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APPENDIX B

THIS ONLINE APPENDIX CONTAINS supplemental material for the article “Local Projec-
tions and VARs Estimate the Same Impulse Responses.”

Any references to equations or sections that are not preceded by “B.” refer to the main
article.

B.1. Asymptotic Equivalence of LP and VAR Impulse Response Estimators

Here, we prove that local projections and recursively identified VARs estimate nearly
the same impulse response functions in sample, provided the lag lengths used in the spec-
ifications are large enough. Assume we observe the data w1�w2� � � � �wT (recall the nota-
tion in Section 2.1). For all lag lengths p≤ T , define the following:

• Let x̂t(p) be the residual from a regression of xt on an intercept, rt , and wt−1�
� � � �wt−p.

• Let β̂h(p) denote the OLS estimator of the local projection parameter βh in the
sample version of regression equation (1), where we include p lags of wt on the
right-hand side instead of the infeasible infinite distibuted lag. By the Frisch–Waugh
theorem,

β̂h(p)=

T−h∑
t=p+1

yt+hx̂t(p)

T−h∑
t=p+1

x̂t(p)
2

�

• Let θ̂h(p) denote the horizon-h impulse response of yt to an innovation in xt in a
Cholesky-identified VAR(p) model (with intercept) estimated by least squares on
the data points t = p+ 1�p+ 2� � � � �T .

In detail, the VAR estimator θ̂h(p) is defined as follows. Let Â�(p) denote the usual least-
squares VAR(p) coefficient matrix estimator at lag �, and let ĉ(p) denote the correspond-
ing intercept vector estimator. Let ût(p) denote the residual vector. Define the innovation
covariance matrix estimator Σ̂(p) ≡ 1

T−p

∑T

t=p+1 ût(p)ût(p)
′ and let Σ̂(p) = B̂(p)B̂(p)′

denote its lower triangular Cholesky decomposition. Define the reduced-form impulse
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response matrices by Ĉ0(p) = Inw and Ĉm(p) = ∑m

�=1 Â�(p)Ĉm−�(p) for m = 1� � � � �h.
Then θ̂h(p) is given by the (nr + 2� nr + 1) element of Ĉh(p)B̂(p).

Note that the VAR(p) residuals

ût(p)≡wt − ĉ(p)−
p∑

�=1

Â�(p)wt−�� t = p+ 1�p+ 2� � � � � T�

satisfy
T∑

t=p+1

ût(p)= 0nw×1�

T∑
t=p+1

ût(p)w
′
t−� = 0nw×nw� �= 1�2� � � � �p� (B.1)

We adopt the convention that ût(p)≡ 0 whenever t ≤ p.
We are now ready to state the near-equivalence result for LP and VAR impulse re-

sponse estimators. Let ‖ · ‖ denote the Frobenius norm.

PROPOSITION B.1: In the following, the lag length p = p(T) used for estimation is implic-
itly a function of T . Assume the following:

(i) {wt} is covariance stationary and has a VAR(∞) representation (3), where∑∞
�=1 ‖A�‖ < ∞, and the Wold innovations ut have finite and positive definite co-

variance matrix Σ. (We do not assume that the innovations are necessarily Gaussian.)
(ii) ‖ĉ(p) − c‖ = op(1), ‖Â(p) − A(p)‖ = op(1), and ‖Σ̂(p) − Σ‖ = op(1), where we

have defined Â(p)≡ (Â1(p)� � � � � Âp(p)) and A(p)≡ (A1� � � � �Ap).
Then

θ̂h(p)=

1
T −p

T−h∑
t=p+1

yt+hx̂t(p)

(
1

T −p

T∑
t=p+1

x̂t(p)
2

)1/2 +Op

(
R̂(p)

)
�

where

R̂(p)≡
max

{
1� sup

1≤t≤T

‖wt‖
}2

T −p
+

(
p∑

�=p−h+1

∥∥Â�(p)
∥∥2

)1/2

�

Thus, the VAR impulse response estimator θ̂h(p) approximately equals the LP impulse
response estimator β̂h(p) up to a scale factor that does not depend on the horizon h. The
approximation error is of an order Op(R̂(p)) that is likely to be small unless the data is so
persistent that the estimated VAR coefficients at the very longest lags are nonnegligible.

