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PROOF OF LEMMA 2.1: First recall the simplifications following from As-
sumptions 2.1 and 2.2 noted at the beginning of Section 2. Next, note from
equation (1) and Assumption 2.1 that

Pr{D = 1�Y = 1|X = x′�P = p} = Pr{ε2 ≤ p�ε1 ≤ ν1(1�x′)}
and

Pr{D = 1�Y = 1|X = x′�P = p′} = Pr{ε2 ≤ p′� ε1 ≤ ν1(1�x′)}�
Thus, for p>p′,

Pr{D = 1�Y = 1|X = x′�P = p} − Pr{D = 1�Y = 1|X = x′�P = p′}
is equal to

Pr{p′ < ε2 ≤ p�ε1 ≤ ν1(1�x′)}�
It follows similarly that

Pr{D = 0�Y = 1|X = x�P = p′} = Pr{ε2 >p′� ε1 ≤ ν1(0�x)}
and

Pr{D = 0�Y = 1|X = x�P = p} = Pr{ε2 >p�ε1 ≤ ν1(0�x)}�
Therefore,

Pr{D = 0�Y = 1|X = x�P = p′} − Pr{D = 0�Y = 1|X = x�P = p}
is equal to

Pr{p′ < ε2 ≤ p�ε1 ≤ ν1(0�x)}�
Hence,

h(x�x′�p�p′)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr{p′ < ε2 ≤ p�ν1(0�x) < ε1 ≤ ν1(1�x′)}
if ν1(1�x′) > ν1(0�x)�

0
if ν1(1�x′)= ν1(0�x)�

−Pr{p′ < ε2 ≤ p�ν1(1�x′) < ε1 ≤ ν1(0�x)}
if ν1(1�x′) < ν1(0�x)�
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The desired conclusion now follows immediately from Assumption 2.2.
Q.E.D.

PROOF OF THEOREM 2.1: Consider part (i) of the theorem. We derive
bounds on G1(0�x) = Pr{Y0 = 1|X = x}; the bounds on G1(1�x) and on
�G1(x) follow from parallel arguments.

Note that

Pr{Y0 = 1|X = x�P = p} = Pr{D= 0�Y0 = 1|X = x�P = p}
+ Pr{D = 1�Y0 = 1|X = x�P = p}�

By Lemma 2.1, equation (1), and Assumption 2.1,

Pr{D = 1�Y0 = 1|X = x�P = p} ≤ Pr{D = 1�Y = 1|X = x′�P = p}
for all x′ ∈ X0+(x) and

Pr{D = 1�Y0 = 1|X = x�P = p} ≥ Pr{D = 1�Y = 1|X = x′�P = p}
for all x′ ∈ X0−(x). Thus, Pr{Y0 = 1|X = x�P = p} is bounded from below by

Pr{D = 0�Y = 1|X = x�P = p}
+ sup

x′∈X0−(x)

Pr{D= 1�Y = 1|X = x′�P = p}

and from above by

Pr{D = 0�Y = 1|X = x�P = p}
+p inf

x′∈X0+(x)
Pr{Y = 1|D= 1�X = x′�P = p}�

where all supremums and infimums are only taken over regions where all con-
ditional probabilities are well defined, and with the convention that the supre-
mum over the empty set is 0 and the infimum over the empty set is 1. The stated
result now follows by noting that equation (1) and Assumption 2.1 imply that
Pr{Y0 = 1|X = x} = Pr{Y0 = 1|X = x�P = p}.

Consider part (ii) of the theorem. We prove the result for the term L0(x);
the result for the other terms follows from parallel arguments.

Suppose supp(P) is not a singleton, for otherwise there is nothing to prove.
Since supp(X�P) = supp(X) × supp(P), h(x�x′�p�p′) is well defined for
some p < p′ with (p�p′) ∈ supp(P)2 and any (x�x′) ∈ supp(X)2. Hence, by
Lemma 2.1, we have that

X0−(x) = {x′ :ν1(1�x′)≤ ν1(0�x)}�(4)
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It follows from Assumptions 2.3 and 2.4 that X0−(x) is compact. Hence, by
Assumption 2.4, there exists xl

0(x) ∈ X0−(x) such that

ν1(1�xl
0(x))= sup

x′∈X0−(x)

ν1(1�x′)�

From equation (1), we therefore have for any p ∈ supp(P) that

sup
x′∈X0−(x)

