estimate of a weighting matrix W , the weighted least squares
estimates of β and σ are

β̂(τj) = (
XTWjX

)−1
XTWjy�

σ̂ =
√√√√ 1

NJ

∑
j

∑
i

wijε̂
2
ij�

17For the first interval we connect ( t1
2 � β̂PC(

t1
2 )) with ( t1+t2

2 � β̂PC(
t1+t2

2 )), and then extend it backward to τ = 0.
For the last interval, we connect ( tJ−1+tJ

2 � β̂PC(
tJ−1+tJ

2 )) with ( tJ+1
2 � β̂PC(

tJ+1
2 )), and extend it to τ = 1
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where Wj is the diagonal matrix formed from the jth column of W , which has elements
wij . Given estimates ε̂j = y − XTβ̂(τj) and σ̂ , the weights wij for observation i in the
estimation of β(τj) are

wij = φ(̂εij/σ̂)

1
J

∑
j

φ(̂εij/σ̂)

�

where φ(·) is the PDF of a standard normal distribution.

SUPPLEMENTAL APPENDIX B: ADDITIONAL SIMULATION RESULTS

In this appendix, we present Monte Carlo simulation results (mean bias and MSE) un-
der alternative data-generating processes. For each design, quasi-ML estimation contin-
ues to treat the measurement error as a mixture of three normals. After simulating mea-
surement error under alternative measurement error distributions (all normalized such
that ε has equal variance across designs), Supplemental Material Appendix Table BIV
presents results when a 99-knot sieve is used to approximate β(·). Finally, Supplemental
Material Appendix Table BV reports bootstrapped confidence interval coverage proba-
bilities for each parameter.

TABLE BI

MEAN BIAS AND MEAN SQUARED ERROR: ε∼ 3N a

β1 β2 β3

Quantile QR SMLE QR SMLE QR SMLE

I. Mean Bias
0.1 −2�926 −0�034 0�146 0�006 0�135 0�018
0.2 −2�488 0�000 0�224 0�005 0�144 −0�004
0.3 −2�074 0�007 0�266 0�005 0�130 0�006
0.4 −1�511 −0�007 0�249 0�007 0�088 0�005
0.5 −0�401 −0�041 0�101 0�016 −0�013 0�005
0.6 1�058 −0�024 −0�124 0�008 −0�121 0�000
0.7 1�940 −0�003 −0�237 0�008 −0�141 −0�005
0.8 2�602 0�033 −0�284 0�000 −0�125 −0�001
0.9 3�353 0�062 −0�283 −0�008 −0�097 0�005
|Bias| 2�039 0�023 0�213 0�007 0�110 0�005

II. Mean Squared Error
0.1 8�565 0�040 0�021 0�005 0�018 0�006
0.2 6�189 0�020 0�051 0�003 0�021 0�003
0.3 4�301 0�038 0�071 0�008 0�017 0�007
0.4 2�284 0�019 0�062 0�005 0�008 0�004
0.5 0�162 0�033 0�010 0�011 0�000 0�006
0.6 1�119 0�019 0�016 0�004 0�015 0�003
0.7 3�763 0�032 0�056 0�011 0�020 0�004
0.8 6�770 0�018 0�081 0�003 0�016 0�001
0.9 11�242 0�032 0�081 0�004 0�010 0�002
MSE 4�933 0�028 0�050 0�006 0�014 0�004

aNotes: Table reports mean bias (panel I) and MSE (panel II) for estimates from
classical quantile regression (QR) and sieve MLE across 500 Monte Carlo simulations
of n = 100,000 observations using data simulated from the data-generating process de-
scribed in Section 4. The last row reports the mean absolute bias (panel I) and the mean
MSE (panel II) over the nine quantiles listed above.
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TABLE BII

MEAN BIAS AND MEAN SQUARED ERROR: ε∼ ta

β1 β2 β3

Quantile QR SMLE QR SMLE QR SMLE

I. Mean Bias
0.1 −1�965 0�103 0�142 0�018 0�103 −0�004
0.2 −1�091 0�098 0�112 −0�005 0�050 −0�011
0.3 −0�650 0�012 0�087 −0�017 0�021 −0�013
0.4 −0�338 −0�060 0�062 0�017 0�000 0�003
0.5 −0�063 −0�053 0�032 0�017 −0�015 0�010
0.6 0�226 0�009 −0�005 −0�003 −0�030 0�000
0.7 0�580 0�008 −0�052 −0�001 −0�045 −0�005
0.8 1�095 0�061 −0�114 −0�018 −0�061 −0�010
0.9 2�080 0�044 −0�200 −0�015 −0�083 −0�010
|Bias| 0�899 0�050 0�090 0�012 0�045 0�007

II. Mean Squared Error
0.1 3�862 0�220 0�020 0�016 0�011 0�027
0.2 1�191 0�069 0�013 0�006 0�003 0�006
0.3 0�423 0�120 0�008 0�019 0�001 0�016
0.4 0�114 0�070 0�004 0�010 0�000 0�006
0.5 0�004 0�147 0�001 0�032 0�000 0�013
0.6 0�052 0�057 0�000 0�012 0�001 0�004
0.7 0�337 0�123 0�003 0�031 0�002 0�010
0.8 1�199 0�031 0�013 0�007 0�004 0�003
0.9 4�326 0�020 0�040 0�009 0�007 0�005
MSE 1�279 0�095 0�011 0�016 0�003 0�010

aNotes: Table reports mean bias (panel I) and MSE (panel II) for estimates from
classical quantile regression (QR) and sieve quasi-MLE modeling the error term as a
mixture of three normals across 500 Monte Carlo simulations of n = 100,000 observa-
tions each. The data are simulated from the data-generating process described in Sec-
tion 4 but measurement error generated as a Student’s t random variable with three de-
grees of freedom, multiplied by

√
3�5 to ensure the variance of the measurement error

is equal across simulation designs. The last row reports the mean absolute bias (panel I)
and the mean MSE (panel II) over the nine quantiles listed above.
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TABLE BIII

MEAN BIAS AND MEAN SQUARED ERROR: ε ∼ Laplacea

β1 β2 β3

Quantile QR SMLE QR SMLE QR SMLE

I. Mean Bias
0.1 −2�507 0�058 0�176 0�017 0�127 0�000
0.2 −1�332 0�030 0�127 −0�003 0�054 0�001
0.3 −0�776 −0�055 0�094 0�015 0�019 0�007
0.4 −0�394 −0�050 0�065 0�019 −0�001 0�002
0.5 −0�059 0�022 0�034 −0�005 −0�017 −0�007
0.6 0�285 0�035 −0�005 −0�009 −0�032 −0�011
0.7 0�697 0�043 −0�052 −0�022 −0�047 −0�003
0.8 1�330 0�028 −0�127 −0�010 −0�069 −0�007
0.9 2�631 0�016 −0�243 −0�009 −0�102 −0�011
|Bias| 1�112 0�038 0�103 0�012 0�052 0�006

II. Mean Squared Error
0.1 6�284 0�160 0�031 0�015 0�016 0�026
0.2 1�775 0�055 0�016 0�006 0�003 0�008
0.3 0�603 0�156 0�009 0�028 0�000 0�020
0.4 0�156 0�069 0�004 0�013 0�000 0�007
0.5 0�004 0�198 0�001 0�041 0�000 0�018
0.6 0�081 0�063 0�000 0�013 0�001 0�005
0.7 0�486 0�116 0�003 0�033 0�002 0�011
0.8 1�770 0�026 0�016 0�007 0�005 0�003
0.9 6�923 0�024 0�060 0�010 0�011 0�006
MSE 2�009 0�096 0�016 0�018 0�004 0�012

aNotes: Table reports mean bias (panel I) and MSE (panel II) for estimates from
classical quantile regression (QR) and sieve quasi-MLE modeling the error term as a
mixture of three normals across 500 Monte Carlo simulations of n = 100,000 observa-
tions each. The data are simulated from the data-generating process described in Sec-
tion 4 but measurement error generated as a Laplace random variable with λ = 2�29 to
ensure the variance of the measurement error is equal across simulation designs. The
last row reports the mean absolute bias (panel I) and the mean MSE (panel II) over the
nine quantiles listed above.
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TABLE BIV

