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S.1. THE FAILURE OF THE STANDARD IMPLEMENTABILITY ARGUMENT

WHEN THE AGENT’S PREFERENCES have the quasilinear form f (y�p� t) = h(y� t) − p,
a standard argument establishes the implementability of increasing allocations without
resort to the converse envelope theorem. I first outline the argument, then show how it
fails absent quasilinearity, necessitating my alternative approach based on the converse
envelope theorem.

Fix an increasing allocation Y : [0�1] → Y . Choose a P so that (Y�P) satisfies the en-
velope formula.1 We then have for any r� t ∈ [0�1] that

f
(
Y (t)�P(t)� t

) − f
(
Y (r)�P(r)� t

)
= [

VY�P (t) − VY�P (r)
] − [

f
(
Y (r)�P(r)� t

) − f
(
Y (r)�P(r)� r

)]
=

∫ t

r

[
f3

(
Y (s)�P(s)� s

) − f3

(
Y (r)�P(r)� s

)]
ds

by the envelope formula and Lebesgue’s fundamental theorem of calculus.
For quasilinear preferences, f3(y�p� s) does not vary with p, and f is single-crossing iff

y �→ f3(y�0� s) is increasing for every s ∈ [0�1].2 Since Y is also increasing, this implies
that the above integrand is nonnegative, which (since r� t ∈ [0�1] were arbitrary) shows
that (Y�P) is incentive-compatible.

These properties of quasilinearity are very special, however. In general, single-crossing
has nothing directly to say about the type derivative f3, and so cannot be used to sign the
integrand. The standard argument thus fails.

The argument may of course be salvaged by replacing single-crossing with the brute as-
sumption that the integrand is nonnegative. But this assumption lacks a choice interpreta-
tion, being a restriction on the type derivative f3 of the utility representation f . A theorem
with such a hypothesis would have no economic meaning. (By contrast, single-crossing has
a straightforward choice interpretation, described in the text.)

S.2. SOME REGULAR OUTCOME SPACES (§4.2)

PROPOSITION S.1: The following partially ordered sets are regular:
(a) Rn equipped with the usual (product) order: (y1� � � � � yn) � (y ′

1� � � � � y
′
n) iff yi ≤ y ′

i for
every i ∈{1� � � � � n}.

(b) The space �1 of summable sequences equipped with the product order: (yi)i∈N � (y ′
i)i∈N

iff yi ≤ y ′
i for every i ∈ N.

Ludvig Sinander: ludvig.sinander@economics.ox.ac.uk
1In the quasilinear case, such a P is given explicitly by P(t) := h(Y (t)� t) − ∫ t

0 h2(Y (s)� s) ds, obviating the
need to invoke the existence lemma in Appendix B.1.1.

2This is easily shown, and does not depend on exactly how “single-crossing” is formalized.
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(c) For any measure space (��F�μ), the space L1(��F�μ) of (equivalence classes of μ-
a.e. equal) μ-integrable functions � → R, equipped with the partial order � defined by
y � y ′ iff y ≤ y ′ μ-a.e.
(Special case: for any probability space, the space of finite-expectation random variables,
ordered by “a.s. smaller.”)

(d) For any finite set � and probability μ0 ∈ �(�), the space of mean-μ0 Borel probability
measures on �(�), equipped with the Blackwell informativeness order defined in §4.4.3

(e) The open intervals of (0�1) (including ∅), ordered by set inclusion ⊆.

We will use the following sufficient condition for chain-separability.

LEMMA S.1: If there is a strictly increasing function Y → R, then Y is chain-separable.

(The converse is false: there are chain-separable spaces that admit no strictly increasing
real-valued function.)