Pr{D = 1�Y = 1|X = x′�P = p}

= Pr{D= 1�Y = 1|X = xl
0(x)�P = p}�

from which it follows that

L0(x) = sup
p

{
Pr{D = 0�Y = 1|X = x�P = p}

+ Pr{D= 1�Y = 1|X = xl
0(x)�P = p}}�

To complete the argument, note for any p>p′ that
(
Pr{D = 0�Y = 1|X = x�P = p}

+ Pr{D= 1�Y = 1|X = xl
0(x)�P = p})

− (
Pr{D = 0�Y = 1|X = x�P = p′}

+ Pr{D= 1�Y = 1|X = xl
0(x)�P = p′})

= Pr
{
ε1 ≤ ν1(1�xl

0(x))�p
′ < ε2 ≤ p

}
− Pr{ε1 ≤ ν1(0�x)�p′ < ε2 ≤ p}

≤ 0�

where the final inequality follows from the fact that xl
0(x) ∈ X0−(x) and (4).

Finally, consider part (iii) of the theorem. Before proceeding, we intro-
duce some notation. Let (ε∗

1� ε
∗
2) denote a random vector with (ε∗

1� ε
∗
2) ⊥⊥

(X�Z) and with (ε∗
1� ε

∗
2) having density f ∗

1�2 with respect to Lebesgue mea-
sure on R2. Let f ∗

2 denote the corresponding marginal density of ε∗
2 and let f ∗

1|2
denote the corresponding density of ε∗

1 conditional on ε∗
2. Let f1�2, f1|2, and f2

denote the corresponding density functions for (ε1� ε2). We will also make use
of F1�2, the cumulative distribution function (c.d.f.) for (ε1� ε2), and F1�−2, the
c.d.f. for (ε1�−ε2).

To show that our bounds on G1(0�x), G1(1�x), and G1(1�x) − G1(0�x)
are sharp, it suffices to show that for any x ∈ supp(X) and (s0� s1) ∈ [L0(x)�
U0(x)] × [L1(x)�U1(x)], there exists a density function f ∗

1�2 such that the fol-
lowing claims hold:
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(A) f ∗
1�2 is strictly positive on R2.

(B) the proposed model is consistent with the observed data, that is,
(i) Pr{D= 1|X = x̃�P = p} = Pr{ε∗

2 ≤ p},
(ii) Pr{Y = 1|D= 1�X = x̃�P = p} = Pr{ε∗

1 ≤ ν1(1� x̃)|ε∗
2 ≤ p},

(iii) Pr{Y = 1|D= 0�X = x̃�P = p} = Pr{ε∗
1 ≤ ν1(0� x̃)|ε∗

2 >p}
for all (x̃�p) ∈ supp(X�P).

(C) The proposed model is consistent with the specified values of G1(0�x)
and G1(1�x), that is,

(i) Pr{ε∗
1 ≤ ν1(0�x)} = s0,

(ii) Pr{ε∗
1 ≤ ν1(1�x)} = s1.

Let x ∈ supp(X) and (s0� s1) ∈ [L0(x)�U0(x)] × [L1(x)�U1(x)] be given. We
prove the result for the case where Xd−(x) �= ∅, Xd+(x) �= ∅, and Xd−(x) ∩
Xd+(x) = ∅ for d ∈ {0�1}; the result in the other cases follows from analogous
arguments. Note that by arguing as in Remark 2.2, this implies in particular
that Ld(x) < Ud(x) for d ∈ {0�1}. For brevity, we also only consider (s0� s1) ∈
(L0(x)�U0(x))× (L1(x)�U1(x)); the case where sd equals Ld(x) or Ud(x) for
some d ∈ {0�1} follows from a straightforward modification of the argument
below.

Recall that h(x�x′�p�p′) is well defined for some p < p′ with (p�p′) ∈
supp(P)2 and any (x�x′) ∈ supp(X)2 because supp(X�P) = supp(X) ×
supp(P). Arguing as in the proof of part (ii) of the theorem, we have that

L0(x) = Pr{D = 0�Y = 1|X = x�P = p}(5)

+ Pr{D = 1�Y = 1|X = xl
0(x)�P = p}�

U0(x) = Pr{D = 0�Y = 1|X = x�P = p}
+ Pr{D = 1�Y = 1|X = xu

0(x)�P = p}�
L1(x) = Pr{D = 1�Y = 1|X = x�P = p}

+ Pr{D = 0�Y = 1|X = xl
1(x)�P = p}�

U1(x) = Pr{D = 1�Y = 1|X = x�P = p}
+ Pr{D = 0�Y = 1|X = xu

1(x)�P = p}�
where xl

d(x) and xu
d(x) for d ∈ {0�1} denote evaluation points such that

Pr{D = 1�Y = 1|X = xl
0(x)�P = p}

= sup
x′∈X0−(x)

