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APPENDIX A: GENERALIZING THE FAKE NEWS ALGORITHM

A.1. Direct Applications of the Existing Framework

FIRST, WE IDENTIFY several ways in which the existing framework can be adapted to
include model elements differing from our examples, with either no change or limited
changes to the algorithm.

Non-Grid Representations of the Value Function. Framework (10)–(12) assumes that
the distribution is discretized as a finite grid, and that y and Λ give the value of the output
Y at each point and the transition probabilities between points. None of this places any re-
striction, however, on how the value function is discretized as v. Our algorithm therefore
accommodates a variety of discrete representations of v (splines, Chebyshev polynomials,
parametric, etc.) without any modification.

Higher Moments. At first glance, (12) seems to require that we are taking the mean
y′
tDt of some individual outcome yt . But if we redefine the individual outcome as (yt)k,

then we can calculate the kth (non-centered) power moment ((yt)k)′Dt as well. Applying
this strategy as necessary for different k and combining the results using a simple block,
we can obtain the Jacobian for any transformation of these moments, such as the variance,
the coefficient of variation, or a CES price index.

This allows us to calculate many moments of interest, though not all; for instance, for
some distributional moments like the Gini coefficient, we need the general framework of
the next section.1
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1Note, however, that this is only necessary if we need Jacobians for these moments. If, instead, we only

need impulse responses for these moments (and the moments themselves are not needed to solve for general
equilibrium), we can apply the linearized (10)–(12) to the equilibrium impulse responses for Xt and recover
impulse responses yt and Dt , then directly compute any desired moments from these.
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Leads and Lags. The equations (10)–(12) include only contemporaneous Xt , without
any leads or lags. What if, instead, a lagged or future variable appears, such as Xt−1 or
Xt+1? In the case of leads like Xt+1, the algorithm works without any change: Lemma 1
goes through without modification, so that iterating backward from a shock at T − 1 still
gives the dys0 and dΛs

0 needed in Proposition 1. Intuitively, this is because our backward
iteration already incorporates the effects of a future shock working through the value
function, and nothing more is needed to handle the case where future X also appears
directly in (10)–(12).

If, on the other hand, a lag like Xt−1 appears in (10)–(12), then it is no longer true that
yst = yss and Λs

t =Λss for t = s+ 1 in (16), because both are affected by the lagged shock.
Lemma 1 fails, and our method—which does not account for the possibility that “past”
shocks affect current individual outcomes at a particular point in the state space—no
longer works.

The simplest solution is to transform variables outside the heterogeneous-agent block,
for example, define a new variable X̃t ≡ Xt−1 (which can be the output of a simple block
taking in X), so that within the algorithm, only a contemporaneous variable X̃t appears,
matching the exact form of (10)–(12).2

Discrete Choice With Taste Shocks. The models we simulate in this paper all have the
feature that policy functions are continuous in the underlying idiosyncratic state variables.
This is no longer generally the case for models that feature discrete choices, such as lumpy
adjustment of durables, price setting with menu costs, or a discrete labor-leisure choice
(see, e.g., Bardóczy (2020)). For such models, if the problem is discretized using a grid,
linearization can give extremely misleading results: if none of the grid points at a point
where the discrete choice changes, then the first-order response of the discrete choice to
any shock is zero.

This problem is common to all perturbation methods. One standard solution is to
assume continuously-distributed i.i.d. taste shocks affecting the value of each discrete
choice. The probability of each discrete choice then varies continuously with the (pre-
taste shock) state.3 To write the model in the form (10)–(12), Dt should then be the dis-
cretized pre-taste shock distribution, and vt , yt , Λt should be the expected values at each
state in this distribution.

An alternative to taste shocks, which we discuss in the next section, is to use a continu-
ous representation of the distribution rather than a discrete grid.

Endogenous Distribution. The distribution Dt in equation (11) is assumed to be unaf-
fected by the current shock Xt and the value function vt+1. In short, it is predetermined at
date t. What if we want events at date t to affect the distribution—for instance, if shocks
at date t can affect capital gains on wealth at date t, or can affect the probability of un-
employment at date t?

Within the framework (10)–(12), the solution is to keep Dt predetermined at date t, and
incorporate these shocks into the functions v, Λ, y instead. For instance, in our two-asset

2To implement the fake news algorithm directly with lags, we would need to calculate ys0 and Λs0 for all s
from −u to T − 1, where u is the maximum lag length, use these to build a fake news matrix F with columns
s = −u� � � � �T − 1, then apply the recursion Jt�s = Jt−1�s−1 + Ft�s in step 4 starting from this new leftmost
column −u. In our experience, this is more difficult and error-prone than the X̃t solution above.

3One particularly convenient approach is to use extreme value taste shocks as in Iskhakov, Jørgensen, Rust,
and Schjerning (2017), which are smooth and lead to logit choice probabilities. Bardóczy (2020) implemented
the fake news algorithm using this approach.
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HANK example, the date-0 return on the illiquid asset includes an endogenous capital
gain. The distribution D0 gives the state prior to this capital gain, and then the ex post
return on illiquid assets, ra0 , is included as part of X0 as an input to v, Λ, y .

Similarly, if the probability of unemployment is endogenous at date t, Dt should still be
the state prior to the realization of the idiosyncratic unemployment shock, and then v, Λ,
y should take expectations over the realizations of this shock.

Although this procedure can virtually always be used to put a model into the framework
of (10)–(12), it becomes unwieldy in complex cases. In Appendix A.3, we describe how to
apply the fake news algorithm to a model where the distribution evolves over multiple
subperiods within each period. This provides a more formal, structured approach.

A.2. Nonlinear Y or D

We now generalize our algorithm to the case of nonlinear functions for Dt+1 and Yt in
(11)–(12). The key is the following generalization of Proposition 1.

PROPOSITION 1: Assume that equations (11) and (12) are replaced, respectively, by

Dt+1 =D(vt+1�Xt �Dt)� (39)

Yt = Y(vt+1�Xt �Dt)� (40)

for some functions D(v�X�D) and Y(v�X�D). Then Proposition 1 still holds, provided that
Definition 1 is changed to

Et ≡
(
D′

D

)t
Y ′

D� (41)

whereDD ≡ ∂D
∂D (vss�Xss�Dss) and YD ≡ ∂Y

∂D
(vss�Xss�Dss) are the nD×nD Jacobian and 1 ×nD

gradient of D and Y with respect to D, respectively.

PROOF: In the proof of Lemma 2, we replace (19) by dY s
t = YD dDs

t +Yvdvst+1 +YX dXs
t .

Subtracting dY s
t and dY s−1

t−1 and using dvst+1 = dvs−1
t from (16) and dXs

t = dXs−1
t−1 by con-

struction, we get Ft�s · dx = YD(dDs
t − dDs−1

t−1), which is identical to (20) except with y′
ss

replaced by YD.
Similarly, replacing (21) with dDs

t =DD ·dDs
t−1 +D′

v dvst +D′
X dXs

t−1, we follow the same
steps to show that dDs

t −dDs−1
t−1 = (DD)

t−1dDs
1, which is identical to (22) except with Λ′

ss re-
placed byDD. The modified Lemma 2 follows, with y′

ss, Λ
′
ss replaced by YD,DD. Replacing

these in the definition of Et , the proof of Proposition 1 goes through. Q.E.D.

Remarkably, the only change needed in Proposition 1, relative to Proposition 1, is to
redefine Et as (D′

D)
tY ′

D rather than (Λss)
tyss. This redefinition is natural: the JacobianDD,

which gives the first-order effect of yesterday’s distribution on today’s, is the generalized
counterpart of the forward iteration matrix Λ′

ss, and the gradient YD, which gives the first-
order effect of today’s distribution on the aggregate output, is the generalized counterpart
of y′

ss.
Given this redefined Et , which can be calculated recursively via Et = (D′

D)Et−1 and E0 =
Y ′

D, the fake news algorithm is otherwise unchanged. We now discuss some applications.
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Entry and Exit. In general, if we modify our original framework to allow for entry and
exit, we have an equation (39) of the more specific form

Dt+1 =Λ(vt+1�Xt)Dt +Dentry(vt+1�Xt)� (42)

where Λ is a Markov matrix with rows that may sum to less than 1 (because of exit, which
may be endogenous) and Dentry accounts for the possibly-endogenous entry of agents. If,
additionally, new entrants show up in the aggregate output, then we also have an equation
(40) of the form

Yt = y(vt+1�Xt)
′Dt +Y entry(vt+1�Xt)� (43)

where Y entry accounts for the effect of the new entrants.
Note that from (42) and (43), we have DD = Λ′

ss and YD = y′
ss. Hence the expectation

vector (41) is the same as our original definition from Section 3, and Proposition 1 and
the fake news algorithm apply in their original form.

Alternative Representations of the Distribution. In our original equations (11)–(12), we
assumed that the distribution vector Dt consisted of probability masses at discrete grid
points. Now, in (39)–(40), Dt can be an arbitrary vector describing the distribution. For
instance, suppose that the state is one-dimensional and continuous. Then, if Dt is a vector
of parameters4 encoding a density f (θ;Dt) for θ ∈ (−∞�∞), we can write a function
D(vt+1�Xt �Dt) that specifies how these parameters evolve over time in our problem. We
can also define the aggregate output Y as the average of some idiosyncratic outcome
y(θ; vt+1�Xt) of interest:

Y(vt+1�Xt �Dt)≡
∫ ∞

−∞
y(θ; vt+1�Xt) · f (θ;Dt) dθ� (44)

Assuming that we already have a way to calculate D and Y , all we need to implement the
fake news algorithm isDD and YD. If D is not too high-dimensional, then numerical differ-
entiation is usually a simple strategy to calculate these, although automatic differentiation
or (in special cases) analytical differentiation may also be useful.

Moments of the Distribution. Suppose that we want the Jacobian for some moment
that can not be represented as a transformation of power moments as in the previous sec-
tion. For instance—to take a simple example—suppose that D is a vector of parameters
describing the distribution of assets, and we want the uth quantile of this asset distribu-
tion. This is a nonlinear function Y(Dt), and to apply the fake news algorithm we only
need to calculate the gradient YD, which (as above) can be done using either numerical
or automatic differentiation.

If D is instead a simple discretized distribution, then the uth quantile function is dis-
continuous, consisting of many steps, and its Jacobian is therefore essentially meaningless
(wherever it can be calculated, it is identically zero). We could obtain a more interesting
object, however, by converting this function to be piecewise linear, interpolating between
the discrete mass points. With many grid points, numerical differentiation might be im-
practical in this case, but thanks to the simplicity of the linearly interpolated quantile
function, one can write the gradient YD analytically instead.

