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S.1. PRELIMINARIES IN CONVEX ANALYSIS

DEFINITION S.1.1—Subdifferential: Let f : R — R U {+o0} be a convex function. The
subdifferential of f at z is the set

If(2)={weR*:VZeR", f(2) - f(z) =w' (2 - 2)}.
An element of df (z) is called a subgradient at z.

DEFINITION S.1.2—Convex Conjugate: Let f : R€ — R U {+o0}. Then the convex con-
jugate of f is denoted

f*(w) =sup{zw— f(2)}.

zeRK

The function f* is convex (regardless of whether f is convex) as discussed in Rockafellar
(1970, p. 104).

LEMMA S.1.1—Rockafellar (1970, Theorem 23.5): Let f : RX — R U {400} be a convex
function such that f(y) < oo for some y. Then the following are equivalent:

(i) wedf(z).

(i) z’w — f(z) attains its supremumin z at z = Z.
If, in addition, f is lower semi-continuous,' then the following conditions are also equivalent
to the ones above:

(iii) z € df*(Ww).

(iv) w'z — f*(w) attains its supremum in w at w = W.

LEMMA S.1.2—Rockafellar (1970, Theorem 25.1): Let f : R¥ — R U {400} be convex
and assume f(z) < oo. Then f is differentiable at z if and only if df (z) is a singleton.
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S.2. MEASURABILITY

In this section, we provide sufficient conditions for a measurable selector to exist in
PUM.

Let ¢: 2, — E be a random variable defined from the probability space ({2,, F,, P,)
to the measure space (E,&). Let X : Qx — R% x --- x R be a random variable from

the probability space ({2, Fx, Px) to the measurable space (]—[f;1 Ré%, Bﬂf:1 rdx ), where

Bpjx_ g4 denotes the Borel o-algebra induced by the Euclidean metric in [15_, R%. Note
k=1

that the projection of X in the kth component is a random variable to (R%, B, ).

ASSUMPTION S.2.1: We assume the disturbance function D, utility indices u, and the bud-
get B satisfy the following:
(i) D:RX x E— RU{—00}. Foreach y e RX, D(y, ) is E-measurable. For each ¢ € &,
D(-, &) is continuous.
(i) Forallk=1,...,K, u; : R%* — R is Bya,-measurable.
(iii) B C RX is a nonempty, compact, and convex budget.

LEMMA S.2.1: If Assumption S.2.1 holds and X and e are independent, there exists a
measurable selector
K

Y*e argmanykuk(Xk) +D(y, e).

yeB k=1

PROOF: From Assumption S.2.1(i) and Stinchcombe and White (1992, Lemma 2.15),
D is Bgx ® E-measurable. From Assumption S.2.1(ii), we have that u, (Xy) is an—l Rk "

measurable since it is a composition of a measurable function and the continuous pro-
jection of X to X. Therefore, each gi(y, X) = yiu;(X;) is continuous in RX for each
X and anﬂm -measurable for each y € R¥. By Stinchcombe and White (1992, Lemma

2.15), g is Brx ® Bl'liil rdc -Measurable.

Since D(y, ) does not depend on X and X and ¢ are independent, we may extend D to
be Brrx ® (anledk ® £)-measurable.? Similarly, each g, (y, X) does not depend on & and

X and ¢ are independent, so we may extend g, to be Brx ® (BHf:1 z4 ® €)-measurable.
Therefore, U(; X, &) = Zf:l Yeur (Xi) + D(y, &) is Brx ® (an:] rie ® €)-measurable
since it is the sum of measurable functions. Moreover, for all (X, ) € ]—[,(K:1 R% x E,
U(;X,e): R - RU {400, —o0} is continuous.

Last, from Assumption S.2.1(iii), the assumptions of Corollary 2.21 and Lemma 2.22
in Stinchcombe and White (1992) are satisfied, so for any probability measure P on

((]_[f:] R% E), (an:1 rix ® E)), there is a (an:] st ® €)F-measurable everywhere se-
lection® Y* that satisfies Y* € argmax,_p U(y; X, €). Note that argmax, p U(y; X, €) is
nonempty and compact for all (X, &) € [],_, R% x E. Q.E.D.