Pr{D= 1�Y = 1|X = x′�P = p}�

Pr{D = 1�Y = 1|X = xu
0(x)�P = p}

= inf
x′∈X0+(x)

Pr{D= 1�Y = 1|X = x′�P = p}�
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Pr{D = 0�Y = 1|X = xl
1(x)�P = p}

= sup
x′∈X1+(x)

Pr{D= 0�Y = 1|X = x′�P = p}�

Pr{D = 0�Y = 1|X = xu
1(x)�P = p}

= inf
x′∈X1−(x)

Pr{D= 0�Y = 1|X = x′�P = p}�

Let

s∗
0 = s0 − Pr{D = 0�Y = 1|X = x�P = p}�
s∗

1 = s1 − Pr{D = 1�Y = 1|X = x�P = p}�
Using equation (5) and the fact that sd ∈ (Ld(x)�Ud(x)) for d ∈ {0�1}, we have
that

s∗
0 ∈ (

F1�2

(
ν1(1�xl

0(x))�p
)
�F1�2

(
ν1(1�xu

0(x))�p
))
�(6)

s∗
1 ∈ (

F1�−2

(
ν1(0�xl

1(x))�−p
)
�F1�−2

(
ν1(0�xu

1(x))�−p
))
�

These intervals are nonempty because Ld(x) < Ud(x) for d ∈ {0�1}. It follows
by Lemma 2.1 that

ν1(d�x
l
1−d(x)) < ν1(1 − d�x) < ν1(d�x

u
1−d(x))(7)

for d ∈ {0�1}, where the strict inequalities follow from our assumption that
Xd−(x) ∩ Xd+(x) = ∅ for d ∈ {0�1}. Furthermore, by the construction of xl

d(x)
and xu

d(x) for d ∈ {0�1}, it must be the case for d ∈ {0�1} and x̃ ∈ supp(X) that

ν1(d� x̃) /∈
(
ν1(d�x

l
1−d(x))� ν1(d�x

u
1−d(x))

)
�(8)

We now construct the proposed density f ∗
1�2 as follows. Let f ∗

1�2(t1� t2) =
f ∗

1|2(t1|t2)f ∗
2 (t2), where f ∗

2 (t2)= f2(t2) = I{0 ≤ t2 ≤ 1} and

f ∗
1|2(t1|t2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(t2)f1|2(t1|t2)
if ν1(1�xl

0(x)) < t1 < ν1(0�x) and t2 <p�

b(t2)f1|2(t1|t2)
if ν1(0�x)≤ t1 < ν1(1�xu

0(x)) and t2 <p�

c(t2)f1|2(t1|t2)
if ν1(0�xl

1(x)) ≤ t1 < ν1(1�x) and t2 >p�

d(t2)f1|2(t1|t2)
if ν1(1�x)≤ t1 < ν1(0�xu

1(x)) and t2 >p�

f1|2(t1|t2)
otherwise�
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with

a(t2) = Pr{ν1(1�xl
0(x)) < ε1 < ν1(1�xu

0(x))|ε2 = t2}
Pr{ν1(1�xl

0(x)) < ε1 < ν1(0�x)|ε2 = t2}

× s∗
0 − F1�2(ν1(1�xl

0(x))�p)

F1�2(ν1(1�xu
0(x))�p)− F1�2(ν1(1�xl

0(x))�p)
�

b(t2) = (
Pr{ν1(1�xl

0(x)) < ε1 < ν1(1�xu
0(x))|ε2 = t2}

− a(t2)Pr{ν1(1�xl
0(x)) < ε1 < ν1(0�x)|ε2 = t2}

)
/Pr{ν1(0�x) < ε1 < ν1(1�xu

0(x))|ε2 = t2}�

c(t2) = Pr{ν1(0�xl
1(x)) < ε1 < ν1(0�xu

1(x))|ε2 = t2}
Pr{ν1(0�xl

1(x)) < ε1 < ν1(1�x)|ε2 = t2}

× s∗
1 − F1�−2(ν1(0�xl

1(x))�−p)

F1�−2(ν1(0�xu
1(x))�−p)− F1�−2(ν1(0�xl

1(x))�−p)
�

d(t2) = (
Pr{ν1(0�xl

1(x)) < ε1 < ν1(0�xu
1(x))|ε2 = t2}

− c(t2)Pr{ν1(0�xl
1(x)) < ε1 < ν1(1�x)|ε2 = t2}

)
/Pr{ν1(1�x) < ε1 < ν1(0�xu

0(x))|ε2 = t2}�
These quantities are well defined because of the fact that the intervals in (6)
are nonempty, because of (7), and Assumption 2.2.

