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S1. SIMULATION PROCEDURE

WE SIMULATE the functions H1(X� θ) and H2(X� θ) for a given X and θ as
follows. Set Ĥ1(X� θ) = Ĥ2(X� θ) = 0. Moreover, for every market, generate
and store R draws from the distribution F with identity variance–covariance
matrix. The number of simulations is assumed to go to infinity with sample
size. More on this below. For each simulation r = (1� � � � �R), follow Steps 1–3:

STEP 1: Transform the given matrix of epsilon draws into a draw with covari-
ance matrix specified in θ. This is stored in εr .1

STEP 2: Using the profit function from (1), calculate

π(yj�X� θ�εr)= [π1(y−1�X� θ� εr1)� � � � �πK(y−K�X� θ� εrk)]

for all j = 1� � � � �2K .

STEP 3: Find the equilibria of the game:
• For all j ∈ {1� � � � �2K} such that π(yj�X� θ�εr)≥ 0, set Ĥj

2 = Ĥ
j
2 + 1.

• If there is a j ∈ {1� � � � �2K} such that π(yj�X� θ�εr) ≥ 0 uniquely, that is,
there is no j′ �= j such that π(yj′�X� θ�εr)≥ 0� then Ĥ

j
1 = Ĥ

j
1 + 1.

This will provide us with the simulated versions

1
R

Ĥ2(X� θ) and
1
R

Ĥ1(X� θ)�

1There are many ways to do this, one of which is to obtain the Cholesky decomposition of the
given covariance matrix and use it to transform independent draws into dependent draws.
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S2. CONSISTENCY, PRACTICAL ESTIMATION, AND CONFIDENCE REGIONS

In this section, we describe procedures to construct regions that cover the
identified set with a prespecified probability. We also describe confidence re-
gions for the identified parameter.

First Stage Estimation of Choice Probabilities: Our minimum distance estima-
tor calls for estimating the choice probability vector P(x) = P(y|X = x) used
in (6) in a first step. We can use a nonparametric conditional expectation es-
timator to obtain this estimator, Pn(x). The CHT theory that is developed to
obtain confidence regions for sets relies on having a finite number of moment
inequalities; hence we assume that the data have finitely many support points
(discrete support) or that

X ∈ Sx = {x1� � � � � xd}�(S1)

We use a simple frequency estimator to get the conditional choice probabili-
ties:

P(y′)
n (x) =

∑
i

1[yi = y ′]1[xi = x]
∑
i

1[xi = x]
�

It is easy to see that in this case

sup
x

∣∣P(y′)
n (x)− P(y′)(x)

∣∣
= max

x

{
P(y′)
n (x1)− P(y′)(x1)� � � � �P

(y′)
n (xd)− P(y′)(xd)

}
= op(1)�

The objective function we use again is

Q(θ) =
∫ [∥∥(P(x)−H1(x�θ))−

∥∥ + ∥∥(P(x)−H2(x�θ))+
∥∥]

dFx

=
d∑

j=1

pj

[∥∥(P(xj)−H1(xj� θ))−
∥∥ + ∥∥(P(xj)−H2(xj� θ))+

∥∥]
�

where (A)− = [a11[a1 ≤ 0]� � � � � a2k1[a2k ≤ 0]] and similarly for (A)+ for a 2k

vector A, ‖ · ‖ is the Euclidian norm, and pj is the probability conditional on
X = xj . It is easy to see that Q(θ) ≥ 0 for all θ ∈ Θ and that Q(θ) = 0 if and
only if θ ∈ ΘI , the identified set in definition (S1) above. The sample analog of
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the above objective function is

Qn(θ) = 1
N

n∑
i=1

[∥∥(Pn(xi)− Ĥ1(xi� θ))−
∥∥ + ∥∥(Pn(xi)− Ĥ2(xi� θ))+

∥∥]
�(S2)

where ‖ · ‖ is the Euclidian distance and again Pn(x) is the vector of 2k choice
probabilities estimated from the data. The confidence regions are appropri-
ately constructed level sets of the objective function. To apply Theorem 3, we
need to check the uniformity results in the statement of the theorem.