S.3. IDENTIFICATION FOR COMMON REGRESSORS WITH WEAKER SUPPORT CONDITIONS

This section describes how the arguments of Section 3.2 may be adapted to handle
violations of Assumption 3. First, suppose that there is a subset YW C supp(W) such that

2We suppress dependence of D on X for convenience.
3FP is the completion of a o-field F with respect to the probability measure P.
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for each w € W, u(z, w) is identified up to location and scale for all z € supp(Z | W = w).
Theorem 2 provides conditions for this by conditioning. However, Theorem 2 does not
provide conditions under which these functions u(-, w), indexed by w, are identified up
to a common scale. We will first describe how to identify all functions (-, w) up to the
location and scale set by u(-, w*) for a specific w* € W. Suppose that w and w* have
overlap in the sense that int(zZ(supp(Z | W = w), w) N u(supp(Z | W = w*), w*)) # @,
where for a set S, int(S) denotes the interior. Because the representative agent problem
has a unique solution, this implies that there exist values (z', w')’, (z*, w*)" € supp(Z, W)
such that E[Y | Z =z, W = w] = E[Y | Z = z*, W = w*]. If D5 is differentiable at this
common point, then the level of #(z, w) may be calibrated to equal that of u(z*, w*) by
Lemma 3. This argument identifies the function (-, w) up to the same location as that
of u(-, w*). Similarly, by varying z*, the scale of u(-, w) may also be calibrated relative
to that of (-, w*). This is possible because we assumed the interior of the intersection is
nonempty, int(u(supp(Z | W = w), w) Nu(supp(Z | W = w*), w*)) # 0.

Now, it may happen that w and w* do not have the required overlap. To handle this,
define the mapping

E() = {we W Jint(ii(supp(Z | W =w), w) Nii(supp(Z | W =), ) ) # .

By the previous arguments, the functions u(-, w) are identified up to a common location
and scale for each w € E(w*). Note for n > 2, we define E"(w) = E(E"'(w)). Now, if
U E™(w*) =W and if ., u(supp(Z | W = w), w) = u(supp(Z, W)), we may iden-
tify u(z, w) for each (z/,w') € supp(Z, W) under the assumption that D5 is differen-
tiable. The argument is analogous to the proof of Theorem 3. Thus, we have proven the
following result.

PROPOSITION S.3.1: Assume there is a subset VWV C supp(W) such that, for each w € W,
u(z,w) is identified up to location and scale for all z € supp(Z | W = w), ,._, E"(w*) =
W for some w* € W, U, ., U(supp(Z | W = w), w) = t(supp(Z, W)), and Dy is differen-
tiable. Then u(z, w) is identified for each z, w € supp(Z, W) up to a common location and
scale.

S.4. MAXIMUM SCORE
We demonstrate how a generalization of the maximum score inequalities (Manski
(1975), Matzkin (1993), Goeree, Holt, and Palfrey (2005), Fox (2007)) may be obtained

with a symmetry condition on the aggregate disturbance function D. These inequalities
provide identifying information even for a fixed value of regressors.

PROPOSITION S.4.1: Let the assumptions of Theorem 1 hold and assume E[Y | X = x] =
E[Y (x, &)] for some x € supp(X). Assume for every permutation w of the good indices

{L....K}L O, ..o, ¥x) € B implies that the permutation is in the budget, (Yx(y, - - -, Yu(x)) €
B, and the disturbance is the same for the permutation, D(y1, ..., V) = D(Vactys - - - » Yuk))-
Then

ElYi | X=x]>E[Y, | X=x] = w(xs)>ue(x,)
and

w(xg) > ue(x,) = E[Y | X=x]=E[Y, | X =x].
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PROOF: For notational simplicity, we write permutations in terms of matrices rather
than functions permutating the arguments. To that end, let IT be a permutation matrix,
that is, a matrix whose rows and columns each sum to 1 and whose entries each consist of
0 or 1. Because the conditional mean is a maximizer and y e B = Ily € B, we have

E[Y | X =x]u(x)+D(E[Y | X =x]) > E{IY | X = x]'ii(x) + D(EUTY | X =x]).
Because D is permutation symmetric, both terms involving D are equal and we obtain
(E[Y | X =x]— E[ITY | X = x]) ti(x) > 0.