4For an example of a parametric family of distributions often used with heterogeneous-agent models, see
Algan, Allais, Den Haan, and Rendahl (2014). In some cases, another possibility is to represent the distribution
with a more flexible set of basis functions, such as Chebyshev polynomials.
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Discrete Choice Without Taste Shocks. As discussed in Appendix A.1, first-order meth-
ods are misleading for endogenous discrete choices on a state space that has been dis-
cretized to a grid, since locally these choices will not respond to shocks unless the grid
points happen to be at the discontinuities (in which case there is instead a singularity).
The suggestion of Appendix A.1 was to assume i.i.d. taste shocks, so that the probabilities
of each discrete choice vary continuously.

If D is a vector of parameters parameterizing a smooth density, however, then the inte-
gral (44) aggregating a discrete choice y will generally vary smoothly in Xt even if y itself is
discontinuous. Similarly, the law of motion (39) should also vary smoothly. At this point,
there is no particular computational problem posed by discrete choice, and we can apply
Proposition 1 as long as we can calculate DD and YD, just like above.5

A.3. Multi-Stage Problems

In Appendix A.1, we observe that in cases where the “distribution” at time t seems
endogenous to events at time t (e.g., unemployment risk), our basic framework (10)–(12)
can be applied if we interpret Dt as being the distribution prior to any time-t events, and v,
Λ, y as taking expectations over these events. But as models become more complex, with
more within-period structure, implementing this approach manually can become difficult.

We therefore further generalize our framework to account for multiple “stages” j ∈
{0� � � � � J − 1} within a given period t. We now assume that the three equations (10)–(12)
are replaced by

vt�j = vj(vt�j+1�Xt�j)� (45)

Dt�j+1 =Dj(vt�j+1�Dt�j�Xt�j)� (46)

Yt�j = Yj(vt�j+1�Dt�j�Xt�j)� (47)

where we adopt the convention that ·t�J = ·t+1�0, and assume that the initial distribution
D0�0 is given exogenously.

At each stage j, we allow for stage-specific inputs Xt�j and outputs Yt�j .6 Given a path for
{Xt�j}, one solves (45)–(47) to obtain {Yt�j} in the standard way, except that all iterations go
through both t and, within each t, through each stage j. For instance, iterating backward
over (45), starting from some steady-state vT�0 = vss�0 would involve iterating through

vT−1�J−1� vT−1�J−2� � � � � vT−1�0� vT−2�J−1� vT−2�J−2� � � � �

and so on.

5One caveat, however, is that a smooth density is not always realistic in models with discrete choice. For
instance, if agents always reset to the same ideal state, then there will be a mass point at that state; further, if
uncertainty in the model is discrete, then there will be mass points corresponding to each finite sequence of
shocks that might be realized after that state. To avoid having the distribution consist entirely of mass points in
this way, it is useful to introduce some stochastic variables that are drawn from a continuous distribution (e.g.,
in household models, i.i.d. lognormal income risk in each period, in addition to whatever other income risk is
present). This is also true if we want to avoid mass points in a model with occasionally binding constraints (e.g.,
in household models, a borrowing constraint).

6If some stages have either no outputs or no inputs, we can simply disregard the relevant terms. If multiple
stages include the same input, then we can use the algorithm to calculate Jacobians with respect to the input
at each stage individually, and then sum the Jacobians.
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Write Dj
D ≡ ∂Dj

∂D and Yk
D ≡ ∂Yk

∂D
, and use these to define Ekt�j recursively, iterating back-

ward over (t� j) starting with the initial condition Ek0�k = (Yk
D)

′ and then writing

Ekt�j ≡
(
D
j
D

)′Ekt�j+1 (48)

for all t > 0 or t = 0 and j < k. For any s, the vector Ekt�j gives the first-order impact of the
distribution Ds�j at time s, stage j on the output Ys+t�k at the time s+ t, stage k.

Next, assuming a shock dx to Xk
s , we define

F j�k
t�s · dx≡

{
dY s�k

0�j � t = 0�
E jt−1�0 dDs�k

1�0� t ≥ 1�
(49)

and have the following further refinement of Proposition 1.

PROPOSITION 2: Assume D0�0 = Dss�0. The Jacobian J of h satisfies the recursion J j�k
t�s =

J j�k
t−1�s−1 +F j�k

t�s for t� s ≥ 1, with J j�k
t�s =F j�k

t�s for t = 0 or s = 0, and is therefore given by

J j�k
t�s =

min{s�t}∑
u=0

F j�k
t−u�s−u� (50)

where F j�k
t�s is defined in (49).

Obtaining entries of the Jacobian is therefore no more complicated than in our original
case, conditional on being able to evaluate (49) to obtain F j�k

t�s .
For each k, we can still obtain dY s�k

0�j and dDs�k
1�0 for all s = 0� � � � � T − 1 and j by iterating

backward from a shock at date T − 1. This is slightly more involved than before, however.
One must first obtain dvs�k0�j for each s and j through backward iteration, then for each s,
combine this with (46) and (47), iterating forward through the j’s, to obtain dY s�k

0�j for all
j’s and finally dDs�k

1�0. (This is in contrast to the original algorithm, where obtaining the dY s
0

involved no forward iteration at all.)

APPENDIX B: MODEL DESCRIPTIONS AND CALIBRATION

For notational simplicity, we use subscript i to denote household-level outcomes in-
stead of writing them explicitly as functions of state variables as in the main text. Ta-
bles B.I–B.III show our calibration of the three models.

B.1. Krusell–Smith

We describe the model in Section 2. We assume that P(e� e′) discretizes a log AR(1)
process

logeit = ρ logeit−1 + σεit
with normal innovations εit ∼ N (0�1) and use the Rouwenhorst method for discretiza-
tion. In the high-dimensional (“HD”) version, we set ne = 50 and nk = 5000.
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TABLE B.I

CALIBRATION OF OUR KRUSELL–SMITH ECONOMY

Parameter Value

r Real interest rate 0�01
σ Risk aversion 1
α Capital share 0�11
δ Depreciation rate 0�025
ρ Skill mean reversion 0�966
σ/

√
1 − ρ2 Cross-sectional std of log earnings 0�5

ne Points in Markov chain for e 7
nk Points on asset grid 500

B.2. One-Asset HANK

Textbook NK model with HA household sector similar to McKay, Nakamura, and
Steinsson (2016).

Households. Relative to the KS model, households also choose their hours worked nit .
They pay taxes and receive dividends from the ownership of firms according to incidence
rules τ(e) and d(e). The Bellman equation is

Vt(eit� ait−1)= max
cit �nit �ait

{
c1−σ
it

1 − σ −ϕ n
1+ν
it

1 + ν +βEtVt+1(eit+1� ait)

}
�

cit + ait = (1 + rt)ait−1 +wteitnit − τtτ̄(eit)+ dtd̄(eit)�
ait ≥ a�

Firms. A competitive final goods firm aggregates a continuum of intermediate goods,
indexed by j, with a constant elasticity of substitution μ/(μ − 1) > 1. Intermediate
goods are produced by monopolistically competitive firms with production function yjt =
F(njt) ≡ Ztnjt . To maintain symmetry, we assume that every firm employs a representa-
tive workforce. Each firm sets the price of its product pjt subject to quadratic adjustment
costs ψt(pjt�pjt−1) = μ

μ−1
1

2κ [log(pjt/pjt−1)]2Yt . In the symmetric equilibrium, aggregate
inflation 1 +πt ≡ Pt/Pt−1 evolves according to the Phillips curve

log(1 +πt)= κ
(

wt

F ′(Nt)
− 1
μ

)
+ 1

1 + rt+1

Yt+1

Yt
log(1 +πt+1) (51)

and dividends equal output net of labor and price adjustment costs dt = Yt −wtNt −ψt .
Policy. The fiscal authority spendsGt , issues one-period nominal bonds B, and adjusts

the level of taxes τt to balance its budget period by period τt = rtB+Gt . Monetary policy
sets the nominal rate on bonds according to a standard Taylor rule it = r∗t +φπt +φy(Yt −
Yss). The Fisher equation is rt = (1 + it−1)/(1 +πt).

Market Clearing. The final good is used for private consumption, public consump-
tion, and price adjustment costs Yt = ∫

cit di + Gt + ψt . Aggregate household savings
equals government bonds B = ∫

ait di. Labor demand equals supply in efficiency units
Nt =

∫
eitnit di.
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TABLE B.II

CALIBRATION OF OUR ONE-ASSET HANK ECONOMY

Parameter Value Target

Households
β Discount factor 0�982 r = 0�005
ϕ Disutility of labor 0�786 N = 1
σ Inverse IES 2
ν Inverse Frisch 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0�966
σe Cross-sectional std of log earnings 0�5

Firms
μ Steady-state markup 1�2
κ Slope of Phillips curve 0�1

Policy
B Bond supply 5�6
G Government spending 0
φ Taylor rule coefficient on inflation 1�5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 7
na Points on asset grid 500

B.3. Two-Asset HANK

Richer NK model with wage as well as price stickiness, and capital with adjustment
costs. Households have access to a liquid and an illiquid account as in Kaplan, Moll, and
Violante (2018).

Households. Relative to the one-asset model, households allocate their savings be-
tween liquid assets bit and illiquid assets ait subject to a convex portfolio adjustment cost
�t(ait� ait−1). Hours worked Nt are the same for all households and are pinned down by
labor demand from firms as explained below. The Bellman equation is

Vt(eit� bit−1� ait−1)= max
cit �bit �ait

{
c1−σ
it

1 − σ −ϕN
1+ν
t

1 + ν +βEtVt+1(eit+1� bit� ait)

}

s.t. cit + ait + bit = (1 − τt)wtNteit +
(
1 + rat

)
ait−1

+ (
1 + rbt

)
bit−1 −�t(ait� ait−1)�

ait ≥ 0� bit ≥ b�
We specify the adjustment cost function, with χ0�χ1 > 0 and χ2 > 1, as

�t(ait� ait−1)= χ1

χ2

∣∣∣∣ait −
(
1 + rat

)
ait−1(

1 + rat
)
ait−1 +χ0

∣∣∣∣
χ2[(

1 + rat
)
ait−1 +χ0

]
�

Financial Intermediary. A representative financial intermediary takes liquid and illiq-
uid deposits from households and invests them in government bonds Bgt and firm equity
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pt . It performs liquidity transformation at proportional cost ω
∫
bit di. No arbitrage re-

quires that the economy-wide ex ante return Et[1 + rt+1] equals the expected returns on
nominal government bonds and on equity. The competitive financial intermediary passes
these returns on to households, subject to intermediation costs:

Et[1 + rt+1] = 1 + it
Et[1 +πt+1] = Et[dt+1 +pt+1]

pt
= Et

[
1 + rat+1

] = Et

[
1 + rbt+1

] +ω�

The ex post returns rt , rat , rbt , however, are subject to surprise inflation and capital gains.
Assuming that capital gains accrue to the illiquid account, we have 1 + rt = (1 + it−1)/(1 +
πt)= 1 + rbt +ω and

1 + rat =Θp

(
dt +pt
pt−1

)
+ (1 −Θp)(1 + rt)�

where Θp denotes the share of equity in the illiquid portfolio.