Here, we first describe how one obtains a confidence region for the identi-
fied set. Earlier versions of this paper reported these. Below, we also provide
descriptions of how we obtained confidence regions for the (potentially par-
tially identified) true parameter. The theoretical properties of these regions
are studied in CHT.

Confidence Region for the Set: A key statistic for building this confidence re-
gion is

Cn = sup
θ∈ΘI

nQn(θ)�

This is because our confidence regions are level sets Cn(c) of the objective
function Qn(·) written as

Cn(c)= {θ ∈Θ :nQn(θ) ≤ c}�(S3)

Hence, a set Θ̂I = Cn(c) covers ΘI at level α:

P(ΘI ⊆ Θ̂I)= P
(

sup
θ∈ΘI

nQn(θ) ≤ c
)

= P(Cn ≤ c)

if c is chosen as the level-α quantile of Cn. As usual, we use large n asymptotics
to approximate this cutoff level. To do that, we need to derive this asymptotic
distribution of Cn. First, define the boundary of the set as

∂ΘI = {
θI ∈ΘI :H1(xj;θI)= P(xj) or

H2(xj;θI)= P(xj)� for some j ≤ d
}

and let nj = 1
n

∑
i 1[xi = xj]. Define Ŵj := √

n(Pn(xj)−P(xj)) for j = 1� � � � � d.
Assume also that the central limit theorem and the law of large numbers apply
such that

(Ŵ1� � � � � Ŵd) →d (W1� � � � �Wd)∼ N (0�Ω)�(S4)

nj/n →p pj for each j ≤ d�
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To deal with the presence of the simulated quantities, we assume that the num-
ber of simulations, R, goes to infinity at a rate R = O(n2+α), where α > 0. This
will guarantee that the simulations will not have an effect on the asymptotic
distribution and hence can be ignored. Given the above discussion, Assump-
tion 1, and the assumption also that the parameter space is a compact subset
of a finite dimensional Euclidian space, one can show, using similar steps as,
for example, page 16 of Chernozhukov, Hong, and Tamer (2002) that

Cn →d C�(S5)

where

C = sup
θ∈∂ΘI

d∑
j=1

(Wj)
2
+1[Pj =H1(xj� θ)] + (Wj)

2
−1[Pj = H2(xj� θ)]�(S6)

It is hard to simulate the α-quantile of the above statistic since it is not piv-
otal. We follow CHT and subsample the distribution of Cn above to obtain an
asymptotic approximation to its α-quantile. We use a modified procedure to
account for misspecification of the model (where the minimum of the func-
tion Q in the population might not be equal or even close to zero). We instead
report

Cn(c)=
{
θ ∈Θ :n

(
Qn(θ)− min

t
Qn(t)

)
≤ c

}
(S7)

for an appropriately constructed c. First, we construct all subsets Bn of size
b � n. We take b to be equal to n/4.2 We start with an initial value c(0) for the
cutoff (see below for a way to choose this c(0)). We then compute

Ĉi�b�n�c0 = sup
t∈Cn(c(0))

b(Qb(t)− qb)= sup
t∈Cn(c(0))

b
(
Qb(t)− min

t
Qb(t)

)
(S8)

for each ith subset, i ≤ Bn, where Cn(c(0)) = {θ ∈ Θ :n(Qn(θ) − mint Qn(t)) ≤
c0}. This involves minimizing the objective function at each subsample. Here,
we use the Nelder–Mead algorithm with a starting value equal to the arg min
obtained using the full data set.

