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SUPPLEMENT TO “PARTIAL IDENTIFICATION IN TRIANGULAR
SYSTEMS OF EQUATIONS WITH BINARY DEPENDENT
VARIABLES”: APPENDIX
(Econometrica, Vol. 79, No. 3, May 2011, 949-955)

BY AZEEM M. SHAIKH AND EDWARD J. VYTLACIL

PROOF OF LEMMA 2.1: First recall the simplifications following from As-
sumptions 2.1 and 2.2 noted at the beginning of Section 2. Next, note from
equation (1) and Assumption 2.1 that

PriD=1,Y=1|X=x,P=p}=Pr{e; < p, &1 <vi(1,x)}
and
PriD=1,Y=1|X=x,P=p}=Pr{e; < p', &1 <vi(1, x")}.
Thus, for p > p/,
PriD=1,Y=1X=x,P=p}—-Pr{D=1,Y=1|X=x",P=p}
is equal to
Pr{p’ <& < p,e1 <wi(1,x)}.
It follows similarly that

Pr{D=0,Y =1|X =x,P = p'} =Pr{e; > p', &, <11(0, %))

and
Pr{iD=0,Y=1|X =x,P = p}=Pr{e; > p, &1 <v(0, x)}.
Therefore,
Pr{iD=0,Y=1X=x,P=p}—Pr{D=0,Y=1|X=x,P=p}
is equal to
Pr{p' < e < p, e <v(0,x)}.
Hence,

Pr{p' <&, < p,v1(0,x) <& <vi(1,x)}
ifyl(lax/) > V1(07 x)7
/ A 0
PPN i, (1, x) =00, 1),
—Pr{p' <&, < p,vi(1,x") <& <v(0,x)}
ifVl(l,x/) < Vl(o, x).
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The desired conclusion now follows immediately from Assumption 2.2.
Q.E.D.

PROOF OF THEOREM 2.1: Consider part (i) of the theorem. We derive
bounds on G,(0, x) = Pr{Y, = 1|X = x}; the bounds on G;(1,x) and on
AG(x) follow from parallel arguments.

Note that

Pr{Y,=1X=x,P=p}=Pr{D=0,Y,=1|X =x,P = p}
+Pr{D=1,Y,=1|X=x,P=p}.

By Lemma 2.1, equation (1), and Assumption 2.1,
Pr{iD=1,Y,=1|X=x,P=p}<Pr{D=1,Y=1|X=x', P = p}

for all x’ € Xy, (x) and
PriD=1,Y,=1|X=x,P=p}>Pr{D=1,Y=1|X=x', P = p}

for all x" € Xy_(x). Thus, Pr{Y, = 1|X = x, P = p} is bounded from below by

Pr{iD=0,Y=1|X =x, P = p}
+ sup Pr{iD=1,Y=1X=x',P=p}

x'eXp_(x)
and from above by

Pr{D=0,Y=1X=x,P=p}
+p inf P{Y=1D=1,X=x,P=p),

x'€Xpy (x)

where all supremums and infimums are only taken over regions where all con-
ditional probabilities are well defined, and with the convention that the supre-
mum over the empty set is 0 and the infimum over the empty set is 1. The stated
result now follows by noting that equation (1) and Assumption 2.1 imply that
Pr{Yo=1|X =x} =Pr{Yy=1|X =x, P = p}.

Consider part (ii) of the theorem. We prove the result for the term Lg(x);
the result for the other terms follows from parallel arguments.

Suppose supp(P) is not a singleton, for otherwise there is nothing to prove.
Since supp(X, P) = supp(X) x supp(P), h(x,x', p, p') is well defined for
some p < p’ with (p, p’) € supp(P)? and any (x, x") € supp(X)>. Hence, by
Lemma 2.1, we have that

4) Xo-(x) = {x":1(1, x") <11(0, x)}.
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It follows from Assumptions 2.3 and 2.4 that X,_(x) is compact. Hence, by
Assumption 2.4, there exists xé(x) € X,_(x) such that

v (1, xf)(x)) = sup »(1,x).

x'eXp_(x)
From equation (1), we therefore have for any p € supp(P) that

sup PriD=1,Y=1|X=x,P=p}

x'eXp_(x)
=Pr{D=1,Y =1|X =x}(x), P = p},
from which it follows that

Lo(x) =sup{Pr{D=0,Y =1|X =x, P = p}
p

+Pr{D=1,Y =1|X = xy(x), P = p}}.
To complete the argument, note for any p > p’ that
(Pr{D=0,Y =1|X =x, P = p}
+Pr{D=1,Y =1|X =x{(x), P = p})
—(Pr{D=0,Y=1|X=x,P=p'}
+Pr{D=1,Y =1|X = x{(x), P = p'})

=Pr{e; <v (1, x{(x)), p' < & < p}
- Pr{81 S Vl(oa x)5 p/ <& S p}

<0,

where the final inequality follows from the fact that x}(x) € X,_(x) and (4).

