
Econometrica Supplementary Material

SUPPLEMENT TO “LONG-RUN EFFECTS OF DYNAMICALLY ASSIGNED
TREATMENTS: A NEW METHODOLOGY AND AN EVALUATION OF

TRAINING EFFECTS ON EARNINGS”
(Econometrica, Vol. 90, No. 3, May 2022, 1337–1354)

GERARD J. VAN DEN BERG
Department of Economics, University of Groningen, Department of Epidemiology, University Medical

Center Groningen, IFAU, IZA, ZEW, CEPR, and CESifo

JOHAN VIKSTRÖM
IFAU and Department of Economics and UCLS, Uppsala University

APPENDIX B: ADDITIONAL PROOFS AND DERIVATIONS

B.1. Estimation of ATET(ts)

WE SHOW THAT IF ASSUMPTIONS 1 AND 2 HOLD, the IPW estimator, ̂ATET, is an unbi-
ased estimator of ATET(ts) =E(Y (ts) −Y (∞) | Ts = ts� Tu(ts) ≥ ts).

For the first part of ATET(ts), the estimator is

1
π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yi�

for which we have

E

[
1

π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yi

]

= 1
π(ts)

E

[
1
Nts

∑
i∈Ts�i≥ts�Tu�i≥ts�

I(Ts�i = ts)Yi

]

= 1
π(ts)

E
[
I(Ts = ts)Y|Ts ≥ ts� Tu ≥ ts

]

= 1
π(ts)

Pr(Ts = ts|Tu ≥ ts� Ts ≥ ts)E[Y|Ts = ts� Tu ≥ ts]

=E[Y|Ts = ts� Tu ≥ ts]

=E
[
Y (ts)|Ts = ts� Tu(ts) ≥ ts

]
� (B.1)

where the last equality follows by Assumption 1 and the observational rule. Note that
π(ts) = Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts).

For the second part of ATET(ts), the estimator without the normalization is

1
π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts (Tu�i�Xi)Yi� (B.2)
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for which we have

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts (Tu�i�Xi)Yi

]

= E

[
1

π(ts)Nts

∑
i∈Ts�i≥ts�Tu�i≥ts

wts (Tu�i�Xi)I(Ts�i > Tu�i)Yi

]

= E

[
1

π(ts)Nts

∑
i∈Ts�i≥ts�Tu�i≥ts

Tmax
u∑

tu=ts

wts (tu�Xi)I(Ts�i > tu�Tu�i = tu)Yi

]

= 1
π(ts)

E

[
Tmax
u∑

tu=ts

wts (tu�X)I(Ts > tu�Tu = tu)Y
∣∣∣Ts ≥ ts� Tu ≥ ts

]

= EX|Ts≥ts�Tu≥ts

[
1

π(ts)
E

[
Tmax
u∑

tu=ts

wts (tu�X)I(Ts > tu�Tu = tu)Y
∣∣∣Ts ≥ ts� Tu ≥ ts�X

]]
�

For sake of presentation, use the notation

h(t�X) = Pr(Tu = t|Ts > t�Tu ≥ t�X)�

Next, using Assumptions 1 and 2, and using that wts (tu�X) = p(ts�X)∏tu
m=ts

[1−p(m�X)]
:

E
[
wts (tu�X)I(Ts > tu�Tu = tu)Y|Ts ≥ ts� Tu ≥ ts�X

]
=wts (tu�X) Pr(Ts > tu�Tu = tu|Ts ≥ ts� Tu ≥ ts�X)E[Y|Ts > tu�Tu = tu�X]

= p(ts�X)
tu∏

m=ts

[
1 −p(m�X)

]h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×
[

tu∏
m=ts

[
1 −p(m�X)

]]
E[Y|Ts > tu�Tu = tu�X]

= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E[Y|Ts > tu�Tu = tu�X]

= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts > tu�Tu(∞) = tu�X

]

= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Y (∞)|Ts = ts� Tu(∞) = tu�X

]
� (B.3)
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Note that the second equality follows from the definition of wts (tu�X), the third equality
by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying
Assumption 2 for ts� � � � � tu.

From (B.2) and (B.3),

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i�Tu�i≥ts

wts (Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tu≥ts

[
p(ts�X)
π(ts)

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Y (∞)|Ts = ts� Tu(∞) = tu�X

]]
� (B.4)

For sake of presentation, introduce the notation:

y
(
Tu(∞) = t�X

) =E
[
Y (∞)|Ts = ts� Tu(∞) = t�X

]
�

y
(
Tu(∞) > t�X

) = E
[
Y (∞)|Ts = ts� Tu(∞) > t�X

]
�

y
(
Tu(∞) ≥ t�X

) = E
[
Y (∞)|Ts = ts� Tu(∞) ≥ t�X

]
�

Using this notation, we have using that by construction h(Tmax
u �X) = 1,

h
(
Tmax
u �X

)[Tmax
u −1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = Tmax

u �X
)

=
[

Tmax
u −1∏
m=ts

[
1 − h(m)

]]
y
(
Tu(∞) = Tmax

u �X
)
� (B.5)

Next, for time periods Tmax
u − 1 and Tmax

u − 2,

[
Tmax
u −1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = TM

u �X
)

+ h
(
Tmax
u − 1�X

)[Tmax
u −2∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = Tmax

u − 1�X
)

=
[

Tmax
u −2∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) ≥ Tmax

u − 1�X
)
� (B.6)

and for arbitrary time periods t and t − 1,

[
t∏

m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) > t�X

) + h(t�X)]
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×
[

t−1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = t − 1�X

)

=
[

t−1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) ≥ t − 1�X

)
� (B.7)

Thus, using (B.5) for Tmax
u , (B.6) for Tmax

u − 1 and (B.7) for ts� � � � � Tmax
u − 2, we have

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts = ts� Tu(∞) = tu�X

]

=
Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = tu�X

)

(B.5)=
[

Tmax
u −1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = Tmax

u �X
)

+
Tmax
u −1∑
tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = tu�X

)

(B.6)=
[

Tmax
u −2∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) ≥ Tmax

u − 1�X
)

+
Tmax
u −2∑
tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
y
(
Tu(∞) = tu�X

)
(B.7)= y

(
Tu(∞) ≥ ts�X

)
� (B.8)

Thus, from (B.4) and (B.8),

E

[
1
Nts

∑
i∈Ts�i>Tu�i�Tu�i≥ts

wts (Tu�i�Xi)Yi

]

= EX|Ts≥ts�Tu≥ts

[
p(ts�X)
π(ts)

y
(
Tu(∞) ≥ ts�X

)]

= 1
π(ts)

EX|Ts≥ts�Tu≥ts

[
p(ts�X)E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

]]

= 1
π(ts)

EX|Ts≥ts�Tu≥ts

[
Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts�X)

×E
[
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

]]
= 1

π(ts)
Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts)E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts

]
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=E
[
Y (∞)|Ts = ts� Tu(∞) ≥ ts

]
� (B.9)

This averaging over X is admitted by the common support assumption.
Finally, (B.1) and (B.9) imply that E[ ̂ATET(ts)] = ATET(ts).

B.2. Average Treatment Effect ATE(ts)

Section B.2 provides identification and estimation results for the average treatment
effect of ts on Y among all those who, if they were assigned to ts, would still be in the
initial state at that time ts:

ATE(ts) =E
(
Y (ts) −Y (∞) | Tu(ts) ≥ ts

)
�

In this section, the sequential unconfoundedness Assumption 2 refers to the variety for
the ATE(ts), that is, with conditional independence of Pt from both Y (t) and Y (∞).