MEAN BIAS AND MEAN SQUARED ERROR: 99 KNOTSa

β1 β2 β3

Quantile QR SMLE QR SMLE QR SMLE

I. Mean Bias
0.1 −2�926 −0�231 0�146 0�009 0�135 0�007
0.2 −2�488 −0�208 0�224 −0�002 0�144 0�010
0.3 −2�074 −0�211 0�266 0�013 0�130 0�003
0.4 −1�511 −0�176 0�249 −0�007 0�088 −0�003
0.5 −0�401 −0�193 0�101 0�006 −0�013 0�001
0.6 1�058 −0�214 −0�124 0�018 −0�121 0�003
0.7 1�940 −0�223 −0�237 0�020 −0�141 −0�002
0.8 2�602 −0�173 −0�284 0�005 −0�125 0�004
0.9 3�353 −0�113 −0�283 −0�004 −0�097 0�000
|Bias| 2�039 0�194 0�213 0�009 0�110 0�004

II. Mean Squared Error
0.1 8�565 0�330 0�021 0�008 0�018 0�014
0.2 6�189 0�283 0�051 0�012 0�021 0�019
0.3 4�301 0�298 0�071 0�021 0�017 0�015
0.4 2�284 0�273 0�062 0�023 0�008 0�016
0.5 0�162 0�274 0�010 0�029 0�000 0�013
0.6 1�119 0�287 0�016 0�034 0�015 0�012
0.7 3�763 0�283 0�056 0�025 0�020 0�008
0.8 6�770 0�237 0�081 0�021 0�016 0�006
0.9 11�242 0�091 0�081 0�013 0�010 0�004
MSE 4�933 0�262 0�050 0�021 0�014 0�012

aNotes: Table reports mean bias (panel I) and MSE (panel II) for estimates from
classical quantile regression (QR) and sieve MLE across 500 Monte Carlo simulations
of n = 100,000 observations using data simulated from the data-generating process de-
scribed in Section 4 and when a sieve of J = 99 knots is used in estimation. The last row
reports the mean absolute bias (panel I) and the mean MSE (panel II) over the nine
quantiles listed above.
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TABLE BV

COVERAGE PROBABILITIES FOR BOOTSTRAPPED
CONFIDENCE INTERVALSa

I. Coefficient Functions

Quantile β1 β2 β3

0.0625 1.00 0.98 0.95
0.1250 1.00 0.99 0.95
0.1875 0.99 0.98 0.98
0.2500 0.98 0.98 0.99
0.3125 1.00 0.99 0.99
0.3750 0.96 0.96 1.00
0.4375 0.99 0.99 0.99
0.5000 0.99 0.99 0.99
0.5625 1.00 1.00 1.00
0.6250 1.00 0.99 1.00
0.6875 1.00 1.00 0.98
0.7500 0.99 1.00 0.99
0.8125 0.97 0.97 1.00
0.8750 0.95 0.98 0.96
0.9375 0.85 0.93 0.95

II. Distributional Parameters

Parameter Coverage

mixture
weights

λ1 0�99
λ2 0�96
λ3 0�95

mixture
means

μ1 0�97
μ2 1
μ2 0�97

mixture
standard
deviations

σ1 0�96
σ2 0�98
σ3 0�96

Average coverage
across all parameters

0�98

aNotes: Table reports coverage probabilities for the sieve
MLE bootstrapped confidence intervals across 100 Monte
Carlo simulations of 100 bootstrap draws each using data
simulated from the data-generating process described in Sec-
tion 4. For each Monte Carlo draw from the data-generating
process, we estimate our sieve-ML estimator, bootstrap the
simulated data, reestimate the model parameters, and then
construct a confidence interval centered at the first sieve-ML
estimate for that Monte Carlo draw ±1.96 times the standard
deviation of that parameter’s estimates across that Monte
Carlo simulation’s bootstrap draws. The reported coverage
probabilities above indicate the fraction of Monte Carlo sim-
ulations for which the true parameter is contained inside the
bootstrapped confidence intervals.
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SUPPLEMENTAL APPENDIX C: DATA APPENDIX

Following the sample selection criteria of Angrist, Chernozhukov, and Fernández-Val
(2006), our data come from 1% samples of decennial census data available via IPUMS.org
(Ruggles, Genadek, Goeken, Grover, and Sobek (2015)) from 1980 to 2010. Copies
of the extracts we use are available at https://github.com/palmercj/EIV-QR. From each
database, we select annual wage income, education, age, and race data for prime-age
(age 40–49) white males who have at least five years of education, were born in the United
States, had positive earnings and hours worked in the reference year, and whose responses
for age, education, and earnings were not imputed (which would have been an additional
source of measurement error). Our dependent variable is log weekly wage, obtained as
annual wage income divided by weeks worked. For 1980, we take the number of years
of education to be the highest grade completed and follow the methodology of Angrist,
Chernozhukov, and Fernández-Val (2006) to convert the categorical education variable
in 1990, 2000, and 2010 into a measure of the number of years of schooling. Experience
is defined as age minus years of education minus five. For 1980, 1990, and 2000, we use
the exact extract of Angrist, Chernozhukov, and Fernández-Val (2006), and draw our own
data to extend the data to include the 2010 census. Table CI reports summary statistics for
the variables used in the regressions in the text. Wages for 1980–2000 were expressed in
1989 dollars after deflating using the Personal Consumption Expenditures Index. As slope
coefficients in a log-linear quantile regression specification are unaffected by scaling the
dependent variable, we do not deflate our 2010 data.

Although quantile regression recovers effects on the conditional distribution of the out-
come, it is worth noting that given the substantial variation in wages left unexplained by
the Mincer model, the empirical difference between effects on the unconditional and con-
ditional distributions of the dependent variable is likely small. See DiNardo, Fortin, and
Lemieux (1996) and Powell (2013) for further discussion and methods that recover effects
on the unconditional distribution. Because of the relatively low goodness of fit of equa-
tion (5.1) (as is the case in many cross-sectional applied microeconomics settings), over
63% of the observations in the top unconditional decile are also in the top conditional
decile.

TABLE CI

EDUCATION AND WAGES SUMMARY STATISTICSa

Year 1980 1990 2000 2010

Log weekly wage 6.43 6.48 6.50 8.37
(0.66) (0.69) (0.74) (0.76)

Education 12.99 13.97 13.90 14.12
(3.08) (2.66) (2.41) (2.39)

Experience 25.38 24.45 24.45 24.55
(4.32) (4.01) (3.60) (3.83)

Number of Observations 60,051 80,115 90,201 98,292

aNotes: Table reports summary statistics for the census data used in the quantile
wage regressions in the text. The 1980, 1990, and 2000 data sets come from Angrist,
Chernozhukov, and Fernández-Val (2006). We extend the sample to include 2010
census microdata from IPUMS (Ruggles et al. (2015)).

http://IPUMS.org
https://github.com/palmercj/EIV-QR
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SUPPLEMENTAL APPENDIX D: ADDITIONAL PROOFS OF LEMMAS AND THEOREMS

D.1. Lemmas and Theorems in Section 3

The following lemmas are used in the proofs of Lemmas 2 and 3.

LEMMA 6: The space M[B1 ×B2 ×B3 ×· · ·×Bdx] is a compact and complete space under
Lp for any p ≥ 1.

PROOF OF LEMMA 6: For bounded monotonic functions, pointwise convergence is
equivalent to uniform convergence, making a space of bounded monotonic functions
compact under any Lp norm for p ≥ 1. Hence the product space B1 × B2 × · · · × Bdx is
compact. It is complete since the Lp functional space is complete and the limit of mono-
tonic functions is still monotonic. Q.E.D.

LEMMA 7—Donskerness of Θ: The set of functions

G ={h(y�x�β(·)�σ) := log
(
g
(
y|x�β(·)�σ))|(β(·)�σ) ∈ Θ

}
is μ-Donsker, where μ is the joint PDF of (y�x).

PROOF: By Theorem 2.7.5 of Van Der Vaart and Wellner (1996), the bracket-
ing number N[] of the space of uniformly bounded monotone functions F satisfies
logN[](ε�F�Lr(Q)) ≤ K 1

ε
for every probability measure Q and every r ≥ 1 and a con-

stant K which depends only on r. Consider a collection of functions F := q(y�x�θ)|θ ∈ Θ
such that ∣∣q(y�x�θ1)− q(y�x�θ2)

∣∣≤ ‖θ1 − θ2‖2w(y�x)� (D.1)

EQ

[∣∣w(y�x)
∣∣2]<∞� (D.2)

where Q is some probability measure on (y�x). Since Θ is a product space of bounded
monotone functions M and a finite-dimensional bounded compact set Σ, the bracketing
number of F given measure Q is also bounded by logN[](ε�F�L2(Q)) ≤ Kdx

1
ε
, where

K is a constant depending only on Θ and w(y�x). Therefore,
∫ δ

0

√
logN[](ε�F�Q) < ∞,

that is, F is Donsker.
In particular, let q = logg and Q = μ, where μ is the joint PDF of (x� y). By Assump-

tion 5(6), equation (D.1) holds with w(y|x) := ∫ 1
0 |y − xTβ(τ)|γ dτ. Equation (D.2) is

satisfied by Assumption 5(3). Hence, G is μ-Donsker. Q.E.D.