Finally, consider part (iii) of the theorem. Before proceeding, we intro-
duce some notation. Let (&}, £}) denote a random vector with (&7, &) 1L
(X, Z) and with (&7, &) having density f{fz with respect to Lebesgue mea-
sure on R*. Let f; denote the corresponding marginal density of &} and let f7;,
denote the corresponding density of &} conditional on &;. Let fi,, fip, and f5
denote the corresponding density functions for (&1, &,). We will also make use
of F ,, the cumulative distribution function (c.d.f.) for (&, &,), and F _,, the
c.df. for (g1, —&,).

To show that our bounds on G,(0, x), G;(1,x), and G(1,x) — G,(0, x)
are sharp, it suffices to show that for any x € supp(X) and (s, 51) € [Lo(x),
Up(x)] x [L1(x), Uy(x)], there exists a density function f1*,2 such that the fol-
lowing claims hold:
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(A) fr, is strictly positive on R®.

(B) the proposed model is consistent with the observed data, that is,
(i) Pr{D =1|X =%, P = p} = Pr{e; < p},

(i) Pr{Y =1|D =1, X =%, P= p} = Pr{e] <n(1,%)le; < p},

(iii) P{Y =11D=0,X =X, P = p} =Pr{e} <v(0, X)|&} > p}
for all (x, p) € supp(X, P).

(C) The proposed model is consistent with the specified values of G,(0, x)
and G,(1, x), that is,

(1) Pr{ST = Vl(o, x)} = S0,
(ii) Pr{e} <vi(1,x)} =sy.

Let x € supp(X) and (sy, 51) € [Lo(x), Up(x)] x [L1(x), U;(x)] be given. We
prove the result for the case where X, (x) # @, X, (x) # @, and X,;_(x) N
X, (x) =0 for d € {0, 1}; the result in the other cases follows from analogous
arguments. Note that by arguing as in Remark 2.2, this implies in particular
that L,(x) < Uy(x) for d € {0, 1}. For brevity, we also only consider (sp, s1) €
(Lo(x), Up(x)) x (L1(x), U(x)); the case where s, equals L,(x) or U,(x) for
some d € {0, 1} follows from a straightforward modification of the argument
below.

Recall that A(x, x’, p, p’) is well defined for some p < p’ with (p, p') €
supp(P)? and any (x,x’) € supp(X)? because supp(X,P) = supp(X) x
supp(P). Arguing as in the proof of part (ii) of the theorem, we have that

5) Ly(x)=Pr{D=0,Y =1|X =x, P = p}
+Pr{D=1,Y =1|X = x{(x), P=p},
Up(x)=Pr{D=0,Y =1|X =x, P = p}
+Pr{D=1,Y =1|X = x;(x), P = p},
Lix)=Pr{D=1,Y=1X=x,P=p}
+Pr{D=0,Y =1|X =x\(x),P =7},
Ux)=Pr{D=1,Y=1|X=x,P =D}
+Pr{D=0,Y =1|X =x{(x), P=D},
where x/,(x) and x%(x) for d € {0, 1} denote evaluation points such that
Pr{iD=1,Y =1|X = x((x), P = p}
= sup Pr{D=1,Y=1X=x",P=p},

x'eXg_(x)

PrD=1,Y =1|X = xi(x), P = p)
= inf PI'{DZl,Y:HX:x/’P:B},

x'eXpy (x)
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Pr(D=0,Y =1|X =x!(x), P =D}
= sup Pr{D=0,Y=1X=x,P=D},

x'eXq4 (x)
Pr{D=0,Y =1|X =x{(x), P=T}
= inf Pr{D=0,Y=1X=x',P=7}.

x'eXq_(x)
Let
=8 —Pr{D=0,Y=1X=x,P=p},
s;i=s1—Pr{D=1,Y=1|X=x,P=7}.