PROOF: Suppose that φ : Y → R is a strictly increasing function, and let Y ⊆ Y be
a chain; we will show that Y has a countable order-dense subset. By inspection, the re-
striction φ|Y of φ to Y is an order-embedding of Y into R; thus Y is order-isomorphic
to a subset of R (namely φ(Y )). The order-isomorphs of subsets of R are precisely those
chains that have a countable order-dense subsets (see, e.g., Theorem 24 in Birkhoff (1967,
p. 200)); thus Y has a countable order-dense subset. Q.E.D.

PROOF OF PROPOSITION S.1(a)–(c): Rn is exactly L1({1� � � � � n}�2{1�����n}� c) where c is
the counting measure; similarly, �1 is L1(N�2N� c). It therefore suffices to establish (c).

So fix a measure space (��F�μ), and let Y := L1(��F�μ) be ordered by “μ-a.e.
smaller.” Y is order-dense-in-itself since if y ≤ y ′′ μ-a.e. and y 	= y ′′ on a set of positive
μ-measure, then y ′ := (y + y ′′)/2 lives in Y and satisfies y ≤ y ′ ≤ y ′′ μ-a.e. and y 	= y ′ 	= y ′′

on a set of positive μ-measure.
For countable-chain completeness, take any countable chain Y ⊆ Y , and suppose that

it has a lower bound y ∈ Y ; we will show that Y has an infimum. (The argument for
upper bounds is symmetric.) Define y� : � → R by y�(ω) := infy∈Y y(ω) for each ω ∈ �;
it is well-defined (i.e., it maps into R, with the possible exception of a μ-null set) since
Y has a lower bound. Clearly y ′ ≤ y� ≤ y ′′ μ-a.e. for any lower bound y ′ of Y and any
y ′′ ∈ Y , so it remains only to show that y� lives in Y , meaning that it is measurable and
that its integral is finite. Measurability obtains since Y is countable (e.g., Proposition 2.7
in Folland (1999)). As for the integral, since y ≤ y� ≤ y0 μ-a.e. and y and y0 are integrable
(live in Y), we have

−∞ <

∫
�

y dμ≤
∫
�

y� dμ≤
∫
�

y0 dμ< +∞�

For chain-separability, define φ :Y → R by φ(y) := ∫
�
y dμ for each y ∈Y . φ is strictly

increasing: if y ≤ y ′ μ-a.e. and y 	= y ′ on a set of positive μ-measure, then φ(y) <φ(y ′).
Chain-separability follows by Lemma S.1. Q.E.D.

3A proof that this is a partial order (in particular, antisymmetric) may be found in Müller (1997, Theo-
rem 5.2).
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PROOF OF PROPOSITION S.1(d): Fix a finite set � and a probability μ0 ∈ �(�), and let
Y be the space of Borel probability measures with mean μ0, equipped with the Blackwell
informativeness order �. Y is order-dense-in-itself because if y� y ′′ ∈Y satisfy

∫
�(�) vdy ≤∫

�(�) vdy ′′ for every continuous and convex v : �(�) → R, with the inequality strict for
some v = v̂, then y ′ := (y + y ′′)/2 also lives in Y and satisfies

∫
�(�) vdy ≤ ∫

�(�) vdy ′ ≤∫
�(�) vdy ′′ for every continuous and convex v : �(�) → R, with both inequalities strict for
v = v̂.

For countable chain-completeness, let Y ⊆Y be a countable chain with an upper bound
in Y ; we will show that it has a supremum. (The argument for infima is analogous.) This
is trivial if Y has a maximum element, so suppose not. Then there is a strictly increas-
ing sequence (yn)n∈N in Y that has no upper bound in Y . This sequence is trivially tight
since �(�) is a compact metric space, so has a weakly convergent subsequence (ynk)k∈N

by Prokhorov’s theorem;4 call the limit y�. Then by the monotone convergence theorem
for real numbers and the definition of weak convergence, we have for every for every
continuous (hence bounded) and convex v : �(�) → R that

sup
y∈Y

∫
�(�)

vdy = lim
k→∞

∫
�(�)

vdynk =
∫
�(�)

vdy��

which is to say that y� is the supremum of Y .
For chain-separability, it suffices by Lemma S.1 to identify a strictly increasing func-

tion Y → R. Let v be any strictly convex function �(�) → R,5 and define φ : Y → R by
φ(y) := ∫