Letting I be a permutation matrix that permutes the kth and £th components of each
vector, we obtain

(E[Yi | X =x] —E[Y, | X = x]) (ui (xx) — ue(x0)) > 0,
and the result follows. O.E.D.

These inequalities hold even if supp(X) = x is a singleton, in which case X and & are
trivially independent. Thus, independence between X and ¢ is not essential for these
inequalities. Indeed, the proposition holds as well if x enters D, provided D is symmetric
to permutations in y for each fixed x.

In contrast with our main identification results for utility indices presented in Section 3,
these identifying inequalities are purely ordinal, that is, they cannot distinguish between
= (uy,...,ux) and the composition (gouy, ..., g oux) for a strictly increasing function
g. We conjecture that if supp(X) = x, that is, there is no variation in X, these inequalities
are sharp.

Specialized to ARUM, it is easy to see that D is symmetric to permutations whenever
the distribution of ¢ is exchangeable conditional on X = x (i.e., the joint distribution of
¢ is invariant to relabeling indices). In the binary choice case (Manski (1975)), using the
fact that probabilities sum to 1, the implications above specialize to

1
E[Y, | X =x]> 5 = ui(x) = uy(x,)
and
1
ui(x1) > ux(x,) == EY | X=x]> 7

In the bundles model, D is symmetric to permutations if, conditional on &, ;, the joint
distribution of (&9, &9.1) is exchangeable.

S.5. IDENTIFICATION OF UTILITY INDICES FOR “NONSTANDARD” CASES

As discussed previously, Theorem 2 rules out some examples of interest. We now pro-
vide weaker conditions under which utility indices are identified. Instead of assuming
mixed partial derivatives of V' are everywhere nonzero, we assume mixed partials are
nonzero at a “rich” set of points. The building block for this extension is the observation
that Proposition 1 provides a constructive identification formula using only local assump-
tions concerning two goods at a time.

Recall that if we identify many ratios of partial derivatives of u, then we can identify
u itself by two different approaches. The first, which is feasible given the assumptions of
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Theorem 2, allows us to integrate these derivatives and obtain constructive identification.
The second approach, taken in this section, is to use the mean value theorem to obtain
nonconstructive results. Recall that by the mean value theorem, a differentiable function
is uniquely determined by its partial derivatives up to location. Thus, we only need to
identify ratios of all partial derivatives of u. We describe how to do this by multiplying
ratios that are directly identified by Proposition 1.
/ due(xy)
xj=% dXe,p

For an example, suppose
/ Juy (X )
Xg=x é’xkaq
are identified from data (via Proposition 1). If x* and X agree for the regressors of good
¢, that is, x§ = X,, we can multiply these derivative ratios to identify

/ dup(x)
Xj:j’j ﬁxk,‘]

Note that this derivative ratio can be identified even if j = k and X; # x; that is, we can
identify derivative ratios for the same good at different values of regressors. This shows
that if ratios of derivatives are identified and overlap in a specific sense, then we can
multiply these ratios to identify new ratios. We present a result that handles sequences of
derivative ratios of arbitrary finite length, so we introduce some more notation.

dug(xy)
0Xg,p

&uj(xj)
ax

and

xk=x2 Jr Xg=X¢

Ju;(x;)

S.1
e (S.1)

X=X},

DEFINITION S.5.1—Paths: There is a path from the point a := "’”"(X")|xk:x;§ to b :=

- ﬁxkvq
r?u/‘(xj')

-+ |x;=x; if a is nonzero and there is a sequence of partial derivatives beginning at a
e

and ending at b such that each adjacent element is paired, and these pairs are strict ex-
cept possibly between the final two elements of the sequence.