PROOF OF LEMMA 2: To show the consistency of the ML estimator, it is sufficient
to prove the satisfaction of the following regularity conditions (Newey and McFadden
(1994)):

(1) The parameter space Θ= M ×Σ is compact.
(2) Global identification holds, that is, there exists no other θ′ = (β′�σ ′) ∈ Θ such that

E[log
∫ 1

0 f (y − xTβ′(τ)|σ ′)dτ] =E[log
∫ 1

0 f (y − xTβ0(τ)|σ0)dτ].
(3) The objective function E[log

∫ 1
0 f (y − xTβ′(τ)|σ ′)dτ] is continuous for all θ′ =

(β′�σ ′) ∈ Θ.
(4) Stochastic equicontinuity of En[log

∫ 1
0 f (y − xTβ(τ)|σ)], with θ ∈ Θ.
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Condition 1 is established by Lemma 6. Condition 2 is provided by Lemma 1. Condition 3
holds under Assumption 5. For the proof of point 4, see Lemma 7 above. Therefore, the
ML estimator defined herein is consistent. Q.E.D.

The following lemma establishes mild ill-posedness (Assumption 6(1)).

LEMMA 8—Sufficient Condition for Mild Ill-posedness: If the function f satisfies As-
sumptions 1, 4, 5, and 7 with degree λ > 0, then for any θ,

1
Jλ

� inf
p∈ΘJ−θ�p
=0�‖ξ‖≤C‖pβ‖

‖p‖d

‖p‖ �

where ‖p‖d := |pTIp| 1
2 , pβ is the component of p related to β, ξ is the component of p

related to σ , and C is some fixed constant.

Note that if we assume that there is sufficient nonlinearity in the function ∂λ−1gσ , then
Lemma 8 holds even without the condition that ‖ξ‖ ≤ C‖pβ‖.

PROOF: Suppose f satisfies the discontinuity condition in Assumption 7 with de-
gree of ill-posedness λ > 0, and without loss of generality, assume cδ = 1. For sim-
plicity, we will prove the statement for a piecewise constant (0th-order) spline, but for
any fixed order of spline, the proof is similar. We can then assume that the parame-
ter vector can be written p = (pT

1 � � � � �p
T
J � ξ

T )T , where each pj is a constant dx × 1-
dimensional vector, and ξ is a dσ × 1-dimensional vector. Define fτi := fτi(y|x�σ0�β0) =∫ i

J
i−1
J

xT f ′(y − xTβ0(τ)|σ0)dτ, and recall gσ(y|x�σ0�β0) := ∫ 1
0 fσ(y − xTβ0(τ)|σ0)dτ. De-

note lJ := (f T
τ1
� f T

τ2
� � � � � f T

τJ
� gT

σ )
T . Then for any pJ ∈ ΘJ − θ, pT

J IpJ = E[∫
R

(lTJ pJ)
2

g
dy] ≥

CE[(lTJ pJ)
2] for some constant C > 0 since g is bounded from above.

Define c := infx∈X1�τ∈[0�1](xTβ′
0(τ)) > 0, where X1 is a bounded open subset of X with

non-trivial probability density of x. Let S(λ) :=∑λ−1
i=0

((
λ−1
i

))2
be a constant that only de-

pends on λ, where
(
b

a

)
stands for the combinatorial number choosing a elements from a

set with size b. Then

λS(λ)E

[∫
R

(
lTJ pJ

)2
dy

]

= E

⎡⎣⎛⎝ λ−1∑
j=0

(
λ− 1
j

)2
⎞⎠( λ−1∑

j=0

∫
R

(
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

)2

dy

)⎤⎦ �

where u > 0 is a constant that will be specified later. For convenience, we abbreviate β0

and σ0 as β and σ .
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Define the interval Qi
J := [a + xTβ( i−1/2

J
) − c

2uJ � a + xTβ( i−1/2
J

) + c
2uJ ]. By the Cauchy–

Schwarz inequality,

E

⎡⎣⎛⎝ λ−1∑
j=0

(
λ− 1
j

)2
⎞⎠( λ−1∑

j=0

∫
R

(
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

)2

dy

)⎤⎦

≥Ex∈X1

⎡⎢⎣∫
R

⎛⎝ λ−1∑
j=0

(−1)j
(
λ− 1
j

)
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

⎞⎠2

dy

⎤⎥⎦

≥Ex∈X1

⎡⎢⎣∫
Qi
J

⎛⎝ λ−1∑
j=0

(−1)j
(
λ− 1
j

)
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

⎞⎠2

dy

⎤⎥⎦ �

WLOG, we abbreviate Ex∈X1 as E since x ∈X1 has positive probability density. By defini-
tion,

λ−1∑
j=0

(−1)j
(
λ− 1
j

)
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

=
J∑

i=1

⎛⎝ λ−1∑
j=0

(−1)j
(
λ− 1
j

)
fτi

(
y + jc

2(λ− 1)uJ

)
xTpi

⎞⎠
+

λ−1∑
j=0

(−1)j
(
λ− 1
j

)
gσ

(
y + jc

2(λ− 1)uJ

)T

ξ�

By the discontinuity assumption and finite differencing, for each i = 1�2� � � � � J,

1
2λ−1

⎛⎝ λ−1∑
j=0

(−1)j
(
λ− 1
j

)
fτi

(
y + jc

2(λ− 1)uJ

)
xTpi

⎞⎠
= (1 + o(1)

)
f (λ−1)
τi

(
y + c

4uJ

)(
c

2(λ− 1)uJ

)λ−1

xTpi�

For u being large enough and for any i′ = 1�2� � � � � J and y ∈ Qi
J = [a + xTβ( i+1/2

J
) −

c
2uJ � a+ xTβ( i+1/2

J
)+ c

2uJ ],

f (λ−1)
τi′

(
y + c

4uJ

)
=
∫ i′/J

(i′−1)/J
f (λ)

(
y + c

4uJ
− xTβ(τ)

)
dτ

=
∫ xT β(i′/J)

xT β((i′−1)/J)
f (λ)

(
y + c

4uJ
− z

)
1

xTβ′(q(z|x)) dz�
where q(z|x) = inf(τ : xTβ(τ)≤ z) is well defined given xTβ(τ) is strictly monotonic.
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By construction, for u large enough, a + xTβ(τ) ∈ Qi
J implies that τ ∈ [(i − 1)/J� i/J].

Hence, for any i′ 
= i,
∫ i′/J
(i′−1)/J f

(λ)(y + c
4uJ − xTβ(τ))dτ ≤ C 1

uJ
for some generic constant

C > 0, since f (λ)(y + c
4uJ − xTβ(τ)) is continuous and bounded from above. For i′ = i,∫ i′/J

(i′−1)/J
f (λ)

(
y + c

4uJ
− xTβ(τ)

)
dτ =

∫ xT β(i′/J)

xT β((i′−1)/J)
f (λ)

(
y + c

4uJ
− z

)
1

xTβ′(q(z|x)) d�
when there exists a z ∈ (xTβ((i′ − 1)/J)�xTβ(i′/J)) such that y + c

4uJ − z = a for any
y ∈ Qi

J , which implies an integration over the Dirac delta function. Hence, for i′ = i,∣∣∣∣∣∣
⎛⎝ λ−1∑

j=0

(−1)j
(
λ− 1
j

)
fτi′

(
y + jc

2(λ− 1)uJ

)⎞⎠∣∣∣∣∣∣≥
(

1
c

−C
1
uJ

)(
c

uJ

)λ−1

�

and if i′ 
= i, ∣∣∣∣∣∣
⎛⎝ λ−1∑

j=0

(−1)j
(
λ− 1
j

)
fτi′

(
y + jc

2(λ− 1)uJ

)⎞⎠∣∣∣∣∣∣�
(

c

uJ

)λ

�

Similarly, ∥∥∥∥∥∥
λ−1∑
j=0

(−1)j
(
λ− 1
j

)
gσ

(
y + jc

2(λ− 1)uJ

)T

∥∥∥∥∥∥�
(

c

uJ

)λ

�

Accordingly, when u is chosen to be large enough, and ‖ξ‖ � ‖pβ‖, the sum

1
2λ−1

⎛⎝ λ−1∑
j=0

(−1)j
(
λ− 1
j

)
fτi

(
y + jc

2(λ− 1)uJ

)
xTpi

⎞⎠
= (1 + o(1)