Using equation (5) and the fact that s, € (L,(x), U,(x)) for d € {0, 1}, we have
that

(6) s; € (F1 2(n(1, x(x)), p), Fio(vi(1, xi(x)), p)),
(Fl 2(V1(0 X (x)),— ) Fi, 2(V1(0 x{(x)), — ))

These intervals are nonempty because L,(x) < U,(x) for d € {0, 1}. It follows
by Lemma 2.1 that

(7) vi(d, x_,(x)) <vi(1—d,x) <vi(d,x"_;(x))

for d € {0, 1}, where the strict inequalities follow from our assumption that
X, (x) N X4y (x) =0 for d € {0, 1}. Furthermore, by the construction of xﬁ,(x)
and x%(x) for d € {0, 1}, it must be the case for d € {0, 1} and X € supp(X) that

(8) V](d7 )‘2) ¢ (Vl(daxll_d(x))’vl(d’ xil_d(x)))'

We now construct the proposed density ff, as follows. Let ff,(4, ) =
fia(tlR) f5 (), where f; () = fo(t) =I1{0 <, < 1} and

a(t) fip(tilt)
if v (1, xh(x)) <t <v1(0,x) and 1, < J2

b(ty) fip(t1]t2)
ifr(0,x) <t <vi(1,x5(x))and 1, < ps

1) = 1 c@) fip(hln)
fia(tilt) = | if (0, x)(x)) <, < (1, x) and 1, > P,
d(t) fip(ti|ty)

ifvi(1,x) <t <v(0,x{(x))and 1, > P,
fip(tlt)

otherwise,




6 A. M. SHAIKH AND E. J. VYTLACIL
with

Pr{vi(1, x{(x)) < &1 <vi(1, x{(x))|e2 = 1}
Pr{vi(1, x{(x)) < &1 <v1(0, x)|e2 = 1}

y sy — Fia(n (1, x(x)), p)
F1,2(V1(1,x3(x)),£) —Fi (ni(1, xé(X)),g)’
b(ty) = (Pr{m (1, x(x)) < &1 < (1, x4(x))|&2 = B}

a(t) =

—a(t) Pr{v (1, xy(x)) < & < 1(0, x) |62 = 1))
/Pr{vi(0, x) < &1 <vi (1, x5(x)) e = 1},
Pr{v (0, x{(x)) < &1 <»1(0, x{(x))|&; =1}

Pr{v;(0, x! (x)) < & <vi(1,x)|e; = 1}
< 57 _Fl,—Z(Vl(Oaxll(x))a )

Fi (110, x{(x)), —=p) — F1,2(n (0, x| (x)), =p)’
d(ty) = (Pr{;(0, x{(x)) < &1 <1 (0, x{(x))| &2 = 1}

() =

— c(t) Pr{wy (0, X1 (x)) < &1 <wi(1, x) |82 = 1r})
/Pr{vi(1, x) < &1 <v1(0, x5(x))|er = B}
These quantities are well defined because of the fact that the intervals in (6)

are nonempty, because of (7), and Assumption 2.2.
We now argue that f}, satisfies claim (A), that is, that it is a strictly positive

density on R*. For this purpose, it suffices to show that f;, integrates to 1 and is
strictly positive on R. First consider whether ffj2 integrates to 1. For t, € [ P> D),

fl*‘z(~|t2) = fip(-|tz) and so the result follows immediately. For #, < P,

/ fia(tlt) dt

v (1,24 (x)) v1(0,x)

=/ fip(tilt) dty + a(t) fip(til) dty

0 vy (1,x}(x))

v1(1,x5(x)) 00

+ b(t,) f12(t1|f2)df1+/ fip(tlt) dy

v1(0,x) vi(1xf(x)
=Pr{e; <vi(1, x((x))]e2 = 1}
+ Pr{vi(1, x(x)) < &1 <vi(1, x{(x))| &2 = 1}
+Prie; > vi(1, x5 (x)) | e, = 1}
=1.
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A similar argument shows that [ fﬂz(h |t)dt, =1for t, > .

Since fy, is strictly positive on R, to establish that f}, is strictly positive
on R, it suffices to show that a(%), b(%), c(t,), and d(t,) are all strictly posi-
tive. Consider a(t,) and b(t,); the proof for c(,) and d(¢,) follows from simi-
lar arguments. From (6), we have that s} > F, »(v (1, xf)(x)), p),which together
with (7) and Assumption 2.2 implies that a(z,) > 0. Similarly, from (6), we have
that s < F,(v1(1, xi(x)), p), which implies that

so — Fi2(n(1, xé(X)),g) -1
Fio(ni(1, x5(x)), p) = Fian(1, x4(x)), p)

It therefore follows from (7) and Assumption 2.2 that
Pr{vi(1, xy(x)) < &1 < v (1, x{(x))|e2 = 1}
— a(t) Pr{n (1, x;(x)) < &1 <110, X)|&, = 1}
:Pr{v](l, x0(x)) < &1 < vi(1, xj(x))| &2 = fz}

y (1 B sg — Fi2(n (1, x4(x)), p) )
F1,2(V1(17 x(‘j(x)),g) —F1,2(V1(1, xf)(x)),g)

>0,

so b(t,) > 0.