Firms. Relative to the one-asset HANK model, intermediate goods firms have a
Cobb–Douglas production function yjt = F(kjt−1� njt)≡ kαjt−1n

1−α
jt . Firms choose their own

capital stock subject to quadratic adjustment costs ζ( kjt

kjt−1
)kjt−1 with ζ(x)≡ x− (1 − δ)+

1
2δεI
(x − 1)2, where δ > 0 is depreciation and εI > 0. The Phillips curve is analogous to

(51), with marginal cost mct = wt/FN(Kt−1�Nt). Let It =Kt − (1 − δ)Kt−1 + ζ( Kt
Kt−1

)Kt−1

denote aggregate investment. Dividends equal output net of investment, labor costs, and
price adjustment costs dt = Yt − wtNt − It − ψt . Finally, Tobin’s Q and capital evolve
according to

Qt = 1 + 1
δεI

Kt −Kt−1

Kt−1
� (52)

(1 + rt+1)Qt = αYt+1

Kt

mct+1 −
[
Kt+1

Kt

− (1 − δ)+ 1
2δεI

(
Kt+1 −Kt

Kt

)2]

+ Kt+1

Kt

Qt+1� (53)

Unions. A competitive labor packer aggregates a continuum of labor services, indexed
by k, with a constant elasticity of substitution μw/(μw − 1) > 1. The wage for each labor
type is set by a different labor union. To ensure symmetry, we assume that every household
supplies every labor type, thus all unions represent all households. Unions set wages to
maximize the average utility of households, taking as given their consumption-savings
decisions. Setting a nominal wage Wkt incurs quadratic adjustment cost ψwt (Wkt�Wkt−1)=
μw
μw−1

1
2κw

[log(Wkt/Wkt−1)]2 in utils. In the symmetric equilibrium, aggregate wage inflation
1 +πwt = (1 +πt)wt/wt−1 evolves according to the Phillips curve

log
(
1 +πwt

) = κw
(
ϕN1+ν

t − (1 − τt)wtNt

μw

∫
eitc

−σ
it di

)
+β log

(
1 +πwt+1

)
�
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TABLE B.III

CALIBRATION OF OUR TWO-ASSET HANK ECONOMY

Parameter Value Target

Households
β Discount factor 0�976 r = 0�0125
σ Inverse IES 2
χ0 Portfolio adj. cost pivot 0�25
χ1 Portfolio adj. cost scale 6�416 B= 1�04Y
χ2 Portfolio adj. cost curvature 2
b Borrowing constraint 0
ρe Autocorrelation of earnings 0�966
σe Cross-sectional std of log earnings 0�92

Labor unions
ϕ Disutility of labor 2�073 N = 1
ν Inverse Frisch elasticity 1
μw Steady state wage markup 1�1
κw Slope of wage Phillips curve 0�1

Firms
Z TFP 0�468 Y = 1
α Capital share 0�33 K = 10Y
μp Steady-state markup 1�015 p+Bg = 14Y
δ Depreciation 0�02
κp Slope of price Phillips curve 0�1

Financial intermediary
ω Liquidity premium 0�005

Policy
τ Labor tax 0�356 budget balance
G Government spending 0�2
Bg Bond supply 2�8
φ Taylor rule coefficient 1�5
φy Taylor rule coefficient on output 0

Discretization
ne Points in Markov chain for e 3
nb Points on liquid asset grid 50
na Points on illiquid asset grid 70

Policy. Monetary and fiscal policies are the same as in the one-asset HANK model,
with the slight modification that τt denotes a proportional tax on labor, and thus budget
balance requires that τtwtNt = rtBg +Gt .

Market Clearing. The final good is used for private consumption, public consump-
tion, investment, price adjustment costs, liquidity transformation, and portfolio adjust-
ment cost Yt = ∫

cit di + Gt + It + ψt + ω
∫
bit−1 di +

∫
�t(ait� ait−1)di. Total saving by

households equals the value of firm equity and government bonds pt +Bg = ∫
ait + bit di.

APPENDIX C: COMPUTATIONAL DETAILS

C.1. Numerical and Automatic Differentiation Details

A key implementation question is how to obtain the two objects dY s
0 and dDs

1. As dis-
cussed in the main text, given some dx, one starts a backward iteration from T − 1, ob-
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taining ys0 = yT−1
T−1−s and Λs

0 =ΛT−1
T−1−s for all s = 0� � � � �T − 1, and then dY s

0 = (dys0)
′Dss and

dDs
1 = (dΛs

0)
′Dss. There are two important practical complications:

1. We only get the correct derivative when dx is infinitesimal.
2. In typical applications, we have not solved for the steady state solving (10) exactly

(i.e., such that vss = v(vss�Xss) exactly), but instead for a steady state such that (10)
holds up to some numerical tolerance (i.e., such that ‖vss − v(vss�Xss)‖< 10−9). As
a result, iterating backward will generally give dys0 
= 0 and dΛs

0 
= 0, even if dx= 0.
The first issue is about how to do differentiation, and is common to all perturbation meth-
ods. The second issue is more specific to our approach. We now describe three ways to
perform differentiation—addressing the first issue—and, within each, discuss how to deal
with the second issue.

One-Sided Numerical Differentiation. Here, we simply choose some small but non-zero
dx and then iterate backward as described above. As is standard, dx should be chosen to
trade off error from second-order effects (which grow with dx) and from numerical issues
like rounding error (which shrink with dx). In our application, one potential source of
the latter error is, as discussed above, that the steady state is not exact. This will often
be worse than the typical rounding error from floating-point numbers, since we usually
pick a numerical tolerance for value function convergence (e.g., 10−9) that is larger than
machine precision (∼ 10−16).

There are two ways to address this issue:
(a) Do an additional full backward iteration from T − 1 to 0 (a “ghost run”) starting

from dx = 0, and denote the results as ỹs0 and Λ̃s
0. Set dys0 = ys0 − ỹs0 and dΛs

0 =
Λs

0 − Λ̃s
0.

(b) At each step, subtract off v(vss�Xss) and recenter around the steady state. Starting
with the shock dx, calculate dv0

0 = v(vss�Xss + dx)− v(vss�Xss). Then, for each s,
calculate

dvs0 = v(vss + dvs−1
0 �Xss

) − v(vss�Xss)� (54)

Do the same for the functions Λ and y as well (e.g., at each step s ≥ 1, calculate
dys0 = y(vss + dvs−1

0 �Xss)− y(vss�Xss)).
We can think of approach (a) as follows: if ys0 and Λs

0 are functions of the shock dx, we are
using one-sided numerical differentiation around dx= 0 to calculate dys0/dx and dΛs

0/dx
for each s. Approach (b) is related, but instead effectively uses one-sided numerical dif-
ferentiation at each step of the backward iteration.7

Approach (b) is usually more efficient than (a), since it does not require a full backward
iteration from T − 1 to 0 with dx = 0, and instead only requires v(vss�Xss), y(vss�Xss),
and Λ(vss�Xss), which take a single step to compute. Approach (b) is also more accurate,
since it corrects for error in the steady state at each step and does not allow these errors
to compound. We therefore use (b) as our default for one-sided calculations in this paper
(with dx= 10−4).

One advantage of (a) is that it may be easier to implement with minimal changes to
existing code, since it involves two complete backward iterations from T − 1 to 0, and
does not require changing the steps themselves as in (54).

7To make this interpretation clearer, we could divide the right-hand side of (54) by dx to get dvs0/dx, and
then use dx · (dvs−1

0 /dx) as an input. Practically, however, this involves unnecessary offsetting divisions and
multiplications by dx.



12 AUCLERT, BARDÓCZY, ROGNLIE, AND STRAUB

Two-Sided Numerical Differentiation. Here, we have the following two analogues of
approaches (a) and (b) above.

(a) Iterate backward from T − 1 to 0 for shocks at T − 1 of dx and −dx, denoting the
results by (ys+0 �Λ

s+
0 ) and (ys−0 �Λ

s−
0 ), respectively, and set dys0 = (ys+0 − ys−0 )/2 and

Λs
0 = (Λs+

0 −Λs−
0 )/2.

(b) Iterate backward from T − 1 to 0, recentering around the steady state in each
step. Specifically, starting with the shock dx, calculate dv0

0 = (v(vss�Xss + dx) −
v(vss�Xss − dx))/2. Then, for s, calculate

dvs0 = v
(
vss + dvs−1

0 �Xss

) − v(vss − dvs−1
0 �Xss

)
2

� (55)

Do the same for the functions Λ and y as well (e.g., at each step s ≥ 1, calculate
dys0 = (y(vss + dvs−1

0 �Xss)− y(vss − dvs−1
0 �Xss))/2).

Analogously to above, approach (a) effectively does two-sided numerical differentiation
on the entire backward iteration process, while approach (b) does two-sided numerical
differentiation at each step of the process. Note that it is no longer necessary to calculate
any responses with dx= 0.

Both approaches (a) and (b) have similar efficiency and accuracy. Approach (b) is in
principle more accurate for the same reason as above, since it immediately recenters
rather than allowing errors in the steady state to build up, but in practice this accuracy
advantage seems minor. For consistency with the above, we use approach (b) as our de-
fault for two-sided calculations (also with dx= 10−4).

Automatic Differentiation. Automatic differentiation allows us to calculate the two ob-
jects in (26), dY s

0 and dDs
1, for infinitesimal dx, getting exact derivatives dY s

0/dx and
dDs

1/dx. One option is to take whatever code iterates backward from T − 1 to 0, starting
with some shock dx, and simply feed it into an automatic differentiation package, telling
it to differentiate with respect to dx.

Though this approach works, it also suffers from error in the steady state: since vss is
not exactly the same as v(vss�Xss), the package will be differentiating around a slightly
different “steady state” at each step, which may be inefficient. It is therefore beneficial to
apply automatic differentiation to a backward iteration routine that recenters around the
steady state at each step, as in (54), so that differentiation will be done around the same
steady state at each step.

In our implementation, we go slightly further, pre-calculating all derivatives ∂v/∂v,
∂v/∂X , ∂y/∂v, and so on around the steady state (vss�Xss), and then using these deriva-
tives to iterate backward starting with infinitesimal dx. Specifically, we first use the Python
automatic differentiation package “jax” to calculate all derivatives.8 Then, we do back-
ward iterations, starting with dv0

0/dx = ∂v/∂X , and then iterating backward dvs0/dx =
(∂v/∂v) · (dv0

0/dx). We similarly calculate each dys0/dx and dΛs
0/dx.

