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THESE SUPPLEMENTAL MATERIALS are organized as follows. Supplemental Appendix C
gives additional empirical results. Supplemental Appendix D proves Lemma A.3, gives
the derivation of the solution path in the proof of Theorem 2.2, completes the proof of
Theorem 2.3, proves Lemma B.1 and Lemma B.2, gives conditions for asymptotic effi-
ciency of the matching estimator with a single match, and finally verifies Assumption B.1
for the matching estimator.

APPENDIX C: ADDITIONAL EMPIRICAL RESULTS: OTHER CHOICES OF DISTANCE

A disadvantage of the distance based on A = Amain is that it requires prior knowledge
of the relative importance of different pretreatment variables in explaining the outcome
variable. An alternative is to specify the distance using moments of the pretreatment vari-
ables in a way that ensures invariance to scale transformations. For example, Abadie and
Imbens (2011) formed matching estimators using the weighted Euclidean norm (so q = 2)
with A = Ane ≡ diag(1/ std(x1)� � � � �1/ std(xp)), where std denotes sample standard de-
viation. Table S.I shows the diagonal elements of Ane. It can be seen that this distance
is most likely not the best way of encoding a researcher’s prior beliefs about Lipschitz
constraints. For example, the bound on the difference in average earnings between blacks
and nonblack non-Hispanics is substantially smaller than the bound on the difference in
average earnings between Hispanics and nonblack non-Hispanics.

If the constant C is to be chosen conservatively, the derivative of f (x�d) with respect
to each of these variables must be bounded by C times the corresponding element in
this table. If one allows for somewhat persistent earnings, then C should be chosen in
the range of 10 or above: to allow previous years’ earnings to have a one-to-one effect,
we would need to take C = 1/

√
0�072 + 0�072 = 10�1. For this C, when δ is chosen to

optimize confidence interval (CI) length, the resulting CI is given by 1�72 ± 7�63, which is
much wider than the CIs reported in Table II.

In Theorem 2.3, we showed that the matching estimator with a single match is optimal
for C large enough. For this result, it is important that the norm used to construct the
matches is the same as the norm defining the Lipschitz class. To illustrate this point, con-
sider a matching estimator considered in Abadie and Imbens (2011), that uses q = 2 and
A = Ane. The root mean squared error (RMSE) efficiency of this estimator under our
main specification (Amain, q = 1 and C = 1) is 77.5%; for CI length, its efficiency is 74.6%.
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TABLE S.I

DIAGONAL ELEMENTS OF THE WEIGHT MATRIX A IN DEFINITION OF THE NORM IN EQUATION (24) FOR
THE MAIN SPECIFICATION, Amain, AND ALTERNATIVE SPECIFICATION, Ane

Earnings Employed

Age Educ. Black Hispanic Married 1974 1975 1974 1975

Amain 0.15 0.60 2.50 2.50 2.50 0.50 0.50 0.10 0.10
Ane 0.10 0.33 2.20 5.49 2.60 0.07 0.07 2.98 2.93

This is considerably lower than the efficiencies of the matching estimator that matched on
the norm defining the Lipschitz class reported in Section 5.2. Furthermore, the efficiency
is never higher than 80.1%, even for large values of C .

APPENDIX D: PROOFS OF AUXILIARY LEMMAS AND ADDITIONAL DETAILS

D.1. Proof of Lemma A.3

We will show that equation (29) holds for (a) all i� j with di = dj = 1 −d, (b) all i� j with
di = 1 − dj = d, and for part (ii) that it also holds (c) for all i� j with di = dj = d. Let gi

denote the ith element of the vector (g(x1� d)� � � � � g(xn�d))
′.