)
f (λ−1)
τi

(
y + c

4uJ

)(
c

2(λ− 1)uJ

)λ−1

xTpi

is dominated by the term
∑λ−1

j=0 (−1)j
(
λ−1
j

)
fτi(y + jc

2(λ−1)uJ )x
Tpi for y ∈ Qi

J , where∣∣∣∣∣∣
λ−1∑
j=0

(−1)j
(
λ− 1
j

)
fτi

(
y + jc

2(λ− 1)uJ

)∣∣∣∣∣∣≥ C

(
1
uJ

)λ−1

for some constant C > 0.
Noting that the intervals {Qi

J} do not intersect each other for any J → ∞ and u being a
large enough constant,

λS(λ)E

[∫
R

(
lTJ pJ

)2
dy

]
≥ S(λ)

J∑
i=1

E

[∫
Qi
J

λ∑
j=1

(
lTJ

(
y + jc

2(λ− 1)uJ

)
pJ

)2

dy

]

�E

[
c

λuJ

J∑
i=1

(
1

(uJ)λ−1 x
T
i pi

)2
]

� 1
J2λ−1

J∑
j=1

E
[
x2
jp

2
j

]� 1
J2λ ‖p‖2

2�
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Since λS(λ) is a constant that only depends on λ, then pTIp � 1
J2λ ‖p‖2

2 for any ‖ξ‖ ≤
C‖pβ‖. Q.E.D.

PROOF OF LEMMA 3: By Lemma 7, the set of log-likelihood functions indexed by
θ̂n ∈ Θ is Donsker such that the sample-average log-likelihood converges uniformly to
its population counterpart:

E
[− logg(y|x� θ̂n)

]≤En

[− logg(y|x� θ̂n)
]+ op(1)�

By Chen (2007), there exists a θ∗
n → θ0 as Jn → ∞ where θ∗

n ∈ Θr
Jn

given that d2(θ0�Θ
r
Jn
) =

O(J−min(p�r)
n ), denoting the degree of smoothness of β0(·) as p. Because θ̂n is the min-

imizer of the negative log-likelihood, En[− logg(y|x� θ̂n)] ≤ En[− logg(y|x�θ∗
n)]. Again,

by uniform convergence,

En

[− logg
(
y|x�θ∗

n

)]≤ E
[− logg

(
y|x�θ∗

n

)]+ op(1)≤E
[− logg(y|x�θ0)

]+ op(1)�

where the last step used the continuity of the population log-likelihood function around
θ0. Since Θ is compact, by identification (i.e., Theorem 1), we have θ̂n

p−→ θ0 as Jn →
∞. Q.E.D.

PROOF OF LEMMA 4: By Lemma 3, we know that sieve-ML estimators for β0 and σ0

are consistent, that is, ‖σ̂ −σ0‖ p−→ 0 and ‖β̂J −β0‖2
p−→ 0. MLE by definition implies that

En[log(g(y|x� β̂J�σ))] ≥En[log(g(y|x�β∗
J�σ0))], where by construction of the sieve, there

exists a β∗
J such that ‖β∗

J − β0‖2 ≤ CJ−r−1
n for some generic constant C > 0. Therefore,

‖(β̂J� σ̂)− (β∗
J�σ0)‖ p−→ 0 as Jn → ∞.

By Lemma 7, G = {h(y�x�β(·)�σ) := log(g(y|x�β(·)�σ))|(β(·)�σ) ∈ Θ} is Donsker.
Thus by stochastic equicontinuity,

En

[
log
(
g(y|x� β̂J� σ̂)

)]−E
[
log
(
g(y|x� β̂J� σ̂)

)]
= En

[
log
(
g
(
y|x�β∗

J�σ0

))]−E
[
log
(
g
(
y|x�β∗

J�σ0

))]+ op(1/
√
n)�

implying that

E
[
log
(
g(y|x� β̂J� σ̂)

)]−E
[
log
(
g
(
y|x�β∗

J�σ0

))]
=En

[
log
(
g(y|x� β̂J� σ̂)

)]−En

[
log
(
g
(
y|x�β∗

J�σ0

))]− op(1/
√
n) ≥ −op(1/

√
n)�

Define Gn := √
n(En −E). By the maximal inequality, for any δ > 0,

E
[

max
‖βJ−β∗

J‖2<δ

∣∣Gn logg(y|x� β̂J� σ̂)−Gn logg
(
y|x�β∗

J�σ0

)∣∣]
≤K1

∫ δ

0

√
logN

(
r�M�‖ · ‖2

)
dr�

where N(r�M�‖ · ‖2) is the covering number of r balls on M , the space of β, and K1

is a generic constant. We want to show that N(r�M�‖ · ‖2) is bounded by a polynomial
of 1/r. Define F as the space of univariate monotone functions mapping from [0�1] to
bounded intervals depending on a matrix X and the bounds of β(·). Let α(τ) := XTβ(τ),
where X = (x1� � � � � xdx) is a dx×dx invertible matrix consisting of dx linearly independent
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vectors x ∈X . Then each component of α(τ) is strictly monotonic, α(·) belongs to F , and
β(τ) = (X−1)Tα(τ). Then the covering number of M will be the same as the covering
number of Fdx up to a multiplicative constant K2 depending on X . Therefore, N(r�M�‖ ·
‖2) < K2N(r�Fdx�‖ · ‖2) < K3/r

dx for some positive constant K3 and

E
[

max
‖βJ−β∗

J‖2<δ

∣∣Gn logg(y|x� β̂J� σ̂)−Gn logg
(
y|x�β∗

J�σ0

)∣∣]≤K4δ
√− logδ

for a positive constant K4 and δ small enough. Letting δ = max(‖σ̂ − σ‖�‖β̂J −β∗
J‖),

E
[
log
(
g(y|x� β̂J� σ̂)

)]−E
[
log
(
g
(
y|x�β∗

J�σ0

))]
= En

[
log
(
g(y|x� β̂J� σ̂)

)]−En

[
log
(
g
(
y|x�β∗

J�σ0

))]−Op

(
δ
√− logδ√

n

)

≥ −Op

(
δ
√− logδ√

n

)
�

By consistency of (β̂J� σ̂), δ
p−→ 0.

Since E[logg(y|x�β�σ)] is maximized at (β0�σ0), the Hadamard derivative of
E[logg(y|x�β0�σ0)] with respect to β ∈ Θ is 0. By Assumption 5(2), the logg(·|·� ·� ·)
function is twice differentiable with bounded derivatives up to the second order. There-
fore, for some generic constant C1 > 0,

E
[
logg

(
y|x�β∗

J�σ0

)]−E
[
logg(y|x�β0�σ0)

]
≥ −C1

∥∥β∗
J −β0

∥∥2

2
≥ −C1C

2J−2r−2
n =O

(
1
n

)
�

Then

E
[
logg(y|x� β̂J� σ̂)

]−E
[
logg(y|x�β0�σ0)

]
=E

[
logg(y|x� β̂J� σ̂)

]−E
[
logg

(
y|x�β∗

J�σ0

)]
+E

[
logg

(
y|x�β∗

J�σ0

)]−E
[
logg(y|x�β0�σ0)

]
≥ −Op

(
δ
√− logδ√

n

)
−C1C

2J−2r−2
n = −Op

(
δ
√− logδ√

n

)
�

where the last step used the assumption that J2r+2
n

n
→ ∞.

Let z(y|x) = g(y|x� β̂J� σ̂) − g(y|x�β0�σ0) and define ‖z(y|x)‖1 := ∫ ∞
−∞ |z(y|x)|dy .