8This required extensive modifications to our code to make it compatible with jax. For instance, jax requires
a more functional style—it does not allow operations that overwrite existing arrays—and it cannot immediately
differentiate our routines written to be compiled by Numba (a Python just-in-time compiler). Further, one ma-
jor source of inefficiency is that Jacobians like ∂v/∂v tend to be highly sparse, but jax (like most automatic
differentiation packages) cannot internally use sparse array operations. Although we convert the derivatives
provided by jax into SciPy’s sparse matrix representation before doing additional computations with them, jax’s
internal computations are still slow in high-dimensional cases because of this limitation. Implementation diffi-
culties of this kind are why we chose numerical differentiation to be our primary approach. (See Ahn, Kaplan,
Moll, Winberry, and Wolf (2018) for an example of a paper employing a custom-built automatic differentiation
toolkit that makes use of sparsity internally.)
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Applying to Direct Method. In Appendix D.1, we apply one-sided, two-sided, and au-
tomatic differentiation to the direct method of computing columns s of the Jacobian. For
one-sided differentiation, we apply the direct method exactly as described at the begin-
ning of Section 3.2, calculating the impulse response to a small shock dx = 10−4 at date
s. However, in the spirit of (a) above, we subtract off the results from a “ghost run” with
a shock dx= 0 to eliminate inaccuracy from an imperfect steady state. For two-sided dif-
ferentiation, we calculate the impulse responses to small shocks dx and −dx at date s
and then take half the difference between the two. Finally, for automatic differentiation,
we use automatic differentiation to pre-calculate all derivatives as above, and use them
to evaluate the linearized equations (10)–(12) and obtain a linear impulse response to a
shock at each date s.

C.2. Equilibrium Computation as a Directed Acyclic Graph

In this section, we introduce a formal way of representing the variable substitutions
that underlie the H and M functions. The idea is to organize the model as a set of blocks
arranged along a directed acyclic graph, or DAG. While the technical definition requires
some formalism, constructing models this way is highly intuitive and facilitates efficient
computation.

The general type of model whose Jacobians we can compute consists of any combina-
tion of heterogeneous-agent problems (or heterogeneous-agent blocks), characterized by
the mapping (13), and simple blocks, which capture typical aggregate relationships in dy-
namic macro models. Formally, we define simple blocks as mappings between inputs X
and outputs Y for which there exist k� l ∈ N and a time-invariant function h such that Yt

is only a function of neighboring Xt ’s, that is,

Yt = h(Xt−k� � � � �Xt+l)�

For instance, a neoclassical firm sector can be represented as a simple block mapping
Xt = (Kt�Zt) to Yt = (Yt� rt�wt). Combining such a sector with a heterogeneous-agent
block mapping Xt = (rt�wt) to Yt = Kt({rs�ws}), as well as a simple block mapping Xt =
(Kt �Kt) to market clearing Yt =Kt −Kt , we obtain the Krusell–Smith model of Section 2.
Jacobians of simple blocks are straightforward to compute explicitly.

We call “sequence-space model” any combination of these blocks that maps shocks (like
Zt) and unknowns (like Kt) to targets (like asset market clearing) along a directed acyclic
graph.

DEFINITION 1: A sequence-space model is defined by:
1. A set of sequence indices N = Z ∪ U ∪ O, where Z are exogenous shocks, U are

unknowns, O are outputs, and H ⊂O are targets,
2. A set of blocks, each either simple or heterogeneous-agent blocks, indexed by B,

where each block b ∈ B has inputs Ib ⊂N and outputs Ob ⊂O, such that each output
o ∈ O belongs to exactly one block, and for each output o ∈ Ob, block b provides a
function ho({Xi}i∈Ib) mapping the block’s input sequences to this output sequence,

such that (a) the number of unknowns and targets are equal, that is, nu = nh, and (b) the
directed graph of blocks, formed by drawing an edge from b to b′ whenever some output
o ∈Ob is used as an input o ∈ Ib′ , is acyclic.

DEFINITION 2: An equilibrium of a sequence-space model, given sequences {Xi}i∈Z for
the exogenous shocks, is a set of sequences {Xi}i∈U∪O such that: (a) Xo = ho({Xi}i∈Ib) for
any output o ∈O, and (b) Xo = 0 for any target o ∈H.
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DEFINITION 3: A steady-state equilibrium is an equilibrium in which all sequences are
constant over time, Xi

t = Xi
ss for all i ∈N .

A sequence-space model thus consists of a combination of blocks that are linked along
a directed graph. Each individual block covers a different aspect of the economy and
computes either equilibrium conditions themselves (i.e., outputs that are also “targets”),
or variables that are useful for other blocks (i.e., outputs that are also inputs). Any such
variable can be viewed as having been “substituted out” and need not be carried around
as an unknown.

An important property we require is that the directed graph that connects blocks be
acyclic, that is, it does not feature circular dependencies across blocks. Instead, there is
always an ordering b1� � � � � bnb of the blocks (formally, a “topological sort”) such that all
input variables used in later blocks, for example, b3 or b4, are either output variables
from earlier blocks, for example, b1 or b2 (in which case those variables were substituted
out) or they are shocks or unknowns. Recursively, this implies that, starting with shocks
and unknowns {Xi� i ∈Z ∪ U}, we can follow along this ordering, computing each block’s
output, one-by-one, starting with block b1 (which only uses inputs that are either shocks
or unknowns), then moving to block b2 (whose inputs can also be outputs of b1), and so
on. When we are done, we will have calculated all outputs {Xo}o∈O .

Thus, the recursive mapping from shocks and unknowns {Xi� i ∈ Z ∪ U} to targets
{Xo}o∈H represents H(U�Z)= 0, and the mapping to other outputs {Xo}o∈O\H represents
M(U�Z)= X.

Note that acyclicality does not place any restrictions on the economic model itself, only
on its representation as a directed graph. If we start with a cyclic graph, we can always
break the cycle by adding additional unknowns and targets; for instance, if block b1 is
required for b2, b2 for b3, and b3 for b1, we can add the required outputs of b3 as unknowns
that are direct inputs to b1, and then add a target enforcing consistency between these
unknowns and the actual outputs of b3.9

Example: Krusell–Smith Model. Figure 3 visualizes the DAG for the Krusell–Smith
model that corresponds to the variable substitutions we made in Section 2. It has three
blocks (neoclassical firms, heterogeneous households “HA,” and a block to compute the
asset market-clearing condition H), one exogenous shock (productivity Z = {Z}), one
unknown (capital U = {K}), four outputs (capital return, wage, household savings, asset
market clearing, so O = {r�w�K�H}), and one target (asset market clearing H = {H}).10

The DAG is best read from left to right. The “firms” block maps the unknown sequence
of capital stocks K and the exogenous shocks Z into the interest rate and wage sequences
r, w. Those are then used to substitute out r, w in the “HA” block, before asset market
clearing H is computed.

One and Two-Asset HANK Models. The Krusell–Smith model allows for a relatively
straightforward DAG that reduces the number of unknowns to nu = 1. Figure C.1 gives
a DAG for a more complex case: a one-asset HANK model from Appendix B.2. This
model combines standard NK elements—sticky prices, flexible wages, and a Taylor rule

9An alternative approach to resolve cycles is to use a “solved block,” discussed in Appendix C.5.
10Not visualized are firm production Y or household consumption C, which could be additional outputs of

the firm and HA blocks, respectively, but are not strictly necessary since we are using asset rather than goods
market clearing to define equilibrium.
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FIGURE C.1.—DAG representation of one-asset HANK economy.

for monetary policy, but no capital—with a one-asset incomplete market HA household
sector where labor supply is endogenous.

As Figure C.1 shows, the DAG for this model features three unknowns (wages w, out-
put Y , and inflation π), which are used to compute six intermediate outputs, ultimately
yielding three targets (a Phillips curve condition H1, labor market clearing H2, and asset
market clearing H3). In other words, the DAG substitutes out six variables that would
otherwise have to be included as unknowns. We introduce four exogenous shocks (pro-
ductivity Z, Taylor rule intercept r∗, government spending G, and markups μ).

The DAG makes it easy to visualize the dependencies between macroeconomic aggre-
gates that are embedded in the model: for instance, the dividends from firms are dis-
tributed to households (according to a certain rule), so the output d of the firm block is
an input to the HA block. Similarly, the real interest rate r affects the taxes required for
the government to achieve its balanced-budget target, so r is an input to the fiscal block,
which has an output τ that is an input to the HA block.

Even as models grow in complexity beyond this one, they often still admit DAGs with
small numbers of unknowns and targets. Figure C.2 shows our preferred DAG for the two-
asset HANK model from Appendix B.3. This model has nx = 21 endogenous variables,
but 18 can be substituted out along the DAG.

C.3. Jacobians and Impulse Responses

We now show how to use the DAG representation of the model to automatically evalu-
ate the Jacobians of H and M. To do so, we systematically apply the chain rule along the
model’s DAG, implementing a technique known as forward accumulation in the auto-
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FIGURE C.2.—DAG representation of two-asset HANK economy.

matic differentiation literature (Griewank and Walther (2008)). This technique combines
the Jacobians of individual blocks to build up HU, HZ and MU, MZ. 11

Total Jacobians J. To start, we need a new concept. For any exogenous shock or un-
known i ∈Z ∪ U and any output o, let the Jo�i denote the total Jacobian of o with respect
to i when o is evaluated along the DAG. For instance, in the one-asset HANK model
in Figure C.1, the total Jacobian JN �w of household labor supply with respect to wages
combines two forces: the direct effect of w on household decisions, and the indirect effect
working through the influence of w on firm profits and therefore the dividends d received
by households. This is in contrast to J N �w, which is a partial Jacobian that captures only
the direct effect.

To obtain Jo�i through forward accumulation, we first initialize Ji�i to the identity for
each i ∈ Z ∪ U . We then go through blocks following the ordering (topological sort)
b1� � � � � bnb one-by-one beginning with b1. For each block b, we evaluate the total Jaco-
bian of all its outputs o ∈Ob with respect to shocks and unknowns i ∈Z ∪U :

Jo�i =
∑
m∈Ib

J o�mJm�i� (56)

This systematically applies the chain rule: for each input m, (56) takes the product of the
partial Jacobian J o�m with the already-calculated total derivative Jm�i of m with respect
to i. (When m= i, then the latter is the identity and the term is just the partial Jacobian
J o�i.) The benefit of building up the Jo�i progressively via forward accumulation is that
the chain rule is applied in an efficient way, without redundant computations.

11In actual computations, the methods in this section will be applied on Jacobians that are truncated to
some horizon T × T . For simple blocks, we use a simple sparse representation of the Jacobian, described in
Appendix E.2, and do not need to truncate.
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General Equilibrium Jacobians G. Using the J matrices, we can compute the total Ja-
cobians of all targets with respect to all unknowns and shocks, HU = JH�U and HZ = JH�Z .
By equation (30), these are the objects needed to solve the equilibrium response of un-
knowns, dU = −H−1

U HZdZ. We can compute this response for any arbitrary shock vector
dZ by simple multiplication with the matrix GU�Z = −H−1

U HZ. We refer to this matrix as
general equilibrium Jacobian of unknowns to shocks.