B.2.1. Identification

Identification of ATE(ts) follows using similar reasoning as for ATET(ts). For the sec-
ond component of ATE(ts), our assumptions give

E
(
Y (∞)|Tu(ts) ≥ ts

) = EX|Tu≥ts

[
E

(
Y (∞)|Tu(∞) ≥ ts�X

)]
= EX|Tu≥ts

[
E

(
Y (∞)|Ts > ts�Tu(∞) ≥ ts�X

)]
� (B.10)

and from (A.6):

E
(
Y (∞)|Ts > ts�Tu(∞) ≥ ts�X

)

=
Tmax
u∑

k=ts

h(k�X)

[
k−1∏
m=ts

[
1 − h(m�X)

]]
E(Y|Ts > k�Tu = k�X)� (B.11)

Thus, from (B.10)–(B.11) we have

E
(
Y (∞)|Tu(ts) ≥ ts

)

=EX|Tu≥ts

[
Tmax
u∑

k=ts

h(k�X)

[
k−1∏
m=ts

[
1 − h(m�X)

]]
E(Y|Ts > k�Tu = k�X)

]
� (B.12)

For the first component of ATE(ts),

E
(
Y (ts)|Tu(ts) ≥ ts

) = E
(
Y (ts)|Tu(∞) ≥ ts

)
= EX|Tu≥ts

[
E

(
Y (ts)|Tu(∞) ≥ ts�X

)]
= EX|Tu≥ts

[
E

(
Y (ts)|Ts = ts� Tu(∞) ≥ ts�X

)]
= EX|Tu≥ts

[
E(Y|Ts = ts� Tu ≥ ts�X)

]
� (B.13)

where we apply Assumption 1 multiple times and where the second equality follows from
the law of iterated expectations, the third from Assumption 2, and the fourth from the
observational rule.

From (B.12) and (B.13), we thus obtain the following.
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THEOREM 1—ATE version: If Assumptions 1 and 2 hold, then

ATE(ts) = EX|Tu≥ts

[
E(Y|Ts = ts� Tu ≥ ts�X)

]

−EX|Tu≥ts

[
Tmax
u∑

k=ts

h(k�X)

[
k−1∏
m=ts

[
1 − h(m�X)

]]
E(Y|Ts > k�Tu = k�X)

]
�

where

h(t�X) = Pr(Tu = t|Ts > t�Tu ≥ t�X)�

B.3. Estimation

If Assumptions 1 and 2 hold, then

̂ATE(ts) = 1∑
i∈Ts�i=ts�Tu�i≥ts

wts
ATE1(Xi)

∑
i∈Ts�i=ts�Tu�i≥ts

wts
ATE1(Xi)Yi

− 1∑
i∈Ts�i>Tu�i≥ts

wts
ATE0(Tu�i�Xi)

∑
i∈Ts�i>Tu�i≥ts

wts
ATE0(Tu�i�Xi)Yi� (B.14)

where

wt
ATE1(X) = 1

p(t�X)
�

wt
ATE0(tu�X) = 1

1 −p(t�X)
1

tu∏
m=t+1

[
1 −p(m�X)

] �

is an unbiased estimator of ATE(ts) =E(Y (ts) −Y (∞) | Ts ≥ ts� Tu(∞) ≥ ts).

PROOF: For the first part of ATE(ts), the estimator without the normalization is

1
Nts

∑
i∈Ts�i=ts�Tu�i≥ts

wts
ATE1(Xi)Yi�

under Assumptions 1 and 2 we have

E

[
1
Nts

∑
i∈Ts�i=ts�Tu�i≥ts

wts
ATE1(Xi)Yi

]

= E

[
1
Nts

∑
i∈Ts�i≥ts�Tu�i≥ts�

wts
ATE1(Xi)I(Ts�i = ts)Yi

]

= E
[
wts

ATE1(X)I(Ts = ts)Y|Ts ≥ ts� Tu ≥ ts
]

= EX|Ts≥ts�Tu≥ts

[
E

[
wts

ATE1(X)I(Ts = ts)Y|Ts ≥ ts� Tu ≥ ts�X
]]
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= EX|Ts≥ts�Tu≥ts

[
1

p(ts�X)
p(ts�X)E[Y|X�Ts = ts� Tu ≥ ts�X]

]

= EX|Ts≥ts�Tu≥ts

[
E

[
Y (ts)|Ts = ts� Tu(∞) ≥ ts�X

]]
= EX|Ts≥ts�Tu≥ts

[
E

[
Y (ts)|Ts ≥ ts� Tu(∞) ≥ ts�X

]]
= E

[
Y (ts)|Ts ≥ ts� Tu(∞) ≥ ts

]
� (B.15)

where the first three equalities follow by rewriting, the fourth by substituting for
wts

ATE1(X) = 1
p(ts�X) , the fifth by Assumption 1 and the observational rule, the sixth equality

by Assumption 2 for period ts, and the seventh by averaging over X .
For the second part of ATE(ts), the estimator without the normalization is

1
Nts

∑
i∈Ts�i>Tu�i≥ts

wts
ATE0(Tu�i�Xi)Yi�

using similar reasoning as in (B.2) we have

E

[
1
Nts

∑
i∈Ts�i>Tu�i≥ts

wts
ATE0(Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tu≥ts

×
[
E

[
Tmax
u∑

tu=ts

wts
ATE0(tu�X)I(Ts > tu�Tu = tu)Y

∣∣∣Ts ≥ ts� Tu ≥ ts�X

]]
� (B.16)

Under Assumptions 1 and 2, and using the fact that wts
ATE0(tu�X) = 1∏tu

m=ts
[1−p(m�X)]

:

E
[
wts

ATE0(tu�X)I(Ts > tu�Tu = tu)Y|Ts ≥ ts� Tu ≥ ts�X
]

= wts
ATE0(tu�X) Pr(Ts > tu�Tu = tu|Tu ≥ ts� Ts ≥ ts�X)E[Y|Ts > tu�Tu = tu�X]

= 1
tu∏

m=ts

[
1 −p(m|X)

]h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×
[

tu∏
m=ts

[
1 −p(m�X)

]]
E[Y|Ts > tu�Tu = tu�X]

= h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E[Y|Ts > tu�Tu = tu�X]

= h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts > tu�Tu(∞) = tu�X

]

= h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts ≥ ts� Tu(∞) = tu�X

]
� (B.17)
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Note that the second equality follows from the definition of wts
ATE0(tu�X), the third equal-

ity by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying
Assumption 2 for ts� � � � � tu.

Thus, from (B.16) and (B.17),

E

[
1
Nts

∑
i∈Ts�i>Tu�i�Tu�i≥ts

wts
ATE0(Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tu≥ts

[
Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Y (∞)|Ts ≥ ts� Tu(∞) = tu�X

]]
� (B.18)

Next, using similar reasoning as for (B.8) we have

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts ≥ ts� Tu(∞) = tu�X

]
=E

[
Y (∞)|Ts ≥ ts� Tu(∞) ≥ ts�X

]
� (B.19)

so that from (B.18) and (B.19),

E

[
1
Nts

∑
i∈Ts�i>Tu�i�Tu�i≥ts

wts
ATE0(Tu�i�Xi)Yi

]

= EX|Ts≥ts�Tu≥ts

[
E

[
Y (∞)|Ts ≥ ts� Tu(∞) ≥ ts�X

]]
= E

[
Y (∞)|Ts ≥ ts� Tu(∞) ≥ ts

]
� (B.20)

Finally, (B.15) and (B.20) imply that E[̂ATE(ts)] = ATE(ts). Q.E.D.

