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APPENDIX A: CONNECTIONS TO LARGE SCALE TESTING

THE PROBLEM OF DETECTING INDIVIDUAL DISCRIMINATORS based on correspondence
evidence is closely related to the literature on large scale testing, which is concerned with
deciding which hypotheses to reject based upon the results of a very large number of
tests (Efron (2012) provided a review). A seminal contribution to this literature comes
from Benjamini and Hochberg (1995), who proposed controlling the False Discovery Rate
(FDR): the expected share of rejected null hypotheses that are true. We next show that a
decision rule based on the posterior probability π(cw� cb) will control an analogue of the
FDR, while a decision rule based on classical hypothesis testing will not.

As in Section 9, let δ : {0� � � � �Lw} × {0� � � � �Lb} → {0�1} represent an auditing rule
that maps the evidence vector (Cjw�Cjb) to a binary investigation decision. Letting
NJ ≡ ∑J

j=1 δ(Cjw�Cjb) denote the total number of investigations in a sample of J

jobs, we can define the Positive False Discovery Rate (Storey (2003)) as: pFDRJ =
E[N−1

J

∑J

j=1 δ(Cjw�Cjb)(1 − Dj)|NJ ≥ 1]. In words, pFDRJ gives the proportion of in-
vestigated jobs that are not discriminating, conditional on at least one investigation tak-
ing place. The following lemma establishes that a posterior cutoff decision rule controls
pFDRJ .

LEMMA A1: If δ(Cjw�Cjb) = 1{π(Cjw�Cjb) > p̄}, then pFDRJ ≤ 1 − p̄.

PROOF: Storey (2003, Theorem 1) showed that pFDRJ = Pr(Dj = 0|δ(Cjw�Cjb) = 1)
for any deterministic decision rule δ(·) obeying Pr(δ(Cjw�Cjb) = 1) > 0. Then the poste-
rior cutoff rule δ(Cjw�Cjb)= 1{π(Cjw�Cjb) > p̄} yields

pFDRJ = Pr
(
Dj = 0|π(Cjw�Cjb) > p̄

)
≤ Pr

(
Dj = 0|π(Cjw�Cjb)= p̄

) = 1 − p̄� Q.E.D.

By contrast, consider an alternative decision rule δ†(Cjw�Cjb) based on a classical hy-
pothesis test that controls size at a fixed level α̃ < 1. To simplify exposition, suppose that
the test is pivotal under the null of nondiscrimination so that

Pr
(
δ†(Cjw�Cjb) = 1|pjw = p�pjb = p

) = α̃� ∀p ∈ [0�1]�
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We can write the resulting pFDRJ of this rule:

Pr
(
Dj = 0|δ†(Cjw�Cjb)= 1

)
= Pr

(
δ†(Cjw�Cjb)= 1|Dj = 0

)
(1 − π̄)

Pr
(
δ†(Cjw�Cjb)= 1|Dj = 0

)
(1 − π̄)+ Pr

(
δ†(Cjw�Cjb)= 1|Dj = 1

)
π̄

≥ α̃(1 − π̄)

α̃(1 − π̄)+ π̄
�

To see that δ†(Cjw�Cjb) fails to control pFDRJ , note that limπ̄↓0
α̃(1−π̄)

α̃(1−π̄)+π̄
= 1. That is,

when almost no jobs are discriminating, classical hypothesis testing will result in the vast
majority of investigations being false accusations.

The False Discovery Rate of Benjamini and Hochberg (1995) can be written FDRJ =
pFDRJ ×Pr(NJ ≥ 1). Because Pr(NJ ≥ 1) ≤ 1, Lemma A1 implies that the posterior
cutoff rule also controls FDRJ .

