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THIS SUPPLEMENTAL MATERIAL consists of Appendices C, D, E, F, and G to the main
text.

APPENDIX C: PROOFS FOR THE PRELIMINARY RESULTS
PROOF OF LEMMA Al: The proof proceeds by recursion. Denote Il f; € Fi() the
mixture approximation of f; from Lemma D1. For d, = 1, Lemma D1 implies ||f; —
] P f1||Tv O(l"g[k(")]r/b) and || fi — g fillo = O("’g L{0) i ). Suppose the result holds

k(n)" k(n)"
for fi x -+« x fy,.Let f=fi x - x fy, X fu,41;let

di = f1 X X fde X fde+1 - Hk(n)fl X X Hk(n)fde X Hk(n)fdg-Ha
dt:fl X+ X fde _Hk(n)fl X+ X Hk(n)fcg-

The difference can be rewritten recursively:

diyi=difa1 + i fr ¥ - X Wiy fa, (Faor1 — Wiy fa41)-

Since [ fy,11 = [Ty fi x -+ x I fa, = 1, the total variation distance is [|d;y1 |ty <
Ity + | faor1 = iny faesa Iy = O(k’g[,f((n")), r/b) And the supremum distance is

ldis1lloo < Ndillsoll faestlloo + Mgy f1 X - -+ X Wiy fa ool faesr — gy fa+11l oo
= ”dt”oo(”fdg-HHOO +Ifi x - % fde||oo||fde+1 - Hk(n)fdg+1||oo)

_o 10g[k(n)]r/b
k(n) ' Q.E.D.
PROOF OF LEMMA A2: To reduce notation, the ¢ and s subscripts will be dropped in
the following. The proof is similar for both e; and e, so the proof is only given for e;.
First, the densities of e; and e, are derived; the first two results follow. Noting that the
draws are defined using quantile functions, inverting the formula yields v, = . 2 T This

is a proper CDF on (—o0, 0] since e; — 1++gl is increasing and has limits 0 at —oo and
—e
1
1+&

1
1 at 0. Its derivative is the density function: (2 + §1)61T])2. It is continuous on (—oo, 0]

1+£
3+§1

and has an asymptote at —oo: (2 + 51) x et — (24 &) as e; —> —oo. Since

— 2'*'51 )2
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& elé, E] with 0 < £, then Eley|* < C < oo for some finite C > 0. Similar results hold for
+§2

e, which has density (2 + §2) 2+§2)2 on [0, +00).

Second, & — e(&)) is shown to be L?-smooth. Let |&, — E1| < 0; using the mean value
theorem, for each v, there exists an intermediate value &; € [£, &,] such that

1 1
1 o) 1 g 1 1 1
A (R
41 41 2 + fl 41 41
The first term is bounded by 1/(2 + £), the second is bounded by log(;- + 1)(;- + 1)2%,
and the last term is bounded above, in absolute value, by 6.

Finally, in order to conclude the proof, the integral fol log(ﬁ + 1)(& + 1)ﬁ dv, needs

2
to be finite. By a change of variables, it can be rewritten as [, log(v)r*< ? dv. Since

v + i — 2 < —1, the integral is always finite and thus

[]E( sup e}, (&1) — ,1(51)| _2+§\// IOg(V)V2+§ 2 dv. QED.

[§1—&11<8

PROOF OF LEMMA A3: Since By, is contained in a ball of radius max(ﬁk(n), T, 16]l0)

in R3*+21+4s ynder || - ||, the covering number for By, can be computed under the || - ||,
norm using a result from Kolmogorov and Tikhomirov (1959). As a result, the covering

number N (x, Big, Il - ) satisties N (x, Begnys |- llm) < 2(3[k (1) + 2] + d) (kD)
1)3ktn+21+ds The rest follows from Lemmas 2 and D5. Q.E.D.

PROOF OF LEMMA A4: First, using the assumption that B is a bounded linear operator,

O, (I ) Bo)
<M / [E(fr(7) — (7, Ty Bo)) | 7 (7) d

<302 ( [1EG @ - i ) () do

+/|E€¢i(7, Bo) — s (7, Hk(n)ﬁo))|277(7) dT),

Each term can be bounded above individually. Rewrite the first term in terms of distribu-

tion: [E(da (1) — (7, B = | X0, [ €7 O [f (v, %) — fu(ye, X)1dy, dx,|, where f, is
the distribution of (y,(Bo), x,) and f; the stationary distribution of (y,(8y), x,;). Using the
geometric ergodicity assumption, for all 7,

'O [ft* (e, X)) — fo(ys Xt)] dy, dx,

< %Z / e %) — £y %0)| dy, dx,
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[y = 2 Zp

for some p € (0, 1) and C, > 0. This yields a first bound:

p)n

[ 1EG() = 8305 ) () dr < (14C5)212 o)

The mixture norm || - ||,, is not needed here to bound the second term since it involves
population CFs. Some changes to the proof of Lemma 2 allows to find bounds in terms of
|l - |5 and || - ||rv for which Lemma A1 gives the approximation rates.

To bound the second term, rewrite the simulated data as

y,s = gobs,t(xt:l’ B7 ej:l), Mf = glatent,t(B, ei:l)’

with B= (6, f), e ~ f, and x,; = (x;,...,x1), €, = (el,...,e}). Under Assumption 2
or 2/, using the same sequence of shocks (e}): E(|lgobs,(Xc:15 Bos €.1) — Govs, (Xe:1> Iy Bos

e < 6||Hk(,,) fo — foll- This is similar to the proof of Lemma 2; first rewrite the differ-
ence as

E (1l gobs (obs.—1 (Xe=1:1, Bos €)_1.1) > X1» Bos Gratent (&ratent.i~1 (Bo» €}_11)» Bos €}))
— 8ovs(8ovs.r—1 (Xi—1:1, Micny Bo, €)_1.1), Xe5 T o,
Satent (Gatent,i—1 (k) Bo» €_1.1) > Iy Bos €511
Using Assumptions 2-2', the following recursive relationship holds:
E(|| gobs (8obs.i—1 (Xi=1:1> Bos €_11) > X1 Bos &ratent (Gatent.i<1 (Bos €]_1.1)» Bo» €}))
— 8obs (8abs,i—1 (Xi—1:1» iy Bo» €_1.1) 5 X1, Ty Bos
Suatent (1atent,i—1 (T Bos €]_1.1)> Ty Bo» €7)) ||)
< [E( || gobs (8obs. 1 (Xe—1:1> Bos €_11)» X1> Bos Giatent (Suatent,i—1(Bo> €_1.1)> Bo» €}))
— Gobs(Gobs,i—1 (Xe—1:1, Iy Bo, €_1.1)» X1 iy Bos
Slatent (glatent,t—l (Hk(n)B(J’ e‘:_1;1)’ i Bos e_;)) ||2)]1/2
< Co[E(]| Gobso-1 (11, Bos €_11) = G-t (X5 - - %1, ey Bor €_y) [ )]
+GlIBo — ey Bollp + C; [E(”glatent,t(lgﬂa €,) — Suatent,t (L Bos €)1) Hz)]y/z‘
The last term also has a recursive structure:
[E(“glatem,t(ﬁo’ €.1) = Suatent ([Lkn Bos €1, ”2)]1/2
< C[E(| gatent,i1(Bos €_1.1) — Guatent.r—1 (Migny Bo» €)_11) ||2)]1/2 + Csl1Bo — Mgy Boll -

Together, these inequalities imply

IE(“gobs(gobs,t—l (xtfla cees X1, BO’ e}l];]); Xty 303 glatent(glatent,t—l(ﬁ()a e;q;])a BO, 6?))
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- gobs(gobs,t—l(xt—b ey X1, Wiy Bos €11 ), X0, Ty Bo,
8latent (glatent,t—l(Hk(n)BUv ef_l;l)’ Hk(n).BO’ e;”)

_7

1 /—
< — <C2||30—Hk(n)/30||§+cs

= n&—k@&w)