Assumptions (i) and (ii) of the proposition are easily satisfied under standard non-
parametric regularity conditions on the data generating process and a restriction on how
quickly the lag length p can grow with T . See, for example, Lewis and Reinsel (1985) and
Gonçalves and Kilian (2007).

B.1.1. Proof of Proposition B.1

We split the proof into several steps.
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Step 1. We will show that
∑p

�=1 ‖Â�(p)‖ =Op(1). The statement follows from

p∑
�=1

∥∥Â�(p)
∥∥ ≤

p∑
�=1

‖A�‖ +
p∑

�=1

∥∥Â�(p)−A�

∥∥ ≤
∞∑
�=1

‖A�‖ + ∥∥Â(p)−A(p)
∥∥

and then exploiting assumptions (i) and (ii).

Step 2. We will show that supp+1≤t≤T ‖ût(p)‖ = sup1≤t≤T ‖wt‖ ×Op(1). Observe that

sup
p+1≤t≤T

∥∥ût(p)
∥∥ = sup

p+1≤t≤T

∥∥∥∥∥wt −
p∑

�=1

Â�(p)wt−�

∥∥∥∥∥
≤

(
sup

1≤t≤T

‖wt‖
)(

1 +
p∑

�=1

∥∥Â�(p)
∥∥)

�

Step 1 then gives the desired result.

Step 3. We will show that, for any m = 0�1� � � � �h,

1
T −p

T∑
t=p+1

ût−m(p)= Op

(sup
t

‖wt‖
T −p

)
�

We have
T∑

t=p+1

ût−m(p)=
T∑

t=p+1

ût(p)−
T∑

t=T−m+1

ût(p)�

The first sum on the right-hand side is exactly zero by the orthogonality conditions (B.1).
The second sum consists of m terms, each of which is Op(supt ‖wt‖) by Step 2.

Step 4. We will show that, for any m = 1�2� � � � �h,

1
T −p

T∑
t=p+1

ût(p)ût−m(p)
′ =Op

((
p∑

�=p−h+1

∥∥Â�(p)
∥∥2

)1/2)
�

ût−m(p) is a linear function of wt−m�wt−1−m� � � � �wt−p−m. By the orthogonality conditions
(B.1), ût(p) is orthogonal to wt−m�wt−1−m� � � � �wt−p (and a constant). Thus,∥∥∥∥∥ 1

T −p

T∑
t=p+1

ût(p)ût−m(p)
′
∥∥∥∥∥

=
∥∥∥∥∥ 1
T −p

T∑
t=p+m+1

ût(p)

p∑
�=p−m+1

w′
t−m−�Â�(p)

′
∥∥∥∥∥

≤
(

p∑
�=p−m+1

∥∥Â�(p)
∥∥2

)1/2( p∑
�=p−m+1

∥∥∥∥∥ 1
T −p

T∑
t=p+m+1

ût(p)w
′
t−m−�

∥∥∥∥∥
2)1/2

�
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Note that
∑p

�=p−m+1 ‖Â�(p)‖2 ≤ ∑p

�=p−h+1 ‖Â�(p)‖2 since m ≤ h. Finally,∥∥∥∥∥ 1
T −p

T∑
t=p+m+1

ût(p)w
′
t−m−�

∥∥∥∥∥
≤

(
1

T −p

T∑
t=p+m+1

∥∥ût(p)
∥∥2

)1/2(
1

T −p

T∑
t=p+m+1

‖wt−m−l‖2

)1/2

≤
(

1
T −p

T∑
t=p+1

∥∥ût(p)
∥∥2

)1/2(
1

T −p

T∑
t=1

‖wt‖2

)1/2

≤ ∥∥Σ̂(p)∥∥
(

1
T −p

T∑
t=1

‖wt‖2

)1/2

�

The first factor on the right-hand side above is Op(1) by assumption (ii), while the second
factor is Op(1) since E‖wt‖2 <∞.