In order for there to be a path between partial derivatives, several conditions must hold.
If we have multiple goods (K > 2), then there can be a path between partial derivatives
at different values x; and x;. However, if there is only a single good, then the derivative
ratios of different regressors must be evaluated at the same point, that is, x; = X; and
J = k. The function V' must be twice continuously differentiable at a sufficiently rich set
of points. Importantly, it is not necessary that all mixed partials be nonzero or that ” be
twice continuously differentiable everywhere. This condition is in the spirit of the con-
nected substitutes condition of Berry, Gandhi, and Haile (2013). This condition differs
from connected substitutes since we look over paths derived from either complementar-
ity or substitutability. We also differ since the path condition only involves two goods at a
time, while the connected substitutes condition places restrictions on all subsets of goods.

THEOREM S.5.1: Let Assumption 2 hold and assume x, , and x;, are regressors specific
. . . . duy (xp) dui(x;)
to k and j, respectively. If there is a path from the point ;’;kx: leg=; 10 =% - L xj=s,, then

/ duy(xy)
xj=%; Xk

&uj(x]‘)

S.2
e (52)

—y*
xkka

is identified.
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ad d
PROOF OF THEOREM S.5.1: Let M ., L)
x(gl,,,l 21 o [27]

quence as in Definition S.5.1. Foreachm =2, ..., M, let

/ aulm—] (x(m—l )
X :xznm ax@m—la[’m—l
This ratio is identified due to Proposition 1. This follows because for m < M, the numera-

tor and denominator are strictly paired. For m = M, the numerator and denominator are
paired and the denominator is nonzero.
/ Jug(Xy)
Xj=%; Xk q

By construction,
is identified since all intermediate terms cancel out. This is valid because there is never
any division by zero. Q.E.D.

v =¥ be a finite se-
M>PM M~y

duy,, (x¢,,)
axem,Pm

(S.3)

Smfl,m =

:Xm—l

Yn_1 tm—1

Ju;(x
nSm 1,m = ﬁle l)

m=2 Lr

—x*
xk_xk

The following corollary relaxes assumptions in Theorem 2.

COROLLARY S.5.1: Let Assumption 2 hold and assume all regressors are good-specific.

Assume there is a tuple (k, q, x}) such that '9”"(’”‘) |xy=x; has a path to ‘m’ X |Xf:76/ forany j,r,
and X; € R%. Then u is identified under the followmg normalization:

(i) (Scale) 2|, 0 € {—1,1).

(ii) (Locatlon) uz(Odk) =0 foreach £ =1,...,K, where 0,,_denotes a di-dimensional

vector of zeros.

PROOF OF COROLLARY S.5.1: First, we identify the sign of [ﬁi—fwhk:xz- Under As-
»q
sumption 2, it can be shown that

E[Y | X =x]#E[Y | X =]
— (B[Y|X=x]-E[Y|X=3#]) (d(x) - i(¥)) > 0. (S-4)

(This is a straightforward extension of Lemma S.7.1.) From the assumptions of the corol-
lary, there is some x* € supp(X) that has x as its kth row. Moreover, there must be some
£ such that

I,V (W) la=icer) # 0.

This follows from the definition of a path. Since Zuti)| . 0, we see that, for suffi-
X q k=Y

ciently small changes in x, ,, there must be a change in E[Y, | X = x]. From (S.4), this
implies that there must be a change in E[Y) | X = x] as well. Again using (S.4), we deter-
mine the sign of ’7”"()‘“ |Xk—x* depending on whether E[Y} | X = x] is locally increasing or
decreasing with respect to Xy 4.

Normalizing = "7”" xe) |x,=x; to 1 or —1 depending on its sign, we identify all partial deriva-
k.q

tives using Theorem S.5.1. Recall that from the mean value theorem, two functions that
share partial derivatives can differ by at most an additive constant. Given the location
normalization, # is identified. Q.E.D.
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We provide an example where the path condition holds even though E[Y | X = x] may
lie on the boundary of B and may not even be continuous. This illustrates how identifi-
cation in Corollary S.5.1 is established using restrictions on pairs of partial derivatives.
This is in contrast with Theorem 2, which places global restrictions that rule out boundary
behavior and discontinuities as in the following example.