To compute Go�Z for the remaining outputs o ∈ O \H, we trace the same forward ac-
cumulation steps as before, and build Go�Z recursively, using12

Go�Z =
∑
m∈Ib

J o�mGm�Z � (57)

Each Go�Z has nzT columns, each of which can be interpreted as the impulse response
of o to some news shock. One way to think about this approach, therefore, is that we are
simultaneously calculating nzT general equilibrium impulse responses. For our Krusell–
Smith, one-asset HANK, and two-asset HANK models, nzT is 1 × 300 = 300, 3 × 300 =
900, and 3 × 300 = 900, respectively.13

Comparing Table C.I to Table II, we see that computing G’s is, in each of our
cases, significantly cheaper than applying the fake news algorithm to obtain J ’s for the
heterogeneous-agent block; for instance, it takes about 50 milliseconds for the one-asset
HANK model, while the fake news algorithm took 320 milliseconds. This shows the power
of J ’s as sufficient statistics: once we have them, it is just a matter of linear algebra to ob-
tain a full characterization of equilibrium.

How important is the pattern of variable substitution along the DAG to efficiently solv-
ing heterogeneous-agent models? Table C.II compares the times needed to compute the
G matrices using our preferred DAG (“efficient DAG”) and using no substitution of en-
dogenous variables (“flat DAG”). The latter approach results in a greater number of un-
knowns and is substantially slower, by a factor that ranges from 2 to 10. The reason is that
the dimensionality of the linear system becomes so high that solving it is quite costly.

TABLE C.I

COMPUTING TIMES FOR G

Krusell–Smith One-Asset HANK Two-Asset HANK

Total 3.3 ms 50.6 ms 173.5 ms
step 1 (forward accumulate HU and HZ) 0.6 ms 7.5 ms 27.0 ms
step 2 (compute GU�Z = −H−1

U HZ) 1.2 ms 25.9 ms 51.6 ms
step 3 (forward accumulate for all Go�Z) 1.5 ms 17.2 ms 95.0 ms

No. of unknowns 1 3 3
No. of exogenous shocks 1 3 7

12An alternative is to re-use total Jacobians and write Go�Z = Jo�UGU�Z + Jo�Z . In our experience, the recur-
sive approach tended to be more efficient.

13If one only needs to compute one impulse response, it is possible to obtain this impulse response faster
using an alternative method described in Appendix C.4. Interestingly, it is not too much more expensive to
calculate the full set of impulse responses in G: in our one-asset HANK example, obtaining 900 rather than
one impulse response only takes about 5 times as long. This is possible because we only need to calculate HU

once, independent of shocks.
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TABLE C.II

COMPUTING TIMES FOR G, EFFICIENT VERSUS FLAT DAG

Krusell–Smith One-Asset HANK Two-Asset HANK

Total with efficient DAG 4.7 ms 57.8 ms 198.0 ms
Total with flat DAG 33.0 ms 167.5 ms 1452.7 ms

No. of unknowns (efficient DAG) 1 3 3
No. of unknowns (flat DAG) 3 7 18
No. of exogenous shocks 1 3 7

C.4. Fast Solution for Individual Impulse Responses

In the case where we are only interested in a single impulse response, we only need to
do full forward accumulation (56) for i ∈ U to obtain o ∈H, which gives HU = JH�U . Then,
to deal with shocks, we do forward accumulation on vectors rather than matrices, writing

Jo�Z dZ =
∑
m∈Ib

J o�mJm�Z dZ� (58)

This gives HZ dZ = JH�Z dZ. We then solve the linear system HU dU = −HZdZ to obtain
dU. Finally, to obtain equilibrium impulse responses dXo for o /∈ Z ∪ U , we need to cal-
culate

dXo = Jo�Z dZ + Jo�U dU� (59)

The first term, Jo�Z dZ, has already been calculated in (58). For the second term, we do
forward accumulation on vectors as in (58), just solving for Jo�U dU rather than Jo�Z dZ.14

Table C.III shows the time each step of this process takes for our three models, starting
from the Jacobians J for each model block. In general, this process is very cheap, with
the only costly parts being the steps that involve matrices rather than vectors: forward
accumulation in step 1 to get HU = JH�U , and second, solving the linear system HU dU =
−HZdZ for dU in step 3.

TABLE C.III

COMPUTING TIMES FOR IMPULSE RESPONSES

Krusell–Smith One-Asset HANK Two-Asset HANK

Total 0.9 ms 15.5 ms 30.1 ms
step 1 (forward accumulate HU) 0.4 ms 6.2 ms 19.7 ms
step 2 (forward accumulate Jo�Z dZ) 0.1 ms 0.1 ms 0.4 ms
step 3 (solve linear system for dU) 0.4 ms 9.0 ms 8.9 ms
step 4 (forward accumulate Jo�U dU, get dXo) 0.1 ms 0.3 ms 1.2 ms

No. of unknowns 1 3 3
No. of exogenous shocks 1 3 7

14Another approach is to use the Jo�U that we already calculated as part of the initial forward accumulation
to obtain HU = JH�U , and directly apply these to dU. This approach has similar (and low) cost, but is less useful
in general because it does give o that were not necessary in calculating HU.
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FIGURE C.3.—The concept of a solved block, applied to the production block of our two-asset HANK
model.

Since these steps are costly because they involve the shock-independent matrix HU,
there are clear economies of scale from computing the impulse response to multiple
shocks. We can calculate HU a single time, and then also calculate H−1

U (or, better, an
LU factorization of HU) a single time, at which point the marginal cost of computing
additional impulse responses is very low. This is the approach we use in Section 5.3 to
evaluate the likelihood when redrawing model parameters, since this involves finding im-
pulse responses to each shock simultaneously. Taking this idea to its fullest extent, we
can calculate the impulse responses to all shocks simultaneously, which is the “G matrix”
approach in Section C.3.

C.5. Solved Blocks

The DAG of the two-asset model in Figure C.2 includes a brown “production” block.
Production with adjustment costs is well known to involve the joint determination of in-
vestment and q, and it is natural to solve for these two jointly inside a block. This leads us
to introduce a “solved block” concept, as follows.

DEFINITION 4: A solved block b has an underlying sequence-space model with shocks
Z̃ , unknowns Ũ , outputs Õ, and targets T̃ , and an equilibrium that is locally unique
around the steady state, where we define:

1. The inputs of the solved block to be the shocks of the underlying sequence-space
model: Ib ≡ Z̃ .

2. The outputs of the solved block to be the unknowns and outputs, minus targets, of
the underlying sequence-space model: Ob ≡ Ũ ∪ (Õ \ T̃ ).

3. For each output o ∈ Ob, the function ho({xi}i∈Ib) is the locally unique equilibrium
path of o in the underlying sequence-space model given sequences {xi}i∈Z̃ for the
exogenous shocks in that model (recalling that Ib = Z̃).
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Informally, a solved block is a sequence-space model, turned into a block. Figure C.3 illus-
trates how this concept works in the case of the production block of the two-asset HANK
model. Given the exogenous inputs Y , w, Z, r, the solved block solves for the endogenous
paths for K and Q that jointly satisfy the q theory equations, so that its outputs are K, Q
as well as labor demand N and marginal costs mc.

C.6. Reiter Method Implementation

We now briefly describe our implementation of the “Reiter method.” The idea is to
arrange the equations governing equilibrium into a system of nonlinear equations with
at most a single lead and a single lag, at which point we can use standard linear rational
expectations methods to obtain the first-order solution.

Krusell–Smith Model. Here, we construct a stacked vector Xt of length 2ng + 1, where
ng is the number of points in our grid. This includes:

• the entire vector vt representing the value function at time t (in our implementation,
this is the length ng vector giving the derivative of the value function at each point)

• the distribution Dt+1 excluding the last entry, which equals 1 minus the other elements
and is therefore redundant (length ng − 1)

• capital Kt (scalar)
• productivity Zt (scalar)

Note that since, in our model, the distribution Dt+1 is determined by information available
at time t, we include it in Xt in line with the usual timing convention for these models.

We now build a function F(Xt−1�Xt �Xt+1� εt) with a 2ng + 1-dimensional output, which
includes all equilibrium conditions:

• ng entries for the equation (10) that determines vt given vt+1 and the inputs Kt−1 and
Zt (which together determine rt and wt , entering into the household’s problem)

• ng−1 entries for the equation (11) that determines Dt+1 given vt+1, Dt , and the inputs
Kt−1 and Zt (note that again, we drop the last entry, which is redundant since the
distribution sums to 1)

• one entry for the equation (12) that expresses aggregate Kt as the total of individual
holdings given by Dt+1

• one entry for the assumed AR(1) law of motion log(Zt/Zss) = ρ log(Zt−1/Zss)+ εt
for productivity.

Recursive stochastic equilibrium corresponds to the condition EtF(Xt−1�Xt �Xt+1� εt)= 0.
We use the automatic differentiation package jax to linearize this as

AEt dXt+1 +BdXt +C dXt−1 +Eεt = 0� (60)

where A, B, and C are (2ng + 1)× (2ng + 1) matrices and E is a (2ng + 1)× 1 vector.
Equation (60) is a standard form for a linear rational expectations model, and can be
solved using a variety of standard techniques. We use Alisdair McKay’s Python toolkit,
which implements a version of Sims’s gensys algorithm to solve (60).15 This gives us a
solution, expressed as the recursive law of motion

dXt = P dXt−1 +Qεt� (61)

15See https://alisdairmckay.com/Notes/HetAgents/index.html.

https://alisdairmckay.com/Notes/HetAgents/index.html
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where P is a (2ng + 1)× (2ng + 1) matrix and Q is a (2ng + 1)× 1 vector. Note that the
first ng columns of P are all zeros, since vt−1 is not a state and has no direct impact on
Xt . We can then unstack (61) to obtain the linear law of motion relating the individual
components of Xt (vt , Dt+1, Kt , and Zt) to Dt , Kt−1, Zt−1, and εt .

To obtain the impulse response to a unit shock to ε0 (i.e., a unit productivity shock) for
comparison to our sequence-space solution, we plug dXt−1 = 0 and ε0 = 1 into (61) and
iterate forward to get dX0� dX1� � � � .

One-Asset HANK Model. Since our implementation here is mostly the same as above,
we will only describe the differences.

The stacked vector Xt now has length 2ng + 4, including ng entries vt giving the deriva-
tive of the value function at each grid point, the ng − 1 first entries of Dt+1, and then wt ,
Yt , πt , rt , and Zt .

The function F(Xt−1�Xt �Xt+1� εt) now also has output of length 2ng + 4, including ng
entries for (10), ng − 1 entries for (11), two entries for (12) corresponding to the aggrega-
tion of assets and labor (and clearing in the respective markets), one entry for the Phillips
curve, one entry for the AR(1) law of motion log(Zt/Zss)= ρ log(Zt−1/Zss)+ εt for pro-
ductivity, and one entry for the combined Taylor rule and Fisher equation giving the ex
post real rate, rt = (1 + r∗t−1 +φπt−1)/(1 +πt)− 1.