B.4. Time-Varying Covariates

B.4.1. Identification

Consider identification of ATET(ts) = E(Y (ts) − Y (∞) | Ts = ts� Tu(ts) ≥ ts). For the
first component, as before

E
(
Y (ts)|Ts = ts� Tu(ts) ≥ ts

) = E(Y|Ts = ts� Tu ≥ ts)� (B.21)

For the second component, by no-anticipation and averaging over X−
ts

,

E
(
Y (∞)|Ts = ts� Tu(ts) ≥ ts

)
= E

(
Y (∞)|Ts = ts� Tu(∞) ≥ ts

)
= EX−

ts
|Ts=ts�Tu≥ts

[
E

(
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

−
ts

)]
� (B.22)
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Then, by Assumption 4 for period ts,

E
(
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

−
ts

) = E
(
Y (∞)|Ts > ts�Tu(∞) ≥ ts�X

−
ts

)
�

Next, using the notation h(X−
t ) = Pr(Tu = t|Ts > t�Tu ≥ t�X−

t ) we have

E
(
Y (∞)|Ts > ts�Tu(∞) ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y (∞)|Ts > ts�Tu(∞) = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
E

(
Y (∞)|Ts > ts�Tu(∞) > ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
E

(
Y (∞)|Ts > ts�Tu(∞) > ts�X

−
ts

)
� (B.23)

where the second equality follows from no-anticipation and the observational rule.
Also, under no-anticipation, Pr(Tu = t|Ts > t�Tu(∞) ≥ t�X−

t ) = Pr(Tu = t|Ts > t�Tu ≥
t�X−

t ) = h(X−
t ), and the treatment probability h(X−

ts
) is observed. Next,

E
(
Y (∞)|Ts > ts�Tu(∞) > ts�X

−
ts

)
=EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
E

(
Y (∞)|Ts > ts�Tu(∞) > ts�X

−
ts+1

)]
=EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
E

(
Y (∞)|Ts > ts + 1�Tu(∞) > ts�X

−
ts+1

)]
=EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
E

(
Y (∞)|Ts > ts + 1�Tu(∞) ≥ ts + 1�X−

ts+1

)]
� (B.24)

where the first equality follows from the law of iterated expectations, the second equal-
ity from Assumption 4 for period ts + 1, and the third equality by rewriting. Here, the
covariates X−

ts+1 may include X−
ts

. From (B.23), by replacing ts with ts + 1,

E
(
Y (∞)|Ts > ts + 1�Tu(∞) ≥ ts + 1�X−

ts+1

)
= h

(
X−

ts+1

)
E

(
Y (∞)|Ts > ts + 1�Tu(∞) = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
E

(
Y (∞)|Ts > ts + 1�Tu(∞) > ts + 1�X−

ts+1

)
� (B.25)

Next, from (B.23) and (B.25),

E
(
Y (∞)|Ts > ts�Tu(∞) ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
h
(
X−

ts+1

)
×E

(
Y|Ts > ts + 1�Tu = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
E

(
Y (∞)|Ts > ts + 1�Tu(∞) > ts + 1�X−

ts+1

)]
�

Then, using (B.24) for ts + 1 gives

E
(
Y (∞)|Ts > ts�Tu ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
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+ [
1 − h

(
X−

ts

)]
EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
h
(
X−

ts+1

)
E

(
Y|Ts > ts + 1�Tu = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
×EX−

ts+2|Ts>ts+1�Tu>ts+1�X−
ts+1

[
E

(
Y (∞)|Ts > ts + 2�Tu(∞) ≥ ts + 2�X−

ts+2

)]]
�

and (B.23) for ts + 2 gives

E
(
Y (∞)|Ts > ts�Tu ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
h
(
X−

ts+1

)
E

(
Y|Ts > ts + 1�Tu = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
EX−

ts+2|Ts>ts+1�Tu>ts+1�X−
ts+1

[
h
(
X−

ts+2

)
×E

(
Y|Ts > ts + 2�Tu = ts + 2�X−

ts+2

)
+ [

1 − h
(
X−

ts+2

)]
E

(
Y (∞)|Ts > ts + 2�Tu(∞) > ts + 2�X−

ts+2

)]]
�

and (B.24) for ts + 2 gives

E
(
Y (∞)|Ts > ts�Tu ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
h
(
X−

ts+1

)
E

(
Y|Ts > ts + 1�Tu = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
EX−

ts+2|Ts>ts+1�Tu>ts+1�X−
ts+1

[
h
(
X−

ts+2

)
×E

(
Y|Ts > ts + 2�Tu = ts + 2�X−

ts+2

)
+ [

1 − h
(
X−

ts+2

)]
×EX−

ts+3|Ts>ts+2�Tu>ts+2�X−
ts+2

[
E

(
Y (∞)|Ts > ts + 3�Tu(∞) ≥ ts + 3�X−

ts+1

)]]]
�

and iteratively using (B.23) and (B.24) for ts + 3� � � � � Tmax
u we have

E
(
Y (∞)|Ts > ts�Tu ≥ ts�X

−
ts

)
= h

(
X−

ts

)
E

(
Y|Ts > ts�Tu = ts�X

−
ts

)
+ [

1 − h
(
X−

ts

)]
EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
h
(
X−

ts+1

)
E

(
Y|Ts > ts + 1�Tu = ts + 1�X−

ts+1

)
+ [

1 − h
(
X−

ts+1

)]
EX−

ts+2|Ts>ts+1�Tu>ts+1�X−
ts+1

[
h
(
X−

ts+2

)
×E

(
Y|Ts > ts + 2�Tu = ts + 2�X−

ts+2

) + � � �

+ [
1 − h

(
X−

Tmax
u −1

)]
EX−

Tmax
u

|Ts>Tmax
u −1�Tu>Tmax

u −1�X−
Tmax
u −1

× [
p

(
X−

Tmax
u

)
E

(
Y|Ts > Tmax

u �Tu = Tmax
u �X−

Tmax
u

)]
� � �

]]
� (B.26)

Finally, combining (B.22), (B.26) and (B.21) gives the result in Theorem 2.
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B.4.2. Estimation

If no-anticipation and Assumption 4 hold, an unbiased estimator of ATET(ts) is

̂ATET(ts) = 1
π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yi

− 1∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

) ∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

)
Yi (B.27)

where

wts
(
tu�X

−) = p
(
ts�X

−
ts

)
tu∏

m=ts

[
1 −p

(
m�X−

m

)] �

PROOF: For the first part of ATET(ts), we have from (B.1),

E

[
1

π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yi

]
=E

[
Y (ts)|Ts = ts� Tu(ts) ≥ ts

]
� (B.28)

For the second part of ATET(ts), the estimator without the normalization is

1
π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

)
Yi�

using similar reasoning as for (B.2) we have

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

)
Yi

]

=EX−
ts

|Ts≥ts�Tu≥ts

×
[

1
π(ts)

E

[
Tmax
u∑

tu=ts

wts
(
tu�X

−)
I(Ts > tu�Tu = tu)Y|Ts ≥ ts� Tu ≥ ts�X

−
ts

]]
� (B.29)

We use the notation

h
(
t�X−

t

) = Pr
(
Tu = t|Ts > t�Tu ≥ t�X−

t

)
�

If no-anticipation and Assumption 4 hold, and since wts (tu�X−) = p(ts�X−
ts

)∏tu
m=ts

[1−p(m�X−
m)]

:

E
[
wts

(
ts + 1�X−)

I(Ts > ts + 1�Tu = ts + 1)Y|Ts ≥ ts� Tu ≥ ts�X
−
ts

]
=wts

(
ts + 1�X−)

Pr
(
Ts > ts�Tu > ts|Tu ≥ ts� Ts ≥ ts�X

−
ts

)
× Pr

(
Ts > ts + 1�Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts

)
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×E
[
Y|Ts > ts + 1�Tu = ts + 1�X−

ts

]
= p

(
ts�X

−
ts

)
ts+1∏
m=ts

[
1 −p

(
m�X−

m

)]
[
1 − h

(
ts�X

−
ts

)][
1 −p

(
ts�X

−
ts

)]