(1- C4)
Recall that ||7]|/7(7) is bounded above and 7 (7)"/* is integrable, so that

/|E(ei7’(Yt(307"t:1)) _ eiT’(y’(Hk('1>B°’x’:1))) |27T(T) dr

-7

_ C 2
< (C2||.30—Hk(n)30||é+cs (1_%) 1Bo — Hk(n)BO”ZS)
Sup[||7'||oo,/7'r(7')]/77(7)1/4617

X

1-C,

To conclude the proof, the difference due to e needs to be bounded. In order to do so,
it suffices to bound the following integral:

t
[ eI 0VOV 0 X B )3 (1‘[ file 1‘[ Mg fole; )f (xe1) e 1.
j=1

A direct bound on this integral yields a term of order of ¢|| f, — I, follrv wWhich increases
with ¢, which is too fast to generate useful rates. Rather than using a direct bound, con-
sider Assumptions 2-2'. The time-series y; can be approximated by another time-series
term which only depends on a fixed and finite (e!, ..., e} ) for a given integer m > 1.
Making m grow with #n at an appropriate rate allows to balance the bias m|| f, — i) foll v
(computed from a direct bound) and the approximation due to m < ¢.

The m-approximation rate of y, is now derived. Let B= (6, f) € B, e}, ..., e} ~ f, and
yts such that j}tsfm = 07 ﬁf—m = 0 and then 5); = gobs(?f—p Xj Br ﬁj ’ ﬁj = glatent(a;:_la B, e;)
for t — m + 1 < j < t. Each observation ¢ is approximated by its own time-series. For
observation ¢ — m, by construction, E(|ly;_,, — ¥_,.1) = E(ly:_,.I) < [E(lly:_,,II*)]"* and
E(lu;_, — @, 1) =E(lu;_,,I) < [E(lu;_,|*)]"> Then, forany t > i > t —m

E(u; — &) < ClE(Juy, — 2, )]",
E(ly; = 521) < CCIE(u, — i, )] + CE(, - 54191

The previous two results and a recursion argument lead to the following inequalities:

E(|u; — ]) < CrE(Jw )], (C1)
E(ly; = 511) = CC B )] + CTEy, )] (C2)

For B = By, Il Bo since the expectations are finite and bounded by assumption,
E(ly, —y1) < Emax(fl,64)7m with 0 < max(a,a;) <1 and some C > 0. For the
first observations ¢ < m, the data are unchanged, y; = ¥, so that the bound still holds.
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The integral can be split and bounded:

t
‘/e”/(y’(yﬂ’”l%"f:l’Bﬂ’ele)v’“)(nfo l_IHk(n)fO ) (X1) de} dx,

j=1

< [E([#3 (7, Bo) — 3 (7, Ty Bo) ] — [#5(7, Bo) — #5(7, Ty Bo)]) |

+/< ﬁ fol€)) = ﬁ Hk(")fo(e;)> e

j=t—m+1 j=t—m+1
<4Cmax(Cy, Cy)"™ + 2m|| gy fo = follrv-

The last inequality is due to the cosine and sine functions being uniformly Lipschitz con-
tinuous and equations (C.1)—~(C.2). Recall that | TIi, fo — follry = O(2E ZEZ;EM) To balance

the two terms, pick m = — log[k(n)] > 0. Then, max(C;, C4)"" = k(n)™" and

vlog[max(a ,C4)]

log[k ()] )

Cmax(C,, Cy)" +2m|[Uy i fo — follv = 0( k(ny

Combining all the bounds above yields

log[k(n)]"""* log[k(m)]'""" 1 D
k(n)Zr ’ k(n)zyzr ’ n2 ’

O, (i Bo) =0 (max|:

2 4y2r/b
where || - [ls = | [l or || - v so that |8y — i Bollly = O(%) The term due

. . . 4r/b+2 4 r/b . .
to the non-stationarity is of order 1/n% = o(max| €@ loglk(n]™ so it can be ig-
y k(n)2r k(n)zyzr g

nored. This concludes the proof. Q.E.D.

PROOF OF LEMMA A5: Using the inequality 1/2|a|* < |a — b|* + |b|* for any a, b € R:

0=172 [ ‘BdE(”A”i(ZE’“")B D14, 1y (e
< / 'B%;’Bo))[ﬁn—ﬂo] (e dr
+ /'Bw[én — Bo] - dE(m(z;;[k(n)ﬂo)) [, — Ty Bol 277(7) dr
< [|s° 2l PP 5, [ oy i
+f ’BdE ‘”"(:;;“”)B Dt pul| m(r)ds
+ /‘B—dE(&idg’ Fu)) (B, — Bol - B—dE(JjZ(;’ Fo) (81 — Mgy Bo] 277(7) dr.
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By assumption, the term on the left is O, (82); by condition (ii), the middle term is O, (8?),
and condition (i) implies that the term on the right is also O, (8?2). It follows that

2

(B — Mo Bol| 7(7)d7=0,(82). (C3)

/'BdE(@f,(Ta 1) B0))
dp

Now, note that both ,é,, and Iy, By belong to the finite-dimensional space By, parame-

terized by (0, w, u, o). To save space, ,én will be represented by ¢, = (9n, @y, fln, 0,) and
Iy Bo Y @(ny = (Ok(ny> @k(ny> Mi(ny» Tk(ny)- Using this notation, equation (C.3) becomes

~ i
/“Bd]E(an(:; 1) B0)) (8, — i Bol| 7(7)dr
B
dE S (7, Ty B 2
/‘ d(e(; ,:,((),)0))[‘»0 — @rw]| () dT

= trace([g&,, — Qx|

dE(J3 (7, Wiy o)) dE(H5(7, i) Bo))
X[B d(e, w, p, o) B d0, w, w, o)

> M0 — @xen I = A, 180 — gy Bol,-

() dr[, - gok(n)])

It follows that 0 < A || ,é,, — Iy Bo 12, < 0,(83) so that the rate of convergence in mixture
norm is || B, — My Bollm = O, (8,A,7%). Q.E.D.

PROOF OF LEMMA A6: Using the rate assumptions and Lemma D7 implies the desired
result. O.E.D.

APPENDIX D: INTERMEDIATE RESULTS

LEMMA D1—KTruijer, Rousseau, and van der Vaart (2010): Suppose that f is a continu-
ous univariate density satisfying: (i) Smoothness: f is r-times continuously differentiable with
bounded rth derivative. (ii) Tails: f has exponential tails, that is, there exist ¢, My, ,a,b > 0
such that fi(e) <M fle‘”|e|b,‘v’|e| > e. (iii) Monotonicity in the tails: f is strictly positive
and there exists e < e such that fs is weakly decreasing on (—oo, e] and weakly increas-
ing on [e,00). Let F;. be the sieve space consisting of Gaussian mixtures with the follow-
ing restrictions. (iv) Bandwidth: o; > o, = O(M) (v) Location parameter bounds:
wj € [— @, i) (vi) Growth rate of bounds: . = O(log[k]"/?). Then there exists a mixture

log[k(n)]>/b ),

sieve approximation of f, Il f € Fy, such that, as k — oo, ||f — I, fll= = O( oy

where || - || = Il - llrv or || - ll

LEMMA D2—Chen and Pouzo (2012): Let 8, be such that Q,,(B,)) < infgess,,,, +Op (1),
where (M,)n-1 is a positive real-valued sequence such that m, = o(1). Let O, : B —
[0, +-00) be a sequence of non-random measurable functions and let the following condi-
tions hold: a. (i) 0 < Q,(By) = o(1); (ii) there is a positive function gy(n, k, &) such that
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infyen,18-py1 552 Qn(B) > go(n, k, &) > 0 foreach n, k > 1, and liminf, ., go(n, k(n), ) >
0 for all ¢ > 0.b. (i) B is an infinite-dimensional, possibly non-compact subset of a Banach
space (B, ||ll); (i) Bi S Bis1 € B for all k > 1, and there is a sequence {Il;(,)By € Biy}
such that Q, (I Bo) = o(1). c. Qn(,B) is jointly measurable in the data (y,, X,)=1 and the
parameter h € By . d. (i) Qn(Hk(n)Bo) < Kan(Hk(n)Bo) + O, (cy,,) for some ¢, = o(1)
and a finite constant K, > 0; (if) Qn(B) > KQ,(B) — O,:(c,) uniformly over h € By
for some c, = o(1) and a finite constant K > 0; (iii) max(co,, Cn, Qn(Hk(n)Bo), M) =
o(go(n, k(n), €)) forall & > 0. Then, for all £ > 0, P*(|| B, — Bolls > &) = 0as n — oco.