Step 5. Let ��m≥ 0 satisfy m≤ h and �≤ p. If m≤ �, then

1
T −p

T∑
t=p+1

ût−m(p)w
′
t−� = 1

T −p

T∑
t=p+1

ût(p)w
′
t−(�−m) +Op

(sup
t

‖wt‖2

T −p

)
� (B.2)

while if m> �, then

1
T −p

T∑
t=p+1

ût−m(p)w
′
t−� = 1

T −p

T∑
t=p+1

ût−(m−�)(p)w
′
t +Op

(sup
t

‖wt‖2

T −p

)
� (B.3)

where the Op(·) terms are uniform in � and m. Claim (B.3) is proven in the same way as
(B.2), so we only prove the latter. Simply note that

T∑
t=p+1

ût−m(p)w
′
t−� =

T∑
t=p+1

ût(p)w
′
t−(�−m) −

T∑
t=T−m+1

ût(p)w
′
t−(�−m)�

and the second sum consists of m terms, each of which is Op(supt ‖wt‖2) by Step 2.

Step 6. We will show that, for any ��m ≥ 0 such that m ≤ h and m< � ≤ p,

1
T −p

T∑
t=p+1

ût−m(p)w
′
t−� =Op

(sup
t

‖wt‖2

T −p

)
�

where the Op(·) term is uniform in � and m. By Step 5,

1
T −p

T∑
t=p+1

ût−m(p)w
′
t−� = 1

T −p

T∑
t=p+1

ût(p)w
′
t−(�−m) +Op

( sup
t

‖wt‖2

T −p

)
�
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Since 1 ≤ �−m ≤ p, the sum on the right-hand side is precisely zero by the orthogonality
conditions (B.1).

Step 7. Define for all m = 0�1� � � � �h the matrix Ĥm(p) ≡ 1
T−p

∑T

t=p+1 wtût−m(p)
′. We

will show that

Ĥm(p)=
m∑
�=1

Â�(p)Ĥm−�(p)+Op

(
R̂(p)

)
� m = 1�2� � � � �h�

Let m= 1� � � � �h be arbitrary. Since

wt = ĉ(p)+
p∑

�=1

Â�(p)wt−� + ût(p)�

we obtain

Ĥm(p)= 1
T −p

T∑
t=p+1

wtût−m(p)
′

=
p∑

�=1

Â�(p)
1

T −p

T∑
t=p+1

wt−�ût−m(p)
′

+ ĉ(p)
1

T −p

T∑
t=p+1

ût−m(p)
′

+ 1
T −p

T∑
t=p+1

ût(p)ût−m(p)
′�

By Step 3, the second term above is Op(
1

T−p
supt ‖wt‖). By Step 4, the third term is

Op((
∑p

�=p−h+1 ‖Â�(p)‖2)1/2). As for the first term above, we split it up as follows:

p∑
�=1

Â�(p)
1

T −p

T∑
t=p+1

wt−�ût−m(p)
′ =

m∑
�=1

Â�(p)
1

T −p

T∑
t=p+1

wt−�ût−m(p)
′

+
p∑

�=m+1

Â�(p)
1

T −p

T∑
t=p+1

wt−�ût−m(p)
′�

By Steps 1 and 6, the second term above is Op(
1

T−p
supt ‖wt‖2). By Steps 1 and 5, the first

term above equals

m∑
�=1

Â�(p)
1

T −p

T∑
t=p+1

wt−�ût−m(p)
′

=
m∑
�=1

Â�(p)
1

T −p

T∑
t=p+1

wtût−(m−�)(p)
′ +Op

(sup
t

‖wt‖2

T −p

)
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=
m∑
�=1

Â�(p)Ĥm−�(p)+Op

(sup
t

‖wt‖2

T −p

)
�

Step 8. We will show that Ĥm(p) = Ĉm(p)Σ̂(p) + Op(R̂(p)) for all m = 0� � � � �h. We
proceed by induction on m. The claim is true by definition for m = 0. Assume the claim is
true for all m ≤ m̃− 1. Then Step 7 implies

Ĥm̃ =
m̃∑
�=1

Â�(p)Ĥm̃−�(p)+Op

(
R̂(p)

)

=
m̃∑
�=1

Â�(p)
{
Ĉm̃−�(p)Σ̂(p)+Op

(
R̂(p)

)} +Op

(
R̂(p)

)

=
(

m̃∑
�=1

Â�(p)Ĉm̃−�(p)

)
Σ̂(p)+Op

(
R̂(p)

)

= Ĉm̃(p)Σ̂(p)+Op

(
R̂(p)

)
�

Here, the penultimate equality uses Step 1, and the last equality uses the recursive defini-
tion of Ĉm̃(p).