�(�) vdy . Take y < y ′ in Y ; we must show that φ(y) <φ(y ′). By a standard em-
bedding theorem (e.g., Theorem 7.A.1 in Shaked and Shanthikumar (2007)), there exists
a probability space on which there are random vectors X , X ′ with respective laws y , y ′

such that E(X ′|X) =X a.s. and X 	=X ′ with positive probability. Thus

φ
(
y ′) = E

(
v
(
X ′)) = E

(
E
[
v
(
X ′)|X])

> E
(
v
(
E
[
X ′|X])) = E

(
v(X)

) =φ(y)

by Jensen’s inequality. Q.E.D.

PROOF OF PROPOSITION S.1(e): Write Y for the open intervals of (0�1). Y is order-
dense-in-itself since if (a�b) � (a′′� b′′) then (a′� b′) := ([a+ a′′]/2� [b+ b′′]/2) is an open
interval (lives in Y) and satisfies (a�b) � (a′� b′) � (a′′� b′′).

For countable chain-completeness, we must show that every countable chain has an
infimum and supremum. So take a countable chain Y ⊆ Y , define y� := ⋃

y∈Y y , and let
y� be the interior of

⋂
y∈Y y . Both are open intervals, so live in Y . Clearly y ⊆ y� ⊆ y+ for

any y ∈ Y and any set y+ containing every member of Y , so y� is the supremum of Y .
Similarly, y� ⊆ ⋂

y′∈Y y
′ ⊆ y for any y ∈ Y , and y− ⊆ y� for any open set y− contained in

every member of Y since y� is by definition the ⊆-largest open set contained in
⋂

y∈Y y .
For chain-separability, define φ : Y → R by φ((a�b)) := b − a. It is clearly strictly in-

creasing, giving us chain-separability by Lemma S.1. Q.E.D.

S.3. PROOF OF THE APPROXIMATION LEMMA (APPENDIX B.1.2)

Let Y : [0�1] → Y be increasing. Then Y ([0�1]) is a chain. The result is trivial if
Y ([0�1]) is a singleton, so suppose not.

4For example, Theorem 5.1 in Billingsley (1999).
5For example, the L2 norm ‖·‖2, which is strictly convex on �(�) by Minkowski’s inequality.
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We will first show (steps 1–3) that Y ([0�1]) may be embedded in a chain C ⊆ Y with
infC = Y (0) and supC = Y (1) that is order-dense-in-itself, order-complete, and order-
separable. We will then argue (step 4) that this chain C is order-isomorphic and homeo-
morphic to the unit interval, allowing us to treat Y as a function [0�1] → [0�1].

Step 1: construction of C. Write � for the partial order on Y . Define Y ′ to be the set of
all outcomes y ′ ∈ Y that are �-comparable to every y ∈ Y ([0�1]) and that satisfy Y (0) �
y ′ � Y (1).

We claim that Y ′ is order-dense-in-itself. Suppose to the contrary that there are y < y ′′

in Y ′ for which no y ′ ∈ Y ′ satisfies y < y ′ < y ′′. Observe that by definition of Y ′, any x ∈
Y ([0�1]) must be comparable to both y and y ′′, so that{

x ∈ Y
(
[0�1]

) : x� y or y ′′ � x
} = Y

(
[0�1]

)
�

Since it is order-dense-in-itself, the grand space Y does contain an outcome y ′ such that
y < y ′ < y ′′. Since � is transitive (being a partial order), it follows that y ′ is comparable to
every element of{

x ∈ Y : x� y or y ′′ � x
} ⊇ {

x ∈ Y
(
[0�1]

) : x � y or y ′′ � x
} = Y

(
[0�1]

)
�

But then y ′ lies in Y ′ by definition of the latter—a contradiction.
Clearly Y (1) is an upper bound of any chain in Y ′. It follows by the Hausdorff maxi-

mality principle (which is equivalent to the Axiom of Choice) that there is a chain C ⊆ Y ′

that is maximal with respect to set inclusion. (That is, C ∪{y} fails to be a chain for every
y ∈ Y ′ \ C.)