LEMMA D3: Let (Y;).»1 be mean zero, a-mixing with rate a(m) such that ), _, a(m)"'? <
oo forsome p > 1,and |Y,| < 1forall t > 1. Then we have E(n|Y,|) <1+24 Y, _ a(m)"".

LEMMA D4: Let (X;);»0 be a sequence of real-valued, centered random variables and
(am)m=0 be the sequence of strong mixing coefficients. Suppose that X, is uniformly bounded
and there exist A, C > 0 such that a(m) < Aexp(—Cm); then there exists K > 0 that de-
pends only on the mixing coefficients such that, for any p > 2,

LEMMA DS5: Suppose that (X,(B))wo is a real-valued, mean zero random process for
any B € B. Suppose that it is a-mixing with exponential decay: a(m) < Aexp(—Cm) for
A, C > 0 and bounded |X,(B)| < 1. Let X ={X : B— C, B8 — X,(B)} and suppose that
fol log’ Ny(x, X, || - 1) dx < oo; then fol x?21 Slog Ny (x, X, [ - 1) +log” Ny(x, X, |- ) <
oo forall 9 € (0,1) and

sup X,

t>0

1 no0 172
E(IvVrX.1)" fK[ﬁ (/ min(e™" (), n) ZQtT(u)> T

where Q, is the quantile function of X,, min(a (1), n) =Y\, Lu<q,-

E (sup| V[ 35(8) ~ E(5(8)]F)

BeB

1
< K(/ x’s/z‘l\/logN[](x, X, 0 11) +log® Ny (x, X, 11 - 1) dx).

0

ASSUMPTION 2'—Data generating process—L?-smoothness: y’ is simulated according
to the dynamic model (1)—(2) where govs and giuen: Satisfy the following L*-smoothness con-
ditions for some y € (0, 1] and any & € (0, 1):
y(i)'. Forsome 0 < C, <1, [E(Supnﬁl—ﬁzugfé UgobS(ytS(Bl)a Xe, B, 47 (B1)) — Zobs (V7 (B2)s
X0, B, wi(BO)) Iy (B1), v (B2)]? = Cilly; (B1) — 7 (B2)-

y(it)'. Forsome( < C, < oo, []_E(Supuﬁl—ﬁzﬂggé [18obs (¥ (B1)s X1, B, 4y (B1)) — Zobs (7 (B1),
X, By 6(B)) )] < Cod.

y(iii)'. For some 0 < C; < oo, []E(SupHBl—BZHBS5 ||_gobs(yf(ﬁ1), Xe, B, ul(B1)) —
Zons (V7 (B1)s X15 B, wy (B)) 7[5 (B1), w3 (B2))]'? < Gsllui(Br) — wi(Ba) 1™

u(i). For some 0 < C; < 1, [I_E(SuPnBﬁBzussB | 8latent (1] _1(B1), B, €5(B1)) —
Guaent (U;_1(B2), B, ef(Bl))”Z)]l/z < Culluy_(B1) — u;_1(B2)-|
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u(iiy. For some 0 < Cs < oo, [IET(_sup“Bth”BS,S | Slatent (1] _1(B1), B1,€(B1)) —
glatent(uf,l(ﬁl)a BZ; ef{B[))HZ)]l/Z 5 C567-
u(iii)’. For some 0 < Cs < oo, [IEE(sup”BﬁﬁZ”BS3 | Satent (1] _1(B1), B1,€(B1)) —

Gaent (U_1(B1), B1, € (B))IPleS(B1), €6(B))]? < Cslles (Br) — e (Ba)
Jor 1By — Balls = 101 — 021l + | f1 = follow OF 160 — Oa]l + 1 f1 — fall 7w

LEMMA D6: Suppose that (y;, X,) 1 is geometrically ergodic for B = By and the moments
are bounded | (7, Bo)| < M for all T; then Q,(By) = O(1/n%).

LEMMA D7—Stochastic equicontinuity: Let M, = loglog(n + 1) and 8,,, = 8,/./A,.

Let AS(7, B) = §5(r, B) — E({5(r, B)). Suppose that the assumptions of Lemma A5 and
the conditions for Theorem 3 hold; then, for any n > 0, uniformly over B € By,

2
(M) T

Imn7
Ji

[E( sup |AN(R B) — Al Tk Bo)fw(f)ﬁ)]“ <C

HB—Hk(n) Bollm=Mn&mn

where 1, , is defined as

! 2 2
Im,n = / (xﬂ/z\/logN([XMnamn] & 5 Bk(n)’ ” : ”m) + logzN([anSmn] i 5 Bk(n)a ” : ”m)) dx~
0
For the mixture sieve, the integral is a O(k(n)log[k(n)] + k(n)|log(M,6.,)|) so that
) 12
[E(/ sup ‘Ai(r, B) — Ai(r, Hk(,,),Bo)| (1) d7>i|

||B_“k(n)BOHmSMn5mn
2 k(n)
n mn:” ) \/ﬁ .

= O<(Mn6mn) 7 max(lOg[k(”)]z’

2
Now suppose that (M,8,,,)T max(log[k(n)], |10g[M,8,.,]]*)k(n)> = o(1). The first
stochastic equicontinuity result is

[E( / sup |AS(r, B) — A3(r, Ty Bo) () dr):|1/2 — o(1//7).

”B_Hk(n)BO [lm <Mn&mn

Also, suppose that B — [E|{(7, Bo) — (7, B)|>m(7) dr is continuous at B = By under
the norm || - ||z, uniformly in t > 1. Then, the second stochastic equicontinuity result is

([ s \Ai(ﬂﬁ)—A‘Z(T,Bo)lzﬂ(f)dTﬂl/Z:0(1/«/5)-

”B*Hk(n)ﬁo llm <Mn8mn

LEMMA DS8: Suppose that || ﬁn Bollweak = O,(8,). Under the assumptions of Theorem 3,

(@) [ p(r, up) (BEWS(r, ) — 93(r, By)) — BEBCEN[Z g lym(r)dr = o(l/
vn).
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(0) [ (r, wp) (BEWS(7, B,) — d3(7, Bo)) = Bl (7, B,) — ¥ (r, B)m(r)dr =
o(1/4/n). A

(© STbp(r, wp) (Bliba(7) = d5(r, B]) + (7, ) (Bl (7) — §3(7, B)D]m(7) dr =
o(1/4/n).

APPENDIX E: PROOFS FOR THE INTERMEDIATE RESULTS

PROOF OF LEMMA D3: The proof follows from Davydov’s (1968) inequality: let p, g,
r>0,1/p+1/q+1/r =1, for any random variables X, Y: |cov(X, Y)| < 12a(o(X),
a(Y)VPE(|X|9)YE(|Y|)", where a(o(X), o(Y)) is the mixing coefficient between X
and Y. As a result,

E(n|Y,[?) ZE 1 X,,I%) ZCOV(Y,, Y,)<142x— ZCOV(Y,, Y,)

t;ét’ t>t

i ,
< 1+24 x ; Za((r(Y,), O-(Yt’))l/p(]E|Yt|q)1/q(E|Yt/|r)l/

t>t'

Pa(m)? <1424 a(m)''”.

m=1

=1+242n:”_
m=1

PROOF OF LEMMA D4: Theorem 6.3 of Rio (2000) implies the following inequality:

E(
t=1

where a, = p4”*'(p +1)?? and b, = 547! (p + 1)*~!, Q =sup,_, Q,, and

s2=3Y" 3" _ lcov(X,, X/)|. Since X, is uniformly bounded, using the results from
Appendix C in Rio (2000): fo] min(a! (w), n)?' QP (u) du < 2[Yi_(k + 1)7 ey ] x
| sup,., X:ll. Because the strong-mixing coefficients are exponentially decreasing, it im-
plies

Q.E.D.