Step 9. We will show that ‖B̂(p)−1‖ = Op(1). This follows from assumption (ii), the
continuity of the Cholesky decomposition at any positive definite matrix, and the assump-
tion (i) that Σ is positive definite.

Step 10. Let ex be the (nr + 2)-th nw-dimensional unit vector, that is, xt = e′
xwt . Then

e′
xB̂(p)

−1ût(p)= 1(
1

T −p

T∑
t=p+1

x̂t(p)
2

)1/2 x̂t(p)

for all t = p + 1�p + 2� � � � �T . This is just the sample analogue of the population result
(6)–(7), so we refrain from giving the details of the proof.

Step 11. We will show that

Ĉh(p)B̂(p)ex = 1(
1

T −p

T∑
t=p+1

x̂t(p)
2

)1/2 × 1
T −p

T∑
t=p+1

wtx̂t−h(p)
′ +Op

(
R̂(p)

)
�

By Steps 8 and 9,

Ĉh(p)B̂(p)= Ĉh(p)Σ̂(p)B̂(p)
−1′ = ĤmB̂(p)

−1′ +Op(R̂p)�
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Hence,

Ĉh(p)B̂(p)ex = 1
T −p

T∑
t=p+1

wt

(
e′
xB̂(p)

−1ût−h(p)
)′ +Op(R̂p)�

so the claim follows from Step 10.

Step 12. The statement of the proposition follows from Step 11 and the fact that θ̂h(p)

by definition equals the (nr + 2)-th element of Ĉh(p)B̂(p)ex.

B.2. General System Identification

We here show how arbitrary sign and zero identification restrictions on entire multi-
variate systems can be implemented in a local projection framework. The logic of our
procedure is analogous to the examples in Section 3.2—we estimate reduced-form im-
pulse responses using LPs rather than a VAR, and then rotate the reduced-form impulse
responses to conform with the chosen identifying restrictions.

We consider the most general case, in which the researcher wishes to impose sign and/or
zero restrictions on impulse responses for all variables wt and all horizons h up to some
maximum H. Consider the coefficient vectors {β̌i�h} obtained from the nw × (H + 1) pro-
jections

wi�t+h = μ̌i�h + β̌′
i�hwt +

∞∑
�=1

δ̌′
i�h��wt−� + ξ̌i�h�t� i = 1�2� � � � � nw�h= 0�1�2� � � � �H� (B.4)

Let Ch ≡ (β̌1�h� β̌2�h� � � � � β̌nw�h)
′ denote the nw × nw matrix of horizon-h stacked projec-

tion coefficients. The logic of Section 2 shows that Ch are the reduced-form impulse re-
sponses of wt with respect to the Wold innovation ut ≡ wt −E(wt | {wτ}τ<t) at horizon h.
Similarly, the projection residuals ξ̌•�1�t ≡ (ξ̌1�1�t � � � � � ξ̌nw�1�t)

′ for the horizon-1 projections
equal these Wold innovations ut . Let Var(ξ̌•�1�t) = BB′ denote the Cholesky decompo-
sition of the variance-covariance matrix of ut , where B is lower triangular with strictly
positive diagonal elements.

As in Rubio-Ramírez, Waggoner, and Zha (2010), for a given nw×nw orthogonal matrix
Q (i.e., Q′Q =QQ′ = Inw), the “structural” horizon-h impulse response matrix is

Θh(Q�C�B) ≡ ChBQ�

where entry (i� j) gives the response of variable i to shock j. Write the stacked nw(H +
1)× nw matrix of impulse responses as Θ(Q�C�B)≡ (Θ0(•)′�Θ1(•)′� � � � �ΘH(•)′)′.

Without loss of generality, normalize the first shock to be the shock of interest. Suppose
also we normalize the scale of the shock so that it has variance 1. We can then compute
the supremum of the identified set for the impulse response of the ith variable at horizon
h as the solution to the quadratic programB.1

sup
Q∈Rnw×nw

e′
iΘh(Q�C�B)e1 (B.5)

B.1It is straightforward to see that the solution to this program is independent of the choice of base rotation
matrix (here the matrix B of the Cholesky decomposition of Var(ξ̌•�1�t )).
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subject to

SjΘ(Q�C�B)ej ≥ 0� j = 1�2� � � � � nw� (B.6)

ZjΘ(Q�C�B)ej = 0� j = 1�2� � � � � nw� (B.7)

Q′Q = Inw� (B.8)

where ej is the jth column of the nw-dimensional identity matrix. The nw(H+1)×nw(H+
1)-dimensional matrices {Sj�Zj} are set in line with the chosen identification scheme as in
Rubio-Ramírez, Waggoner, and Zha (2010) (see the example below). Vector inequalities
are to be understood elementwise.