Initial Choice of c(0) = c0: The initial choice of the cutoff that we use here
is always 25% above the minimum sample objective function value. Starting
with this initial choice, we iterate the objective function twice and use that
final cutoff level as the quantile that defines our confidence region. We find
that iterating further does not change the cutoff by much. We then compute
the α-quantile of the numbers Ĉi�b�n�c(2) which provides appropriate coverage

2There is no general theory of picking a subsample size. See Politis, Romano, and Wolf (1999)
for more on this point. However, trying different b’s in this paper led to similar results.
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properties (asymptotically). One can also use c(0) = 0 as the starting cutoff. For
this class of models, this was shown in CHT to deliver a set with the appropriate
confidence property.

Summary of Procedure to Obtain Confidence Region for the Set ΘI :
S1. We minimize the objective function Qn(·) using a genetic algorithm that

we describe below. In the process, we collect values for the objective function
at many (≈ 1�000�000) randomly chosen parameters using this Markov chain
Monte Carlo-like procedure.

S2. For every subsample, we minimize the subsampled objective function
(the one constructed with the subsample as opposed to the full data set) over
the initial estimate of the set we constructed in step S1. We then obtain the
empirical α-quantile of the set {Ĉi�b�n�c0 : i ≤ Bn}. That gets us a new cutoff ĉ(1).
Note that here we need to evaluate qb at each subsample, which requires an
optimization step. We do this using the Nelder–Mead equation starting at the
overall minimum found in step S1.

S3. We iterate steps S1 and S2 two times to obtain ĉ(2).
S4. We replace c with ĉ(2) in (7) to obtain the confidence region we report.

It is then easy to prove (similar to Lemma 3.1 of CHT) the following lemma.

LEMMA S2: Suppose that (5) holds where C is as in (6). Then for any ĉ →p

c(α) := inf{c ≥ 0 :P{C ≤ c} ≥ α} for α ∈ (0�1), such that ĉ ≥ 0 with probability 1,
we have that as n→ ∞, P{ΘI ⊆ Cn(̂c)} = P{Cn ≤ ĉ} = P{C ≤ c(α)}+o(1)= α+
o(1) if c(α) > 0 and P{ΘI ⊆ Cn(̂c)} = P{Cn ≤ ĉ} ≥ P{C = 0} + o(1) ≥ α+ o(1)
if c(α)= 0.

For more on consistent estimators for the set, see CHT.
Confidence Region for the Point: To obtain confidence regions for the true

parameter, we use a slight modification of the above procedure. A confidence
region for the point is

Θ̂I =
{
θ ∈ Θ :n

(
Qn(θ)− min

t
Qn(t)

)
≤ min(cn� cn(θ))

}
�(S9)

where cn(θ) is a consistent estimate of c(θ), the α-quantile of C(θ) where

n
(
Qn(θ)− min

t
Qn(t)

)
→d C(θ)�

We use subsampling as described on page 1269 of CHT to get cn(θ). Here,
cn(θ) is the α-quantile of {bn(Qbn�j(θ0)− mint Qbn�j(t))� j = 1� � � � �Bn}. We use
n
4 as the subsample size3 bn. It is shown in CHT that the probability that θI is

3We have experimented with subsample sizes of n
3 �

n
5 � and n

6 with similar results.
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in this confidence region is no smaller than

P
{
n
(
Qn(θI)− min

t
Qn(t)

)
≤ [c(θI)+ op(1)] ∨ 0

}
= P{C(θI)≤ c(θI)} + o(1)≥ α+ o(1)�

which is the desired coverage property. In the text, we report instead

Cn(c2)=
{
θ ∈Θ :n

(
Qn(θ)− min

t
Qn(t)

)
≤ c2

}
�

where we have

lim inf
n→∞

P{θI ∈Cn(c2)} ≥ lim inf
n→∞

P{θI ∈ Θ̂I} ≥ α

for all αI ∈ ΘI� Here, cn is an estimate of an upper bound on supθ∈ΘI
c(θ) as in

page 1805 of the main text, and c2 is the second iteration as described in the
text. We report the confidence regions Cn(c2), since we do not see any practical
difference between them and Θ̂I above, and because Cn(c2), being a level set, is
easier to compute. Earlier versions of this paper contained confidence regions
on the set, but the current results report Cn(c2) as the confidence regions, as
requested by the co-editor.