Then by Pinsker’s inequality conditional on each value of x,

Ex

[∥∥z(y|x)∥∥2

1

]≤ 2Ex

[
D
(
g(y|x�β0�σ0) ‖ g(y|x� β̂J� σ̂)

)]
≤ 2

(
E
[
log
(
g(y|x�β0�σ0)

)]−E
[
log
(
g(y|x� β̂J� σ̂)

)])
=Op

(
δ
√− logδ√

n

)
� (D.3)

where D(P ‖Q) is the K-L divergence between two probability distributions P and Q.
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Now consider the characteristic functions of xT β̂J(τ) and xTβ0(τ) conditional on x and
given that τ ∼U[0�1],

φxβ̂J
(s|x)=

∫ ∞

−∞
g(y|x� β̂J� σ̂)e

isy dy

φε(s|σ̂) and φxβ0(s|x) =

∫ ∞

−∞
g(y|x�β0�σ0)e

isy dy

φε(s|σ0)
�

Then for any x and s, |φxβ̂J
(s|x)φε(s|σ̂) − φxβ0(s|x)φε(s|σ0)| = | ∫ ∞

−∞ z(y|x)eisy dy| ≤
‖z(y|x)‖1. Defining m(s) := φε(s|σ0)/φε(s|σ̂) and dividing both sides by φε(s|σ)φxβ0(s|
x),

∣∣∣∣m(s)− φxβ̂J
(s|x)

φxβ0(s|x)
∣∣∣∣≤

∥∥z(y|x)∥∥
1∣∣φxβ0(s|x)φε(s|σ0)

∣∣ � (D.4)

Plugging (D.4) back into (D.3), we have

Ex

[∣∣∣∣m(s)− φxβ̂J
(s|x)

φxβ0(s|x)
∣∣∣∣2]≤ Ex

[ ∥∥z(y|x)∥∥2

1∣∣φxβ0(s|x)φε(s|σ0)
∣∣2
]

≤ Ex

[∥∥z(y|x)∥∥2

1

] s2

C2φε(s|σ0)
2

= op

(
Ex

[∥∥z(y|x)∥∥2

1

] 1
φε(s|σ0)

2

)
� (D.5)

where in the last step we require that s ∈ [−l� l] for some l > 0 such that |φxβ0(s|x)| is
bounded away from zero. Using the fact that for any random variable a and any number
b, Var(a)≤E[(a− b)2], we have that

Ex

[∣∣∣∣m(s)− φxβ̂J
(s|x)

φxβ0(s|x)
∣∣∣∣2]≥ Varx

(
φxβ̂J

(s|x)
φxβ0(s|x)

)
�

Inequality (D.5) then implies that

Varx

(
φxβ̂J

(s|x)
φxβ0(s|x)

)
�p Ex

[∥∥z(y|x)∥∥2

1

] 1
φε(s|σ0)

� (D.6)

Applying Assumption 8, inequality (D.6) implies that

Ex

[∣∣∣∣φxβ̂J
(s|x)−φxβ0(s|x)
φxβ0(s|x)

∣∣∣∣2]=Op

(
Ex

[∥∥z(y|x)∥∥2

1

] 1
φε(s|σ0)

2

)
� (D.7)
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We can rewrite m(s) − φxβ̂J
(s|x)

φxβ0 (s|x)
as (m(s) − 1) − φxβ̂J

(s|x)−φxβ0 (s|x)
φxβ0 (s|x)

. Using that 1
2a

2 − b2 ≤
(a− b)2 for any a�b ∈R, we can bound inequality (D.7) from below such that

1
2
Ex

[∣∣m(s)− 1
∣∣2]−E

[∣∣∣∣φxβ̂J
(s|x)−φxβ0(s|x)
φxβ0(s|x)

∣∣∣∣2]

≤Ex

[∣∣∣∣m(s)− φxβ̂J
(s|x)

φxβ0(s|x)
∣∣∣∣2] (D.8)

=Op

(
Ex

[∥∥z(y|x)∥∥2

1

] 1
φε(s|σ0)

2

)
� (D.9)

Combining (D.8) with (D.7),

Ex

[∣∣m(s)− 1
∣∣2]=Op

(
Ex

[∥∥z(y|x)∥∥2

1

] 1
φε(s|σ0)

2

)
�

or, equivalently, for any s ∈ [−l� l] where l is some fixed constant,∣∣φε(s|σ0)−φε(s|σ̂)
∣∣2 =Op

(
Ex

[∥∥z(y|x)∥∥2

1

])
� (D.10)

Applying Assumption 5(6) along with (D.10), it follows that ‖σ̂ − σ0‖2 = Op(Ex[‖z(y|
x)‖2

1])= Op(
δ
√

− logδ√
n

).
If ‖σ̂ − σ‖> ‖β̂J −β∗

J‖, then δ= ‖σ̂ − σ‖, and it follows that ‖σ̂ − σ0‖2 =Op(
logn
n
).

If ‖σ̂ − σ‖ ≤ ‖β̂J −β∗
J‖, then δ= ‖β̂J −β∗

J‖, and ‖σ̂ − σ0‖2 =Op(
δ
√

− logδ√
n

).

Therefore, ‖σ̂ − σ0‖2 = Op(max( logn
n
�

‖β̂J−β∗
J‖
√

− log‖β̂J−β∗
J‖√

n
)). Q.E.D.

The following lemma will be instrumental in proving asymptotic normality.

LEMMA 9: Under Assumptions 1, 4, 5, 6(1) (the mildly ill-posed case), 8, and J2r+2
n

n
→ ∞,

‖β̂J −β∗
J‖ =Op((J

2λ
n

log
1
2 n

n
1
2
)

1
2λ+1 ).

PROOF: Our argument follows the proof of Lemma 4. Let z(y|x) := g(y|x� β̂J�σ0) −
g(y|x�β∗

J�σ0). By Pinsker’s inequality conditional on each value of x,

Ex

[∥∥z(y|x)∥∥2

1

]≤ 2Ex

[
D
(
g(y|x� β̂J�σ0) ‖ g(y|x�β∗

J�σ0

))]
≤ 2

(
E
[
log
(
g
(
y|x�β∗

J�σ0

))]−E
[
log
(
g(y|x� β̂J�σ0)

)])
�

where D(P ‖Q) is the K-L divergence between two probability distributions P and Q.
By the maximal inequality, for any δ > 0,

E
[

max
‖βJ−β∗

J‖2<δ

∣∣Gn logg
(
y|x�β∗

J�σ0

)−Gn logg(y|x�βJ�σ0)
∣∣]

≤K

∫ δ

0

√
logN

(
r�M�‖ · ‖2

)
dr�
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where N(r�M�‖ · ‖2) is the covering number of r balls on M (the space of β) and K is a
generic constant. Since M is a bounded and co-monotone space (xTβ(τ) is monotone in
τ for all x ∈X ), N(r�M�‖ · ‖2) < δdx . Therefore,

E
[

max
‖βJ−β∗

J‖2<δ

∣∣Gn logg
(
y|x�β∗

J�σ0

)−Gn logg(y|x�βJ�σ0)
∣∣]≤ δ

√− logδ

and |Gn logg(y|x�β∗
J�σ0) − Gn logg(y|x� β̂J�σ0)| = Op(δ̂

√
− log δ̂), where δ̂ := ‖β∗

J −
β̂J‖. Using a similar argument as in the proof of Lemma 4, we can show that ‖σ̂ −σ0‖2 =
Op(

1√
n
δ̂
√

− log δ̂). Thus,

E
[
log
(
g
(
y|x�β∗

J�σ0

))]−E
[
log
(
g(y|x� β̂J�σ0)

)]
(D.11)

= 1√
n
Gn

[
log
(
g
(
y|x�β∗

J�σ0

))]− 1√
n
Gn

[
log
(
g(y|x� β̂J�σ0)

)]
(D.12)

+En

[
log
(
g
(
y|x�β∗

J�σ0

))]−En

[
log
(
g(y|x� β̂J�σ0)

)]
� (D.13)

The terms in (D.12) are Op(
1√
n
δ̂
√

− log δ̂). For the terms in (D.13), we have

En

[
log
(
g
(
y|x�β∗

J�σ0

))]−En

[
log
(
g(y|x� β̂J�σ0)

)]
=En

[
log
(
g
(
y|x�β∗

J�σ0

))]−En

[
log
(
g(y|x� β̂J� σ̂)

)]
+En

[
log
(
g(y|x� β̂J� σ̂)

)]−En

[
log
(
g(y|x� β̂J�σ0)

)]
�

We know that En[log(g(y|x�β∗
J�σ0))] −En[log(g(y|x� β̂J� σ̂))] ≤ 0 by the first-order con-

dition. We also have

En

[
log
(
g(y|x� β̂J� σ̂)

)]−En

[
log
(
g(y|x� β̂J�σ0)

)]= Op

(‖σ̂ −σ0‖2
)=Op

(
1√
n
δ̂

√
− log δ̂

)
�

Combining the results on different terms in (D.11), we have

E
[
log
(
g
(
y|x�β∗

J�σ0

))]−E
[
log
(
g(y|x� β̂J�σ0)

)]
�p

1√
n
δ̂

√
− log δ̂�

It follows that

Ex

[∥∥z(y|x)∥∥2

1

]≤ 2E
[
log
(
g
(
y|x�β∗

J�σ0

))]−E
[
log
(
g(y|x� β̂J�σ0)