’ 1
: ) <a,s’ —l—nbp/ min(a~" (), n)p_lQ"(u) du,
0

n—1
Y (k+1)""a, < Aexp(C) Y kP~ exp(—Ck)
k=0 k>1

1
(1- exp(—C))’H.

And Corollary 1.1 of Rio (2000) yields s* < 4f01 min(a'(u),n) Y., Oi(u)du. Alto-
gether,

< Aexp(C)(p—1)""!

1 n 5 1/2
E(vnX,”)"" <Ki(p+1)" ( /0 min (e (u), n) Z QT(”)>

+ K,n'/P~ 1/2(p 1)(p 1)/p(p_|_1)(p b/p

sup X, H

t>0
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sup X,

t>0

1 n QZ(M) 172
<K|(.p / min(e" (1), n) Z o) e p? ,
0 —_ n 00
with K, > 27 pl/r4r+D/r | K, > (p/lp — 1])1/p4(p+1)/p21/pA GXP(C)W~ Note
that since p > 2, 2V/7 < /2, p'/? < 1,4»+)/» < 16, etc. The constants K, K, do not de-
pend on p. K only depends on the constants A and C. Q.E.D.

PROOF OF LEMMA D5: Let Z,(B) = - _i_, X,(B); by Lemma D4,

/2 —1/24+1/p

+ pzn

1Z.8)], =E(|Z.(®)|")" < K(ﬁ% SIx.(8)] sup X,(8) HN).

The term 1 % | || X,(B)|I” comes from Holder’s inequality; for any 9 € (0, 1),

1/2

‘/0 min(a~" (u),n) Y —Qt,gu)

t=1

1-9
2

= (/01 min(a (u), n)]/(“")) T (/01

1-9

%th(”)z

2

1/ﬂ>‘29
< (ﬁ > +,-)1/<1—«9>a(,~)) %Z( / |Qt<u)|”du)z

j=1

1-9
RSP MRS

- (m >a +f)”“‘ﬁ)“(”) 210",
t=1

The last inequality follows from assuming |Q,| < 1. To simplify notation, use + > Q|7
rather than 1 3™ |Q,[I}*. Also, since a(j) has exponential decay, (Y
a(j) < oo, so the first term is a constant which only depends on («(j)); and 9. To derive
the inequality, construct bracketing pairs (B;‘, A;‘ i<j<nee With N (k) = Np(275, X, | - 1)
the minimal number of brackets needed to cover X. By definition of N(k), there exist
and k > 1, there exists an index j such that | X,(8) — X ,(,85?) < Aﬁ - Note that brackets
constructed the usual way need not be a-mixing; a construction which preserves the de-
pendence properties is given at the end of the proof.

Assume that, without loss of generality, |Af| < 1 for all j, k. Let (m:(B), Ac(B)) be a
bracketing pair for 8 € B. Let g, k, g be positive integers such that g, < k < g and let
T (B) = i o Tyy1 0 - - - 0 my(B). Using the following identity:

[=(suplz@)]

= [E (sup
BeB

Z.(B) — Z.(T,(B))
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)

2
q

+ > [Zi(T(B)) = Zu(Teer(B))] + Zu(T,(B))

k=q(]+1

and the triangle inequality, decompose the identity into three groups:

[2(pleer)]” = [<lauplz ) - 2@

o3 [E(suplz(1e) - zu(T ) )]

k=go+1 heB
12 g
+ [E(%UQZ,[(T%(,B))F)] = E11+1 + Z Ei+ Etlo'
€ k=qo+1

The following inequality is due to Pisier (1983): for any Xj, ..., Xy random variables,
[E(max,-,-y | X,|P)]/? < NVP max,-,.y[E(|X;|?)]"?. Now {T:(B), B € B} has at most
N (k) elements by construction. Some terms can be simplified: E; = E(maXeer, 5 | Z.(8) —
Z,(Ti_1(8))|»)"/* for go+1 < k < q. For p > 2 using both Holder and Pisier’s inequalities:

E, < []E( sup |Zn(B) — Zn(kal(B))V)]l/p

BeTy(B)

= N max [E(]Z,(8) ~ Z,(Tir(2))] )] "

Ty (B)

By the definition of A%, E, < N(k)"? max,-;-y[E(|A%(g)|?)]"/7. This is also valid for
E,.,. Using Rio’s inequality for a-mixing dependent processes,

E, <KN(k)]/p(\/_ n}*}’é)”Ak(g)sz—i-p V2P E}%’;“Ak(g)” )

< KN(k)"/?(/p2- " + pPn='/>+1/r)
< KN (k)72 (p2t 2 4 pA[r 2] ),
For p > 2 and 27//n > 1, the inequality becomes
E, < KN (k)72 (/p2" "7 4 pP[n-220]22),
Choosing p = k +log N (k) implies
N (k)" <exp(1), /p < Vk +/logN (k), p* <4[k* +1og’ N(k)], 2%/? <4.

Applying these bounds to the previous inequality,

E, < 16K exp(1)27* ([JE + J1og N (k) |25 + [k* + log(N(k))z]%)

< %16K exp(1)2 7 ([Vk +/log N (k) |25 + k> + log(N (k))").
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Note that Y, (Vk +k2)27% <2¥", | k?27% = 12. Hence,
q+1 g+1

Z E, < 2716K exp(1)

k=qp+1

1
x (12+/ [xﬂ/z*l\/logNﬂ(x,X, I+ 1) + log® Ny (x, X, || - ||)]dx).
0

Pick the smallest integer g such that ¢ > log(n)/(2log2) — 1 so that 4,/n > 29 > /n/2
and 29/./n € [1/2,4]. Only E,, remains to be bounded; using Rio’s inequality again,

[ (supl (T BNF)] = KN (@) (P, max [X:@)]" + P> 5B

heTqy (B)

For any & > 0, pick p = max(2 + &, gy + log N(qo)); then, N(go)"/? < exp(1), nV/*/7 <
n~1/2+1/@+%) < 1. Then conclude that

12
[E(ZugﬂZn(Tqu(ﬁ)) |2)] <4exp(1)K(v/qo + /10g N (qo) + g5 + 1og N (q0)?)
1
<K'logN(qy)* SK// log* Ny (x, X, 1| - 1) dx
0

Hence, there exists a constant K > O which only depends on («(#1)),,-o such that

[E (sup|z (3)|) <1</ x?271 Nlog Ny(x, X, I - 1) + log> Ny (x, X, I - 1) dx

Let JC, = Kfol[xﬁ/zfl\/logN[](x, X, 1) + log’Ny(x, X,|| - |)]dx; then
E(supges |Za(B)?) < C, forall n > 1.

Bracketing. Because of the dynamics, the dependence of X, can vary with 8, which
is not the case in Ben Hariz (2005) or Andrews and Pollard (1994). The following de-
tails the construction of the brackets (A ) in the current setting Suppose that 8 —
X,(B) is L?-smooth. Let B’f,...,BN(k) be such that B, C U B[S/C (Bk) then, for
J = N(k) and some Q > 2, [E(Supuﬁ—ﬁjru,gg[ﬁ/cp |X.(B) — X, (:Bk)lg)]l/Q <. Let A} tj =
SUD) g gt <[/ T | X, (B) — X,(,Bj.‘)|; then [E(Af’; 1'? < [E(Agj‘)]l/Q by Holder’s inequal-
ity, which is smaller than & by construction. [E(JAf|*)]'* < 8 = 27 by construction.