We now argue that 7, satisfies claim (B). Since f; = f,, we have immediately
that Pr{e} < p} =Pr{D =1|X =X, P = p} for all (%, p) € supp(X, P). Con-
sider Pr{e} < v,(1, X)|&; < p}. From (8), we have that v,(1, X) < »,(1, x}(x))
or v1(1, %) > v (1, x{(x)) for any X € supp(X). For (X, p) € supp(X, P) such
that v, (1, X) < (1, x}(x)), we have

Pr{e] <vi(1,%)|&; < p}

1 p pri(L,x)
N ;/ / fi(t, b)dt de
0 —00

1 p pri(1,%)
=;// fia(t, ) dt dt,
0 J—-0

=Pr{ie; <vi(1,X)|e; < p}=Pr{Y=1D=1,X=Xx,P=p}.
For (X, p) e supp(X, P) such that »,(1, X) > v,(1, x;(x)), we have

Pr{e] <v(1,%)l&; < p}

1 P D
N E/ / fi(t, b)dndn
O —00
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vi(1,%)
{/ / fia(t, b)d de,

P v(1, xo(x)) v1(0,x)
+/ |:/ fip(tlt) dty + a(t) fip(tlt) dy
0 _

0 vy (1,x} (x))

w1 (Lxl (x) (1,3

+ b(5) f12(11|fz)df1+/

v1(0,x) v1(1,xg(x))

fl‘z(t1|t2) dt1i| dtz}
= %{Pr{sl <n(1,%), p <& < p}+Prie; <1, %), s < p}}
=Pr{e; <vi(1,¥)|e; < p}=Pr{Y=1D=1,X=X%,P=p}.

The proof that Pr{e} <v,(0,%)|e} > p} =Pr{Y =1|D=0,X =X, P = p} for

all (x, p) € supp(X, P) follows from an analogous argument.
Finally, we argue that f}, satisfies claim (C). Consider Pr{s} < (0, x)}.

From (8), we have that v;(1,x) < »,(1, x}(x)) or v;(1,x) > v (1, x%(x)). In
the former case, we have that

Pr{e} <v,(0, x)}

v1(0,x)
/ / flg(fl,fz) dt, dt,
P vi(l, XO(X)) v1(0,x)
Z{/ </ flz(ﬁ,tz)df] / fiz(ﬁ,fz)df])dfz
vi(1,xh(x))
v1(0,x)
/ / f1 z(tl,tz)dtldtz}

P vy (1L,xh(x)) 1(0,%)
= {/ <f fia(t, b)dt + a(ty) fia(ty, tz)dt1> dt,
0 —o0

vi(1,xh(x))
1 pu(0,%)
+/ / f1,2(t17t2)dt1dt2}
E —00

:s§+Pr{D:O,Y:1|X:x,P:£}:sg.

In the latter case, it suffices to show that

1 v1(0,x) 1 v1(0,x)
/ / fio(th, b)) dy dtz=/ / fi2(t, b)) dt db,.
E —00 E —00
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For this purpose, it suffices to show that
L er1(0,xf (x)) L pr1(0,xf (x))
/ / fi.(t, b)) dy dfz=/ / fia(t, ) dt do,
7 Jr0.xh () 7 Jr0.x ()

since outside of this region of integration f7', = fi ,. Note that

L er1(0,xf (x))
/ / I, p)dndy
P Jv

100,x (x))

1 v1(0,x)
=/ c(ty) fip(tilt) dt dt,

P v1(0,x4 (x))

1 v1(0,x§ (x))
+/ d(t) fip(thlt) dt dt,
7

v1(0,x)

1
2/ () Pr{vi (0, x{(x)) < & < (0, x)|62} dty

P

1
+[ d(tz)Pr{Vl(O, X) <& < Vl(o, x’f(x))|t2} dtz
P

1
=/_ Pr{Vl(O, le(x)) <e <, xi‘(x))ltz} dt,

P
L prp(0,xf (x))
=/f fia(t, b)dt dt,,
E 14

10,4 (x))

as desired. The proof that Pr{e} < »,(1, x)} = s, follows from an analogous
argument. Q.E.D.
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