Note that the only difference between the above formulation and the SVAR approach
in Rubio-Ramírez, Waggoner, and Zha (2010) is that here we obtain the reduced-form
impulse responses Ch from the direct projections (B.4).

Remarks.
1. The infimum of the identified set is computed analogously.
2. Our set-up is purposefully general. If only the responses of a subset of variables at

a subset of horizons are restricted, then the projections (B.4) need to only be esti-
mated for that subset (and of course for the response variable of interest, at all rel-
evant horizons). Our analysis in Section 3.2 is a special case with only one restricted
variable and restrictions imposed only on responses to a single shock. In that special
case, we were also able to drop the quadratic constraint (B.8) and turn the program
into a computationally convenient linear program, provided we changed the normal-
ization of the scale of the shock to the unit-effect normalization (Stock and Watson
(2016)).

3. When all sign restrictions are placed on a single shock, and if this shock is the shock
of interest, then the boundaries of the identified set can be conveniently computed
using the algorithm of Gafarov, Meier, and Montiel Olea (2018). Otherwise, the
boundaries of the identified set can be approximated numerically through random
draws of orthogonal matrices Q, either drawn from Haar measure on the space of
orthogonal rotation matrices (for pure sign restrictions) or from subspaces consis-
tent with any imposed zero restrictions, as in Arias, Rubio-Ramírez, and Waggoner
(2018).

4. It is straightforward to extend the above program to allow for magnitude restrictions
as in Kilian and Murphy (2012). For those, the zeros on the right-hand side of (B.6)
are replaced by a vector of restriction-specific constants.

Example. We illustrate the construction of the restriction matrices {Sj�Zj} through an
example. The researcher observes output and inflation, wt = (yt�πt)

′, and wishes to dis-
entangle demand and supply shocks through the following identifying restrictions. First,
expansionary demand shocks increase output for three periods, and increase inflation on
impact. Second, expansionary supply shocks increase output on impact, and lower infla-
tion for two periods. Let the first shock be the demand shock and the second the supply
shock.

We collect impulse responses up to horizon H = 2 in the matrix Θ, and impose the sign
restrictions through the two matrices S1 (for demand shocks) and S2 (for supply shocks).
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These matrices are given by

S1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ � and S2 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ �

The first two rows of S1 and S2 select the impact responses of (yt�πt)
′, the second two

rows select the h= 1 responses, and the final two rows the h= 2 responses.

B.3. Narrative Identification

Researchers often observe only sparse, qualitative indicators of structural macro shocks
(e.g., Romer and Romer (1989), Ramey (2011)). For concreteness, consider the following
model of a sparse narrative indicator zt :

zt =

⎧⎪⎨
⎪⎩

−1 if g(ε1�t +ωt)≤ a�

0 if a≤ g(ε1�t +ωt)≤ ā�

1 if g(ε1�t +ωt)≥ ā�

(B.9)

for some function g(•) and some measurement error process ωt that is independent of the
structural shocks εt at all leads and lags. A particularly simple case is g(•)= sign(•)—the
researcher observes the sign of the contaminated shock ε1�t +ωt if it is sufficiently large.

The macroeconometric literature has developed two main ways of using sparse nar-
rative instruments in semistructural analysis. First, researchers restrict VAR-identified
shocks ε̃1�t to have the same sign as zt whenever zt 	= 0 (Antolín-Díaz and Rubio-Ramírez
(2018), Ludvigson, Ma, and Ng (2020)). In finite samples, this approach necessarily deliv-
ers a set of possible structural shocks. This finite-sample focus on one-off dates, however,
does not lend itself naturally to the population focus in this paper. Second, narrative
instruments can be cast in a proxy framework (Budnik and Rünstler (2020)), and so Sec-
tion 3.3 of our analysis applies: Under the model (B.9), the indicator zt is an IV that satis-
fies the exclusion and relevance restrictions (16). Hence, zt can be used as an instrument
in linear estimation procedures such as LP-IV, despite the presence of the measurement
error ωt . Furthermore, by Corollary 1, a recursive VAR with zt ordered first estimates the
same impulse responses as LP-IV. Such “dummy variable” instruments have been used in
VAR analysis at least since Hamilton (2003).