For (a), if equation (29) did not hold for some i� j with di = dj = 1 − d, then by the
triangle inequality, for all j′ with dj′ = d,

gj +C‖xi − xj‖X < gi ≤ gj′ +C‖xi − xj′ ‖X ≤ gj′ +C‖xi − xj‖X +C‖xj − xj′ ‖X �

contradicting the assertion in both part (i) and part (ii) that equation (29) holds with
equality for at least one j′ with dj′ = d. Similarly, for (c), if it did not hold for some i� j,
then for all i′ with di′ = 1 − d, by the triangle inequality,

gi′ ≤ gj +C‖xi′ − xj‖X < gi +C‖xi′ − xj‖X −C‖xi − xj‖X ≤ gi +C‖xi′ − xi‖X �

contradicting the assertion that equation (29) holds with equality for at least one i′ with
di′ = 1 − d. Finally, for (b), if equation (29) didn’t hold for some i′� j′ with di′ = 1 − dj′ =
d, then by the triangle inequality, denoting by j∗(j′) an element with dj∗ = d such that
equation (29) holds with equality when i = j′ and j = j∗,

gi′ − gj∗(j′) = gi′ +C‖xj∗(j′) − xj′ ‖X − gj′ >C‖xj∗(j′) − xj′ ‖X +C‖xi′ − xj′ ‖X

≥ C‖xj∗(j′) − xi′ ‖X �

which violates (c).

D.2. Derivation of Algorithm for Solution Path

Observe that Λ0
ij = 0 unless for some k, i ∈R0

k and j ∈M0
k, and similarly Λ1

ij = 0 unless
for some k, j ∈ R1

k and i ∈ M1
k. Therefore, the first-order conditions for the Lagrangian

can be written as

mj/σ
2(0)= μw(0)+

∑
i∈R0

k

Λ0
ij� j ∈M0

k� μw(1)=
∑
j∈M0

k

Λ0
ij� i ∈R0

k� (S1)
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mi/σ
2(1)= μw(1)+

∑
j∈R1

k

Λ1
ij� i ∈M1

k� μw(0)=
∑
i∈M1

k

Λ1
ij� j ∈R1

k� (S2)

Summing up these conditions then yields

∑
j∈M0

k

mj/σ
2(0)= μw(0) · #M0

k +
∑
j∈M0

k

∑
i∈R0

k

Λ0
ij = #M0

k ·μw(0)+ #R0
k ·μw(1)�

∑
i∈M1

k

mi/σ
2(1)= μw(1) · #M1

k +
∑
i∈M1

k

∑
j∈R1

k

Λ1
ij = #M1

k ·μw(1)+ #R1
k ·μw(0)�

Following the argument in Osborne, Presnell, and Turlach (2000), Section 4, by continuity
of the solution path, for a small enough perturbation s, Nd(μ + s) = Nd(μ), so long as
the elements of Λd(μ) associated with the active constraints are strictly positive. In other
words, the set of active constraints does not change for small enough changes in μ. Hence,
the partition Md

k remains the same for small enough changes in μ and the solution path
is differentiable. Differentiating the preceding display yields

1
σ2(0)

∑
j∈M0

k

∂mj(μ)

∂μ
= #M0

k ·w(0)+ #R0
k ·w(1)�

1
σ2(1)

∑
i∈M1

k

∂mi(μ)

∂μ
= #M1

k ·w(1)+ #R1
k ·w(0)�

If j ∈ M0
k, then there exists a j′ and i such that the constraints associated with Λ0

ij and
Λ0

ij′ are both active, so that mj + ‖xi − xj‖X = ri = mj′ + ‖xi − xj′ ‖X , which implies that
∂mj(μ)/∂μ = ∂mj′(μ)/∂μ. Since all elements in M0

k are connected, it follows that the
derivative ∂mj(μ)/∂μ is the same for all j in M0

k. Similarly, ∂mj(μ)/∂μ is the same for
all j in M1

k. Combining these observations with the preceding display implies

1
σ2(0)

∂mj(μ)

∂μ
=w(0)+ #R0

k(j)

#M0
k(j)

w(1)�
1

σ2(1)
∂mi(μ)

∂μ
= w(1)+ #R1

k(i)

#M1
k(i)

w(0)�

where k(i) and k(j) are the partitions that i and j belong to. Differentiating the first-order
conditions (S1) and (S2) and combining them with the restriction that ∂Λd

ij(μ)/∂μ = 0 if
Nd

ij (μ) = 0 then yields the following set of linear equations for ∂Λd(μ)/∂μ:

#R0
k

#M0
k

w(1)=
∑
i∈R0

k

∂Λ0
ij(μ)

∂μ
� w(1)=

∑
j∈M0

k

∂Λ0
ij(μ)

∂μ
�

#R1
k

#M1
k

w(0)=
∑
j∈R1

k

∂Λ1
ij(μ)

∂μ
� w(0)=

∑
i∈M1

k

∂Λ1
ij(μ)

∂μ
�

∂Λd
ij(μ)

∂μ
= 0 if Nd

ij (μ) = 0�
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Therefore, m(μ), Λ0(μ), and Λ1(μ) are all piecewise linear in μ. Furthermore, since for
i ∈R0

k, ri(μ)= mj(μ)+ ‖xi − xj‖X where j ∈M0
k, it follows that

∂ri(μ)

∂μ
= ∂mj(μ)

∂μ
= σ2(0)

[
w(0)+ #R0

k

#M0
k

w(1)
]
�

Similarly, since for j ∈ R1
k, and i ∈ M1

k rj(μ) = mi(μ) + ‖xi − xj‖X , where j ∈ M0
k, we

have

∂rj(μ)

∂μ
= ∂mi(μ)

∂μ
= σ2(1)

[
w(1)+ #R1

k

#M1
k

w(0)
]
�

Thus, r(μ) is also piecewise linear in μ.
Differentiability of m and Λd is violated if the condition that the elements of Λd asso-

ciated with the active constraints are all strictly positive is violated. This happens if one
of the nonzero elements of Λd(μ) decreases to zero, or else if a nonactive constraint be-
comes active, so that for some i and j with N0

ij(μ) = 0, ri(μ)= mj(μ)+ ‖xi − xj‖X , or for
some i and j with N1

ij(μ)= 0, rj(μ)= mi(μ)+ ‖xi − xj‖X . This determines the step size s
in the algorithm.

D.3. Bounds on Optimal δ for Theorem 2.3

Theorem 2.3 follows from Theorem A.5 so long as the optimal δ for the fixed-length
confidence interval (FLCI) and RMSE criteria do not increase without bound as C in-
creases. This section shows that this is indeed the case.

Let S(δ�C) = sd(L̂δ) and let B(δ�C) = biasF(L̂δ) denote standard deviation and
worst-case bias when F is given by the Lipschitz class with constant C , and L̂δ is com-
puted with this class. Let A(C) denote the feasible set of worst-case bias and standard
deviation pairs for this problem. Note that the set A(C) is convex. In particular, given
estimators L̂1 and L̂2 with worst-case bias B1�B2 and standard deviation S1� S2, the esti-
mator λL̂1 + (1 − λ)L̂2 has worst-case bias bounded by λB1 + (1 − λ)B2 and standard
deviation bounded by λS1 + (1 −λ)S2, which then allows for the construction of an affine
estimator with worst-case bias and standard deviation exactly equal to these quantities by
adding a nonrandom constant and a multiple of a N (0�1) variable independent of the
observed data (adding a N (0�1) variable to the sample will not change the calculations
for the optimal estimator for RMSE or FLCI length).

Let R(B�S) be the RMSE criterion (R(B�S) = √
B2 + S2) or the FLCI length cri-

terion (R(B�S) = cvα(B/S)S). Let δ∗ = δ∗(C) minimize R(B(δ�C)�S(δ�C)). Then
B(δ∗�C)�S(δ∗�C) optimizes R(B�S) over the feasible set A(C). Let δ 
= δ∗ be given.
By convexity of the feasible set A(C), we have, for all t ∈ [0�1],

R
((
B(δ�C)−B

(
δ∗�C

))
t +B

(
δ∗�C

)
�
(
S(δ�C)− S

(
δ∗�C

))
t + S

(
δ∗�C

))
−R

(
B

(
δ∗�C

)
� S

(
δ∗�C

)) ≥ 0�

Dividing both sides by t and taking the limit as t → 0, we obtain

R∗
1(C)