We now argue that f ∗
1�2 satisfies claim (A), that is, that it is a strictly positive

density on R2. For this purpose, it suffices to show that f ∗
1|2 integrates to 1 and is

strictly positive on R. First consider whether f ∗
1|2 integrates to 1. For t2 ∈ [p�p],

f ∗
1|2(·|t2)= f1|2(·|t2) and so the result follows immediately. For t2 <p,

∫ ∞

−∞
f ∗

1|2(t1|t2)dt1

=
∫ ν1(1�x

l
0(x))

−∞
f1|2(t1|t2)dt1 + a(t2)

∫ ν1(0�x)

ν1(1�x
l
0(x))

f1|2(t1|t2)dt1

+ b(t2)

∫ ν1(1�x
u
0 (x))

ν1(0�x)
f1|2(t1|t2)dt1 +

∫ ∞

ν1(1�x
u
0 (x))

f1|2(t1|t2)dt1

= Pr
{
ε1 ≤ ν1(1�xl

0(x))|ε2 = t2
}

+ Pr
{
ν1(1�xl

0(x)) < ε1 < ν1(1�xu
0(x))|ε2 = t2

}
+ Pr{ε1 ≥ ν1(1�xu

0(x))|ε2 = t2}
= 1�
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A similar argument shows that
∫
f ∗

1|2(t1|t2)dt1 = 1 for t2 >p.
Since f1|2 is strictly positive on R, to establish that f ∗

1|2 is strictly positive
on R, it suffices to show that a(t2)�b(t2)� c(t2), and d(t2) are all strictly posi-
tive. Consider a(t2) and b(t2); the proof for c(t2) and d(t2) follows from simi-
lar arguments. From (6), we have that s∗

0 > F1�2(ν1(1�xl
0(x))�p), which together

with (7) and Assumption 2.2 implies that a(t2) > 0. Similarly, from (6), we have
that s∗

0 <F1�2(ν1(1�xu
0(x))�p), which implies that

s∗
0 − F1�2(ν1(1�xl

0(x))�p)

F1�2(ν1(1�xu
0(x))�p)− F1�2(ν1(1�xl

0(x))�p)
< 1�

It therefore follows from (7) and Assumption 2.2 that

Pr
{
ν1(1�xl

0(x)) < ε1 < ν1(1�xu
0(x))|ε2 = t2

}
− a(t2)Pr

{
ν1(1�xl

0(x)) < ε1 < ν1(0�x)|ε2 = t2
}

= Pr
{
ν1(1�xl

0(x)) < ε1 < ν1(1�xu
0(x))|ε2 = t2

}

×
(

1 − s∗
0 − F1�2(ν1(1�xl

0(x))�p)

F1�2(ν1(1�xu
0(x))�p)− F1�2(ν1(1�xl

0(x))�p)

)

> 0�

so b(t2) > 0.
We now argue that f ∗

1�2 satisfies claim (B). Since f ∗
2 = f2, we have immediately

that Pr{ε∗
2 ≤ p} = Pr{D = 1|X = x̃�P = p} for all (x̃�p) ∈ supp(X�P). Con-

sider Pr{ε∗
1 ≤ ν1(1� x̃)|ε∗

2 ≤ p}. From (8), we have that ν1(1� x̃) ≤ ν1(1�xl
0(x))

or ν1(1� x̃) ≥ ν1(1�xu
0(x)) for any x̃ ∈ supp(X). For (x̃�p) ∈ supp(X�P) such

that ν1(1� x̃) ≤ ν1(1�xl
0(x)), we have

Pr{ε∗
1 ≤ ν1(1� x̃)|ε∗

2 ≤ p}

= 1
p

∫ p

0

∫ ν1(1�x̃)

−∞
f ∗

1�2(t1� t2)dt1 dt2

= 1
p

∫ p

0

∫ ν1(1�x̃)

−∞
f1�2(t1� t2)dt1 dt2

= Pr{ε1 ≤ ν1(1� x̃)|ε2 ≤ p} = Pr{Y = 1|D= 1�X = x̃�P = p}�
For (x̃�p) ∈ supp(X�P) such that ν1(1� x̃) ≥ ν1(1�xu

0(x)), we have

Pr{ε∗
1 ≤ ν1(1� x̃)|ε∗

2 ≤ p}

= 1
p

∫ p

0

∫ ν1(1�x̃)