Step 2: easy properties of C. By definition of Y ′, any maximal chain in Y ′ (in particular,
C) contains Y ([0�1]) and has infimum Y (0) and supremum Y (1).

To see that C is order-dense-in-itself, assume toward a contradiction that there are c <
c′′ for which no c′ ∈ C satisfies c < c′ < c′′, so that (since C is a chain){

c′ ∈ C : c′ � c
} ∪ {

c′ ∈ C : c′′ � c′} = C�

Because Y ′ is order-dense-in-itself, there is a y ′ ∈ Y ′ \ C with c < y ′ < c′′. It follows by
transitivity of � that y ′ is comparable to every element of{

c′ ∈ C : c′ � c
} ∪ {

c′ ∈ C : c′′ � c′} = C�

But then C ∪{y ′} is a chain in Y ′, contradicting the maximality of C.
To establish that C is order-separable, we must find a countable order-dense subset

of C. Because the grand space Y is chain-separable, it contains a countable set K that is
order-dense in C. Since C is a chain contained in{

y ∈ Y : Y (0) � y � Y (1)
}
�

we may assume without loss of generality that every k ∈K satisfies Y (0) � k � Y (1) and
is comparable to every element of C. It follows that K is contained in Y ′ (by definition
of the latter). We claim that K is contained in C. Suppose to the contrary that there is
a k ∈ K that does not lie in C; then C ∪ {k} is a chain in Y ′, which is absurd since C is
maximal.

Step 3: order-completeness of C. Since every subset of C has a lower and an upper bound
(namely Y (0) and Y (1), respectively), what must be shown is that every subset of the
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chain C has an infimum and a supremum in C. To that end, take any subset C ′ of C, neces-
sarily a chain.

We will first (step 3(a)) show that if infC ′ exists in Y , then it must lie in C. We will then
(step 3(b)) construct a countable chain C ′′′ ⊆ C ′, for which infC ′′′ exists in Y by countable-
chain completeness of Y , and show that it is also the infimum in Y of C ′. We omit the
analogous arguments for supC ′.

Step 3(a): infC ′ ∈ C if the former exists in Y . Suppose that infC ′ exists in Y . We claim
that it lies in Y ′, meaning that Y (0) � infC ′ � Y (1) and that infC ′ is comparable to every
y ∈ Y ([0�1]). The former condition is clearly satisfied. For the latter, since infC ′ is a lower
bound of C ′, transitivity of � ensures that it is comparable to every y ∈ Y ([0�1]) such that
c′ � y for some c′ ∈ C ′. To see that infC ′ is also comparable to every y ∈ Y ([0�1]) with
y < c′ for every c′ ∈ C ′, note that any such y is a lower bound of C ′. Since infC ′ is the
greatest lower bound, we must have y � infC ′, showing that infC ′ is comparable to y .

Now to show that infC ′ lies in C, decompose the chain C as

C = {
c ∈ C : c � c′ for every c′ ∈ C ′} ∪ {

c ∈ C : c′ < c for some c′ ∈ C ′}
= {

c ∈ C : c � infC ′} ∪ {
c ∈ C : infC ′ < c

}
�

Clearly infC ′ is comparable to every element of C, and we showed that it lies in Y ′. Thus
C ∪{infC ′} is a chain in Y ′, which by maximality of C requires that infC ′ ∈ C.