Note that in addition to the equations for vt , Dt+1, and Zt , we have one equation in
F for each of the targets in Figure 3 (asset market clearing, labor market clearing, and
the Phillips curve), but also an additional equation for rt . Similarly, we have one entry in
Xt for each of the unknowns in Figure 3 (Y , w, and π), but also rt as an unknown. We
calculate each target in F by starting with the unknowns and progressively calculating the
date-t output of each block in Figure 3. Since we need rt+1 as an input to the calculation
of the Phillips curve,16 however, we include r as part of X and add the equation from the
“monetary” block explicitly to F .

C.7. Recovering the State-Space Law of Motion

From the linearized solution in the sequence space, given a particular shock process
expressed in state-space form, it is possible to recover the equivalent state-space law of
motion. The general idea is to determine the effect that a perturbation to any state, and
any innovation to the shock process, has on all states in the following period. This can be
done in three steps: one first finds (a) the effect of the perturbation on the targets dH,
then (b) the response of unknowns to targets dU, and finally (c) the response of next-
period states to unknowns. Since the distribution of agents is a state, this process requires
two pieces of information about the distribution, which are both computed by the fake
news algorithm in Section 3.2: the expectation vectors Eot for step (a), and the distribution
perturbation vectors Di

1 for step (c). One can then use the state-space law of motion for
any standard application, such as simulation or estimation using state-space methods.

As an example, here we explain how to recover the state-space law of motion in the
Krusell–Smith model with AR(1) TFP shocks of persistence ρ. The state then consists of
the ng points of the distribution and the two aggregate states Kt−1 and Zt−1, so the law of

16This appears in the nonlinear F but actually falls out to first order, so is irrelevant to the calculation we
will perform.
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motion reads ⎛
⎝Dt+1

Kt

Zt

⎞
⎠ = A

⎛
⎝ Dt

Kt−1

Zt−1

⎞
⎠ + Bεt� (62)

with A an (ng + 2)× (ng + 2) matrix indicating the dependence of states on past states,
and B an (ng + 2)× 1 vector indicating how states respond to innovations εt to the TFP
process. To elicit A and B from a sequence-space model, we treat the initial states (ε0,
D0, K−1, and Z−1) as exogenous “shocks” and then look for their effects on the state the
following period, (D1�K0�Z0).

Using the sequence-space model, we can compute the effect of shocks to (ε0, D0, K−1,
and Z−1) on the time paths of targets dH. This is straightforward to do for aggregates,
while for the distribution D0, these perturbations are directly given by the expectation
vectors EK

t from Definition 1. Next, we solve for the equilibrium path of capital dK =
−H−1

K dH that results from the perturbation. The date-0 element of this vector delivers
the rows of A and B corresponding to K. Finally, using the general equilibrium Jacobian
matrices Jw�K and Jr�K , we can recover the effect on the time paths of wages and interest
rates dw and dr for all shocks (ε0, D0, K−1, and Z−1). Then, using the equation dD1 =
Dr

1 dr +Dw
1 dw, where the Dt vectors are discussed in Section 3.2, we obtain the effect of

all shocks (ε0, D0, K−1, and Z−1) on the distribution at date 1. This gives us the first ng
rows of A and B. Finally, the last row is just the exogenous law of motion of the shock
process. Altogether, this procedure allows us to construct a state-space law of motion
for the Krusell–Smith model. The procedure can easily be generalized to any alternative
sequence-space model with a known state space.

APPENDIX D: EVALUATION OF ACCURACY

D.1. Accuracy of Alternative Methods to Compute J
Figures D.1 and D.2 verify the relative accuracy of various methods for computing

the Jacobian of aggregate assets with respect to the interest rate (J K�r or J A�r) in our
Krusell–Smith and one-asset HANK models. These are the two models for which it is fea-
sible for us to compute the model with automatic differentiation. Our benchmark is the
model computed using the direct method under automatic differentiation, which we will

FIGURE D.1.—Accuracy of methods for computing J for Krusell–Smith model.
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FIGURE D.2.—Accuracy of methods for computing J for one-asset HANK model.

refer to as the “true” impulse response. The impulse response in levels for the Krusell–
Smith model are then those displayed in Figure 2, panel (a). For the one-asset HANK
model, the levels are very similar. Here, we focus on the differences between various
methods, for columns s = 0�50�100.17

We first compare impulse response obtained using our fake news algorithm under au-
tomatic differentiation to the “truth.” The pale blue line on all graphs shows errors of the
order of 10−14. In other words, the direct and the fake news method yield the same answer
to machine precision: this verifies Proposition 1.

Next, we compare the impulse response obtained with one-sided numerical differentia-
tion (dark blue and dark green lines). There, the errors can get as large as 10−3, or 0.01%
of the peak of the level response (which is around 10). Two-sided numerical differentia-
tion (brown and pink lines) mitigate this error by one to two digits of accuracy. In practice,
two-sided numerical differentiation is just as simple to implement as one-sided numerical
differentiation and only twice as costly in terms of computation time, so this may provide
a useful alternative when very good accuracy is required.

Finally, we note that, unless automatic differentiation is used, the fake news method ac-
tually generally has better performance than the direct method. This is because it imposes
some of the linearity implications of the true first-order derivative. Hence, the fake news
impulse response is not only around T times faster to compute than the direct impulse
response, it also tends to be more accurate.

APPENDIX E: ADDITIONAL COMPUTATIONAL DETAILS AND ACCURACY

E.1. Two-Asset Household Model Algorithm

In this section, we describe an efficient algorithm, based on the endogenous grid points
approach of Carroll (2006), to solve the two-asset household model with convex adjust-
ment costs.

Generic Setup. Households’ individual state variables are (exogenous) income zit ∈
{z1� � � � � zm}, liquid assets bit−1 ∈ [b�∞), and illiquid assets ait−1 ∈ [0�∞). The Bellman

17Using the sup norm over the entire Jacobian, as well as other Jacobians obtained via this method, yields
the same findings.
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equation is

Vt(zit� bit−1� ait−1)= max
cit �bit �ait

u(cit)+βEtVt+1(zit+1� bit� ait)

s.t. cit + ait + bit = zit +
(
1 + rat

)
ait−1 + (

1 + rbt
)
bit−1 −�(ait� ait−1)�

ait ≥ 0� bit ≥ b�
The adjustment cost function is

�(ait� ait−1)= χ1

χ2

∣∣∣∣ait −
(
1 + rat

)
ait−1(

1 + rat
)
ait−1 +χ0

∣∣∣∣
χ2[(

1 + rat
)
ait−1 +χ0

]
� (63)

with χ0�χ1 > 0 and χ2 > 1. Note that �(ait� ait−1) is bounded, differentiable, and convex
in ait .

First-Order and Envelope Conditions. The Bellman equation can be rewritten more
compactly as

Vt(zit� bit−1� ait−1)= max
bit �ait

u
(
zit +

(
1 + rat

)
ait−1 + (

1 + rbt
)
bit−1 −�(ait� ait−1)− ait − bit

)
+ λit(bit − b)+μitait +βEVt+1(zit+1� bit� ait)�

The first-order conditions with respect to bit and ait are

u′(cit)= λit +βE∂bVt+1(zit+1� bit� ait)� (64)

u′(cit)
[
1 +�1(ait� ait−1)

] = μit +βE∂aVt+1(zit+1� bit� ait)� (65)

and the envelope conditions are

∂bVt(zit� bit−1� ait−1)= (
1 + rbt

)
u′(cit)� (66)

∂aVt(zit� bit−1� ait−1)= [
1 + rat −�2(ait� ait−1)

]
u′(cit)� (67)

It is convenient to define the post-decision value function Wt(zit� bit� ait) ≡ βEtVt+1(zit�
bit� ait).

Algorithm. We start from a guess for the (discretized) partials of the value function
and iterate backward until convergence. We use (z′� b′� a′) to refer to tomorrow’s grid
and (z�b�a) to today’s grid. Let Π denote the transition matrix of the exogenous state
z. The key trick is to include Lagrange multipliers in the backward iteration whenever
the household is partially constrained. We also exploit the fact that the constraint on the
illiquid asset will never be binding unless the constraint on the liquid asset is also binding
(otherwise, a simple variation will improve utility).

1. Initial guess. Guess Va(z′� b′� a′) and Vb(z′� b′� a′).
2. Common z′ → z. By definition

Wb

(
z�b′� a′) = βΠVb

(
z′� b′� a′)� (68)

Wa

(
z�b′� a′) = βΠVa

(
z′� b′� a′)� (69)
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3. Unconstrained a′ → a. Assuming that no constraints bind, λit = μit = 0, and (64) and
(65) become

u′(c)=Wb

(
z�b′� a′)� (70)

u′(c)
[
1 +�1

(
a′� a

)] =Wa

(
z�b′� a′)� (71)

Combine these to get

0 = F(
z�b′� a�a′) ≡ Wa

(
z�b′� a′)

Wb

(
z�b′� a′) − 1 −�1

(
a′� a

)
� (72)

which characterizes a′(z�b′� a). Use this to map Wb(z�b
′� a′) into Wb(z�b

′� a) by in-
terpolation, then compute consumption as

c
(
z�b′� a

) =Wb

(
z�b′� a

)− 1
σ � (73)

4. Unconstrained b′ → b. Now using a′(z�b′� a) and c(z�b′� a) from the previous step,
use the budget constraint to obtain

b
(
z�b′� a

) = c
(
z�b′� a

) + a′(z�b′� a
) + b′ − (

1 + ra)a+�(
a′(z�b′� a

)
� a

) − z
1 + rb �

We invert this function via interpolation to get b′(z�b�a). The same interpolation
weights can be used to do a′(z�b′� a)→ a′(z�b�a).

5. Liquidity constrained a′ → a. This branch is analogous to the unconstrained case.
Assuming that the liquidity constraint is binding, λit > 0, and (64) and (65) become

u′(c)= λ+Wb

(
z�0� a′)�

u′(c)
[
1 +�1

(
a′� a

)] =Wa

(
z�0� a′)�

To help with scaling, let us define κ≡ λ/Wb(z�0� a′) and rewrite the first equation as

u′(c)= (1 + κ)Wb

(
z�0� a′)�

Divide and rearrange to get

0 = F(
z�κ�a�a′) ≡ 1

1 + κ
Wa

(
z�0� a′)

Wb

(
z�0� a′) − 1 −�1

(
a′� a

)
� (74)

We solve this for a′(z�κ�a), and compute consumption as

c(z�κ�a)= [
(1 + κ)Wb(z�κ�a)

]− 1
σ � (75)

6. Liquidity constrained κ→ b. Now using a′(z�κ�a) and c(z�κ�a) from the previous
step, use the budget constraint to obtain

b(z�κ�a)= c(z�κ�a)+ a′(z�κ�a)+ b− (
1 + ra)a+�(

a′(z�κ�a)�a
) − z

1 + rb �
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We invert this function via interpolation to get κ(z�b�a). The same interpola-
tion weights can be used to map a′(z�κ�a) into a′(z�b�a). We already know that
b′(z�b�a)= b.