−∞
f ∗

1�2(t1� t2)dt1 dt2
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= 1
p

{∫ p

p

∫ ν1(1�x̃)

−∞
f1�2(t1� t2)dt1 dt2

+
∫ p

0

[∫ ν1(1�x
l
0(x))

−∞
f1|2(t1|t2)dt1 + a(t2)

∫ ν1(0�x)

ν1(1�x
l
0(x))

f1|2(t1|t2)dt1

+ b(t2)

∫ ν1(1�x
u
0 (x))

ν1(0�x)
f1|2(t1|t2)dt1 +

∫ ν1(1�x̃)

ν1(1�x
u
0 (x))

f1|2(t1|t2)dt1
]
dt2

}

= 1
p

{
Pr{ε1 ≤ ν1(1� x̃)�p < ε2 ≤ p} + Pr{ε1 ≤ ν1(1� x̃)� ε2 ≤ p}}

= Pr{ε1 ≤ ν1(1� x̃)|ε2 ≤ p} = Pr{Y = 1|D= 1�X = x̃�P = p}�

The proof that Pr{ε∗
1 ≤ ν1(0� x̃)|ε∗

2 > p} = Pr{Y = 1|D = 0�X = x̃�P = p} for
all (x̃�p) ∈ supp(X�P) follows from an analogous argument.

Finally, we argue that f ∗
1�2 satisfies claim (C). Consider Pr{ε∗

1 ≤ ν1(0�x)}.
From (8), we have that ν1(1�x) ≤ ν1(1�xl

0(x)) or ν1(1�x) ≥ ν1(1�xu
0(x)). In

the former case, we have that

Pr{ε∗
1 ≤ ν1(0�x)}

=
∫ 1

0

∫ ν1(0�x)

−∞
f ∗

1�2(t1� t2)dt1 dt2

=
{∫ p

0

(∫ ν1(1�x
l
0(x))

−∞
f ∗

1�2(t1� t2)dt1 +
∫ ν1(0�x)

ν1(1�x
l
0(x))

f ∗
1�2(t1� t2)dt1

)
dt2

+
∫ 1

p

∫ ν1(0�x)

−∞
f ∗

1�2(t1� t2)dt1 dt2

}

=
{∫ p

0

(∫ ν1(1�x
l
0(x))

−∞
f1�2(t1� t2)dt1 + a(t2)

∫ ν1(0�x)

ν1(1�x
l
0(x))

f1�2(t1� t2)dt1

)
dt2

+
∫ 1

p

∫ ν1(0�x)

−∞
f1�2(t1� t2)dt1 dt2

}

= s∗
0 + Pr{D= 0�Y = 1|X = x�P = p} = s0�

In the latter case, it suffices to show that

∫ 1

p

∫ ν1(0�x)

−∞
f ∗

1�2(t1� t2)dt1 dt2 =
∫ 1

p

∫ ν1(0�x)

−∞
f1�2(t1� t2)dt1 dt2�
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For this purpose, it suffices to show that

∫ 1

p

∫ ν1(0�x
u
1 (x))

ν1(0�x
l
1(x))

f ∗
1�2(t1� t2)dt1 dt2 =

∫ 1

p

∫ ν1(0�x
u
1 (x))

ν1(0�x
l
1(x))

f1�2(t1� t2)dt1 dt2�

since outside of this region of integration f ∗
1�2 = f1�2. Note that

∫ 1

p

∫ ν1(0�x
u
1 (x))

ν1(0�x
l
1(x))

f ∗
1�2(t1� t2)dt1 dt2

=
∫ 1

p

c(t2)

∫ ν1(0�x)

ν1(0�x
l
1(x))

f1|2(t1|t2)dt1 dt2

+
∫ 1

p

d(t2)

∫ ν1(0�x
u
1 (x))

ν1(0�x)
f1|2(t1|t2)dt1 dt2

=
∫ 1

p

c(t2)Pr
{
ν1(0�xl

1(x)) < ε1 < ν1(0�x)|t2
}
dt2

+
∫ 1

p

d(t2)Pr
{
ν1(0�x) < ε1 < ν1(0�xu

1(x))|t2
}
dt2

=
∫ 1

p

Pr
{
ν1(0�xl

1(x)) < ε1 < ν1(1�xu
1(x))|t2

}
dt2

=
∫ 1

p

∫ ν1(0�x
u
1 (x))

ν1(0�x
l
1(x))

f1�2(t1� t2)dt1 dt2�

as desired. The proof that Pr{ε∗
1 ≤ ν1(1�x)} = s1 follows from an analogous

argument. Q.E.D.
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