Computational Issues: The optimization was done using the canned routine
simulannealbnd in Matlab. For each specification, we started our search from
at least five starting values.4 This is helpful since genetic algorithms, although
slow, scan the surface of the function and thus allow us to obtain the level sets
needed to construct our set estimates. From the overall minimum, we run an-
nealing for a while longer (usually a day or two for every specification) to eval-
uate the functions at many different parameter values close to the minimum
we found. This will give us a snapshot of the surface of the function.

One issue that arises when solving for equilibria of a given game is that some-
times the game admits equilibria only in mixed strategies. In principle, it is not
conceptually difficult to deal with mixed strategy equilibria since at a particular
iteration, one can compute the mixing probabilities. However, as we say in the
text, we do not do that here for simplicity, and rather deal with this problem
as follows. If a game does not have an equilibrium in pure strategies for some
realization of the errors in one market, then we do not consider that particu-
lar realization of the errors when we construct the lower and upper bounds. If
a game does not have an equilibrium in pure strategies for any realization of
the errors in one market, then we do not consider that particular market when
we construct the lower and upper bounds. In the minimization we keep track
of the percentage of realizations and markets where there are no equilibria in

4For the simplest specifications, we used more than 20 starting values.
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pure strategies. In our data, it never occurred that no pure strategy equilibria
existed.

In none of our searches did we restrict the competitive effects to be positive.
This is in sharp contrast to the previous literature, which had to assume a sign
on the competitive effects.

We used both 20 and 100 simulations for each market. The results were es-
sentially identical. In both cases, the minimization routine would sometimes
diverge to two minima, one of which would not be economically intuitive (e.g.,
positive competitive effects). We would then increase the number of simula-
tions to 5000 and see that the “unreasonable” minimum would not be a mini-
mum any longer.

To construct the confidence intervals we subsample the data sets with sub-
sample sizes equal to one-fourth of the data. The results did not change much
when using subsamples of smaller sizes. We also simulate from the error term
in every subsample which guarantees that the simulation error is taken care of.

Moreover, note that subtracting the minimum of the function as in (S8) is
essential to guarantee that the confidence regions are nonempty. This is im-
portant since we assume throughout that the model is well specified and that
the set ΘI is nonempty.

S2.1. Data Construction

Data sets: We use three data sets from the Origin and Destination Survey
(DB1B), which is a 10% sample of airline tickets from reporting carriers.
The observations are from the first quarter of 1996 to the fourth quarter of
2007. These data are collected by the U.S. Department of Transportation.

The first data set is the DB1B Coupon Origin and Destination Dataset,
which provides coupon-specific information for each domestic itinerary of the
Origin and Destination Survey, such as the operating carrier, origin and des-
tination airports, number of passengers, fare class, coupon type, trip break in-
dicator, and distance. We merge this data set by operating carrier with the
T-100 Domestic Segment Dataset. The T-100 Domestic Segment Dataset con-
tains domestic market data by air carrier, and origin and destination airports
for passengers enplaned. The T-100 is not a sample: It reports all flights that
occurred in the United States in a given month of the year.

From the merged data set we drop those tickets involving flights that are
not provided on a regular basis or for which there is no record in the T-100
segment. We drop all tickets that involve a flight that is not provided at least
once a week.

Then we merge by ticket identification numbers the reduced DB1B Coupon
Origin and Destination Dataset with the DB1B Market and Ticket Origin and
Destination Dataset. The DB1B Market Origin and Destination Dataset con-
tains directional market characteristics of each domestic itinerary of the Origin
and Destination Survey, such as the reporting carrier, origin and destination
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airport, prorated market fare, number of market coupons, market miles flown,
and carrier change indicators. The DB1B Ticket contains summary characteris-
tics of each domestic itinerary on the Origin and Destination Survey, including
the reporting carrier, itinerary fare, number of passengers, originating airport,
roundtrip indicator, and miles flown. The unit of observation in this data set is
a ticket.