)]=Op

(
1√
n
δ̂

√
− log δ̂

)
�

Now consider the characteristic functions of xT β̂J(τ) and xTβ∗
J(τ) conditional on x,

τ ∼U[0�1]:

φxβ̂J
(s|x) =

∫ ∞

−∞
g(y|x� β̂J�σ0)e

isy dy

φε(s|σ0)
and φxβ∗

J
(s|x)=

∫ ∞

−∞
g
(
y|x�β∗

J�σ0

)
eisy dy

φε(s|σ0)
�
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It follows that |φxβ̂J
(s|x)φε(s|σ0)−φxβ∗

J
(s|x)φε(s|σ0)| = | ∫ ∞

−∞ z(y|x)eisy dy| ≤ ‖z(y|x)‖1.
Then ∣∣φxβ̂J

(s|x)−φxβ∗
J
(s|x)∣∣≤p

∥∥z(y|x)∥∥
1

φε(s|σ0)
�

Using the relationship between the CDF and characteristic function of a random variable
x (i.e., Fx(w) = 1

2 − ∫ ∞
−∞

exp(iws)φx(s)

2πis ds), we have that

Fxβ̂J
(w)− Fxβ∗

J
(w) = lim

q→∞

∫ q

−q

exp(iws)

2πis
(
φxβ̂J

(s|x)−φxβ∗
J
(s|x))ds�

Then since in our sieve setting β̂J and β∗
J are rth-order spline functions with grid interval

size of order O(1/Jn), we know that max(|φxβ̂J
(s|x)|� |φxβ∗

J
(s|x)|)≤ Jn

c
s

for some constant
c > 0. Therefore,

Ex

[∣∣Fxβ̂J
(w)− Fxβ∗

J
(w)

∣∣]
≤Ex

[∫ q

−q

∣∣∣∣exp(iws)

2πis

∣∣∣∣
∥∥z(y|x)∥∥

1∣∣φε(s|σ0)
∣∣ ds

]
+Ex

[
2
∫ ∞

q

1
2πs

∣∣φxβ̂J
(s|x)−φxβ∗

J
(s|x)∣∣ds]�

(D.14)

The first term of the right-hand side of equation (D.14) is weakly bounded from above by

1
2π

∫ q

−q

1
sφε(s|σ0)

dsEx

[∥∥z(y|x)∥∥
1

]= op

(
qλ

n1/4

√
δ̂(− log δ̂)

1
4

)
�

where λ is the degree of mild ill-posedness. The second term of (D.14) is weakly bounded
by Jn

4c
q

� Jn/q. Putting these together, the right-hand side of (D.14) has an upper bound

of Op(
qλ

n1/4

√
δ̂(− log δ̂)

1
4 + Jn

q
) for an arbitrary q.

Since δ̂= ‖β∗
J − β̂J‖2 =O(Ex[|Fxβ̂J

(w)− Fxβ∗
J
(w)|]), we have

δ̂= Op

(
qλ

n1/4

√
δ̂(− log δ̂)

1
4 + Jn

q

)
�

If δ̂ = Op(
1
n
), then the conclusion holds. If δ̂ converges to 0 slower than 1

n
, we have δ̂ =

Op(
qλ

n1/4

√
δ̂ log

1
4 n+ Jn

q
), which implies δ̂= Op(

q2λ

n1/2 log
1
2 n+ Jn

q
). The optimal q is ( Jnn

1
2

log
1
2 n
)

1
2λ+1 .

Then we have δ̂= ‖β̂J −β∗
J‖ =Op((J

2λ
n

log
1
2 n

n
1
2
)

1
2λ+1 ). Q.E.D.

PROOF OF THEOREM 2: Suppose θ̂J = (β̂J(·)� σ̂) ∈ Θr
J is the rth-order sieve estimator.

By the consistency of the sieve estimator established by Lemma 3, ‖θ̂J − θ0‖2
p−→ 0. It is

easy to see that Θr
J ⊂ Θ. By Lemma 4, σ̂ will always converge to σ0 at rate of at least

n− 1
4 . By construction of the sieve, there exists a set of parameters (β∗

J�σ0) in Θr
J such that

‖β∗
J −β0‖2 = O( 1

Jr+1
n

).
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Let Gn denote the operator
√
n(En −E). Then

1√
n
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

= En

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

= −E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

� (D.15)

where we used the first-order condition En(
∂ logg
∂β

� ∂ logg
∂σ

)|(β̂J �σ̂) = 0. For the left-hand side of
(D.15), by Donskerness of {( ∂ logg

∂β
� ∂ logg

∂σ
)|(β̃�σ̃)|(β̃� σ̃) ∈ Θ}, we have

1√
n
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

= 1√
n

(
1 + op(1)

)
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β0�σ0)

�

which is asymptotically Gaussian. Next, we work on the right-hand side of (D.15). It can
be expanded as

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

= −
[
E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β̂J �σ̂)

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β∗

J �σ0)

]

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β∗

J �σ0)

� (D.16)

and then a Taylor expansion of the term inside brackets of (D.16) gives

IβJ�σ0

(
b̂J − b∗

J� σ̂ − σ0

)T +Op

(∥∥b̂J − b∗
J

∥∥2 + ‖σ̂ − σ0‖2
)
�

where b̂J and b∗
J denote the coefficient vectors for the spline functions in β̂J and β∗

J . The
second term on the right-hand side of (D.16), −E(∂ logg

∂β
� ∂ logg

∂σ
)|(β∗

J �σ0), equals

E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β0�σ0)

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β∗

J �σ0)

�

because (β0�σ0) is the truth and therefore E(∂ logg
∂β

� ∂ logg
∂σ

)|(β0�σ0) = 0.
Since ‖β∗

J −β0‖ =O( 1
Jr+1
n

), by continuity

E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β0�σ0)

−E

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
(β∗

J �σ0)

=O
(∥∥β∗

J −β0

∥∥)= O

(
1

Jr+1
n

)
�

Combining both sides of (D.15), we have

1√
n

(
1 + op(1)

)
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
(β0�σ0)

= −Iβ∗
J �σ0

(
b̂J − b∗

J� σ̂ − σ0

)T +Op

(∥∥b̂J − b∗
J

∥∥2 + ‖σ̂ − σ0‖2
)+Op

(
1

Jr+1
n

)
� (D.17)
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Since ‖σ̂ − σ0‖2 = op(
1√
n
), it is dominated by the Gaussian term on the left-hand side of

(D.17). By Lemma 9 and the condition that J4λ2+6λ
n log(n)

n
→ 0, we know that ‖β̂J − β∗

J‖2 =
J−λ
n op(‖β̂J − β∗

J‖) and ‖b̂J − b∗
J‖2 = J−λ

n op(‖b̂J − b∗
J‖), for Jn satisfying the growth rate

conditions stated in the theorem. Therefore, (D.17) becomes

−(1 + op(1)
)
Iβ∗

J �σ0

(
b̂J − b∗

J� σ̂ − σ0

)T
= 1√

n

(
1 + op(1)

)
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
(β0�σ0)

+Op

(
1

Jr+1
n

)
� (D.18)

By continuity of the information matrix as a function of β, we know that the smallest
eigenvalue of Iβ∗

J �σ0 is on the same order as the smallest eigenvalue of Iβ0�σ0 , that is, both
are bounded by c

Jλn
from below with c as a constant. Hence (D.18) implies ‖b̂J − b∗

J� σ̂ −
σ0‖ = Jλ

nOp(
1

Jr+1
n

� 1√
n
), or

‖β̂J −β0� σ̂ − σ0‖ =Op

(
1

Jr+1
n

)
+ ∥∥β̂J −β∗

J� σ̂ − σ0

∥∥= Jλ
nOp

(
1

Jr+1
n

�
1√
n

)
�

establishing the convergence rate of the sieve estimator. For asymptotic normality, note
that if Jr+1

n /
√
n → ∞, then the first term on the right-hand side of (D.18) dominates the

second term on the right-hand side of (D.18), so we have

IβJ�σ0

(
b̂J − b∗

J� σ̂ − σ0

)T = 1√
n

(
1 + op(1)

)
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
(β0�σ0)

�

Therefore,
√
nκJ(b̂J − b∗

J� σ̂ − σ0) = √
κJ(1 + op(1))I−1

β∗
J �σ0

Gn(
∂ logg
∂β

� ∂ logg
∂σ

)T |β0�σ0 . By defi-
nition, we know that

Iβ0�σ0 = nVar
(
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

)
� (D.19)