× Pr
(
Ts > ts + 1�Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts

)
×E

[
Y|Ts > ts + 1�Tu = ts + 1�X−

ts

]
= p

(
ts�X

−
ts

)[
1 − h

(
ts�X

−
ts

)]
[
1 −p

(
ts + 1�X−

ts+1

)] Pr
(
Ts > ts + 1�Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts

)
×E

[
Y|Ts > ts + 1�Tu = ts + 1�X−

ts

]
� (B.30)

Next,

Pr
(
Ts > ts + 1�Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts

)
1 −p

(
ts + 1�X−

ts+1

)
=EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
Pr

(
Ts > ts + 1�Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts+1

)
1 −p

(
ts + 1�X−

ts+1

) ]

=EX−
ts+1|Ts>ts�Tu>ts�X

−
ts

[
1 −p

(
ts + 1�X−

ts+1

)
Pr

(
Tu = ts + 1|Ts > ts + 1�Tu > ts�X

−
ts+1

)
1 −p

(
ts + 1�X−

ts+1

) ]

=EX−
ts+1|Ts>ts�Tu>ts�X

−
ts

[
Pr

(
Tu = ts + 1|Ts > ts + 1�Tu > ts�X

−
ts+1

)]
=EX−

ts+1|Ts>ts�Tu>ts�X
−
ts

[
Pr

(
Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts+1

)]
= Pr

(
Tu = ts + 1|Ts > ts�Tu > ts�X

−
ts

) = h
(
ts + 1�X−

ts

)
� (B.31)

Note that the fourth equality follows from Assumption 4. Then, by (B.30) and (B.31), and
using no-anticipation and Assumption 4,

E
[
wts

(
ts + 1�X−)

I(Ts > ts + 1�Tu = ts + 1)Y|Ts ≥ ts� Tu ≥ ts�X
−
ts

]
= p

(
ts�X

−
ts

)
h
(
ts + 1�X−

ts

)[
1 − h

(
ts�X

−
ts

)]
E

[
Y|Ts > ts + 1�Tu = ts + 1�X−

ts

]
= p

(
ts�X

−
ts

)
h
(
ts + 1�X−

ts

)[
1 − h

(
ts�X

−
ts

)]
×E

[
Y (∞)|Ts > ts + 1�Tu(∞) = ts + 1�X−

ts

]
= p

(
ts�X

−
ts

)
h
(
ts + 1�X−

ts

)[
1 − h

(
ts�X

−
ts

)]
×E

[
Y (∞)|Ts = ts� Tu(∞) = ts + 1�X−

ts

]
� (B.32)

where the second equality follows from no-anticipation, and the third by Assumption 4.
By similar reasoning as for (B.30)–(B.32), we have

E
[
wts

(
tu�X

−)
I(Ts > tu�Tu = tu)Y|Ts ≥ ts� Tu ≥ ts�X

−
ts

]
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= p
(
ts�X

−
ts

)
h
(
tu�X

−
ts

)[ tu−1∏
m=ts

[
1 − h

(
m�X−

ts

)]]

×E
[
Y (∞)|Ts = ts� Tu(∞) = tu�X

−
ts

]
� (B.33)

Thus, from (B.29)–(B.33),

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

)
Yi

]

=EX−
ts

|Ts≥ts�Tu≥ts

[
p

(
ts�X

−
ts

)
π(ts)

Tmax
u∑

tu=ts

h
(
tu�X

−
ts

)[ tu−1∏
m=ts

[
1 − h

(
m�X−

ts

)]]

×E
[
Y (∞)|Ts = ts� Tu(∞) = tu�X

−
ts

]]
� (B.34)

Next, by similar reasoning as for (B.5)–(B.8) we have

Tmax
u∑

tu=ts

h
(
tu�X

−
ts

)[ tu−1∏
m=ts

[
1 − h

(
m�X−

ts

)]]
E

[
Y (∞)|Ts = ts� Tu(∞) = tu�X

−
ts

]
= E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

−
ts

]
� (B.35)

so that from (B.34) and (B.35),

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i≥ts

wts
(
Tu�i�X

−
i

)
Yi

]

=EX−
ts

|Ts≥ts�Tu≥ts

[
p

(
ts�X

−
ts

)
π(ts)

E
[
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

−
ts

]]

= 1
π(ts)

EX−
ts

|Ts≥ts�Tu≥ts [Pr
(
Ts = ts|Ts ≥ ts� Tu ≥ ts�X

−
ts

)
×E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts�X

−
ts

]
= 1

π(ts)
Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts)E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts

]
=E

[
Y (∞)|Ts = ts� Tu(∞) ≥ ts

]
� (B.36)

Finally, (B.28) and (B.36) imply that E[ ̂ATET(ts)] = ATET(ts). Q.E.D.

B.5. Right-Censored Durations

B.5.1. Identification

Consider identification of ATET(ts) = E(Y (ts) − Y (∞) | Ts = ts� Tc > ts�Tu(ts) ≥ ts)
under Assumptions 1, 2, and 5. First, consider E(Y (∞)|Ts = ts� Tc > ts�Tu(ts) ≥ ts). Ini-
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tially, by Assumption 1 and the law of iterated expectations:

E
(
Y (∞) | Ts = ts� Tc > ts�Tu(ts) ≥ ts

)
=E

(
Y (∞) | Ts = ts� Tc > ts�Tu(∞) ≥ ts

)
=EX|Ts=ts�Tc>ts�Tu≥ts

[
E

(
Y (∞)|s = ts� Tc > ts�Tu(∞) ≥ ts�X

)]
� (B.37)

where the averaging over X is possible given common support. Next, if Assumption 2
holds for period ts we have

E
(
Y (∞) | Ts = ts� Tc > ts�Tu(∞) ≥ ts�X

) =E
(
Y (∞) | Ts > ts�Tc > ts�Tu(∞) ≥ ts�X

)
�

Then, by the law of iterated expectations,

E
(
Y (∞) | Ts > ts�Tc > ts�Tu(∞) ≥ ts�X

)
= Pr

(
Tu = ts|Ts > ts�Tc > ts�Tu(∞) ≥ ts�X

)
×E

(
Y (∞)|Ts > ts�Tc > ts�Tu(∞) = ts�X

)
+ Pr

(
Tu > ts|Ts > ts�Tc > ts�Tu(∞) ≥ ts�X

)
×E

(
Y (∞)|Ts > ts�Tc > ts�Tu(∞) > ts�X

)
� (B.38)

decomposing the counterfactual outcome under never treatment into average outcomes
for individuals with Tu = ts and Tu > ts. For the group with Tu = ts in (B.38), we have by
Assumption 1,

E
(
Y (∞)|Ts > ts�Tc > ts�Tu = ts�X

) =E(Y|Ts > ts�Tc > ts�Tu = ts�X)� (B.39)

and the probabilities Pr(Tu = ts|Ts > ts�Tc > ts�Tu(∞) ≥ ts�X) and Pr(Tu > ts|Ts >
ts�Tc > ts�Tu(∞) ≥ ts�X) are also observed.