One important issue is how to treat regional airlines that operate through
code-sharing with national airlines. We assume that the decision to serve a
spoke is made by the regional carrier, which then signs code-share agreements
with the national airlines. As long as the regional airline is independently
owned and issues tickets, we treat it separately from the national airline.

Market Definition: We define a market as the trip between two airports, ir-
respective of intermediate transfer points. Because of data limitations, Berry
(1992) defined a market as the market for air passenger travel between two
cities, which rules out that demand is different for airports in the same city or
metro area. Following Borenstein (1989), we assume that flights to different
airports in the same metropolitan area are in separate markets.

Data Cleaning: We drop (i) tickets with more than six coupons; (ii) tickets
involving U.S. nonreporting carriers flying within North America (small air-
lines serving big airlines) and foreign carrier flying between two U.S. points;
(iii) tickets that are part of international travel; (iv) tickets involving noncon-
tiguous domestic travel (Hawaii, Alaska, and territories); (v) tickets whose fare
credibility is questioned by the Department of Transportation; (vi) tickets that
are neither one-way nor round-trip travel; (vii) tickets including travel on more
than one airline on a directional trip (known as interline tickets); (viii) tickets
with fares less than 20 dollars; (ix) tickets in the top and bottom five percentiles
of the year–quarter fare distribution. Finally, Berry (1992) defined a firm as
serving a market if it transported at least 90 passengers in one quarter. This
corresponds to a once a week flight by a medium size jet. Since we already con-
trol for firms that fly less than once a week and since markets can be served by
small regional jets, we change the threshold to 20 passengers (each way). We
then aggregate the ticket data by ticketing carrier; thus the unit of observation
is market–carrier–year–quarter specific.

In this paper we are only interested in knowing whether a carrier served
a market. Therefore, the aggregation is straightforward: For each carrier, we
construct a categorical variable that is equal to 1 if the carrier serves the mar-
ket and equal to 0 otherwise. After constructing the categorical variables, the
relevant unit of observation is market–year–quarter specific.

Market Selection: To select the markets, we merge this data set with demo-
graphic information on population from the U.S. Census Bureau for all the
metropolitan statistical areas (MSAs) of the United States. We then construct
a ranking of airports by the MSA’s market size. The data set includes a sam-
ple of markets between the top 50 metropolitan statistical areas, ranked by
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population size. We exclude the Muskegon County Airport, the Saint Peters-
burg/Clearwater International Airport, and the Atlantic City International Air-
port because there are too few markets between these airports and the remain-
ing airports. Including them would increase the number of unserved markets
artificially. As mentioned in the text, we include markets that are temporarily
not served by any carrier. To identify markets that are almost never served by
any carrier from markets that are only temporarily not served by any carrier,
we proceed as follows. We consider the full 1996–2007 data set of market–
carrier–year–quarter observations. For each market, we compute the number
of quarters that a market has been served by at least one carrier. Then we drop
from the data set those markets that have not been served in at least 50% of
all the quarters in the full data set. We keep markets out of and to Dallas Love
airport which are at least 500 miles distant from the Dallas airport. This last
condition is to investigate the effect of the Wright Amendment on carriers’
entry decisions.

Airline Types: We lump some of the carriers in our data set in two types.
There are two reasons to do this. First, many low cost carriers are present in
only a few markets, and lumping them allows us to use a meaningful group-
ing that captures the impact of a small low cost carrier presence in the mar-
ket. Second, the number of possible market structures that can be an equilib-
rium grows exponentially with the number of firms. For any K firms, there are
2K possible market structures. This is clearly prohibitive with many firms. We
lump Northwest, Continental, America West, and USAir under the medium
airline type. To facilitate this assumption, we drop markets where one of the
two endpoints is one of these hubs: Minneapolis, Detroit, Memphis, Cleveland,
Newark, Houston International, Charlotte, Philadelphia, Pittsburgh, Phoenix,
Las Vegas.