APPENDIX B: PROOF OF LEMMA 2

By the law of total probability, the share of jobs calling cw white and t − cw black appli-
cations among those calling t total can be written

f̄t(cw)= (1 − π̄t)f̄
0
t (cw)+ π̄t f̄

1
t (cw)�

where f̄ d
t (cw)= Pr(Cjw = cw|Cjw +Cjb = t�Dj = d) for d ∈ {0�1}. Since f̄ 1

t (cw) ∈ [0�1], we
have

f̄t(cw)≥ (1 − π̄t)f̄
0
t (cw)� f̄t(cw)≤ (1 − π̄t)f̄

0
t (cw)+ π̄t�

which implies

π̄t ≥ max
{
f̄ 0
t (cw)− f̄t(cw)

f̄ 0
t (cw)

�
f̄t(cw)− f̄ 0

t (cw)

1 − f̄ 0
t (cw)

}
�

Taking the maximum of these lower bounds over cw ∈ {0� � � � � t} yields the bound on π̄t in
part (i) of Lemma 2.

By Bayes’s rule, the share of discriminators among jobs calling cw white and t−cw black
applications is given by

π(cw� t − cw)= 1 − f̄ 0
t (cw)(1 − π̄t)

f̄t(cw)
�

Plugging the bound on π̄t from part (i) of the lemma into this expression gives the bound
on π(cw� t − cw) in part (ii).

APPENDIX C: DISCRETIZATION OF G AND LINEAR PROGRAMMING BOUNDS

To compute the solution to the problem in (5), we approximate the CDF G(pw�pb)
with the discrete distribution

GK(pw�pb)=
K∑

k=1

K∑
s=1

ηks1
{
pw ≤ �(k� s)�pb ≤ �(s�k)

}
�
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where the {ηks}K�K
k=1�s=1 are probability masses and {�(k� s)��(s�k)}K�K

k=1�s=1 comprise a set
of mass point coordinates generated by the function

�(k� s) = min{k� s} − 1
K︸ ︷︷ ︸

diagonal

+ max{0�k− s}2

K(1 +K − y)︸ ︷︷ ︸
off-diagonal

�

This discretization scheme can be visualized as a two-dimensional grid containing K2 ele-
ments. The diagonal entries on the grid represent jobs where no discrimination is present.
The first term above ensures the mass points are equally spaced along the diagonal from
(0�0) to (K−1

K
� K−1

K
). The second term spaces off diagonal points quadratically according

to their distance from the diagonal in order to accommodate jobs with very low levels of
discrimination while economizing on the number of grid points. We use a spacing scheme
that places more points near the diagonal because we are particularly interested in the
mass exactly on the diagonal. Note that lim

K→∞
�(K� s) = 1, ensuring the grid asymptotically

spans the unit square.
With this notation, the constraints in (6) can be written

f̄ (cw� cb)=
(
Lw

cw

)(
Lb

cb

) K∑
k=1

K∑
s=1

ηks�(k� s)
cw

(
1 −�(k� s)

)Lw−cw

×�(s�k)cb
(
1 −�(s�k)

)Lb−cb� (1)

for cw = (1� � � � �Lw) and cb = (0� � � � �Lb). Hence, our composite discretized optimization
problem is to

min
{ηks}

1 −

(
L

t

)
t∑

c′
w=0

f̄
(
c′
w� t − c′

w

)
K∑

k=1

ηkk�(k�k)
t
(
1 −�(k�k)

)L−t
�

subject to (1) and
K∑

k=1

K∑
s=1

ηks = 1� ηks ≥ 0�

for k = 1� � � � �K and m = 1� � � � �K. We solve this problem numerically using the Gurobi
software package. Because setting K too low will tend to yield artificially tight bounds, we
set K = 900 in all bound computation steps, which yields (900)2 = 810,000 distinct mass
points.

Appendix Table A.IV reports linear programming bounds for various choices of K.
As expected, the bounds stabilize with a sufficiently large K, and the quadratic spacing
described above produces more accurate results than an equally-spaced grid: we obtain
similar estimates for a quadratic grid with 3002 grid points and a rectangular grid with
9002 points.