By the growth condition r + 1 > λ, ‖Iβ0�σ0 −Iβ∗
J �σ0‖2 = O( 1

Jr
)= o(κJ). By the definition of

κJ as the smallest eigenvalue of Iβ0�σ0 , we have∥∥I−1
β∗
J �σ0

Iβ0�σ0 − IJ̃
∥∥

2
= ∥∥(IJ̃ + (Iβ0�σ0 − Iβ∗

J �σ0)I−1
β0�σ0

)−1 − IJ̃
∥∥

2
→ 0� (D.20)

where IJ̃ is the identity with dimension J̃ × J̃, and J̃ = dim(bJ)+ dσ .
Denote ΩJ := κJI−1

β∗
J �σ0

Iβ0�σ0I−1
β∗
J �σ0

. By (D.20), the largest eigenvalue of ΩJ is bounded
by a constant, and∥∥ΩJ − κJI−1

β0�σ0

∥∥
2
= κJ

∥∥I−1
β∗
J �σ0

Iβ0�σ0I−1
β∗
J �σ0

− I−1
β∗
J �σ0

∥∥
2

≤ κJ

∥∥I−1
β∗
J �σ0

Iβ0�σ0I−1
β∗
J �σ0

− I−1
β∗
J �σ0

∥∥
2
+ κJ

∥∥I−1
β∗
J �σ0

− I−1
β0�σ0

∥∥
2

≤ κJ

∥∥I−1
β∗
J �σ0

∥∥
2

∥∥Iβ0�σ0I−1
β∗
J �σ0

− IJ̃
∥∥

2
+ κJ

∥∥I−1
β0�σ0

∥∥
2

∥∥I−1
β∗
J �σ0

− IJ̃
∥∥

2
�
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By (D.19), ‖I−1
β∗
J �σ0

Iβ0�σ0 −IJ̃‖2 → 0. By definition, κJ‖I−1
β0�σ0

‖2 = 1. It is also straightforward
to see that κJ‖I−1

β∗
J �σ0

‖2 =O(1). Therefore, ‖ΩJ − κJI−1
β0�σ0

‖2 → 0. Then

Var
(√

κJI−1
β∗
J �σ0

Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

)
= κJI−1

β∗
J �σ0

Iβ0�σ0I−1
β∗
J �σ0

= ΩJ�

which has bounded eigenvalues. We next denote the submatrix of ΩJ for σ as ΩJ�σ . Also,
let I−1

β∗
J �σ0:σ0

denote the last dσ rows of I−1
β∗
J �σ0

. Let I−1
β∗
J �σ0:β∗

J
denote the first dim(bJ) rows of

I−1
β∗
J �σ0

. For σ̂ − σ0, we have

√
nκJ(σ̂ − σ0)= √

κJI−1
β∗
J �σ0:σ0

Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

�

Since the largest eigenvalue of ΩJ is bounded from above uniformly over J, we have that
the matrix

κJΩJ�σ = Var
(√

κJI−1
β∗
J �σ0:σ0

Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

)
has eigenvalues bounded from above by constant and bounded away from 0 by κJ .

For any v ∈ R
dσ , ‖v‖ = 1, we can define

zn = vT
√
κJI−1

β∗
J �σ0:σ0

Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

as a scalar random variable. Since Var(
√
κJI−1

β∗
J �σ0:σ0

Gn(
∂ logg
∂β

� ∂ logg
∂σ

)T |β0�σ0) = κJΩJ�σ has
bounded eigenvalues, there exist positive constants C1�C2 > 0 such that σ2

zn
:= Var(zn) ∈

[C1κJ�C2].
For any fixed constant η> 0, we have

1
σ2

zn

E
[
z2
n1(zn > η

√
nσzn)

]
≤ 1

σ2
zn

E

[∥∥∥∥(∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

∥∥∥∥2

1
(∥∥∥∥(∂ logg

∂β
�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

∥∥∥∥2

>C2
2η

2nσ2
zn

)]
�

where 1(·) is the indicator function.
By Assumption 5(7) and the Markov inequality, E[‖( ∂ logg

∂β
� ∂ logg

∂σ
)|β0�σ0‖4] ≤ C(Jdx +dσ)

2

for some constant C > 0, and

E

[∥∥∥∥(∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

∥∥∥∥2

1
(∥∥∥∥(∂ logg

∂β
�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

∥∥∥∥2

>C2
2η

2nσ2
zn

)]

≤
E

[∥∥∥∥(∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

∥∥∥∥4]
C2

2η
2nσ2

zn

≤ C(Jdx + dσ)
2

C2
2η

2nσ2
zn

�

Therefore, for any fixed η> 0, 1
σ2
zn
E[z2

n1(zn > η
√
nσzn)] � J2

C2
2η

2nσ4
zn

� J2λ+2

n
� J2r+2

n
→ 0.
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By the Lindeberg–Feller Triangular Central Limit Theorem,

Ω−1/2
J�σ

√
κJI−1

β∗
J �σ0:σ0

Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

d−→N(0� Idσ )�

or equivalently,

Ω−1/2
J�σ

√
nκJ(σ̂ − σ0)

d−→ N(0� Idσ )�

For convergence of β̂, we have

√
nκJ

(
b̂J − b∗

J

)= √
κJ

(
1 + op(1)

)
I−1
β∗
J �σ0:β∗

J
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

�

For any fixed τ,

√
nκJ

(
β̂J(τ)−β∗

J(τ)
)= √

nκJ

(
b̂J − b∗

J

)T
S(J)(τ)

= √
nκJ

(
1 + op(1)

)
S(J)(τ)′I−1

β∗
J �σ0:β∗

J
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)∣∣∣∣
β0�σ0

�

where S(J)(τ) = (S1(τ)� � � � � Sdx×(J+r)(τ)) is the set of e base functions in the sieve space
normalized such that ‖S(J)(τ)‖2 = O(1) as J → ∞ and ‖S(J)(τ)‖2 denotes∑dx×(J+r)

l=1 |Sl(τ)|2. Thus we have

Var
(√

κJS
(J)(τ)TI−1

β∗
J �σ0:β∗

J
Gn

(
∂ logg
∂β

�
∂ logg
∂σ

)T ∣∣∣∣
β0�σ0

)
≤ ∥∥S(J)

∥∥2‖κJΩJ‖2�

which is uniformly bounded from the above for all J. We can now apply the Lindeberg–
Feller Triangular Central Limit Theorem again and have

Ω−1/2
J�τ

√
nκJ

(
β̂J(τ)−β∗

J(τ)
)→d N(0� Idx)�

where ΩJ�τ := (S(J)(τ)⊗ Idx)
TΩJ�β(S

(J)(τ)⊗ Idx), where ΩJ�β is the submatrix of ΩJ for βJ .
Because ‖β∗

J − β0‖ = O( 1
Jr+1 ) = o( 1√

nκJ
), the bias term β∗

J − β0 is dominated by β̂J(τ) −
β∗

J(τ). Therefore,

Ω−1/2
J�τ

√
nκJ

(
β̂J(τ)−β0(τ)

)→d N(0� Idx)�
Q.E.D.

PROOF OF THEOREM 3: By the same argument as in the proof of Theorem 2, we have

Iβ̂J−β∗
J �σ̂−σ0

+Op

(∥∥(β̂J −β∗
J� σ̂ − σ0

)∥∥2

2

)= −1√
n
Gn�Jn � (D.21)

By setting Jn such that exp(λJζn )√
n

= 1
Jn

, we have ( 1
2λ − η) log(n) < Jζ

n < 1
2λ log(n) for any

small η > 0 and n large enough. By Assumption 6(2), the minimum eigenvalue of I is
bounded by C exp(−λJζ

n) for some λ > 0, ζ > 0, and C > 0. It follows that ‖Iβ̂J−β∗
J �σ̂−σ0

‖ ≥
C exp(−λJζ

n)‖(β̂J −β∗
J� σ̂ − σ0)‖2.
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(a) If ‖(β̂J − β∗
J� σ̂ − σ0)‖2 ≥ C1/C exp(−λJζ

n), for some constant C1 large enough,
then with probability approaching 1, we have ‖Iβ̂J−β∗

J �σ̂−σ0
‖2 > 2Op(‖(β̂J −β∗

J� σ̂ −
σ0)‖2

2), where Op(‖(β − β∗
J� σ̂ − σ0)‖2

2) is the higher order residual term in the

equation (D.21). It follows that ‖(β̂J −β∗
J� σ̂ − σ0)‖2 �p

exp(λJζn )√
n

.
(b) Else we have ‖(β − β∗

J� σ̂ − σ0)‖2 ≤ C1/C exp(−λJζ
n) ≤ C1/Cn(1/2 − ηλ) =

o( exp(λJζn )√
n

).