REMARK S.5.1—Boundaries and Discontinuities: For illustration of how we can handle
boundary issues, let B be the probability simplex, K > 2, and let D be given by

K
- Z piln pr, if pp #0 for at most 2 distinct k,
k=1
—00, otherwise.

D(y)=

We set 01In0 to 0. For simplicity, suppose x; is scalar. This choice of D ensures exactly
two goods will be chosen with positive probability, and requires that they be the ones with
the highest values of the indices u;(x,) (assuming the two highest values are unique).
Suppose the second highest value of u,(x;) is unique and let k(1) and k(2) attain the
highest values of u;.* Then

e X))

E[Yk(1) |X = X] = p

k() (k) ek D)’

etk Xk2)

E[Yk(z) |X = X] = e

uge(1) (K1) + ek k@)

If u is differentiable, sufficient conditions for Corollary S.5.1 are fairly mild. One sufficient
condition is that X has full support, all partial derivatives of & are everywhere nonzero,
and u(supp(X)) = RX.

S.6. INJECTIVITY ON THE SIMPLEX

For these results, we assume B is the probability simplex,

K
§={yGRK‘Zykzl,ykz()forkzl,...,l( .

k=1

In order to obtain an injectivity result, we need to restrict the set of possible values of the
vector v. This is because, for fixed D,

K
argmax Z Vivx + D(y)
yeB k=1

is the same set with v replaced by v + ¢, where ¢ is a constant vector. We restrict the
parameter space for v with the following normalization for its first component:

V={veR" v =0}.

4These implicitly depend on x.
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We are now interested in when

K
Py (y*) = {TJ eV ‘ ye argnilanykvk +5(y)}

yeB k=1

is a singleton.

ASSUMPTION S.6.1: D:B— RU{—o0}isa concaveﬁmction. Moreover, {y € B| E(y) >
—oo} has nonempty interior when viewed as a subset of B.

A nonempty interior will be needed because we invoke differentiability of D. Let

yEE k=1

K
T = {yeri(ﬁ) ‘ ye argmanykvk+5(y) for some ve V¢,

where ri(B) denotes the relative interior of B.

PROPOSITION S.6.1: Let y* € T, let K > 2, let B be the probability simplex, and let As-
sumption S.6.1 hold. Then the following are equivalent:

(i) p3'(y*) is a singleton.

(ii) D is Fréchet differentiable at y*.

PROOF: We can prove this from Lemmas S.1.1 and S.1.2 with a change of variables.
The basic idea will be that over the probability simplex, y; is uniquely determined by
(»2, ..., ¥k). Using the normalization defining V, we may convert the problem from a K-
dimensional problem to a K — 1-dimensional problem and then invoke Lemmas S.1.1 and
S.1.2.

We define a new function,

K K
- D(|1- S Vae ey , if <1,y >0,
DGy vy i) = (( ;yk> » yK) Y=L

k=2
—00, otherwise.

This function removes y, by using the budget constraint. The function D is concave since

D is concave and B is convex.
Now define the multi-valued mapping p,, that maps points in RX~! to subsets of RX by

K K
py(Vy, ..., Vg) = argnEaXZykvk +5<<1 - ZYk)’Yz, cees y:<>~ (8.5)
k=2

yeB k=2

5The relative interior of B is the set

K
ri(§)={yeRK‘Zykzl,yk>0f0rk=1,...,K}.

k=1
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Note that the choice of the first component (y;) now enters trivially. Similarly define p
from RX~! to subsets of RX~! by

K

PV, o) = argmax Y b+ D0, yi)- (5.6)

Y2ses YK ERK=L G —1

Over the probability simplex, we may put p,,(v) and p(?) in one-to-one correspondence
by the projection mapping 7(y1, ..., yk) = ()2, -, Yk)- )
Finally, note Fréchet differentiability of D at y* is equivalent to differentiability of D :
R¥™! — R U {400} at m(y*). Invoking Lemmas S.1.1 and S.1.2, p;!(y*) is a singleton if
and only if D is Fréchet differentiable at y*. Q.E.D.