For the group, with Tu > ts, in (B.38), we have

E
(
Y (∞)|Ts > ts�Tc > ts�Tu > ts�X

)
= E

(
Y (∞)|Ts > ts�Tc > ts + 1�Tu > ts�X

)
= E

(
Y (∞)|Ts > ts + 1�Tc > ts + 1�Tu > ts�X

)
= E

(
Y (∞)|Ts > ts + 1�Tc > ts + 1�Tu ≥ ts + 1�X

)
�

where the first equality follows from Assumption 5 for period ts + 1, the second from
Assumption 2 for period ts + 1, and the third equality by rewriting. Next, for sake of
presentation, let us introduce some auxiliary notation:

hc(t�X) = Pr(Tu = t | Ts > t�Tc > t�Tu ≥ t�X)�

Using this notation and using (B.38) by replacing ts with ts + 1, we have

E
(
Y (∞) | Ts > ts + 1�Tc > ts + 1�Tu ≥ ts + 1�X

)
= hc(ts + 1�X)E

(
Y (∞)|Ts > ts + 1�Tc > ts + 1�Tu = ts + 1�X

)
+ [

1 − hc(ts + 1�X)
]

×E
(
Y (∞)|Ts > ts + 1�Tc > ts + 1�Tu > ts + 1�X

)
� (B.40)
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so that (B.38)–(B.40) give

E
(
Y (∞)|Ts > ts�Tc > ts�Tu ≥ ts�X

)
= hc(ts�X)E(Y|Ts > ts�Tc > ts�Tu = ts�X)

+ [
1 − hc(ts�X)

]
hc(ts + 1�X)

×E(Y|Ts > ts + 1�Tc > ts + 1�Tu = ts + 1�X)

+ [
1 − hc(ts�X)

][
1 − hc(ts + 1�X)

]
×E

(
Y (∞)|Ts > ts + 1�Tc > ts + 1�Tu > ts + 1�X

)
�

Then, iteratively using (B.38) and (B.39) for ts + 2� � � � �Tmax
u we have

E
(
Y (∞)|Ts > ts�Tc > ts�Tu ≥ ts�X

)

=
Tmax
u∑

k=ts

hc(k�X)

[
k−1∏
m=ts

[
1 − hc(m�X)

]]

×E(Y|Ts > k�Tc > k�Tu = k�X)� (B.41)

Then, from (B.37)–(B.41),

E
(
Y (∞) | Ts = ts� Tc > ts�Tu(ts) ≥ ts�X

)

= EX|Ts=ts�Tc>ts�Tu≥ts

[
Tmax
u∑

k=ts

hc(k�X)

[
k−1∏
m=ts

[
1 − hc(m�X)

]]

×E(Y|Ts > k�Tc > k�Tu = k�X)

]
� (B.42)

Second, for E(Y (ts)|Ts = ts� Tc > ts�Tu(ts) ≥ ts), Assumption 1 and the law of iterated
expectations give

E
(
Y (ts) | Ts = ts� Tc > ts�Tu(ts) ≥ ts

)
= E

(
Y (ts) | Ts = ts� Tc > ts�Tu ≥ ts

)
= EX|Ts=ts�Tc>ts�Tu≥ts

[
E

(
Y (ts) | Ts = ts� Tc > ts�Tu ≥ ts�X

)]
� (B.43)

Then, by the law of iterated expectations,

E
(
Y (ts) | Ts = ts� Tc > ts�Tu ≥ ts�X

)
= Pr(Tu = ts|Ts = ts� Tc > ts�Tu ≥ ts�X)E

(
Y (ts)|Ts = ts� Tc > ts�Tu = ts�X

)
+ Pr(Tu > ts|Ts = ts� Tc > ts�Tu ≥ ts�X)

×E
(
Y (ts)|Ts = ts� Tc > ts�Tu > ts�X

)
� (B.44)

as above decomposing the outcome of interest into average outcomes for individuals with
Tu = ts and Tu > ts.
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Next,

E
(
Y (ts)|Ts = ts� Tc > ts�Tu = ts�X

) =E(Y|Ts = ts� Tc > ts�Tu = ts�X)� (B.45)

For sake of presentation, let us introduce some additional auxiliary notation:

hc1(t�X� ts) = Pr(Tu = t | Ts = ts� Tc > t�Tu ≥ t�X)�

Then, using this notation iteratively, using (B.44) and (B.45), and with Assumption 5 hold-
ing for for ts + 2� � � � �Tmax

u , we obtain

E
(
Y (ts)|Ts = ts� Tc > ts�Tu ≥ ts�X

)

=
Tmax
u∑

k=ts

hc1(t�X� ts)

[
k−1∏
m=ts

[
1 − hc1(t�X� ts)

]]

×E(Y|Ts = ts� Tc > k�Tu = k�X)� (B.46)

so that by (B.43)–(B.46),

E
(
Y (ts) | Ts = ts� Tc > ts�Tu(ts) ≥ ts

)

=EX|Ts=ts�Tc>ts�Tu≥ts

[
Tmax
u∑

k=ts

hc1(t�X� ts)

[
k−1∏
m=ts

[
1 − hc1(t�X� ts)

]]

×E(Y|Ts = ts� Tc > k�Tu = k�X)

]
� (B.47)

Finally, (B.42) and (B.47) give the result in Theorem 3.

B.5.2. Estimation

We now show that if Assumptions 1, 2, and 5 hold, then an unbiased estimator of
ATET(ts) is

̂ATET(ts) = 1∑
i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)

×
∑

i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)Yi

− 1∑
i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥ts

wts
c0

(Tu�i�Xi)

×
∑

i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥ts

wts
c0

(Tu�i�Xi)Yi�
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wts
c1

(tu�X) = 1
tu∏

m=ts+1

[
1 − ec1(m� ts�X)

] � (B.48)

wts
c0

(tu�X) = pc(ts�X)

[
1 −pc(ts�X)

] tu∏
m=ts+1

[
1 −pc(m�X)

][
1 − ec0(m�X)

] �

pc(t�X) = Pr(Ts = t|Ts ≥ t�Tc > t�Tu ≥ t�X)�

ec1(t� ts�X) = Pr(Tc = t|Ts = ts� Tc ≥ t�Tu ≥ t�X)�

ec0(t�X) = Pr(Tc = t|Ts ≥ t�Tc ≥ t�Tu ≥ t�X)�

PROOF: First, for the first component of ATET(ts), the estimator without the normal-
ization is

1
ρc
ts
Nc

ts

∑
i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)Yi�

where Nc
ts

is the number of nontreated survivors at the beginning of ts with durations
censored after ts and ρc

t = Pr(Ts = t|Tu ≥ t�Tc > t�Ts ≥ t).
Using similar reasoning as above, we have

E

[
1

ρc
ts
Nc

ts

∑
i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)Yi

]

= E

[
1

ρc
ts
Nc

ts

∑
i∈Ts�i=ts�Tc�i>ts�Tu�i≥ts

wts
c1

(Tu�i�Xi)I(Tc�i > Tu�i)Yi

]

= E
[
wts

c1
(Tu�X)I(Tc > Tu)Y|Ts = ts� Tc > ts�Tu ≥ ts

]

= E

[
Tmax
u∑

tu=ts

wts
c1

(tu�X)I(Tc > tu�Tu = tu)Y|Ts = ts� Tc > ts�Tu ≥ ts

]

= EX|Ts=ts�Tc>ts�Tu≥ts

×
[
E

[
Tmax
u∑

tu=ts

wts
c1

(tu�X)I(Tc > tu�Tu = tu)Y|Ts = ts� Tc > ts�Tu ≥ ts�X

]]
� (B.49)

Introduce the notation

hc(t�X) = Pr(Tu = t|Tu ≥ t�Tc > t�Ts > t�X)�

Then, if Assumptions 1, 2, and 5 hold, and noting that wts
c1

(tu�X) = 1∏tu
m=ts+1

[1−ec1(m�ts�X)]
:

E
[
wts

c1
(tu�X)I(Tc > tu�Tu = tu)Y|Ts = ts� Tc > ts�Tu ≥ ts�X

]
= wts

c1
(tu�X) Pr(Tc > tu�Tu = tu|Tu = ts� Tc > ts�Ts ≥ ts�X)
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×E[Y|Ts = ts� Tc > tu�Tu = tu�X]

= 1
tu∏

m=ts+1

[
1 − ec1(m� ts�X)

]hc(tu�X)

×
[

tu−1∏
m=ts

[
1 − hc(m�X)

]][
tu∏

m=ts+1

[
1 − ec1(m� ts�X)

]]

×E[Y|Ts = ts� Tc > tu�Tu = tu�X]

= hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E[Y|Ts = ts� Tc > tu�Tu = tu�X]

= hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (ts)|Ts = ts� Tc > tu�Tu(ts) = tu�X

]
= hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) = tu�X

]
� (B.50)

where the second equality follows from the definition of wts
c0

(tu�X), the third equality
by simplifying, the fourth equality by Assumption 1, and the fifth equality by applying
Assumption 5 for ts� � � � � tu.