7. Update guesses. The final b′(z�b�a) is the element-wise maximum of its un-
constrained and liquidity-constrained counterparts. Replace the unconstrained
a′(z�b�a) with constrained one at the exact same points. Compute consumption
from the budget constraint as

c(z�b�a)= z+ (
1 + ra)a+ (

1 + rb)b−�(
a′(z�b�a)�a

)
− a′(z�b�a)− b′(z�b�a)� (76)

Finally, use the envelope conditions (66) and (67) to update the guesses

Vb(z�b�a)= (
1 + rb)c(z�b�a)−σ� (77)

Va(z�b�a)= [
1 + ra −�2

(
a′(z�b�a)�a

)]
c(z�b�a)−σ� (78)

Go back to step 2, repeat until convergence.

E.2. Efficient Multiplication of Simple Jacobians

One important detail underlying the speeds in Table C.I is a set of special routines
that efficiently handle the Jacobians of simple blocks. These simple blocks comprise the
majority of our DAGs. Their Jacobians are easy to obtain to high accuracy (for instance,
with symmetric numerical differentiation), and have a special sparse structure: they can
be expressed as linear combinations of a few shift operators Si on sequences.

For positive i, Si maps (x0�x1� � � �)→ (0� � � � �0�x0�x1� � � �), with i zeros inserted at the
beginning, and for negative −i, S−i maps (x0�x1� � � �)→ (xi� xi+1� � � �). The former takes
an i-period lag in sequence space, while the latter takes an i-period lead in sequence
space.18 For instance, in the one-asset HANK economy depicted in Figure C.1, the Jaco-
bian J H1�π of the Phillips curve condition with respect to price inflation π is S0 − 1

1+r S−1.19

For the most part, these operators obey simple rules: if i and j are both positive,
SiSj = Si+j , and so on. However, as is well known from an older literature that works
with the lag algebra (e.g., Whiteman (1983)), the S are not quite closed under multipli-
cation. To take the simplest example, S1S−1, a one-period lag of a one-period lead, maps
(x0�x1�x2� � � �)→ (0�x1�x2� � � �), zeroing out the first entry of a sequence and leaving ev-
erything else unchanged. Fortunately, we have found a more general set of operators that
includes the S and is closed under multiplication following an easy-to-compute rule, as
we derive in the following proposition.

PROPOSITION 3: Let Si be the shift operator on sequences, and Zm be the “zero” operator
that replaces the first m entries of a sequence with zeros. If we define

Qi�m ≡
{
SiZm� i > 0�
ZmSi� i < 0�

(79)

18In matrix form, Si has zeros everywhere, except for 1’s on the ith diagonal below the main diagonal.
19This corresponds to a linearized curve of the form πt = · · · + 1

1+rEtπt+1.
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then Qi�mQj�n =Qk�l, where

k= i+ j� (80)

and

l=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(m− j� n)� i� j ≥ 0�
max(m�n)+ min(i�−j)� i≥ 0� j ≤ 0�
max(m− i− j� n)� i≤ 0� j ≥ 0� i+ j ≥ 0�
max(n+ i+ j�m)� i≤ 0� j ≥ 0� i+ j ≤ 0�
max(m�n+ i)� i� j ≤ 0�

(81)

This proposition nests the shift operators Si in a more general class of operators Qi�m.20

This has two advantages. First, it makes multiplying the Jacobians of simple blocks vastly
more efficient: rather than doing matrix multiplication with large T × T matrices, we
just need to apply rules (80) and (81) a few times. Second, it is computationally easy to
multiply Qi�m and an ordinary matrix Jacobian (or vector), since this is a combination of
shifting and zeroing elements. Together, these features make forward accumulation on
the DAG, which consists mostly of simple blocks, vastly more efficient.

In our online code, we implement this by simply overriding the matrix multiplication
operator, so that sparse linear combinations of Qi�m and ordinary matrices can be used
interchangeably. With this in place, the methods of Section C.3 can be applied without
any outwardly visible modification.

Exploiting sparsity has played a prominent role in both the heterogeneous-agent liter-
ature (e.g., Achdou, Han, Lasry, Lions, and Moll (2020)) and the literature on solving
for perfect-foresight paths using Newton’s method (e.g., Juillard (1996)). Our approach
builds on the latter, but our much more compact representation of Jacobians offers ad-
ditional efficiencies. For instance, to store 0�5 ·Q1�1, we only need a few numbers, while
a conventional T × T sparse matrix representation not taking advantage of this structure
would need T − 2 separate entries, and still create some truncation error.

PROOF: Here, we derive the rules for multiplication of the operator (79), where Si is
the shift operator on sequences by i and Zm zeros out the first m elements of sequences,
by doing case-by-case analysis on the product Qi�mQj�n. In our derivation, we will exploit
the following fact about multiplication of Si:

SiSj =

⎧⎪⎨
⎪⎩
Si+jZ−j� i > 0� j < 0� i+ j > 0�
ZiSi+j� i > 0� j < 0� i+ j < 0�
Si+j� otherwise�

and the rules S−iZj =Zmax(j−i�0)S−i and ZjSi = SiZmax(j−i�0) for multiplication of S and Z.
Case 1: positive i, positive j. Here we have

Qi�mQj�n = SiZmSjZn
= SiSjZmax(m−j�0)Zn

20The matrix representation of Qi�m is the same as that of Si , except that the first m entries on the diagonal
are zeros.
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= Si+jZmax(m−j�n)

=Qi+j�max(m−j�n)� (82)

Case 2: positive i, negative j. Here we have

Qi�mQj�n = SiZmZnSj
= SiZmax(m�n)Sj�

If i+ j > 0, then we write

Zmax(m�n)Sj = SjZmax(m�n)−j

and then

SiZmax(m�n)Sj = SiSjZmax(m�n)−j

= Si+jZ−jZmax(m�n)−j

= Si+jZmax(m�n)−j

=Qi+j�max(m�n)−j�

If i+ j < 0, then we write

SiZmax(m�n) =Zmax(m�n)+iSi

and then

SiZmax(m�n)Sj =Zmax(m�n)+iSiSj

=Zmax(m�n)+iZiSi+j

=Zmax(m�n)+iSi+j

=Qi+j�max(m�n)+i�

Both these cases boil down to the simpler form

Qi�mQj�n =Qi+j�max(m�n)+min(i�−j)� (83)

Case 3: negative i, positive j. Then we have

Qi�mQj�n =ZmSiSjZn
=ZmSi+jZn�

If i+ j > 0, then we write ZmSi+j = Si+jZmax(m−i−j�0) and get

Qi�mQj�n =Qi+j�max(m−i−j�n)� (84)

If i+ j < 0, then we write Si+jZn =Zmax(n+i+j�0)Si+j and get

Qi�mQj�n =Qi+j�max(n+i+j�m)� (85)



SEQUENCE-SPACE JACOBIAN 29

Case 4: negative i, negative j. Then we have

Qi�mQj�n =ZmSiZnSj
=ZmZmax(n+i�0)SiSj

=Zmax(m�n+i)Si+j

=Qi+j�max(m�n+i)� (86)

Combined, equations (82)–(86) give (80) and (81) in Proposition 3. Q.E.D.

E.3. Simulating Panels of Individuals

Here, we briefly describe how to simulate a panel of individuals. The first option is to
recover the state-space law of motion, as described at the end of Section C.3, augmented
with policies. Then, one can simulate using the state space.

The second option is to recover the MA for policies. For example, in the Krusell–Smith
model, the MA for the capital policy, truncated to T , in response to innovations εt to TFP,
takes the form

dkt =
T∑
s=0

Ksεt−s� (87)

where the ith entry in the vector dkt corresponds to the change in the capital policy of
households in state i. Hence, in order to simulate a panel of individuals, we need to re-
cover the N × 1 vectors Ks. This can be done as follows. Using the policy function sym-
metry property from Lemma 1, we know that

⎛
⎜⎜⎝
dk0

dk1

dk2
���

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∂k0

∂w0

∂k0

∂w1

∂k0

∂w2

0
∂k0

∂w0

∂k0

∂w1

0 0
∂k0

∂w0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
dw0

dw1

dw2
���

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

∂k0

∂r0

∂k0

∂r1

∂k0

∂r2

0
∂k0

∂r0

∂k0

∂r1

0 0
∂k0

∂r0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
dr0
dr1
dr2
���

⎞
⎟⎟⎠

=
(
∂k0

∂w0

∂k0

∂w1

∂k0

∂w2
· · ·

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dw0 0 0

dw1 dw0
� � �

dw2 dw1
� � �

dw3 dw2
� � �

���
���

� � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
(
∂k0

∂r0

∂k0

∂r1

∂k0

∂r2
· · ·

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

dr0 0 0

dr1 dr0
� � �

dr2 dr1
� � �

dr3 dr2
� � �

���
���

� � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (88)
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The derivatives of the first-period policy k0 with respect to wt and rt are byproducts of
step 1 of the fake news algorithm. Further, from the procedure to recover the MA repre-
sentation described in Section 5.1, we obtain the matrices Mw�ε and Mr�ε satisfying⎛

⎜⎜⎝
dw0

dw1

dw2
���

⎞
⎟⎟⎠ =Mw�ε

⎛
⎜⎜⎝
ε0

ε1

ε2
���

⎞
⎟⎟⎠ �

⎛
⎜⎜⎝
dr0
dr1
dr2
���

⎞
⎟⎟⎠ =Mr�ε

⎛
⎜⎜⎝
ε0

ε1

ε2
���

⎞
⎟⎟⎠ � (89)

Combining (88) and (89) delivers the coefficients Kt in (87). Note that equation (88) is
fast to implement, since it involves a multiplication of N × T matrices by T × T matrices
that can be formed efficiently from (89).

Finally, to simulate a panel of individuals from the MA for policies, one can then take
these perturbed policy functions and apply them to simulated individuals.