[
B(δ�C)−B

(
δ∗�C

)] +R∗
2(C)

[
S(δ�C)− S

(
δ∗�C

)] ≥ 0�
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where (R∗
1(C)�R∗

2(C)) is the derivative of R(B�S) at (B(δ∗�C)�S(δ∗�C)). It now follows
that δ∗ minimizes

2B(δ)+ [
2R∗

2(C)/R∗
1(C)

]
S(δ)

over δ > 0. Note, however, that this is simply the worst-case β quantile of excess length
of a one-sided 1 −α CI when z1−α + zβ = 2R∗

2(C)/R∗
1(C), so this means that δ∗(C) is also

optimal for this criterion. By Theorem A.1, the estimator L̂δ̃ where δ̃= 2R∗
2(C)/R∗

1(C) is
also optimal for this criterion. Furthermore, the estimator that optimizes this criterion is
unique in this setting, so it follows that the estimator that optimizes the criterion R(B�S)

is equal to the estimator L̂δ̃.
To show that this estimator is equal to the matching estimator with a single match once

C is large enough, it now suffices to show that R∗
2(C)/(2R∗

1(C)) is bounded as C → ∞
so that C > KR∗

2(C)/(2R∗
1(C)) once C is large enough. This can be checked by noting

that, for the FLCI length and RMSE criteria, R∗
1(C) is bounded from below and R∗

2(C)
is bounded from above, over the set (B(δ�C)�S(δ�C)) with C > 0, using the fact that
S(δ�C) is bounded from above and below away from zero over this set.

D.4. Proof of Lemma B.1

Let An = {x ∈ [a�b]p : there exists j such that Dj = 0 and ‖x − Xj‖ ≤ 2h}. Then
#In(h) = ∑

i∈N1�n
[I{Xi ∈ [a�b]p} − I{Xi ∈ An}]. Note that, conditional on E , the ran-

dom variables I{Xi ∈ An} with i ∈ N1�n are i.i.d. Bernoulli(νn) with νn = P(Xi ∈ An | E) =∫
I{x ∈ An}fX|D(x | 1)dx ≤ Kλ(An) where fX|D(x | 1) is the conditional density of Xi

given Di = 1, λ is the Lebesgue measure and K is an upper bound on this density. Un-
der the assumption that lim supn hnn

1/p ≤ η, we have λ(An) ≤ (4hn)
pn ≤ 8pηp where the

last inequality holds for large enough n. Thus, letting ν = 8pηpK, we can construct ran-
dom variables Zi for each i ∈ N1�n that are i.i.d. Bernoulli(ν) conditional on E such that
I{Xi ∈ An} ≤Zi. Applying the strong law of large numbers, it follows that

lim inf
n

#In(h)/n ≥ lim inf
n

#N1�n

n

1
#N1�n

∑
i∈N1�n

(
I
{
Xi ∈ [a�b]p} −Zi

)

≥ P(Di = 1)
(
P

(
Xi ∈ [a�b]p | Di = 1

) − 8pηpK
)

almost surely. This will be greater than η for η small enough.

D.5. Proof of Lemma B.2

The result follows from verifying the conditions of Theorem F.1 in Armstrong and
Kolesár (2018). In particular, we need to show that the weights k are such that∑n

i=1 k(xi� di)ui/sdk converges in distribution to N(0�1) (condition (S13) in Armstrong
and Kolesár (2018)) and

∑
i û

2
i k(xi� di)

2/sd2
k converges in probability to 1, uniformly over

f ∈FLip(Cn) (S14), where sd2
k = ∑n

i=1 σ
2(xi� di)k(xi� di)

2.
Under the moment bounds on ui, equation (22) directly implies the Lindeberg condi-

tion that is needed for condition (S13) to hold. To show that it also implies (S14), note
that (S14) is equivalent to the requirement that

∑n

i=1 û
2
i ani − ∑n

i=1 σ
2(xi� ni)ani converges
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to zero uniformly over f ∈FLip(Cn), where

ani = k(xi� di)
2/

n∑
j=1

[
σ2(xj� dj)k(xj� dj)