Step 3(b): infC ′ exists in Y . By essentially the same construction as we used to embed
Y ([0�1]) in Y ′ in step 1, C ′ may be embedded in a chain C ′′ ⊆ C that is order-dense-in-
itself such that for every c′′ ∈ C ′′, we have c′

− � c′′ � c′
+ for some c′

−� c
′
+ ∈ C ′. By order-

separability of C, C ′′ has a countable order-dense subset C ′′′, necessarily a chain. By count-
able chain-completeness of Y , infC ′′′ exists in Y . We will show that it is the greatest lower
bound of C ′.

Observe that infC ′′′ is a lower bound of C ′′ since C ′′′ is order-dense in C ′′. There can be
no greater lower bound of C ′′ since C ′′′ ⊆ C ′′. Thus infC ′′ exists in Y and equals infC ′′′.

Since infC ′′ is a lower bound of C ′′ ⊇ C ′, it is a lower bound of C ′. On the other hand,
by construction of C ′′, we may find for every c′′ ∈ C ′′ a c′ ∈ C ′ such that c′ � c′′, so there
cannot be a greater lower bound of C ′. Thus infC ′′ is the greatest lower bound of C ′ in Y .

Step 4: identification of C with [0�1]. Since C is an order-separable chain, it is order-
isomorphic to a subset S of R (see, e.g., Theorem 24 in Birkhoff (1967, p. 200)). It follows
that C with the order topology is homeomorphic to S with its order topology.

The set S is dense in an interval S ′ ⊇ S since S is order-dense-in-itself (because C is).
The interval S ′ must be closed and bounded since it contains its infimum and supremum
(because C contains Y (0) and Y (1)). Since S is order-complete (because C is), it must
coincide with its closure, so that S ′ = S . Finally, S is a proper interval since C is nei-
ther empty nor a singleton. In sum, we may identify C with a closed and bounded proper
interval of R—without loss of generality, the unit interval [0�1].

We may therefore treat Y as an increasing function [0�1] → [0�1]. With this simplifica-
tion, it is straightforward to construct a sequence (Yn)n∈N with the desired properties; we
omit the details. Q.E.D.

S.4. PREFERENCE REGULARITY IN SELLING INFORMATION (§4.4)

In this Appendix, we show that the joint continuity part of preference regularity is sat-
isfied in §4.4. We require two lemmata.
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LEMMA S.2: Let Y be the set of Borel probability distributions with mean μ0, equipped
with the Blackwell informativeness order (as in §4.4). Give Y the order topology, and let
C ⊆ Y be a chain. If a sequence (yn)n∈N in C converges to y ∈ C in the relative topology on C,
then

sup
v+�v−:�(�)→R

continuous convex
s.t. |v+−v−|≤1

∣∣∣∣
∫
�(�)

(
v+ − v−)

d(yn − y)
∣∣∣∣ → 0 as n → ∞�

COROLLARY S.1: Under the same hypotheses,

sup
v:�(�)→[−1�1]

continuous convex

∣∣∣∣
∫
�(�)

vd(yn − y)
∣∣∣∣ → 0 as n→ ∞�

PROOF OF LEMMA S.2: Define d :Y ×Y → R+ by

d
(
y� y ′) := sup

v+�v−:�(�)→R
continuous convex

s.t. |v+−v−|≤1

∣∣∣∣
∫
�(�)

(
v+ − v−)

d
(
y − y ′)∣∣∣∣�

(d is in fact a metric on Y .) Let (yn)n∈N be a sequence in C that converges to some y ∈ C
in the relative topology on C inherited from the order topology on Y ; we will show that
d(yn� y) vanishes as n → ∞.

Let Bε := {y ′ ∈ Y : d(y� y ′) < ε} denote the open d-ball of radius ε > 0 around y . Call
I ⊆ Y an open order interval iff either (1) I = {y ′ ∈ Y : y ′ < y+} for some y+ ∈ Y , or (2)
I = {y ′ ∈ Y : y− < y ′} for some y− ∈ Y , or (3) I = {y ′ ∈ Y : y− < y ′ < y+} for some y− < y+

in Y . Open order intervals are obviously open in the order topology on Y .
It suffices to show that for every ε > 0, there is an open order interval Iε ⊆ Y such that

y ∈ Iε ⊆ Bε. For then given any ε > 0, we know that yn lies in Iε ∩C ⊆ Bε for all sufficiently
large n ∈ N because (in the relative topology on C) Iε ∩ C is an open set containing y and
yn → y . And this clearly implies that d(yn� y) vanishes as n → ∞.