APPENDIX D: SHAPE-CONSTRAINED GMM

To accommodate the Nunley, Pugh, Romero, and Seals (2015) study which employs
multiple application designs, we introduce the variable Lj = (Ljw�Ljb) which gives the
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number of white and black applications sent to job j. Collecting the design-specific call-
back probabilities {Pr(Cjw = cw�Cjb = cb|Lj = l)}cw�cb into the vector f̄l, our model relates
these probabilities to moments of the callback distribution via the linear system f̄l = Blμ,
for Bl a fixed matrix of binomial coefficients. Letting f̄ denote the vector formed by
“stacking” the {f̄l} across designs in an experiment, we write f̄ = Bμ. Let η be a K2 × 1
vector composed of the probability masses {ηks}K�K

k=1�s=1 (see Appendix C). For GMM esti-
mation, we set K = 150 (larger values yield very similar results). From (3), we can write
μ = Mη where M is a dim(μ) × K2 matrix composed of entries with typical element
�(k� s)m�(s�k)n. We then have the moment restriction f̄ = BMη.

Let f̃ denote the vector of empirical callback probabilities with typical element

J−1
J∑

j=1

1{Cjw = cw�Cjb = cb�Lj = l}

J−1
J∑

j=1

1{Lj = l}
�

Our shape-constrained GMM estimator of η can be written as the solution to the follow-
ing quadratic programming problem:

η̂= arg inf
η
(f̃ −BMη)′W (f̃ −BMη)

s.t. η ≥ 0�1′η = 1� (2)

where W is a fixed weighting matrix. Note that because G is not identified, there are many
possible solutions η̂ to this problem, but these solutions will all yield the same values of
BMη̂. Our shape-constrained estimate of the moments is μ̂ =Mη̂, while our estimator of

the callback probabilities is ˆ̄f = BMη̂. We follow a two-step procedure, solving (2) with
diagonal weights proportional to the number of jobs used in the application design and

then choosing W = Σ̂−1, where Σ̂ = diag( ˆ̄f (1)) − ˆ̄f (1) ˆ̄f (1)′ is an estimate of the variance-
covariance matrix of the callback frequencies implied by the first-step shape-constrained

callback probability estimates ˆ̄f (1).

Hong and Li (2020) Standard Errors

Standard errors on the moment estimates μ̂ are computed via the numerical bootstrap
procedure of Hong and Li (2020) using a step size of J−1/3 (we found qualitatively similar
results with a step size of J−1/4). Our implementation of the numerical bootstrap proceeds
as follows: the bootstrap analogue μ∗ of μ̂ solves the quadratic programming problem in
(2) where f̃ has been replaced by (f̃ +J−1/3f ∗). The bootstrap probabilities f ∗ have typical
element

J1/2

( J∑
j=1

ω∗
j 1{Cjw = cw�Cjb = cb�Lj = l}

J∑
j=1

ω∗
j 1{Lj = l}

−

J∑
j=1

1{Cjw = cw�Cjb = cb�Lj = l}
J∑

j=1

1{Lj = l}

)
�
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where {ω∗
j }Jj=1 are a set of i.i.d. draws from an exponential distribution with mean

and variance 1. For any function φ(μ̂) of the moment estimates μ̂ reported, we use
as our standard error estimate the standard deviation across bootstrap replications of
J−1/3[φ(μ∗)−φ(μ̂)].

Chernozhukov, Newey, and Santos (2015) Goodness-of-Fit Test

To formally test whether there exists an η in the K2-dimensional probability simplex
such that f = BMη holds, we rely on the procedure of Chernozhukov, Newey, and Santos
(2015). Our test statistic (the “J-test”) can be written

Tn = inf
η
(f̃ −BMη)′Σ̂−1(f̃ −BMη)

s.t. η≥ 0�1′η = 1�

Letting F
∗ = f ∗ − f̃ denote the (centered) bootstrap analogue of the callback frequen-

cies f̃ and W ∗ a corresponding bootstrap weighting matrix, our bootstrap test statistic
takes the form

T ∗
n = inf

η�h

(
F

∗ −BMh
)′
W ∗(

F
∗ −BMh

)
s.t. (f̃ −BMη)′W (f̃ −BMη) = Tn�η ≥ 0�1′η = 1�h ≥ −η�1′h= 0� (3)