However, there is no guarantee that (A} )e=1 as constructed above is a-mixing. Another
construction for the bracket which preserves the mixing property is now suggested. Let
B C B a non-empty compact set in 3. Note that since the (Bf) cover B, they also cover

B. Let Aﬁj be such that |+ "7 | Aﬁ/' = SUPgep,jp—gk1<5/CP |5 2o Xi(B) — X.(B})|. Be-
cause B is compact, the supremum is attained at some ,éj‘ eB.Forallt=1,...,n, take
Ak = X,(B¥) — X,(B*). For each (j, k), the sequence (Aﬁj)go is a-mixing by construction.
Furthermore, by construction, [Af | < |Af | and thus [E(JAf|9)]"/€ < 27%. These brackets,
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built in B rather than 5, preserve the mixing properties. The rest of the proof applied to
B implies

E (sup /[ d5(8) ~ E(37(8))]F)

BeB

1
< K( f xﬁ/zfl\/logNU(xl/v,B, I+ 1) + log® Ny (x, B, || - I}) dx)
0

1
< K(/ xﬁ/z‘l\/logN[](xW, B, 1l - 1) +log* Ny (x'/7, B, || - 1I) dx).

0

For an increasing sequence of compact sets B, € By, C B dense in B, there is an increas-
ing and bounded sequence:

E(sup|Vald5(8) ~E(H(B)]°)

BeBy

<E( sup |Valdi(8) BT ®)][)

BEBy11

1
< K(/ xﬁ/zfl\/logNU(x'/v, B, |- 1) +log’ Ny(x", B, || - ) dx).

0

This sequence is thus convergent with limit less than or equal to the upper bound. Hence,
it must be that the supremum over B is also bounded. It can thus be assumed that (A} Dz
are @-mixing. Q.E.D.

PROOF OF LEMMA D6: Since (y;, x,) is geometrically ergodic, the joint density con-
verges to the stationary distribution at a geometric rate: || f,(y, x) — f(y, x)llrv < Cp’,

p < 1. Because B is bounded linear and the moments W, (/A/fl are bounded above by M,
uniformly in 7:

0.(0) =M [ [B(33(r. ) = lim B ()| 7(r) dr

<t | ‘% )3 [ U023 = 576 0)]ayd| w(r)dn

fMZMé(% > flatrn-ro, x)|dydx)

2
1< CM’M?: 1

< CMzMg(— Zﬂ) < 5 x 5 =0(1/n).
n (1-p)? n Q.E.D.

PROOF OF LEMMA D7: Lemma D5 implies that, for some C > 0,

Jo

E sup St 80 b6 8 )] S

1B1=B2llm=8, ”B/‘—Hk(n)ﬁoum <Mydm,n,j=1,
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) S ¥ /2
< Ck(n)> (Ma ) .

Next, apply the inequality of Lemma D5 to generate the bound:

[E( sup |A‘E(7, B) — AS(r, Hk(n)ﬁo)|2>]l/zm < f(ML\/;_:)VZ/ZJm,n

“B*nk(n)BOHmSMn(sm,n

for some C > 0, 9 € (0, 1) and

! M,8,, 7%
Ton= [ (x77 [1ogN (| 222221 Bris I+l
, A k(n)zyz (n)

2
xM.,6,.. 1+
+10g2N<|: k(n)272 i| s Bk(n)7 ” : ||m>> dx.

Since [ \/m(7)dt < oo, the term on the left-hand side of the inequality can be squared
and multiplied by /7r(7). Then, taking the integral,

20 (MLS. Y2
[E(/ sup |Ag(7, B) — Aﬁ('r, Hk(n)Bo)|27T(T) d7>:| < Cﬂ%]mm
n

18Tk () Bollm<Mpm,.n

where C, = C [ /@ (7) dr. Note that J,, , = O(k(n)> max(log[k(n)]?,10g[M,,8,,..]))-
To prove the final statement, notation will be shortened using Ay (7, B) = (7, Bo) —
:(r, B). Note that, by applying Davydov’s (1968) inequality,

HE|AJS (7, T Bo) — E[AGS (7, T Bo) ]|

1 < A N
< p ZE|A¢;(T, Ik (nyBo) — E[A(//f(r, Hk(n)BO)] |2

24 < N A
+ " Z(” —m)a(m)'? Ef{’;(EMM(T, Uy Bo) — E[Al//f(ﬂ Hk(n)BO)] |6)2/3

m=1
< (1 +24)° a(m)1/3) max (E[A; (7, Tl Bo) — E[AF; (7, T B0)][*)
m>1 -
<45 (1 +24)° a(m)1/3> max (E[ A (7, Tl Bo) — E[AF; (7, T B0)] )

m>1

The last inequality is due to |Af(7, B)| < 2. By the continuity assumption, the last
term is a o(1) when ||y — Ikl — 0. As a result, fElA(Z/i(T, i Bo) — E[A(Z/ﬁ(f,
i Bo)]|*m(7) dm = o(1/n). To conclude the proof, apply a triangle inequality and the
results above:

[E</ sup A3 (7, B) — AS(7, Bo)[*7(7) dT)T/z

”B_Hk(n) Bollm=Mn&mn
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<[e(f s |A‘Z(T,B)—Aﬁ(ﬂHk(n)ﬁo)|277(7)d7>}1/2

“B*Hk(n)ﬁo llm <My dmn

. A , 12
+ |:/ E(M‘!’i(ﬂ i Bo) — E[A'J’i(ﬂ Hk(n)BO)” (1) dT)]
=o(1/v/n). OE.D.

PROOF OF LEMMA D8: Let R, (B, Bo) = E(43(r, B) — &3(r, By)) — dW(T BB — Byl.
(a) Since B bounded linear, the Cauchy—Schwarz inequality implies

dE (43 (7, B)) . »

[ vt (BE¢(TE)—¢(TBo)) o

(B~ Bul (s d

\ [ 0s(5.) (BRABo o))

< MB( / |Wa(r, )| m(7) dr) 2( f R, (Ba Bo)| () dr)m-

By definition of M, and the inequality above,
(| [ st ) BRBr B () ar| - )

= ]P)|:M2 (/|¢B | W(T) dT) HB*BuHSv:iEﬁMan </|Rn(B, BO)|27T(T) dT) ” %2:|

+P(I1Bs — Bolls > M,3,)

P(]| ﬁn — Bolls > M,,8,)) — 0 regardless of e. Furthermore, Assumption 5(ii) implies

dE(J3(7, Bo))
dp

2

swp ([ - b 0) - (8~

|B=Bo llweak <Mndn

7(7) d7> "

= sup (/ |Rn(ﬁ,Bo)|2w(7)d7)1/2=0((Mn6n)2).