So fix an ε > 0; we will construct an open order interval I ⊆ Y such that y ∈ I ⊆ Bε.
There are three cases.

Case 1: y ′ < y for no y ′ ∈Y . Let y++ ∈Y be such that y < y++. Define

y+ := (1 − ε/2)y + (ε/2)y++ ∈Y and I := {
y ′ ∈Y : y ′ < y+}

�

We have y < y+, and thus y ∈ I since∫
�(�)

vd
(
y+ − y

) = ε

2

∫
�(�)

vd
(
y++ − y

)

is weakly (strictly) positive for every (some) continuous and convex v : �(�) → R by y <
y++. To establish that I ⊆ Bε, it suffices to show that d(y� y+) < ε, and this holds because

d
(
y� y+) = ε

2
sup

v+�v−:�(�)→R
continuous convex

s.t. |v+−v−|≤1

∣∣∣∣
∫
�(�)

(
v+ − v−)

d
(
y − y ′)∣∣∣∣ ≤ ε

2
< ε�
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Case 2: y < y ′ for no y ′ ∈ Y . This case is analogous to the first: choose a y−− ∈ Y such
that y−− < y , and let

y− := (1 − ε/2)y + (ε/2)y−− and I := {
y ′ ∈Y : y− < y ′}�

The same arguments as in Case 1 yield y ∈ I ⊆ Bε.
Case 3: y ′ < y < y ′′ for some y ′� y ′′ ∈ Y . Define y+ as in Case 1 and y− as in Case 2, and

let I := {y ′ ∈ Y : y− < y ′ < y+}. We have y ∈ I ⊆ Bε by the same arguments as in Cases 1
and 2. Q.E.D.

LEMMA S.3: For any continuous function c : �(�) → R and any ε > 0, there are con-
tinuous convex w+�w− : �(�) → R such that w := w+ − w− satisfies supμ∈�(�)|c(μ) −
w(μ)|< ε.

PROOF: Write W for the space of functions �(�) → R that can be written as the dif-
ference of continuous convex functions. Since the sum of convex functions is convex, W is
a vector space. It is furthermore closed under pointwise multiplication (Hartman (1959,
p. 708)), and thus an algebra. Clearly W contains the constant functions, and it separates
points in the sense that for any distinct μ�μ′ ∈ �(�) there is a w ∈W with w(μ) 	=w(μ′).
It follows by the Stone–Weierstrass theorem6 that W is dense in the space of continuous
functions �(�) → R when the latter has the sup metric. Q.E.D.

With the lemmata in hand, we can verify the continuity hypothesis.

PROPOSITION S.2: Consider the setting in §4.4. Let C ⊆ Y be a chain, and equip it with
the relative topology inherited from the order topology on Y . Then f is (jointly) continuous
on C × R × [0�1].

PROOF: Fix a chain C ⊆ Y , and equip it with the relative topology on C induced by the
order topology on Y . Define h : C × [0�1] → R by h(y� t) := ∫

�(�) V (μ� t)y(dμ), so that
f (y�p� t) = g(h(y� t)�p). Since g is jointly continuous, we need only show that h is jointly
continuous.