As in the full sample problem, we conduct a two-step GMM procedure in each boot-
strap replication, setting W ∗ = [diag(BMη(1)∗) − (BMη(1)∗)(BMη(1)∗)′]−1, where η(1)∗ is
a first-step diagonally weighted estimate of the probabilities in the bootstrap sample. The
goodness-of-fit p-value reported is the share of bootstrap samples for which T ∗

n > Tn.
To simplify computation of (3), we reformulate the problem in two ways. First, we define

primary and auxiliary vectors of errors for each moment condition. Letting ξh = F
∗ −

BMh and ξη = f̃ −BMη, the problem can be re-posed as

T ∗
n = inf

ξh�ξη
ξ′
hW

∗ξh�

s.t. ξ′
ηW ξη = Tn�BMh+ ξh = F

∗�BMη+ ξη = f̃ �1′h= 0�1′η = 1�h ≥ −η�η ≥ 0�

Now letting h+ = h+η, we can further rewrite the problem as

T ∗
n = inf

ξh�ξη
ξ′
hW

∗ξh�

s.t. ξ′
ηW ξη = Tn�BMh+ + ξh + ξη = F

∗�BMη+ ξη = f̃ �

1′h+ = 1�1′η = 1�h+ ≥ 0�η≥ 0�

This final representation replaces a K2 × K2 + 1 (inequality) constraint matrix encoding
ξh ≥ −ξη and ξη ≥ 0 with a 2K2 × 1 vector encoding h+ ≥ 0 and η ≥ 0. Because this
problem still involves a quadratic constraint in ξη, we make use of Gurobi’s Second Order
Cone Programming (SOCP) solver to obtain a solution.
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APPENDIX E: COMPUTING MAXIMUM RISK

We approximate G(pH
w �p

L
w�p

H
b �p

L
b ) with the discretized distribution

GK

(
pH

w �p
L
w�p

H
b �p

L
b

) =
K∑

k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′1
{
pH

w ≤ �(k� s)�pL
w ≤ �

(
k′� s′)�pH

b ≤ �(s�k)�

pL
b ≤ �

(
s′�k′)}�

which has K4 mass points. In practice, we choose K = 30, which yields the same number
of points as the approximation described in Appendix C.

Generalizing the notation of Appendix D, let the vector Lj = (LH
jw�L

L
jw�L

H
jb�L

L
jb) record

the number of high quality and low quality applications of each race sent to job j and let
Cj = (CH

jw�C
L
jw�C

H
jb�C

L
jb) record the corresponding numbers of callbacks. The space of

auditing rules we consider is of the form δ(Cj�Lj� q)= 1{P(Cj�Lj�Glogit) > q}. With this
notation, we can write the risk function

R(q)=
∑
l∈A1

wlE

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
px

wj

) −Λ−1
(
px

bj

)
2

)}∣∣∣∣Lj = l

]
�

where A1 is the set of all 25 = 36 binary quality permutations possible in a design with
5 white and 5 black applications and wl = ( 5

lHw

)( 5
lH
b

)
(1/2)10 is the set of weights that arise

when quality is assigned at random within race.
To further evaluate the above risk expression, we can write

E

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
px

wj

) −Λ−1
(
px

bj

)
2

)}∣∣∣∣Lj = l

]

=
aHjw∑
cHw =0

aH
jb∑

cH
b

=0

aLjw∑
cLw=0

aL
jb∑

cL
b

=0

K∑
k=1

K∑
s=1

K∑
k′≥k

K∑
s′≥s

δ(c� l� q)ηksk′s′

(
lHw
cHw

)(
lHb
cHb

)(
lLw
cLw

)(
lLb
cLb

)

×�(k� s)c
H
w
(
1 −�(k� s)

)lHw −cHw �(s�k)c
H
b
(
1 −�(s�k)

)lH
b

−cH
b

×�
(
k′� s′)cLw(

1 −�
(
k′� l = s′))lLw−cLw�

(
s′�k′)cLb (

1 −�
(
s′�k′))lLb −cL

b

×
{
κ−Λ

(
Λ−1

(
�(k� s)

) −Λ−1
(
�(s�k)

)
2

+ Λ−1
(
�

(
k′� s′)) −Λ−1

(
�

(
s′�k′))

2

)}
�

Using this expression, maximal risk can therefore be written as the solution to the follow-
ing linear programming problem:

Rm(q) = max
{ηksk′s′ }

∑
l∈A1

wlE

[
δ(Cj� l� q)

{
κ−Λ

( ∑
x∈{H�L)

Λ−1
(
px

wj

) −Λ−1
(
px

bj

)
2

)}∣∣∣∣Lj = l

]
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subject to the constraint that the ηklk′l′ are nonnegative and sum to 1 and that the follow-
ing moment restrictions hold:

Pr(Cj = c|Lj = l) =
(
lHw
cHw

)(
lHb
cHb

)(
lLw
cLw

)(
lLb
cLb

) K∑
k=1

K∑
s=1

K∑
k′=1

K∑
s′=1

ηksk′s′

×�(k� s)c
H
w
(
1 −�(k� s)

)lHw −cHw �(s�k)c
H
b
(
1 −�(s�k)

)lH
b

−cH
b

×�
(
k′� s′)cLw(

1 −�
(
k′� s′))lLw−cLw�

(
s′�k′)cLb (

1 −�
(
s′�k′))lLb −cL

b �

We impose these restrictions for the following set of designs, all of which are present in
the Nunley et al. (2015) experiment: A2 = {(2�0�2�0)� (2�0�0�2)� (0�2�2�0)� (0�2�0�2)}.
To operationalize these constraints, we replace the unknown cell probabilities Pr(Cj =
c|Lj = l) for all c and l in A2 with their predictions under the logit model reported in
column (2) of Table V. Using the logit predictions serves as a form of smoothing that
allows us to avoid problems that arise with small cells when considering quality variation
due to covariates.

APPENDIX: FIGURES AND TABLES

FIGURE A.1.—Mixed logit model fit. Notes: This figure compares mixed logit predicted frequencies for call-
back events in the Nunley et al. (2015) data with corresponding empirical frequencies. The horizontal axis
plots model-predicted probabilities for each possible combination of white and black callback counts (exclud-
ing zero total callbacks), separately by experimental design. Model predictions are calculated by simulating
the logit model in column (2) of Table V 10,000 times for each job in the Nunley et al. data set. The vertical
axis plots the observed frequency of each event. Green dots show frequencies for a design with two white and
two black applications, while orange, blue, red, and gray points show frequencies for designs with 3 white and
1 black, 1 white and 3 black, 4 white and zero black, and 0 white and 4 black applications, respectively. The
dashed line is the 45-degree line. The test statistic and p-value come from a Wald test that all model-predicted
and empirical frequencies match, treating the model predictions as fixed.
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FIGURE A.2.—Bayes and minimax investigation thresholds. Notes: This figure compares Bayes and minimax
decisions for various values of the investigation cost parameter κ. The horizontal axis displays the posterior
investigation threshold for a Bayes regulator for each value of κ, and the vertical axis shows the corresponding
threshold for a minimax regulator. The dashed line is the 45-degree line.

TABLE A.I

MOMENTS OF CALLBACK RATE DISTRIBUTION, BM DATAa

No Constraints Shape Constraints

Moment (1) (2)

E[pw] 0�094 0�094
(0�006) (0�007)

E[pb] 0�063 0�063
(0�006) (0�006)

E[(pw −E[pw])2] 0�040 0�040
(0�005) (0�005)

E[(pb −E[pb])2] 0�023 0�023
(0�004) (0�004)

E[(pw −E[pw])(pb −E[pb])] 0�028 0�028
(0�004) (0�003)

E[(pw −E[pw])2(pb −E[pb])] 0�015 0�014
(0�003) (0�002)

E[(pw −E[pw])(pb −E[pb])2] 0�023 0�012
(0�003) (0�002)

E[(pw −E[pw])2(pb −E[pb])2] 0�010 0�010
(0�003) (0�002)

J-statistic: 0.0
p-value: 1.00

Sample size 1112

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white and
black callback rates in the Bertrand and Mullainathan (2004) data. Estimates in column (2) come from a shape-constrained GMM
procedure imposing that the moments are consistent with a well-defined probability distribution. The J-statistic is the minimized
shape-constrained GMM criterion function. The p-value comes from a bootstrap test of the hypothesis that the model restrictions are
satisfied.
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TABLE A.II