18—Bollweak <Mn6n
Assumption  5(i) implies that (M,8,)* = o(), and thus, P(|[4s(r,u
(BRn(Bn,BO))’iT(’T)dTl > %) = o(1) regardless of & > 0. Hence, [z(7,u n) X

(BR, (B, Bo) () dr = 0,(1/ ).
(b) Let AS(7, B) = ¢3(7, B) — E[¢3(7, B)]. By the second stochastic equicontinuity re-
sult of Lemma D7 and the Cauchy—Schwarz inequality,

‘/ (7, 1) (B[AS(B,) — AS(By)]) m(7) dr
= (/ o (rs ) ) d7)1/2< f [B[AS(B.) — AS(Bo)][ () d7>1/2
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([t ipfroar) (13280 - silfeerar)
([l wyar)

(3, S0 - st ar)

18T () Boll <MnSmn
=0,(1/ \/ﬁ)’
where the last inequality holds with probability going to 1 by definition of M,,5,,,.
(c) Let &, = £ = o(7;). For 1 € (0, 1), define B(h) = B, + he,u;; notice that
B, = B(O) Recall that 3, is the approximate minimizer of Qi, so that 0 < Qﬁ(ﬁn) <
infgep, Q%(B) + O,(n,). Hence, the following holds:

0= 5(05(B()) — O3(B(0))) + O,(ma) (E.1)

l\)l'—‘

—_

= —[ B(dh(7) = §3 (. B(0)))B(ds5 (7, B0)) — (7, B(V)))m(r)d7  (E2)

[\

+ / B(fin(7) — 33 (m, BO))B(#5(m, B0)) — 5 (m, B)))m(r)dr  (E3)

+ [ 1B BO) - B B P de |+ 0,m0). (E4)

To prove Lemma D8(c), (E.2)—(E.3) are expanded individually and shown to be
0,(1/4/n), and (E.4) is bounded, shown to be negligible under the assumptions.
The first step deals with (E.4):

(/150026 50 =83 BN Pt df)“z
<MB(/ 80050) - BN ooy
</ [0 (7. BO) — §5(r. BO)] — B[ (. ) — 5 (r, )] () dT)l/z

12
+ </|E[¢5(7, B(0)) — 5 (r, B ] (7) d7> :
By the triangle inequality and the stochastic equicontinuity results from Lemma D7,
12
(/1033 ) = B30, b)) = ELBS( BO) = 3 (e, B () )

0 (Imm(Mnémn)vz/z
= p - = .
Jn
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Also, note that B(1) = B(0) + &, u’, so that the mean value theorem applies to last term:

(/ ieListe. by - dse pan)mmar) = ( \%ﬁﬁ(k))[]

{E[ /5 (7,B(h))
FLEEO ] x

2

7(r) dT)

for some intermediate value / € (0,1). Also, by assumption, ( /1

w(7)dr)"? = O,(1). Together, these two imply (/ |E[ 1//2(7,[3(0)) — 1/15(7- BON]* x
a(r)dr)'* = 0(8,,). This yields the bound for (E.4):

(M, 8,,)7 I2,,
]

/|B 7, B(0)) — (7, B(1))) |27T(T) dr < 0,(2) + 0p<

The remaining terms, (E.2)—(E.3), are conjugates of each other. A bound for (E.2) is
also valid for (E.3). Expanding (E.2) yields

/ B(i(1) = (7, B0))) B(5 (7. B(0)) — i (7, B(D))w(7) dr (E2)
= [ B - 13 BO)

x [B(A3(7. B(0) = Aj(r, B)))]m () d7 (E.5)

+ [ B - 83 BO)))

x BE(3(, B(0)) — §3(7, B(1))) 7 (1) d. (E.6)
Applying the Cauchy—Schwarz inequality to (E.5) implies

‘ [ Bl — 83 BON BB AO) ~ 8 BD)]r (s (E5)
12
< MB(/|Bl/A/n(T) — B(Li(T, fj’(O))|27T(T) dT) (E.7)

< (18360 BO) - 8307, B Py ) " (E3)

The term (E.7) can be bounded above using the triangle inequality:
. . . 5 12
</|Blpn(7) — B3 (7, B(0))| m(7) dT)
A A ) 1/2
< My (/|g[/n(7') — 3 (r, B0)| (7) dT)

+ (/13@(7, Bo) — BI (7, B(O)) [ (r) d7>1/2,
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An application of Lemma D3 and the geometric ergodicity of (y!, x,) yields ([ [ (7) —
#3 (7, Bo)|>m(7) d7)"* = O, (1//n). Then, expanding the term in ¢,

( / |BS(r, Bo) — BIS (r, BO))7(7) dT) 2
- </ [BE[2 (7, Bo) = 03 (7 3(0))]|27T(T)d7)1/2
MB(/|[':U;§,(T, Bo) — ¥ (7, B(0))] — E[#5(7, Bo) — ¥ (7, B(0))]| m(7) d7>1/2

< </|BE[$2(T, Bo) — r3(7, é(O))]|27T(T)dT)U2 + OP((Mnsmn—m)

vn
<t [ |etd36e. 0 - i3 o] - A EN g, o) wirrar)
(B0 g, g aoyar) 0, () e,

Note that Assumption 5(ii) implies that

N N N dAST,O N
(J [ 80~ 365 o) - BN g, o

2 12
Te (1) dT) =0,(M,5,).

By definition of the weak norm, ( |BdE("’ 2B B, — B(0)]|27(7) d7)* = || B — Bollweak-

Furthermore, | ﬁn — Bollweak = O,(8,) by assumption. Overall, the following bound holds
for (E6):  ([IBYu(1) — By (7, BO)Pa(r)dn)'? < O,(3) + 0,(8,) +

2
Op(%\%/zl’”'”). Rearranging (E.8) to apply the stochastic equicontinuity result again

yields
(/Mﬂnéwn—A%nBﬂ»fWﬁﬁhyﬂ
< ([ 183680~ 836 B Pt ar)
+(/Mﬂnﬁw—Aﬂnéw»ﬁﬂﬂdQU2
:o,,(w)

vn
Using the bounds for (E.6) and (E.8) yields the bound for (E.5):

[ Bl - B BO)BE:( BO) ~ 83 D) (o
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M,y8,)" L 1 (My8y)" L
< OP(%>OP<IH3X<M"5", 7, %)).
n n n

To bound (E.6), apply the mean value theorem up to the second order:

/ B(§u(r) — 5 (7, BO))BE(GS(r, B(0)) — §3(r, B(D)) (7 dr

[ i~ i3t b0 s PON 1y 0

| ) o d’E h
+3 / B (1) — (7, B(0)))B = d[gdlf =

d]E(d,}ﬁ(T: BO))
dp

[eaus, equz]m(7)dr

- / B(fu(7) — #5(r, B(0)))B [euts]m(7)d7+ O, (£2)

T / B(d(r) — §3(r. BO)))

dE(§5(r, B(0)) - dE({3(7, Bo)
XB|: dB [ n n] - dB

where the O, (&?) term is due to the Cauchy-Schwarz inequality and Assumption 5(ii):

[snuz]}w(r) dr,

2

1 dzE( 2 (7, B(D))
dBdp

< 2([ 1860~ 26 B Py [|p LD g

' / B(ih,(r) — I3(r. B(0))) 3B

[eaus, equz]m(7)dT

2

w(7)dT.

It was shown above that
(/1800 = b5 BO)) (s dr) = 0, (1,51, . %))

. .. 2 7
Also, by Assumption 5(ii), ([ |BW w|*m(r)dr) =0,(1).

Finally, applying the Cauchy-Schwarz mequahty to the last term of the expansion of
(E.6) yields

. N dE ({3 (1, B0 dE({r3 (7, Bo
[ 8ine) i, oy [ T PO g p BBy

< ( / | Bl (7) — 5 (. BO)) [ 7(7) dr)m

dE(J3(r, B(O dE(45(T, Bo
Xa”(/‘B (miwﬁ( D1 g (wd(ﬁ B 1)

277-(7) dT)l/z
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1 (My8y)" L
= 0,,<gn max(M,,Bn, —, ¥>SH).
Jn Jn

Using inequality (E.1) together with the bounds above and the expansions of (E.2) and
(E.3) yields

dE(lZ’i(T7 BO))

0<—e, [ Bli(r) = #3(r. BO)) B—"42 22 w5 ] ()
[ B 20 BB oy
+0,(,) + Op((M”Sm”—\/);/z%‘ maX<Mn5n, % %)))
+0, (anM,,S,, max(MnS,,, % —(M”‘Sm:/);2/zlm’” )) +0, ( [(M”Bm”iml’”’”]z )

Since &, = + -, dividing by &, both keeps and flips the inequality so that

A A ~ dE S T, Po
[ 8.0 85 8y PN 1) 4
~ ~ ~ dE BS T, Po

+ [ B0 - i m))BW[uz]wm dr
— (Mném’l)yznlm,n L (Mnamn)YZ/ZIm,n
_O,,(sn)+0p<—8nﬁ max(Mnén,ﬁ,—ﬁ )))