S.7. PARTIAL IDENTIFICATION OF UTILITY INDICES

Our sufficient conditions for identification of utility indices may fail. Our conditions do
not apply if all regressors are discrete, sufficient substitution/complementarity does not
exist, or if E[Y | X = x] is not suitably differentiable. We provide a complete characteri-
zation of the identifying power of the model for utility indices.

Now, we allow the possibility that there are multiple functions # that are consistent with
the restrictions of the model. First, let D denote the set of admissible disturbances, which
are functions D : R — R U {400} that are concave, upper semi-continuous, and finite at
some y € B. We denote the identified set for i as

Up =1{iield|3D e Ds.t. Vx € supp(X),

K
E[Y | X =x] € argrr_laXZykuk(xk) + E(y) .

yeB k=1

Note that in this section, we do not assume the conditional mean is the unique maximizer.
The set U is the parameter space for u. We assume U consists of real-valued functions.
Any further restrictions on this set shrink V. For example, it could be a parametric class
of functions.
The following lemma is a convenient restatement of restrictions of the optimizing
model.

LEMMA S.7.1: If u € Up, then there is some D € D such that for every x, X € supp(X),
(E[Y | X =x]—E[Y | X = %) ii(x) > D(E[Y | X = #]) — D(E[Y | X = x])
> (E[Y | X =x] - E[Y | X = &) u(%).
Moreover, D(E[Y | X = X]) and D(E[Y | X = x]) are finite.

PROOF: We use necessary conditions for optimality. If & € Uip, then, for some De D,
we must have

E[Y | X = x1i(x) + D(E[Y | X = x]) > E[Y | X = #'ii(x) + D(E[Y | X = &),
E[Y | X =Xu(¥) + D(E[Y | X = %]) > E[Y | X = x]u(%) + D(E[Y | X =x]).
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Since D € D, it is finite at the referenced points because of optimality. The inequalities of
the lemma follow from rearranging these inequalities. Q.E.D.

One feature captured in Lemma S.7.1 is the monotonicity condition
(E[Y | X =x]—E[Y | X = #])'(ii(x) — @(¥)) > 0. (S.7)

This resembles the law of compensated demand if we relate E[Y | X = x] to Hicksian
demand and —#(x) to the price vector. For further illustration of (S.7), suppose that z(x)
and u(¥) only differ with respect to their first component. Then (S.7) becomes

(E[Yl | X =x]-E[Y, | X =)~c])(u1(x1) - u1(561)) >0,

which states that the conditional expectation of Y; is weakly increasing in u;.
We now use Lemma S.7.1 to remove the nuisance function D. To that end, let
x0 ., xM XM = x0 be a cycle of points in supp(X). By repeated application of

Lemma S.7.1, we obtain

MXE(E[Y | X = x’”] — E[Y | X = me])/ﬁ(xm)
> ASD(E[Y | X =x"1]) = D(E[Y | X = x"])

I
=1

(S.8)

By summing up over a cycle, we “sum out” the unknown function D. An alternative way to
state the inequalities obtained in this way is as follows. Suppose that {x"}_' C supp(X).
Then, for every permutation 7 of {0, ..., M}, we have

MX_i [YIX=x"] ZEY|X x5 (x™).

This inequality highlights the connection to optimizing behavior. Intuitively, no permuta-
tion can improve the “match” between choices (= conditional expectations) and payoffs
(= marginal utility shifters). We now show that inequalities such as (S.8) capture the com-
plete restrictions of the model for u.