MOMENTS OF CALLBACK RATE DISTRIBUTION, NPRS DATAa

Design-Specific Estimates

(2�2) Design (3�1) Design (1�3) Design P-Value Combined Estimates

Moment (1) (2) (3) (4) (5)

E[pw] 0�174 0�199 0�142 0�027 0�176
(0�010) (0�025) (0�015) (0�007)

E[pb] 0�148 0�149 0�157 0�854 0�153
(0�010) (0�015) (0�013) (0�007)

E[(pw −E[pw])2] 0�089 0�108 – 0�097 0�095
(0�007) (0�009) (0�005)

E[(pb −E[pb])2] 0�085 – 0�083 0�857 0�084
(0�007) (0�008) (0�005)

E[(pw −E[pw])(pb −E[pb])] 0�083 0�084 0�080 0�926 0�084
(0�006) (0�009) (0�009) (0�004)

E[(pw −E[pw])3] – 0�051 – 0�106
(0�008) (0�007)

E[(pb −E[pb])3] – – 0�044 0�091
(0�007) (0�006)

E[(pw −E[pw])2(pb −E[pb])] 0�044 0�043 – 0�875 0�040
(0�004) (0�007) (0�002)

E[(pw −E[pw])(pb −E[pb])2] 0�047 – 0�045 0�819 0�042
(0�005) (0�007) (0�002)

E[(pw −E[pw])3(pb −E[pb])] – 0�034 – – 0�035
(0�005) (0�002)

E[(pw −E[pw])(pb −E[pb])3] – – 0�037 – 0�037
(0�006) (0�002)

E[(pw −E[pw])2(pb −E[pb])2] 0�036 – – – 0�037
(0�004) (0�002)

J-statistic: 23.0
p-value: 0.226

Sample size 1146 544 550 2240

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white
and black callback rates in the Nunley et al. (2015) data. Columns (1), (2), and (3) show estimates based on jobs that received 2 white
and 2 black, 3 white and 1 black, and 1 white and 3 black applications, respectively. Column (4) shows p-values from tests that the
moments are the same in each design. Estimates in column (5) come from a shape-constrained GMM procedure imposing that the
moments are consistent with a well-defined probability distribution. The J-statistic is the minimized shape-constrained GMM criterion
function. The p-value come from a bootstrap test of the hypothesis that the model restrictions are satisfied.
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TABLE A.III

MOMENTS OF CALLBACK RATE DISTRIBUTION, AGCV DATAa

No
Constraints

Shape
Constraints

No
Constraints

Shape
Constraints

Moment (1) (2) Moment (3) (4)

E[pf ] 0�136 0�137 E[(pf −E[pf ])4] 0�024 0�026
(0�010) (0�010) (0�004) (0�003)

E[pm] 0�103 0�109 E[(pm −E[pm])4] 0�019 0�023
(0�009) (0�009) (0�004) (0�003)

E[(pf −E[pf ])2] 0�066 0�066 E[(pf −E[pf ])4(pm −E[pm])] 0�012 0�012
(0�006) (0�006) (0�003) (0�002)

E[(pm −E[pm])2] 0�047 0�052 E[(pf −E[pf ])(pm −E[pm])4] 0�013 0�013
(0�005) (0�006) (0�003) (0�002)

E[(pf −E[pf ])(pm −E[pm])] 0�043 0�043 E[(pf −E[pf ])3(pm −E[pm])2] 0�012 0�011
(0�005) (0�004) (0�003) (0�002)

E[(pf −E[pf ])3] 0�032 0�064 E[(pf −E[pf ])2(pm −E[pm])3] 0�012 0�013
(0�005) (0�007) (0�003) (0�002)

E[(pm −E[pm])3] 0�025 0�048 E[(pf −E[pf ])4(pm −E[pm])2] 0�010 0�010
(0�005) (0�007) (0�002) (0�002)

E[(pf −E[pf ])2(pm −E[pm])] 0�021 0�018 E[(pf −E[pf ])2(pm −E[pm])4] 0�010 0�010
(0�004) (0�003) (0�002) (0�002)