1 (M,8,,)" L, [(Mo8) L]’
R e T R G

By construction, &, = 0,(1/+/n) and Assumption 5(i) implies that (M,,8,)" 21, = 0(1),
so that all terms above are o(1/+/n). To conclude the proof, note that

dE({3(7, Bo))

/ B(fhu(7) = (7, B.)) B—— B [uz] 7 (r) dr
= = = dE(JS 7, Bo
N EeRr s LU RO

= [[bslr ) B = T35 B + s w0 (BLin(r) = B )
=o0,(1/4/n).  QE.D.
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APPENDIX F: ADDITIONAL RESULTS FOR THE APPLICATIONS
E1. Verifying the Primitive Conditions in the First Application

Recall the data generating process used in Sections 4 and 5:

Vo= py + py(Vio1 — py) +oi(er +Fyer 1), (10)
(th = MU + PUO',Z_l + Ka'ez,t’

The following verifies (1) the identification condition, that is, for any L > L, to be de-
termined, Assumption 1(ii) holds if f has sub-exponential tails, as required in Assump-
tion 1(i), and (2) that Assumption 2 is satisfied. Geometric ergodicity can be verified by
checking if Assumption 2.1 and the additional condition in Theorem 3.1 of Cline and
Pu (1999) hold. Using their notation, «(-) is linear and +y(-) is a product so the required
conditions are verified.

Identification. Assume e;, ~ f with E(e;,) = 0,E(ej,) =1 and e,, ~ f, a non-
negative, known distribution with finite moment of order p for any p > 1, and E(e,,) =
var(e,,) = 1. Assume p, €[0,1), u, > 0,and k, > 0. For L > 1, lety, = (yt, ..., Y1) and
¥(7, 0, f) = [exp(iT'y) f(V:, 0, f) dy,; note that 3,4(0, 0, f) = iE(y,) = i(ty, .., 1) SO
that w, is identified. Similarly, any joint moments of y, can be recovered from the CF .
It suffices to show that moments spanned by y, can be used to identify (0, f). The coeffi-
cient p, is identified by the moment condition E([y, — n, — p,(yi—1 — py)]y—2) = 0. Take
Y=y py(yt 1 /-Ly) we have 5’[—01[6’[+19 1]

Compute two more moments: E(j?) = E(a7)(1 +192) and E(y,y,-1) = 9E(o,0,_,). Un-
like the MA(1) with time-invariant volatility, these two moments alone are not sufficient
to identify & because [E(o,0,_1)| < E(0?), strictly with time-varying volatility.

Consider three additional moments: E(y?37,) = E(o?0?,)(1 + 192)2 E(?y2,) =
E(o?o?,)(1 + 92)?%, and E(3y? ,37,) = E(o?0?, ,274)(1 + 192)3 the main idea here is
to lag twice each time to only measure dependence in 2; lagging once would pick up au-

tocorrelations due to the MA(1) component. Let & = E(O’z) we have E(o?) = “":“”,

E(lo? — 6*[02, — 5°]) = p3 242, and B([o? — 5°][07, — 6°]) = p} =) Tak-
E(752_,)-E(72)? E(o, a, 2)— —E(ob)? 2

ing a ratio, we can identify p, > 0 by assumption: G )G — K el = Po
—4 t ‘Tt ‘Tx 4 9]

We will assume p, > 0 in the following. Similarly, using moments of y,, we can com-

pute - E(;’)’)E = (“";"”) (11 lf")z pivar(e,,); since f, is known, this identifies the ratio
t a
(ke + /.L,,) /K, since the indivial terms are non-negative. Now, E(7?) = L2y (1 + 9?)

ko(1=pg)
identifies the product k,(1 + 9*). The moment E(J,);_;) does not have a closed-

form expression but can be approximated by expanding ./, around the mean & =

(o + 1)/ (L= po): E(0,0,1) = E([& + (07 = 3)][5 + (02, - 69)]) = 15 E(0?
a*|[o?, — 0*]). The coefficients K(,,i} are then separately identified using the sys-
tem of equations: E(y,y_1) = ¥ E([a — a?l[o?, — %)), E(y?) = a*(1 + 9?), and
E(2)2,) — [EGA)F = po(1 + 92)E([0? — 32][07, — 3°]), using the same approach as
for identifying the parameters of an MA(l) model with time-invariant volatility. This
implies that L = 5 lags are sufficient to identify 6 = (u,, py, 9, o, ps, K,). If the un-
known distribution f has sub-exponential tails, then its moment generating function is
analytic on some interval and the distribution is determined by its moments. The idea
is to solve for the moments of e;, recursively from moments of y,. We already assume
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TABLE F1
ESTIMATES, STANDARD ERRORS, CONFIDENCE INTERVALS WITHOUT THE DELTA METHOD.

1/%, se(1/7,) 95% CI for 7 1/ se(1/9,) 95% CI for y
k=1 0.001 0.004 [128.35, +00) 0.029 0.013 [18.52,266.65]
k=2 0.020 0.008 [28.81, 204.99] 0.050 0.012 [13.61, 38.78]
k=3 0.018 0.006 [32.95, 158.60] 0.079 0.021 [8.43,26.19]
k=4 0.019 0.005 [34.17,107.94] 0.096 0.025 [6.97,21.11]
k=5 0.015 0.005 [38.77,245.53] 0.084 0.022 [7.90, 24.69]

that E(e;,) = 0,E(e,) = 1. The third moment E(3;) = E(ej )E(o?)(1 + 97), where
the last two terms can be computed from knowledge of 6. Using the binomial theo-
rem, E(5¥) = E(c}) Y, Ci_E(e},))E(e} ,)9/. With k =3, this pins down the third mo-
ments; for k = 4, the only unknown is the fourth moment, etc. Hence, once 6 is known,
(E®G;), - .., E(FF)) identifies (E(e] ), ..., E(e},)) for any k > 3. Since f is determined by
its moments, it uniquely determines the distribution itself so that (6, f) is jointly iden-
tified. With ergodicity, this implies lim,_, ., E(¢,(7) — 4 (7, B)) = 0, Vr if, and only if,
B = Bo-

Data Generating Process. Condition y(i): [|ovs (V1> B1> 0) — &obs(V2> B1, o)1l = |py|llyi —
Il < pyllyi — y2l, which implies the strict contraction property if |p,| < p, < 1. For

condition y(ii), l|gobs(V1> 15 P1> 15 0) = Zobs (V15 25 P2, T2, O) || < |1 — po| + |p1 — p2f x
[y1| + o9 — ;| x |e1|, which satisfies the desired bound if |y,_;|, o;, and |e,_;| have
bounded second moments. This is implied by restrictions on the parameters 6 and the
distribution f. For condition y(iii), note that the /- function is Holder continuous with

exponent 1/2 so that ||guws(y1, B, 01) — Zobs(V1> B1> @)l < |e; + Ye,_1| x /|01 — 02|, and
) —

E(le, + 9e,4]*) <3(1 + 9 ) if |9] <9 and E(e?) = 1. Hence, the assumptions on the

DGP are satisfied.

F2. Additional Results for the Second Application

Table F1 reports estimates for 1/, 1/7 instead of 7, y in Table 4. Cls are reported for
T, y by transforming [1/7, £ 1.96se(1/7,)].

APPENDIX G: ADDITIONAL RESULTS
G.1. Convergence Rate in the MA(1) Model

The following derives the rate of convergence for the MA(1) process: y, = e, + Je;_1,
e; X f, firstwhen S = +o0. Here B = (9, f) € [—1, 1] x F. Take L > 1; then, the joint dis-
tribution y, = (y,, y,_1) uniquely identifies B. Let (7, e, ¥) = e'natidneatinatidne The
CFofy,is ¢(r; B) = [ h(r, e, 9)f(e1)f(e2)f(es3) deidesdes, for L = 1where 7 = (71, 7).
Let B = (Do, fi) and [3’,, be an exact minimizer of Q,; then, by triangular inequalities in
L2(),

(16680~ vz 80P r0rar) —( [lintrr =i o mierar)
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<V Qu(B) =/ Qu(Bi)
< ( [ 106z 80 = vtz gy () dT)l/z " ( [ 1) = w(r: B) Fr) dT)‘”.