It suffices to prove that h(·�0) is continuous and that {h2(·� t)}t∈[0�1] is equicontinuous.7
To see why, take (y� t) and (y ′� t ′) in C × [0�1] with (wlog) t ≤ t ′, and apply Lebesgue’s
fundamental theorem of calculus to obtain

∣∣h(
y ′� t ′

) − h(y� t)
∣∣ =

∣∣∣∣h(
y ′�0

) +
∫ t′

0
h2

(
y ′� s

)
ds − h(y�0) −

∫ t

0
h2(y� s) ds

∣∣∣∣
≤ ∣∣h(

y ′�0
) − h(y�0)

∣∣ +
∫ t

0

∣∣h2

(
y ′� s

) − h2(y� s)
∣∣ds +

∫ t′

t

∣∣h2

(
y ′� s

)∣∣ds�

Given continuity of h(·�0) (equicontinuity of {h2(·� s)}s∈[0�1]), the first term (second term)
can be made arbitrarily small by taking y and y ′ sufficiently close (formally, choosing y ′ in

6See, for example, Folland (1999, Theorem 4.45).
7A detail: equicontinuity is a property of functions on a uniformisable topological space. To see that C is uni-

formisable, we need only convince ourselves that the relative topology on C inherited from the order topology
on Y is completely regular. This topology is obviously finer than the order topology on C, so it suffices to show
that the latter is completely regular. And that is (a consequence of) a standard result; see, for example, Cater
(2006).
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a neighborhood of y that is small in the sense of set inclusion). By boundedness of h2, the
third term can similarly be made small by choosing t and t ′ close.

So, take a sequence (yn)n∈N in C converging to some y ∈ C; we must show that
∣∣h(yn�0) − h(y�0)

∣∣ and sup
t∈[0�1]

∣∣h2(yn� t) − h2(y� t)
∣∣

both vanish as n → ∞. The former is easy: since V (·�0) is continuous (hence bounded)
and convex, we have

∣∣h(yn�0) − h(y�0)
∣∣ =

∣∣∣∣
∫
�(�)

V (·�0) d(yn − y)
∣∣∣∣

≤
(

sup
μ∈�(�)

∣∣V (μ�0)
∣∣) × sup

v:�(�)→[−1�1]
continuous convex

∣∣∣∣
∫
�(�)

vd(yn − y)
∣∣∣∣

for every n ∈ N, and the right-hand side vanishes as n → ∞ by Corollary S.1.
For the latter, fix an ε > 0; we seek an N ∈ N such that

∣∣h2(yn� t) − h2(y� t)
∣∣< ε for all t ∈ [0�1] and n≥ N�

For each t ∈ [0�1], since V2(·� t) is continuous, Lemma S.3 permits us to choose con-
tinuous and convex functions w+

t �w
−
t : �(�) → R such that wt := w+

t − w−
t is uniformly

ε/3-close to V2(·� t). Write K for the constant bounding V2, and observe that {wt}t∈[0�1] is
uniformly bounded by K′ :=K + ε/3. By Lemma S.2, there is an N ∈ N such that

sup
v+�v−:�(�)→R

continuous convex
s.t. |v+−v−|≤1

∣∣∣∣
∫
�(�)

(
v+ − v−)

d(yn − y)
∣∣∣∣< ε/3K′ for all n ≥N�

and thus

sup
t∈[0�1]

∣∣∣∣
∫
�(�)

wt d(yn − y)
∣∣∣∣ ≤ K′ × ε/3K′ = ε/3 for n ≥N�

Hence for every t ∈ [0�1] and n ≥N , we have

∣∣h2(yn� t) − h2(y� t)
∣∣ =

∣∣∣∣
∫
�(�)

V2(·� t) d(yn − y)
∣∣∣∣

≤
∣∣∣∣
∫
�(�)

wt d(yn − y)
∣∣∣∣ +

∣∣∣∣
∫
�(�)

[
V2(·� t) −wt

]
d(yn − y)

∣∣∣∣
≤

∣∣∣∣
∫
�(�)

wt d(yn − y)
∣∣∣∣ + 2 sup

μ∈�(�)

∣∣V2(μ� t) −wt(μ)
∣∣

≤ ε/3 + 2ε/3 = ε�

as desired. Q.E.D.
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