E[(pf −E[pf ])(pm −E[pm])2] 0�022 0�020 E[(pf −E[pf ])3(pm −E[pm])3] 0�010 0�009
(0�004) (0�003) (0�002) (0�002)

E[(pf −E[pf ])3(pm −E[pm])] 0�015 0�015 E[(pf −E[pf ])4(pm −E[pm])3] 0�008 0�008
(0�003) (0�002) (0�002) (0�001)

E[(pf −E[pf ])(pm −E[pm])3] 0�016 0�017 E[(pf −E[pf ])3(pm −E[pm])4] 0�008 0�008
(0�003) (0�002) (0�002) (0�002)

E[(pf −E[pf ])2(pm −E[pm])2] 0�016 0�016 E[(pf −E[pf ])4(pm −E[pm])4] 0�007 0�001
(0�003) (0�002) (0�002) (0�001)

J-statistic: 2.7
p-value: 0.891

Sample size: 799

aThis table reports generalized method of moments (GMM) estimates of moments of the joint distribution of job-specific white
and black callback rates in the Arceo-Gomez and Campos-Vasques (2014) data. Estimates in columns (2) and (4) come from a shape-
constrained GMM procedure imposing that the moments are consistent with a well-defined probability distribution. The J-statistic is
the minimized shape-constrained GMM criterion function. The p-value comes from a bootstrap test of the hypothesis that the model
restrictions are satisfied.
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TABLE A.IV

SENSITIVITY OF MOMENTS AND BOUNDS TO DISCRETIZATION GRIDa

J-Statistic Share
Discriminating

Share Disc.,
One Call

Share Disc.,
Two Calls

Share Disc.,
Three Calls

Grid Spacing (1) (2) (3) (4) (5)

A. Nunley et al. data
K1 = 50 K2 = 200 Quadratic 23�00 0.267 0.485 0.553 0.680
K1 = 100 K2 = 200 Quadratic 22�97 0.369 0.701 0.716 0.845

K2 = 400 Quadratic 0.332 0.619 0.652 0.788
K2 = 600 Quadratic 0.322 0.597 0.636 0.769

K1 = 150 K2 = 300 Quadratic 22�96 0.404 0.771 0.778 0.884
K2 = 600 Quadratic 0.371 0.699 0.717 0.840
K2 = 900 Quadratic 0.361 0.679 0.700 0.826

Rectangular 0.412 0.787 0.793 0.890
B. Arceo-Gomez & Campos-Vasquez data

K1 = 50 K2 = 200 Quadratic 3�5 0.220 0.762 0.709 0.570
K1 = 100 K2 = 200 Quadratic 2�8 0.218 0.738 0.717 0.599

K2 = 400 Quadratic 0.209 0.732 0.710 0.583
K2 = 600 Quadratic 0.209 0.730 0.708 0.579

K1 = 150 K2 = 300 Quadratic 2�7 0.220 0.727 0.718 0.606
K2 = 600 Quadratic 0.208 0.722 0.709 0.587
K2 = 900 Quadratic 0.207 0.721 0.708 0.584

Rectangular 0.215 0.713 0.707 0.590

aThis table explores the sensitivity of our shape-constrained generalized method of moments (SCGMM) and linear programming
bounds results to the number of grid points used to approximate the joint distribution of callback probabilities. K1 refers to the number
of mass points used in the quadratic programming SCGMM step, while K2 refers to the number of mass points used in the linear
programming bounds step. Quadratic grid spacing refers to the scheme described in Appendix A, and rectangular spacing refers to a
grid with equally spaced points. Column (1) shows the minimized SCGMM criterion function for each value of K1. Column (2) displays
the lower bound on the fraction of discriminating jobs for each combination of K1 and K2. Columns (3)–(5) show corresponding
bounds conditional on the total number of callbacks. Panel A displays results for an application design with two white and two black
applicants in the Nunley et al. (2015) data, and panel B displays results for the Arceo-Gomez and Campos-Vasquez (2014) data. Bold
lines indicate the preferred specification used in the main text.
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