B.4. Estimands in Nonlinear Models

Our main result in Section 2.1 implies that linear local projections are exactly as “robust
to nonlinearities” as linear VAR methods, in population. We now show that the common
LP/VAR estimand can be given a mathematically well-defined “best linear approxima-
tion” interpretation when the true underlying structural DGP is in fact nonlinear. We
also discuss to what extent this best linear approximation is structurally interesting.

Assume that the underlying structural DGP has the nonparametric causal structure

wt = g(εt� εt−1� εt−2� � � � )� (B.10)
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where g(·) is any nonlinear function that yields a well-defined covariance stationary pro-
cess {wt}, and {εt} is an nε-dimensional i.i.d. process with Cov(εt) = Inε . The number of
structural shocks εt may exceed the number of variables in wt .

We show formally in Section B.4.1 below that we can represent the process (B.10) as
the liinear structural vector moving average model

wt = μ∗ +
∞∑
�=0

Θ∗
�εt−� +

∞∑
�=0

Ψ ∗
� ζt−��

where ζt is an nw-dimensional white noise process that is uncorrelated at all leads and
lags with the structural shocks εt . The argument exploits the Wold decomposition of the
residual of wt after projecting on the structural shocks. Hence, the linear SVMA model
(10) in Assumption 3 should not be thought of as restrictive, provided we do not restrict
the number of “shocks” relative to the number of variables.

The linear SVMA impulse responses Θ∗
� corresponding to the structural shocks εt have

a “best linear approximation” interpretation. Specifically,

(
Θ∗

0�Θ
∗
1� � � �

) ∈ argmin
(Θ̃0�Θ̃1���� )

E

[(
g(εt� εt−1� � � � )−

∞∑
�=0

Θ̃�εt−�

)2]
� (B.11)

Thus, if a second-moment LP/VAR identification scheme is known to correctly identify
the impulse responses in a linear SVMA model (10), and there is doubt about whether the
true underlying DGP is in fact linear, the population estimand of the identification proce-
dure can be given a formal “best linear approximation” interpretation. This is analogous
to the “best linear predictor” property of ordinary least squares in cross-sectional regres-
sion. In contrast, identification approaches that depart from standard linear projections—
such as identification through higher moments or through heteroskedasticity—may not
have a clear interpretation under functional form misspecification.

Of course, this best linear approximation may bear little resemblance to the impulse re-
sponses in the underlying nonlinear model, which will generally depend on the history and
magnitudes of current and past shocks, unlike the linear impulse responses. In applica-
tions where the nonlinearities of the true underlying DGP are of interest per se, nonlinear
versions of VAR or LP estimators can be applied, for example by adding interaction or
polynomial terms, regime switching, stochastic volatility, etc. Such issues are outside the
scope of this paper, which deals exclusively with linear estimators.

B.4.1. Technical Details

We now give the technical details behind the “best linear approximation” interpreta-
tion of a nonlinear model. Assume the nonparametric model (B.10), and that {wt} is co-
variance stationary and purely nondeterministic. Let the linear projection of wt on the
orthonormal basis (εt� εt−1� εt−2� � � � ) be denoted

∑∞
�=0 Θ

∗
�εt−�, with projection residual vt .

Assume vt is either identically zero or purely nondeterministic. Then it has a Wold de-
composition

vt = μ∗ +
∞∑
�=0

Ψ ∗
� ζt−��

where {ζt} is nw-dimensional white noise with Cov(ζt) = Inw . Since vt is a function of
{ετ}τ≤t , and {εt} is i.i.d., we have Cov(εt+�� vt) = 0nε×nw for all � ≥ 1. Moreover, since vt is
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a residual from a projection onto {ετ}τ≤t , we also have Cov(εt+�� vt) = 0nε×nw for all � ≤ 0.
By the Wold decomposition theorem, ζt lies in the closed linear span of {vτ}τ≤t , so we must
have Cov(εt+�� ζt) = 0nε×nw for all � ∈ Z. Finally, the best linear approximation property
(B.11) is a standard consequence of linear projection. We have thus verified all claims
made in Section B.4.
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