Carrier Airport Presence: The construction of the variable carrier airport pres-
ence is straightforward. For example, when we consider Delta, we proceed as
follows. If Delta serves 60 markets out of Atlanta and there are 84 markets
that are served out of Atlanta, then for each market that we consider out of
Atlanta (e.g., Atlanta to Chicago O’Hare), Delta serves 59/83 � 71% of the
other markets out of Atlanta. We repeat the same computation for the other
endpoint and then take the average.

The construction of the variable requires some additional steps when we
consider types of firms. When we consider the medium airlines (MA), we first
compute the airport presence for USAir, Continental, and America West, and
then we take the maximum of the three. When we consider the low cost carriers
(LCC), we first compute the airport presence of each of the low cost carriers,
and then again we take their maximum.

The Opportunity Cost of Serving a Market: To construct the measure of cost,
we consider the following hub airports: Dallas/Fort Worth and Chicago O’Hare
for American; Cleveland, Houston International, and Newark for Continen-
tal; Atlanta, Cincinnati, and Dallas/Fort Worth for Delta; Phoenix and Las



10 F. CILIBERTO AND E. TAMER

Vegas for America West; Minneapolis and Detroit for Northwest; Denver
and Chicago O’Hare for United; Charlotte, Pittsburgh, and Philadelphia for
USAir. To derive the measure of cost for the medium airlines (MA), we take
the minimum among the distances that we compute for Continental, USAir,
America West, and Northwest. Southwest does not really have major hubs; it
uses several airports, among which we consider Chicago Midway, Baltimore,
Las Vegas, Houston Hobby, Phoenix, and Kansas City. With the exception of
ATA, low cost carriers do not have hubs in the same sense that we mean for
the largest carriers. To construct a measure of the cost, we compute the (mini-
mum) distance from airports where LCCs had a meaningful presence. The full
list of these airports is available from the authors.

Details on the Wright Amendment: The Wright Amendment restricted flight
to states neighboring Texas by allowing flights with only a small commuter
plane with up to a total capacity of 56 passengers. To understand how the
amendment affected competition in markets out of Dallas Love, it is essen-
tial to know that one characteristic that distinguishes Southwest Airlines from
other national carriers is Southwest’s reliance on only one aircraft type, the
Boeing 737. Southwest flies a single type of aircraft to simplify operations
in terms of maintenance (older planes can be used for replacement parts),
staffing, and training. Boeing 737s have a capacity of no less than 100 passen-
gers.

The two main arguments in support of the Wright Amendment were that the
amendment only applied to Love Field—not to Southwest—and that South-
west could fly nationwide from Dallas/Fort Worth, which is done by other low
cost carriers.

Southwest, however, claimed that providing service at Dallas/Fort Worth
would split their operation unnecessarily between the two airports, breaking
their network and driving their costs up. Southwest lobbied for repeal of the
Wright Amendment, claiming that it was “protectionist, anti-competitive, and
anti-consumer.”5 Finally, in October 2006, a bill was enacted that determined
the full repeal of the Wright Amendment in 2014.

S2.2. Discretization

To use the results in CHT, one needs to discretize the regressors since, cur-
rently, methods do not exist for inference in conditional moment inequalities
with continuous regressors. There are many ways to discretize. We have run all
our results with a coarse grid that discretizes all continuous variables into four
separate bins, according to the 0, 25, 50, and 75th quantiles. In the paper, we
use a more refined discretization where continuous variables are binned into
at most 12 bins. The policy results were almost identical with the two types of
discretization; the coefficients were slightly different.

5From the statement regarding repeal of the Wright Amendment from Southwest Airlines’
CEO Gary Kelly, available from Southwest’s web site.
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