From (B.49) and (B.50),

E

[
1

ρc
ts
Nc

ts

∑
i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)Yi

]

=EX|Ts=ts�Tc>ts�Tu≥ts

[
Tmax
u∑

tu=ts

hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) = tu�X

]]
� (B.51)

Next, by similar reasoning as for (B.8) we have

Tmax
u∑

tu=ts

hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) = tu�X

]
=E

[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) ≥ ts�X

]
� (B.52)
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so that from (B.51) and (B.52),

E

[
1

ρc
ts
Nc

ts

∑
i∈Ts�i=ts�Tc�i>Tu�i�Tu�i≥ts

wts
c1

(Tu�i�Xi)Yi

]

= EX|Ts=ts�Tc>ts�Tu≥ts

[
E

[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) ≥ ts�X

]]
= E

[
Y (ts)|Ts = ts� Tc > ts�Tu(ts) ≥ ts

]
� (B.53)

Second, for the second component of ATET(ts) the estimator without the normaliza-
tion is

1
ρc
ts
Nc

ts

∑
i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥ts

wts
c0

(Tu�i�Xi)Yi�

Using similar reasoning as for (B.2), we have

E

[
1

ρc
ts
Nts

∑
i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥ts

wts
c0

(Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tc>ts�Tu≥ts

[
1
ρc
ts

E

[
Tmax
u∑

tu=ts

wts
c0

(tu�X)

× I(Ts > tu�Tc > tu�Tu = tu)Y
∣∣∣Ts ≥ ts� Tc > ts�Tu ≥ ts�X

]]
� (B.54)

Next, if Assumptions 1, 2, and 5 hold, and since

wts
c0

(tu�X) = pc(ts�X)

[
1 −pc(ts�X)

] tu∏
m=ts+1

[
1 −pc(m�X)

][
1 − ec0(m�X)

]

we have

E
[
wts

c0
(tu�X)I(Ts > tu�Tc > tu�Tu = tu)Y|Ts ≥ ts� Tc > ts�Tu ≥ ts�X

]
=wts

c0
(tu�X) Pr(Ts > tu�Tc > tu�Tu = tu|Tu ≥ ts� Tc > ts�Ts ≥ ts�X)

×E[Y|Ts > tu�Tc > tu�Tu = tu�X]

= pc(ts�X)

[
1 −pc(ts�X)

] tu∏
m=ts+1

[
1 −pc(m�X)

][
1 − ec0(m�X)

]

× hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

× [
1 −pc(ts�X)

][ tu∏
m=ts+1

[
1 −p(m�X)

][
1 − ec0(m�X)

]]
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×E[Y|Ts > tu�Tc > tu�Tu = tu�X]

= pc(ts�X)hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E[Y|Ts > tu�Tc > tu�Tu = tu�X]

= pc(ts�X)hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (∞)|Ts > tu�Tc > tu�Tu(∞) = tu�X

]
= pc(ts�X)hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (∞)|Ts = ts� Tc > tu�Tu(∞) = tu�X

]
= pc(ts�X)hc(tu�X)

[
tu−1∏
m=ts

[
1 − hc(m�X)

]]

×E
[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) = tu�X

]
� (B.55)

where the second equality follows from the definition of wts
c0

(tu�X), the third equality by
simplifying, the fourth equality by Assumption 1, the fifth equality by applying Assump-
tion 2 for ts� � � � � tu, and the sixth equality by applying Assumption 5 for ts� � � � � tu.

From (B.54) and (B.55),

E

[
1

ρc
ts
Nts

∑
i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥t

wts
c0(Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tc>ts�Tu≥ts

[
pc(ts�X)

ρc
ts

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) = tu�X

]
� (B.56)

Next, by similar reasoning as for (B.8) we have

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]
E

[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) = tu�X

]
=E

[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) ≥ ts�X

]
� (B.57)

Thus, from (B.56) and (B.57),

E

[
1

ρc
ts
Nts

∑
i∈Ts�i>Tu�i�Tc�i>Tu�i�Tu�i≥t

wts
c0(Tu�i�Xi)Yi

]

=EX|Ts≥ts�Tc>ts�Tu≥ts

[
pc(ts�X)

ρc
ts

E
[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) ≥ ts�X

]]
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= Pr(Ts = ts|Tu ≥ ts� Tc > ts�Ts ≥ ts)
ρc
ts

×E
[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) ≥ ts

]
=E

[
Y (∞)|Ts = ts� Tc > ts�Tu(∞) ≥ ts

]
� (B.58)

since ρc
ts

= Pr(Ts = ts|Tu ≥ ts� Tc > ts�Ts ≥ ts).

Finally, (B.53) and (B.58) imply that E[ ̂ATET(ts)] = ATET(ts). Q.E.D.

B.6. ATET(ts) With Short-Run Outcomes

B.6.1. Identification

The first component of ATET(ts� τ) is identified from the observed outcomes, Yt , of
those treated at time ts:

E
(
Yts+τ(ts)|Ts = ts� Tu(ts) ≥ ts

) =E(Yts+τ|Ts = ts� Tu ≥ ts)� (B.59)

For the second component of ATET(ts� τ), we condition on X . We assume sequential
unconfoundedness.

ASSUMPTION B.1—Sequential unconfoundedness, short-run outcomes: For all t,

Pt⊥Y (∞) |X�Ts ≥ t�Tu ≥ t�

Based on this and on appropriate no-anticipation assumptions,

E
(
Yts+τ(∞)|Ts = ts� Tu(ts) ≥ ts�X

)
= E

(
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ ts�X

)
= E

(
Yts+τ(∞)|Ts > ts�Tu(∞) ≥ ts�X

)
� (B.60)

and by the law of iterated expectations and the observational rule,

E
(
Yts+τ(∞)|Ts > ts�Tu(∞) ≥ ts�X

)
= h(ts�X)E

(
Yts+τ(∞)|Ts > ts�Tu(∞) = ts�X

)
+ [

1 − h(ts�X)
]
E

(
Yts+τ(∞)|Ts > ts�Tu(∞) > ts�X

)
� (B.61)

where E(Yts+τ(∞)|Ts > ts�Tu(∞) = ts�X) = E(Yts+τ|Ts > ts�Tu = ts�X), and the proba-
bility h(ts�X) also is observed. By Assumption B.1 for period ts+1 and (B.61) by replacing
ts with ts + 1, we have

E
(
Yts+τ(∞)|Ts > ts�Tu ≥ ts�X

)
= E

(
Yts+τ(∞)|Ts > ts + 1�Tu(∞) ≥ ts + 1�X

)
= h(ts + 1�X)E

(
Yts+τ(∞)|Ts > ts + 1�Tu(∞) = ts + 1�X

)
+ [

1 − h(ts + 1�X)
]
E

(
Yts+τ(∞)|Ts > ts + 1�Tu(∞) > ts + 1�X

)
� (B.62)
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where the first equality follows from Assumption B.1 and the second from (B.61). Itera-
tively, for ts + 2� � � � gives

E
(
Yts+τ(∞)|Ts > ts�Tu(∞) ≥ ts�X

)
=

ts+τ∑
k=ts

h(k�X)

[
k−1∏
m=ts

[
1 − h(m�X)

]]
E(Y|Ts > k�Tu = k�X)

+
[

ts+τ∏
m=ts

[
1 − h(m�X)

]]
E(Yts+τ|Ts > ts + τ�Tu > ts + τ�X)� (B.63)

Combining (B.60) and (B.63) and averaging over X gives the second component of equa-
tion (12).