Combining the two situations, we have ‖(β−β∗
J� σ̂ − σ0)‖2 =Op(

exp(λJζn )√
n

).
By construction of the sieve, ‖(β−β∗

J� σ̂−σ0)‖2 = O( 1
Jn
). Hence, ‖(β−β∗

J� σ̂−σ0)‖2 =
O(max( exp(λJζn )√

n
� 1
Jn
)). By assumption, we set Jn such that exp(λJζn )√

n
= 1

Jn
= O( 1

log1/ζ (n)
). There-

fore, the sieve estimator satisfies: ‖(β−β∗
J� σ̂ − σ0)‖2 =Op(

1
log1/ζ (n)

). Q.E.D.

PROOF OF LEMMA 5: A bootstrap process can be considered as putting non-negative
weights wi�n on the ith observation. We require E[wi�n] = 1, and E[wi�n]2 = σ2

w�n <∞. One
example is to let (wi�1� � � � �wi�n) ∼ Multinomial(n� 1

n
� � � � � 1

n
), which is the nonparametric

pairs bootstrap recommended in the text and used in the simulation and empirical results.
The bootstrapped estimator (β̂b

J� σ̂
b) should satisfy the first-order condition

Eb
n

[
∂ loggb

∂β

∣∣∣∣
β̂b
J �σ̂

b

�
∂ loggb

∂σ

∣∣∣∣
β̂b
J �σ̂

b

]
= 0�

By Assumption 5(3), E[supβ�σ |wi�n logg(yi|xi�β�σ)|] < ∞. Moreover, by Assump-
tion 5(2), wi�n logg(yi|xi�β�σ) satisfies

E
[∣∣w logg(yi|xi�β�σ)−w′ logg

(
yi|xi�β

′�σ ′)∣∣]≤ C1

(∣∣w−w′∣∣+ ∥∥(β�σ)− (β′�σ ′)∥∥)
for some generic constant C1 > 0. By the ULLN for any (β�σ) ∈ M × Σ, Eb

n[logg(β�
σ)] p−→En[logg(β�σ)], which converges to E[logg(β�σ)] with probability approaching 1.
Since M × Σ is compact and identification holds, it must be that (β̂b

J� σ̂
b)

p−→ (β0�σ0).
Therefore, ‖(β̂b

J� σ̂
b)− (β̂J� σ̂)‖ p−→ 0.

Denote G(β�σ) = ( ∂ logg
∂β

� ∂ logg
∂σ

). By stochastic equicontinuity,

Eb
n

[
G
(
β̂b

J� σ̂
b
)]−En

[
G
(
β̂b

J� σ̂
b
)]=Eb

n

[
G(β̂J� σ̂)

]−En

[
G(β̂J� σ̂)

]+ op

(
1√
n

)
�

In the above equation, Eb
n[G(β̂b

J� σ̂
b)] = En[G(β̂J� σ̂)] = 0 by the first-order condition.

Thus we have

Eb
n

[
G(β̂J� σ̂)

]−En

[
G(β̂J� σ̂)

]+op

(
1√
n

)
= −(En

[
G
(
β̂b

J� σ̂
b
)]−En

[
G(β̂J� σ̂)

])
� (D.22)

Next we will show that the left-hand side of (D.22) is asymptotically normal and the
right-hand side of (D.22) can be written as a matrix multiplied by (b̂b

J� σ̂
b)−(b̂J� σ̂), where

b̂J and b̂b
J are the coefficients for the sieve functions in β̂J and β̂b

J .
For the left-hand side of (D.22),

Eb
n

[
G(β̂J� σ̂)

]−En

[
G(β̂J� σ̂)

]= Eb
n

[
(wi�n − 1)G(β̂J� σ̂)

]
�
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Because Var(
√
n(wi�n − 1)G(β̂J� σ̂))=E[G(β̂J� σ̂)G(β̂J� σ̂)

T ], we have
√
n n

n−1E
b
n[(wi�n −

1)G(β̂J� σ̂)] = Op(
1√
n
) under the ‖ · ‖2 norm. By Theorem 2, ‖(β̂J� σ̂J) − (β0�σ0)‖ =

Op(
Jλn√
n
). Therefore,

E
[
G(β̂J� σ̂)G(β̂J� σ̂)

T
]= Iβ0�σ0 +Op

(
Jλ
n√
n

)
�

where Iβ0�σ0 := E[G(β0�σ0)G(β0�σ0)
T ]. By assumption, Jλn√

n
/mineigen(Iβ0�σ0) → 0 as

n → ∞, thus Iβ0�σ0 dominates Op(
Jλn√
n
).

For the right-hand side of (D.22), by Donskerness of M × Σ and stochastic equiconti-
nuity, we have

En

[
G
(
β̂b

J� σ̂
b
)]−En

[
G(β̂J� σ̂)

]=E
[
G
(
β̂b

J� σ̂
b
)]−E

[
G(β̂J� σ̂)

]+ op

(
1√
n

)
�

where the remainder term op(
1√
n
) does not affect the derivation further and is dropped.

By Taylor expansion,

E
[
G
(
β̂b

J� σ̂
b
)]−E

[
G(β̂J� σ̂)

]
= Iβ̂J �σ̂

(
b̂b
J − b̂J� σ̂

b − σ̂
)+O

(||(b̂b
J − b̂J� σ̂

b − σ̂
)||2
)

= (Iβ0�σ0 +O
(∥∥(b̂J − b0� σ̂ − σ0)

∥∥))(b̂b
J − b̂J� σ̂

b − σ̂
)

+O
(∥∥(b̂b

J − b̂J� σ̂
b − σ̂

)∥∥2)
= (Iβ0�σ0 + op(1)

)(
b̂b
J − b̂J� σ̂

b − σ̂
)+O

(∥∥(b̂b
J − b̂J� σ̂

b − σ̂
)∥∥2)

�

Combining different terms in (D.22), we have(
1 + op(1)

)
Iβ0�σ0

(
b̂b
J − b̂J� σ̂

b − σ̂
)+O

(∥∥(b̂b
J − b̂J� σ̂

b − σ̂
)∥∥2)

= 1√
n

n− 1
n

(√
n

n

n− 1
Eb

n

[
(wi�n − 1)G(β̂J� σ̂)

])= Op

(
1√
n

)
� (D.23)

Similarly to Theorem 2, we need to show that ‖(b̂b
J − b̂J� σ̂

b − σ̂)‖2 is dominated by (1 +
op(1))Iβ0�σ0(b̂

b
J − b̂J� σ̂

b − σ̂). Stochastic equicontinuity implies that

Eb
n

[
logg

(
β̂b

J� σ̂
b
)]−En

[
logg

(
β̂b

J� σ̂
b
)]=Eb

n

[
logg(β̂J� σ̂)

]−En

[
logg(β̂J� σ̂)

]+ op

(
1√
n

)
or
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[
logg(β̂J� σ̂)

]−En

[
logg

(
β̂b

J� σ̂
b
)]=Eb

n

[
logg(β̂J� σ̂)

]−Eb
n

[
logg

(
β̂b

J� σ̂
b
)]+op

(
1√
n

)
�

where Eb
n[logg(β̂J� σ̂)] − Eb

n[logg(β̂b
J� σ̂

b)] ≤ 0 by the optimality of (β̂b
J� σ̂

b). Thus we
have

En

[
logg(β̂J� σ̂)

]−En

[
logg

(
β̂b

J� σ̂
b
)]≤ op

(
1√
n

)
�
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We also know that En[logg(β̂J� σ̂)] − En[logg(β̂b
J� σ̂

b)] ≥ 0 by the optimality of (β̂J� σ̂).
Hence, ∣∣En

[
logg

(
β̂b

J� σ̂
b
)]−En

[
logg(β̂J� σ̂)

]∣∣= op

(
1√
n

)
�

With this, we can apply similar arguments as in Lemma 4 and Lemma 9 to show that∥∥σ̂b − σ̂
∥∥= op

(
n− 1

4
)
�

∥∥β̂b
J − β̂J

∥∥=Op

((
J2λ
n

log
1
2 n

n
1
2

) 1
2λ+1
)
�

By an argument similar to the one in Theorem 2, (D.23) implies that
√
nκJ(β̂

b
J − β̂J) and√

nκJ(σ̂
b − σ̂) have the same distributions as

√
nκJ(β̂J −β0) and

√
nκJ(σ̂ − σ0). Q.E.D.
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