The last term is O, (n~"/2) plus ([ |¢(7; Bi) — ¥ (75 Bo)[*m(7) d7)/* < (L + )| fi — follrv
because the exponential has modulus 1 and the density f appears L + 1 times in the CE.
This is related to the bias accumulation discussed in the main text. From this, we deduce
the convergence rate under the distance implied by the CF:

( f (75 B) — (73 Bo)fw(f)dr)l/z

1/2
sz( |&n(7)—¢(7;30)|2w<r>d7) LAV folvs

which is a O,(max[n~"2, log[k]*/*k~"]), since ||fy — follrv = O(log[k]*/*k~") under the
smoothness and tails assumptions. Because here § = 400, we can use klog[k]™" =

n='% which gives [ |y(7; Ba) — ¥(7; Bo)Pm(7) d7)"* = O,(n~'7?), in line with Corol-
lary 1. For r = 2, this implies k < n~"*, up to log-terms. Asymptotically, (f |¢(7; B,) —
(75 Bo) P (1) dr)? < | B, — Bollweax Which implies the convergence rate in weak norm.
It involves the derivative ¢4 (7, f)[v], thatis, (7, B)[v] = [ h(7, e, 9){v(e1) f(e2) f(e3) +
f(e)v(er)f(es) + fer)f(ex)v(es)rdede,des and 5(7, B) = f[7162 + meslh(r, e, 9) x
f(e1)f(ex)f(e;)deydesdes, for L = 1. The local measure of ill-posedness 7, is not
closed-form, making the rate in stronger norm intractable. For § < +oo, the term

SUPBeBk(n)(H‘»[’(T; B) — L[/S(T B 2m(r)dr)> = O L, ([k(n)log[k(n)]]*/v/nS) also affects
the rate of convergence. Here, geometric ergodicity automatically holds, an MA(1) be-
ing m-dependent regardless of the MA coefficient.

G.2. Sieve Long-Run Variance

The following derives the formula for the sieve long-run variance o7*. For brevity of
notation, let Z,(1) = §5(7, Bo) — ¥,(7) and Z,(1) = 1 3, Z,(7). Let St = 1 [{¢hp(7, v}
Zi(7) + (7, v3) Z, (1)} (7) d; the sieve score is Sy = 13" 87, and the sieve long -run
variance is o> = nE(S;?) = E(S;?) + 237, | EIE(S:S: ) For any j > 0, we have

E(S:St:j) = %/{‘l’ﬁ (T: UZ)E[Zt(TI)Zt—j(TZ)](/’B(Tza U;)

+ (7, U)E[Zi(71) Z,-j(72) | (725 v7)
+ (7, ) E[Z(T1) Zij(72) | (72, v})
+ p( UZ)E[Zt(Tl)Zt—j(Tz)]1#5(72, v;)}w(ﬁ)w(rz) drydr,.

Let K : L?(7) — LL*() be a linear operator such that K;f (7)) = 1 [{E[Z,(1) Z,_;(72)] x
f(m2) + E[Z,(71) Z,_j(72)]f (2)}ar(72) d T2, With the associated inner product in L*(w):
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(fis £ = 3 [{A(DF(T) + fi(7) fo(7)}m(7) d7." Compactly rewrite the autocovariance:
E(S* St ) = lr[IB( ’ Un) K; 'vbﬁ( ’ v:t)>‘n" Then: by linearitya 0-;:2 = ('vbﬁ(" v:l)’ anﬁ('ﬂ ‘U;))ﬂ.,
where K, = Ky + 2 Z" ! "n’ K; is the long-run variance operator. Their sample counter-
parts are (7, v) = dgifS (7, Bu)[V], (vi, v}y = 3 [{ilp(7, Ul)'l’ﬁ(T v) + l!fﬁ(T Ul)Q/fﬁ(T
v)}ar(r) dr, v such that (9%, v), = dgd(B,)[v] for any v. Let Z (T) U (7, Bu) — (1),
St =1 [{fu(r, 0) Z(7) + Pp(r, 02) Zi(7)}m(r) dr, and St = 1 Z, Usmg an estimate
K, of K,, we have 10} 41> = 632 = (Jp(-, D%, K, Pp(-, 02)), = (02,0 *)nit,- NOW, to esti-
mate the long-run variance operator K,, take j > 0 and let K be such that K; if(n) =
2 G Z(1) Zij(m)]f (m2) + L[ it Z.(m) Zi_j(1:)1f (m2)}(7,) d7s; then K, =
KU +2 Z;':ll w(j/ Tn)K j» where w and T, are the HAC kernel and bandwidth.

ASSUMPTION G1: Suppose (i) supg, .. SUP, 7 |dgp(B)[v] — dep(Bo)[v]] = 0(1), (i)
for each k(n), any B € Now, and any v € 7,1((”), «,[Afﬁ(-, v) € L*(w), sup

Ul’vzev}((n) |<U1, v2)n -

(v1, v2)| = 0,(1), (iif) SUP,1 (v, Vi, — (0, V), | = 0, (1), () IK, — Koullop = 0,(1),

where || - ||, is the operator norm in (L*(7), (-, -),). Assumption G1(i)—(iii) is based on
Assumption 4.1 in Chen and Pouzo (2015a). Given Assumption 1(iii), Proposition 3.3 in
Carrasco, Chernov, Florens, and Ghysels (2007) implies Assumption G1(iv) holds under
Assumption G2 below.

ASSUMPTION G2: Suppose (i) w : R — [0,1], w(0) =1, w(—x) = 0(x), VX e R, w €
L*(R), w is continuous at 0 and all, but finitely many, values of x; (it) T**'/n — vy € (0, 00)
for some v for which ||w”| < oo and | fy|| < oo; w” and f, are the vth derivative of w and
fv, the spectral density of (y,,y}) at 0.

PROPOSITION G1: Suppose Assumption G1 holds; then, |6 /o) — 1| = 0,(1).

Proposition G1 follows from Theorem 4.2 in Chen and Pouzo (20153) where now

Step 2A in their proof ((Chen and Pouzo, 2015b) p-9) requlres IK, — K, lop = 0,(1)
as in Assumption G1(iv). The formula used in the main text is easier to implement,
but equivalent. For each j > 0, [ real{¢ (7, v)E[Z,(7) (r)real[Z,_;j(m2) g (2, v2) |1} (71) X
m(r2)dridry= (Y-, v}), K;jp(-, v,)) .. Because E, [ and real are linear operators, they
arrange into

(s (s v3), Kia(-5 v3)),,
=IE{</ real[yg (71, ) Z (1) |7 (1) dn) (/ real[yg (72, ;) Z,—j(2) |7 (72) d’Tz)}.

Then, replace real[s(71,v},)Z,(71)] = real[yg(r, v;)]real[ Z,(71)] + im[g(71, v})] X
im[Z,(7,)]. Next, let ¢ = (0, w, u, o) denote the parameter 8 in the sieve basis. For any v,

V' d,d(Bo) = (v,v}) = vreal[ [ Yo (7, Bo) Y, (7, Bo)m(7) d7]v}, s0 v =real[ [ ¢, (7, Bo) x

"Notice that (v, v2) = 1/2 [{pa(7, v1) P (7, v2)} + (7, V1) Pa(7, v2)}w(T) dris also (Ya(-, vi), P (s V2))me
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o (7, Bo)m(t)dr] ™ d,p(Bo). Now, substitute v’ into (¢4(-, v}), K,pz(-, v})) - to get the
sandwich formula. The same derivations applied to the sample quantities yield the for-
mula in the main text.
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