THEOREM S.7.1—Sharp Characterization of Uip: Let u € U. The following are equiva-

lent:
(i) There is a function D : R — R U {—o0} such that

Vx esupp(X), E[Y|X=x]€ argmaXZykuk(xk) —|—D(y).
yeB k=1
(i) i € Uip, that is, there is a function D € D such that

K

Vx esupp(X), E[Y|X=x]¢e argrEaXZykuk(xk) +ﬁ(y).

yeB k=1
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(iii) There exist finite numbers {D} cqupp(x) SUch that, for every x, x € supp(X),

(E[Y | X =x] —E[Y | X = ¥])'ii(x) > D; — D,.

(iv) For every integer M and cycle of points x°, ..., xM=1, x" = x° each in supp(X),
M—-1
D (E[Y | X =x"]—E[Y | X = x""]) i(x") > 0.
m=0

PROOF: We shall show (i) = (iii)) = (iv) = (ii)) = (i).

By relating D, with D(E[Y | X = x]), the previous discussion shows (i) = (iii)) =
(iv). Note that while D may take on value —oo over some points, D(E[Y | X =x]) > —o0
for each x € supp(X). This is because DeD, i (x) is finite, and E[Y | X = x] a maximizer.
This is why the numbers in (iii) are finite.

The implication (iv) = (ii) follows from Rockafellar (1970, Theorem 24.8), so
we provide only a sketch of this implication. Let I' = R¥ x RX. Let § = {(E[Y | X =
x], ﬁ(x))}xesupp( x), S0 we have S CT'. The set § is contained in the graph of a cycli-
cally monotone multi-valued mapping (see Rockafellar (1970), which generalizes Defi-
nition S.7.1). By the constructive extension result of Rockafellar (1970, Theorem 24.8),
we have u(x) € Jf (E[Y | X = x]), where f is a lower semi-continuous, convex function
that never attains —oo and that is finite at some point. By Lemma S.1.1 and the fact that
E[Y | X = x] € B for x € supp(X ), we have

E[Y | X =x]u(x) — f(E[Y | X = x]) =sup{y'u(x) — f()}.

yeB

By letting D = — f, we have (ii).
Obviously, (i) = (i). Q.E.D.

This result is closely related to results in Brown and Calsamiglia (2007) and Chambers
and Echenique (2009). Related results that simultaneously vary budgets are established
in McFadden and Fosgerau (2012).

The fact that (i) and (ii) are equivalent means that if we assume D is concave, we
obtain no additional identifying power for &. Moreover, it is not possible to separately
test whether D is concave aside from testing the entire model. This insight is fairly well-
known in other settings (Afriat (1967), Varian (1982)).

Part (iii) is helpful for computational reasons such as checking whether a particular
point is in the identified set. Note that we need not worry about forcing D, and Dj; to agree
whenever E[Y | X = x] =E[Y | X = X], since (iii) implies D, = D; by double inequalities.

If the parameter space U contains constant functions, these functions will always be in
Uip. This can easily be seen from (iv). We refer to (iv) as the cyclic monotonicity inequali-
ties in light of the following definition.

DEFINITION S.7.1—Cyclic Monotonicity: f :R‘ — R is said to be cyclically monotone
if, for every integer M and cycle x°, x!, ..., x™~1 x™ = x0 of points each in R¢,

S

-1

(") = F(")) x™ = 0.

0

3
Il
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Cyclic monotonicity has been used in the econometrics literature by McFadden and
Fosgerau (2012) and Shi, Shum, and Song (2018).

REMARK S.7.1—Single-Dimensional Case: When K = 1, it can be shown that Theo-
rem S.7.1(iv) is equivalent to the condition that, for every x, X € supp(X),

(ELY: | X =x]—E[Y, | X = 5]) (0 (x) — () = 0.5

Note that when K = 1, u; is the only utility index. This shows that when K = 1, the most
we can say about u; is that it must be consistent with the monotonicity statement:

ElYi | X=x]>E[Y, | X=%] = wi(x)>u(x).

This is purely ordinal information, and so point identification is impossible for many
choices of the parameter space. If U is unrestricted, then in the single-dimensional case
whenever & € Up, we also have g(i1) € Ujp for any strictly increasing function g. Even if
is restricted to a class of differentiable functions with a location/scale normalization, Up
may not be a singleton.
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