E.4. Fast Fourier Transform to Compute Analytical Second Moments

Consider any sequences a0� � � � � aT−1 and b0� � � � � bT−1 of real scalars. If we define the
sequences

(â0� � � � � â2T−2)= (a0� � � � � aT−1�0� � � � �0)�

(b̂0� � � � � b̂2T−2)= (b0� � � � � bT−1�0� � � � �0)

to be a and b each padded by T − 1 zeros, then

a0bu + a1bu+1 + · · · + aT−1−ubT−1 =
2T−2∑
�=0

â�b̂u+�� (90)

where b̂u+� ≡ b̂u+�−(2T−2) when u+�≥ 2T −2. It then follows from the standard properties
of the discrete Fourier transform F that, for any u ∈ 0� � � � �T − 1,

2T−2∑
�=0

â�b̂u+� = (
F−1

(
F(â)∗ ·F(b̂)))

s
� (91)

where ∗ denotes complex conjugation.21

Since the discrete Fourier transform is a linear operator, we can extend this method to
apply to the matrices dX0� � � � � dXT−1 in (34), where we interpret F as applying element-
by-element to a sequence of matrices. Letting dX̂0� � � � � dX̂2T−2 denote the sequence
padded with zeros like above, we have from (90) and (91), substituting u= t ′ − t, that

T−1−(t′−t)∑
s=0

(dXs)(dXs+t′−t)′ = [dX0][dXt′−t]′ + · · · + [dXT−1−(t′−t)][dXT−1]′

= (
F−1

(
F(dX̂)∗F

(
dX̂′)))

t′−t � (92)

21The padding with zeros to create â and b̂ is necessary so that the wraparound b̂s+� terms for large s+ � do
not affect the sum.
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where dX̂ is the stacked sequence dX̂0� � � � � dX̂2T−2, the transpose dX̂′ is applied individ-
ually to each matrix in the sequence, and F(dX̂)∗F(dX̂′) is the product of each pair of
matrices in the frequency-by-frequency sequence.22

We simply apply (92), using the fast Fourier transform for F , to calculate the covari-
ances in (34) for each t ′ − t. Since the two key operations—the FFT and matrix multipli-
cation—have extremely efficient implementations widely available, this can be done very
quickly, taking only a few milliseconds in Table III for the examples in this paper. It is far
faster than a naive calculation of the sum in (34).

This procedure is closely related to the standard FFT approach to calculating the
empirical autocovariance function (although many implementations only apply to one-
dimensional series, missing the efficiencies from exploiting linearity in equation (92)).23 It
is also similar to the standard formulas for the spectral density of an MA, and for inverting
this spectrum (see, e.g., Hansen, Peter, and Sargent (1981)).

E.5. Equivalence Between SSJ and Dynare for Representative-Agent Models

In order to illustrate the accuracy of our routines to calculate impulse responses
for representative-agent models, here we perform two tests of the accuracy of im-
pulse responses on two classic representative-agent models. Specifically, we simulate
the Smets and Wouters (2007) model and the benchmark model described in Herbst
and Schorfheide (2015), with the parameters at the estimated mode presented in these
sources, using both our method and Dynare. Figure F.1 compares the impulse responses
of output to all shocks for the Smets–Wouters exercise: the left panel shows the level of

FIGURE F.1.—Equivalence between SSJ and Dynare for the Smets and Wouters (2007) model.

22Since the inputs are real, the full transform is redundant and we can deal only with the first T entries; the
final T − 2 are complex conjugates of entries 1 through T − 1. This economizes on the time for F and also for
matrix multiplication.

23For instance, in the Python “statsmodels” package, the now-default “fft = True” option uses the FFT to
calculate the autocovariances of a one-dimensional time series.
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FIGURE F.2.—Equivalence between SSJ and Dynare for the Herbst and Schorfheide (2015) model.

the impulse responses, and the right panel displays the difference to Dynare. Figure F.2
repeats this exercise with the Herbst–Schorfheide model. As can be seen, our method de-
livers the same impulse responses for these benchmark representative-agent models with
very high accuracy.

APPENDIX F: BAYESIAN ESTIMATION RESULTS

F.1. Accuracy of Likelihood Computation for Representative-Agent Models

Here, we continue the exercise of Section E.5 by showing that, for both the Smets and
Wouters (2007) model and the Herbst and Schorfheide (2015) model, estimating the pos-
terior mode on the original data set yields the same answer with our method as it does
with the routines offered in Dynare (which uses the Kalman filter on a state-space repre-
sentation of the model). Table F.I shows that the posterior mode is identical to three-digit
accuracy. As discussed in the main text, this verifies that our method to compute the like-
lihood for these benchmark models is accurate.

F.2. Estimating Heterogeneous-Agent Models

Tables F.II–F.IV summarize the prior and posterior distributions of the estimated pa-
rameters. Figures F.3–F.12 show recursive means and posterior modes for all our esti-
mated models.

For simplicity, the DAG of the two-asset model in Figure C.2 is drawn with only three
shocks: to TFP Zt , monetary policy r∗t , and government spending Gt . In our estimation,
we add to these four additional shocks: we let the price markup μp vary over time (a price
markup shock), the wage markup μw vary over time (a wage markup shock), the discount
rate of households β vary over time (a preference shock), and we add a spread rIt to the
interest rate rt that enters the firm valuation equation (53), and let that spread vary over
time (an investment shock).
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TABLE F.I

ESTIMATED PARAMETERS FOR THE SMETS–WOUTERS AND HERBST–SCHORFHEIDE ECONOMIES

Model Method Parameters

Smets–Wouters σa ρa σb ρb σg ρg σI ρI

SSJ 0�446 0�978 0�246 0�250 0�589 0�971 0�461 0�662
Dynare 0�446 0�978 0�245 0�252 0�589 0�970 0�460 0�663

σi ρi σp ρp ρmap σw ρw ρmaw

SSJ 0�229 0�086 0�135 0�975 0�740 0�256 0�976 0�925
Dynare 0�229 0�086 0�133 0�975 0�735 0�256 0�975 0�924

Herbst–Schorfheide τ κ ψ1 ψ2 r π y

SSJ 2�3162 1�0000 1�9684 0�4754 0�3043 3�4468 0�6214
Dynare 2�3164 1�0000 1�9684 0�4753 0�3051 3�4472 0�6213

σr ρr σg ρg σz ρz

SSJ 0�1905 0�7978 0�6531 0�9908 0�1855 0�9252
Dynare 0�1905 0�7978 0�6530 0�9903 0�1855 0�9252

TABLE F.II

ESTIMATED PARAMETERS FOR OUR KRUSELL–SMITH ECONOMY

Posterior

Shock Prior Distribution Mode Mean [0�05�0�95] CI

TFP shock s.d. Invgamma(0�4�4) 0.179 0.182 [0�165�0�200]
AR-1 Beta(0�5�0�2) 0.908 0.908 [0�862�0�950]
MA-1 Beta(0�5�0�2) 0.032 0.047 [0�015�0�095]

TABLE F.III

ESTIMATED PARAMETERS FOR OUR ONE-ASSET HANK ECONOMY

Posterior (Shocks) Posterior (Shocks + Model)

Parameter / shock Prior Distribution Mode Mean [0�05�0�95] CI Mode Mean [0�05�0�95] CI

MP shock s.d. Invgamma(0�4�4) 0.429 0.434 [0�393�0�478] 0.419 0.430 [0�385�0�481]
AR-1 Beta(0�5�0�2) 0.529 0.525 [0�478�0�569] 0.463 0.460 [0�393�0�524]

G shock s.d. Invgamma(0�4�4) 0.580 0.584 [0�514�0�662] 0.569 0.581 [0�508�0�662]
AR-1 Beta(0�5�0�2) 0.872 0.870 [0�838�0�900] 0.833 0.821 [0�771�0�868]

P markup shock s.d. Invgamma(0�4�4) 0.099 0.101 [0�091�0�112] 0.092 0.096 [0�067�0�128]
AR-1 Beta(0�5�0�2) 0.881 0.878 [0�849�0�905] 0.913 0.909 [0�875�0�942]

φ Gamma(1�5�0�25) 1.320 1.352 [1�231�1�495]
φy Gamma(0�5�0�25) 0.126 0.143 [0�061�0�250]
κ Gamma(0�1�0�1) 0.140 0.144 [0�105�0�186]
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TABLE F.IV

ESTIMATED PARAMETERS FOR OUR TWO-ASSET HANK ECONOMY

Posterior (Shocks) Posterior (Shocks + Model)

Parameter / Shock Prior Distribution Mode Mean [0�05�0�95] CI Mode Mean [0�05�0�95] CI

TFP shock s.d. Invgamma(0�4�4) 0.072 0.073 [0�066�0�080] 0.071 0.072 [0�066�0�080]
AR-1 Beta(0�5�0�2) 0.994 0.941 [0�911�0�968] 0.970 0.951 [0�921�0�979]

G shock s.d. Invgamma(0�4�4) 0.437 0.441 [0�400�0�487] 0.467 0.643 [0�543�0�783]
AR-1 Beta(0�5�0�2) 0.503 0.499 [0�448�0�548] 0.292 0.952 [0�914�0�986]

β shock s.d. Invgamma(0�4�4) 0.093 0.093 [0�085�0�103] 0.093 0.096 [0�087�1�104]
AR-1 Beta(0�5�0�2) 0.941 0.938 [0�906�0�967] 0.971 0.943 [0�913�0�969]

rI (investment)
shock

s.d. Invgamma(0�4�4) 0.174 0.179 [0�147�0�214] 0.089 0.413 [0�360�0�473]
AR-1 Beta(0�5�0�2) 0.779 0.775 [0�731�0�816] 0.867 0.656 [0�594�0�714]

Monetary policy
shock

s.d. Invgamma(0�4�4) 0.1442 0.146 [0�123�0�172] 0.655 0.663 [0�487�0�844]
AR-1 Beta(0�5�0�2) 0.830 0.827 [0�798�0�856] 0.844 0.737 [0�671�0�874]

P markup shock s.d. Invgamma(0�4�4) 0.091 0.092 [0�083�0�101] 0.059 0.049 [0�032�0�070]
AR-1 Beta(0�5�0�2) 0.904 0.903 [0�881�0�923] 0.888 0.891 [0�851�0�923]

W markup shock s.d. Invgamma(0�4�4) 0.373 0.377 [0�343�0�414] 0.142 0.155 [0�116�0�202]
AR-1 Beta(0�5�0�2) 0.875 0.872 [0�844�0�899] 0.648 0.586 [0�432�0�734]

φ Gamma(1�5�0�25) 1.203 1.297 [1�021�1�764]
φy Gamma(0�5�0�25) 0.086 2.932 [2�564�3�519]
κp Gamma(0�1�0�1) 0.035 0.030 [0�010�0�064]
κw Gamma(0�1�0�1) 0.009 0.011 [0�007�0�017]
εI Gamma(4�2) 0.267 0.502 [0�349�0�670]

FIGURE F.3.—Recursive means for the RWMH estimation of the Krusell–Smith model.

FIGURE F.4.—Posterior distributions for the RWMH estimation of the Krusell–Smith model.
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FIGURE F.5.—Recursive means for the RWMH estimation of the one-asset HANK model with shocks.

FIGURE F.6.—Posterior distributions for the RWMH estimation of the one-asset HANK model with shocks.
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FIGURE F.7.—Recursive means for the RWMH estimation of the one-asset HANK model with shocks and
parameters.

FIGURE F.8.—Posterior distributions for the RWMH estimation of the one-asset HANK model with shocks
and parameters.
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FIGURE F.9.—Recursive means for the RWMH estimation of the two-asset HANK model with shocks.
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FIGURE F.10.—Posterior distributions for the RWMH estimation of the two-asset HANK model with
shocks.
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FIGURE F.11.—Recursive means for the RWMH estimation of the two-asset HANK model with shocks and
parameters.
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FIGURE F.12.—Posterior distributions for the RWMH estimation of the two-asset HANK model with shocks
and parameters.
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