B.6.2. Estimation

Under the above assumptions, an unbiased estimator of ATET(ts) is

̂ATET(ts)

= 1
π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yts+τ�i

−
( ∑

i∈Ts�i>Tu�i�ts+τ≥Tu�i≥ts

wts (Tu�i�Xi)Yts+τ�i

+
∑

i∈Ts�i>ts+τ�Tu�i>ts+τ

wts
τ (Tu�i�Xi)Yts+τ�i

)

/( ∑
i∈Ts�i>Tu�i�ts+τ≥Tu�i≥ts

wts (Tu�i�Xi) +
∑

i∈Ts�i>ts+τ�Tu�i>ts+τ

wts
τ (Tu�i�Xi)

)
� (B.64)

where wts (tu�X) is given by (11) and

wts
τ (X) = p(ts�X)

ts+τ∏
m=ts

1 −p(m�X)

�

PROOF: Consider estimation of ATET(ts� τ) and the estimator in (B.64),

ATET(ts� τ) =E
(
Yts+τ(ts) −Yts+τ(∞)|Ts = ts� Tu(ts) ≥ ts

)
�

For the first part of ATET(ts� τ), the estimator is

1
π(ts)Nts

∑
i∈Ts�i=ts�Tu�i≥ts

Yts+τ�i�
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By similar reasoning as for (B.1), we have

E

[
1

π(ts)Nts

∑
i∈Ts�i=tsTu�i≥ts

Yts+τ�i

]
=E

[
Yts+τ(ts)|Ts = ts� Tu(ts) ≥ ts

]
� (B.65)

For the second part of ATET(ts� τ), the estimator without the normalization is

1
π(ts)Nts

[ ∑
i∈Ts�i>Tu�i�ts+τ≥Tu�i≥ts

wts (Tu�i�Xi)Yts+τ�i +
∑

i∈Ts�i>ts+τ�Tu�i>ts+τ

wts
τ (Tu�i�Xi)Yts+τ�i

]
�

Initially, using similar reasoning as for (B.2),

E

[
1

π(ts)Nts

∑
i∈Ts�i>Tu�i�ts+τ≥Tu�i≥ts

wts (Tu�i�Xi)Yts+τ�i

]

=EX|Ts≥ts�Tu≥ts

[
1

π(ts)

×E

[
ts+τ∑
tu=ts

wts (tu�X)I(Ts > tu�Tu = tu)Yts+τ

∣∣∣Ts ≥ ts� Tu ≥ ts�X

]]
� (B.66)

and using similar reasoning as for (B.3), we have

E
[
wts (tu�X)I(Ts > tu�Tu = tu)Yts+τ|Ts ≥ ts� Tu ≥ ts�X

]
= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) = tu�X

]
� (B.67)

Next,

E

[
1

π(ts)Nts

∑
i∈Ts�i>ts+τ�Tu�i>ts+τ

wts
τ (Tu�i�Xi)Yts+τ�i

]

=E

[
1

π(ts)Nts

∑
i∈Ts�i≥ts�Tu�i≥ts

wts
τ (Tu�i�Xi)I(Ts�i > ts + τ�Tu�i > ts + τ)Yts+τ�i

]

=E

[
1

π(ts)Nts

∑
i∈Ts�i≥ts�Tu�i≥ts

Tmax
u∑

tu>ts+τ

wts
τ (tu�Xi)I(Ts�i > ts + τ�Tu�i = tu)Yts+τ�i

]

= 1
π(ts)

E

[
Tmax
u∑

tu>ts+τ

wts
τ (tu�X)I(Ts > ts + τ�Tu = tu)Yts+τ|Ts ≥ ts� Tu ≥ ts

]
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=EX|Ts≥ts�Tu≥ts

[
1

π(ts)
E

[
Tmax
u∑

tu>ts+τ

wts
τ (tu�X)

× I(Ts > ts + τ�Tu = tu)Yts+τ|Ts ≥ ts� Tu ≥ ts�X

]]
� (B.68)

Then Assumption B.1 and no-anticipation and the fact that wts
τ (X) = p(ts�X)∏ts+τ

m=ts
[1−p(m�X)]

jointly

imply that

E
[
wts

τ (X)I(Ts > ts + τ�Tu = tu)Yts+τ|Ts ≥ ts� Tu ≥ ts�X
]

=wts
τ (X) Pr(Ts > ts + τ�Tu = tu|Tu ≥ ts� Ts ≥ ts�X)

×E[Yts+τ|Ts > ts + τ�Tu = tu�X]

= p(ts�X)
ts+τ∏
m=ts

[
1 −p(m�X)

]h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×
[

ts+τ∏
m=ts

[
1 −p(m�X)

]]
E[Yts+τ|Ts > ts + τ�Tu = tu�X]

= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E[Yts+τ|Ts > ts + τ�Tu = tu�X]

= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Yts+τ(∞)|Ts > ts + τ�Tu(∞) = tu�X

]
= p(ts�X)h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) = tu�X

]
� (B.69)

From (B.66)–(B.69), we have

E

[
1

π(ts)Nts

[ ∑
i∈Ts�i>Tu�i�
ts+τ≥Tu�i≥ts

wts (Tu�i�Xi)Yts+τ�i +
∑

i∈Ts�i>ts+τ�
Tu�i>ts+τ

wts
τ (Tu�i�Xi)Yts+τ�i

]]

=EX|Ts≥ts�Tu≥ts

[
p(ts�X)
π(ts)

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) = tu�X

]]
� (B.70)
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Then, using similar reasoning as for (B.8),

Tmax
u∑

tu=ts

h(tu�X)

[
tu−1∏
m=ts

[
1 − h(m�X)

]]

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) = tu�X

]
=E

[
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ t�X

]
� (B.71)

and thus from (B.70) and (B.71),

E

[
1

π(ts)Nts

[ ∑
i∈Ts�i>Tu�i�
ts+τ≥Tu�i≥ts

wts (Tu�i�Xi)Yts+τ�i +
∑

i∈Ts�i>ts+τ�
Tu�i>ts+τ

wts
τ (Tu�i�Xi)Yts+τ�i

]]

= 1
π(ts)

EX|Ts≥ts�Tu≥ts

[
p(ts�X)E

[
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ ts�X

]]

= 1
π(ts)

EX|Ts≥ts�Tu≥ts [Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts�X)

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ ts�X

]
= 1

π(ts)
Pr(Ts = ts|Ts ≥ ts� Tu ≥ ts)

×E
[
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ ts

]
=E

[
Yts+τ(∞)|Ts = ts� Tu(∞) ≥ ts

]
� (B.72)

Finally, (B.65) and (B.72) imply that E[ ̂ATET(ts)] = ATET(ts). Q.E.D.

APPENDIX C: MONTE CARLO SIMULATION

C.1. Simulation Design

This simulation study examines properties of the estimator introduced in the paper.
We use the following notation for the conditional exit probability out of the initial state:
θTu (t) = Pr(Tu = tu|Tu ≥ tu), and the conditional treatment probability: θTs (t) = Pr(Ts =
ts|Tu ≥ ts� Ts ≥ ts). We consider the following discrete time DGP:

θTu (t) = f (−2�5 +X + vu)�

θTs (t) = f (αs +βsX + vs)� t ≤ 12�

θTs (t) = 0� t > 12� (C.73)

Y = 100 +βYX + δI(Tu ≥ Ts) +βuvu + vy

with X�vu� vs ∼ unif(−1�1)� vy ∼ N(0�5)�

with X , vu, vs, vy all independently distributed of each other, and f (h) = [1+exp(−h)]−1.
This model has several properties worth noticing. First, the treatment can start at any

point during the first 12 time periods, corresponding to a treatment in place during the
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FIGURE C.1.—Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model A: baseline
treatment rate. Note: αs is the conditional treatment probability parameter. The data generating processes are
described in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the
estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights.
Results are based on 2000 replications.

first year (if the time period is a month). Second, both durations, Tu and Ts, and the out-
come, Y , depend on observed and unobserved characteristics. However, since the unob-
served effect in the treatment equation is uncorrelated with the other unobserved effects,
the unconfoundedness assumption holds. Third, the unobserved effect in the duration
time equation also appears in the long-run outcome equation. This is consistent with the
idea that some unobserved characteristics affect both time in the initial state and the long-
run outcome. In the training for unemployed example, this may be unobserved motivation
and/or unobserved ability.

In the baseline setting, the correlation between the unobserved characteristics in the
exit and long-outcome equations βu is 1, the baseline treatment probability parameter
αs is −3.0, the impact of the covariate on treatment βs is 1, the treatment effect on the
long-run outcome δ is 0, and impact of the covariate on the long-run outcomes βY is
set to 1. These parameters are then varied in four different ways. Model A varies the
baseline treatment parameter (αs between −4.5 and −1.5). Model B varies the impact of
the covariate on treatment (βs between 0 and 2). With αs = −4, the conditional treatment
probability in each period is 0.021 while with αs = −2 this is 0.13. If βs equals 0.5, the
conditional treatment probability varies between 0.029 and 0.076; and if βs = 1.5, this
probability varies between 0.011 and 0.18. Model C varies the correlation between the
unobserved characteristics in the exit and long-outcome equations (βu between 0 and 2).
Finally, Model D allows the treatment effect on the long-run outcome, δ, to vary between
1 and 10.

We focus on the aggregated effect ATET. All propensity scores are estimated with a cor-
rect logistic model specification. We initially study the bias of each estimator. The sample
size is set to 10,000 and the number of replications is 2000. Common support is imposed
through the above mentioned variant of the three-step approach from Huber, Lechner,
and Wunsch (2013), with the upper limit on the weight given to a certain observation set
to 1%. After this, we study the size and variance of the dynamic estimator, using boot-
strapped standard errors (500 replications). In that case, we allow the treatment to start
at any point during the first 4 periods.
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FIGURE C.2.—Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model B: impact
of the covariate on the conditional treatment probability. Note: βs is the impact of the covariate on treatment.
The data generating processes are described in the text. Bias for aggregated effect of treatment over the first 12
months. Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator
with normalized weights. Results are based on 2000 replications.

C.2. Simulation Results

We compare the dynamic IPW estimator and a static IPW estimator. Figure C.1 reports
how the bias of the two estimators are related to the baseline treatment rate. As expected,
the static IPW estimator is biased, and the bias is increasing in the treatment parameter
(higher αs). This is because a higher conditional treatment probability implies more ex-
tensive dynamic treatment assignment. The bias of the dynamic IPW estimator, on the

FIGURE C.3.—Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model C: corre-
lation between the unobserved characteristics in the exit and long-outcome equations. Note: βu determines
the correlation between the unobserved characteristics in the exit and long-outcome equations. The data gen-
erating processes are described in the text. Bias for aggregated effect of treatment over the first 12 months.
Dynamic IPW is the estimator introduced in this paper. Static IPW is a standard static IPW estimator with
normalized weights. Results are based on 2000 replications.
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TABLE C.I

SIMULATED BIAS, SIZE, AND VARIANCE OF THE DYNAMIC IPW ESTIMATOR.

1000 observations 4000 observations

bias se size bias se size
[1] [2] [3] [4] [5] [6]

Baseline model 0�004 0.198 0.056 −0�005 0.100 0.058
Unobserved correlation, βu = 2 0�000 0.213 0.049 0�001 0.105 0.047
Treatment rate, αs = −2 −0�005 0.166 0.055 −0�001 0.084 0.057
Treatment selection, βs = 2 0�004 0.209 0.058 0�000 0.106 0.049
Treatment effect, δs = 5 0�002 0.190 0.040 −0�001 0.096 0.038

Note: IPW estimates with bootstrapped standard errors (500 replications). The data generating processes are described in the
text. Size is for 5% level tests. The results are based on 2000 replications.

other hand, is virtually zero for all treatment probabilities and roughly 100 times smaller
than for the static IPW estimator.

Figure C.2 also shows that the bias of the static IPW estimator increases with the vari-
ance of the treatment probability across units (larger βs), while the dynamic approach is
unbiased for all values of βs. From Figure C.3, it can also be seen that the bias of the
static approach is increasing in the correlation between the unobserved characteristics
in the exit and long-outcome equations, βu. Again, the bias of our dynamic approach is
virtually zero.

Finally, Table C.I presents the bias, variance, and size of our dynamic IPW estimator.
The simulation results are for sample sizes of 1000 and 4000. We vary the parameters of
the DGP in a similar way for Models A–D, but we only report simulation results for the
baseline case and one additional case for each model. First, as expected, based on the
results in Figures C.1–C.4, the bias is small in all cases. Size is for a test with nominal
size of 5%, so that the IPW estimator roughly has correct size (columns 3 and 6). The
tables also show that standard error decreases by roughly 50% when the sample size is

FIGURE C.4.—Simulated bias for the dynamic IPW estimator and a static IPW estimator. Model D: treat-
ment effect on the long-run outcome. Note: δ is the treatment effect. The data generating processes are de-
scribed in the text. Bias for aggregated effect of treatment over the first 12 months. Dynamic IPW is the
estimator introduced in this paper. Static IPW is a standard static IPW estimator with normalized weights.
Results are based on 2000 replications.
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increased by a factor of four from 1000 to 4000, suggesting that the estimator is
√
N-

convergent.

APPENDIX D: SAMPLE STATISTICS

TABLE D.I

SELECTED SAMPLE STATISTICS.

Non-treated (averages) Treated (averages)

# observations 735,547 57,033
Unemployment duration in months 8.7 25.6

Outcomes
Earnings in unemployment entry year 69,354 55,817
Earnings +1 years 79,885 45,887
Earnings +2 years 101,123 78,256
Earnings +3 years 119,707 102,533
Earnings +4 years 133,284 117,453
Earnings +5 years 142,351 127,252
Earnings +6 years 147,865 132,906
Earnings +7 years 152,406 136,648
Earnings +8 years 158,094 141,483
Earnings +9 years 165,504 147,997

Background characteristics
Male (%) 47.4 47.5
Age at the start of the spell

25–34 57.8 50.3
35–44 26.4 30.8
45–54 15.8 18.9

Married (%) 36.5 41.2
Education (%)

Less than high school 21.8 20.4
High school education 51.8 57.8
University education 26.4 21.8

Child in ages 0–3 (%) 25.6 30.5
Child in ages 4–6 (%) 17.7 19.4
Child in ages 7–15 (%) 24.7 27.8
UI eligible (%) 78.0 80.7
Only search in local area (%) 16.6 19.3
Preprogram earnings and unemployment

Days unemployed year −1 58.0 64.7
Days unemployed year −2 81.1 96.7
Earnings year −1 72,095 72,121
Earnings year −2 74,202 71,798
Earnings year −3 77,121 74,655

Year of inflow (%; residual category is 1995)
1996 24.9 21.7
1997 24.6 20.3
1998 26.0 24.9

(Continues)
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TABLE D.I

Continued.

Non-treated (averages) Treated (averages)

Area of residence (%; residual category is “other”)
Stockholm MSA 21.1 17.2
Gothenburg MSA 16.4 13.9
Skane MSA 13.3 13.3
North 14.2 15.1
South 11.8 13.4

Note: Covariates recorded at the start of the unemployment spell. Earnings are in SEK.
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