2
]
�

By an inequality of von Bahr and Esseen (1965),

E

∣∣∣∣∣
n∑

i=1

(
u2
i − σ2(xi� di)

)
ani

∣∣∣∣∣
1+1/(2K)

≤ 2
n∑

i=1

a1+1/(2K)
ni E

∣∣u2
i − σ2(xi� di)

∣∣1+1/(2K)

≤ max
1≤i≤n

a1/(2K)
ni E

∣∣u2
i − σ2(xi� di)

∣∣1+1/(2K) ·
n∑

i=1

ani�

Note that, by boundedness of σ(x�d) away from zero and infinity,
∑n

i=1 ani is uniformly
bounded. Furthermore, it follows from equation (22) that max1≤i≤n ani → 0. From this and
the moment bounds on ui, it follows that the above display converges to zero. It therefore
suffices to show that

∑n

i=1(û
2
i − u2

i )ani converges to zero. This follows from the following
result.

LEMMA D.1: Consider the model in equation (1). Suppose that 1/K ≤ Eu2
i ≤ K and

E|ui|2+1/K ≤ K for some constant K, and that σ2(x�d) is uniformly continuous in x for
d ∈ {0�1}. Let 
j(i) be the jth closest unit to i, with respect to some norm ‖·‖, among units
with the same value of the treatment. Let û2

i = J
J+1(Yi − ∑J

j=1 Y
j(i)/J)
2, and let ani ≥ 0 be

a nonrandom sequence such that maxi ani → 0, and that
∑n

i=1 ani is uniformly bounded. If
maxi Cn‖x
J(i) − xi‖ → 0, then

∑
i ani(û

2
i − u2

i ) converges in probability to zero, uniformly
over FLip(Cn).

PROOF: The proof is based on the arguments in Abadie and Imbens (2008). For
ease of notation, let fi = f (xi� di), σ2

i = σ2(xi� di), and let f i = J−1
∑J

j=1 f
j(i) and ui =
J−1

∑J

j=1 u
j(i). Then we can decompose

J + 1
J

(
û2
i − u2

i

)

= [fi − f i + ui − ui]2 − J + 1
J

u2
i

= [
(fi − f i)

2 + 2(ui − ui)(fi − f i)
] − 2uiui + 2

J2

J∑
j=1

j−1∑
k=1

u
j(i)u
k(i) + 1
J2

J∑
j=1

(
u2

j(i)

− u2
i

)

= T1i + 2T2i + 2T3i + T4i + T5i + 1
J2

J∑
j=1

(
σ2


j(i)
− σ2

i

)
�

where

T1i =
[
(fi − f i)

2 + 2(ui − ui)(fi − f i)
]
� T2i = uiui�
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T3i = 1
J2

J∑
j=1

j−1∑
k=1

u
j(i)u
k(i)� T4i = 1
J2

J∑
j=1

(
u2

j(i)

− σ2

j(i)

)
� T5i = σ2

i − u2
i �

Since maxi‖x
J(i) − xi‖ → 0 and since σ2(·� d) is uniformly continuous, it follows that

max
i

max
1≤j≤J

∣∣σ2

j(i)

− σ2
i

∣∣ → 0�

and hence that |∑n

i=1 aniJ
−1

∑J

j=1(σ
2

j(i)

− σ2
i )| ≤ maxi maxj=1�����J(σ

2

j(i)

− σ2
i )

∑n

i=1 ani → 0.
To prove the lemma, it therefore suffices to show that the sums

∑n

i=1 aniTqi all converge to
zero.

To that end,

E

∣∣∣∣
∑
i

aniT1i

∣∣∣∣ ≤ max
i
(fi − f i)

2
∑
i

ani + 2 max
i

|fi − f i|
∑
i

aniE|ui − ui|�

which converges to zero since maxi|fi − f i| ≤ maxi maxj=1�����J(fi − f
j(i)) ≤ Cn maxi‖xi −
x
J(i)‖X → 0. Next, by the von Bahr–Esseen inequality,

E

∣∣∣∣∣
n∑

i=1

aniT5i

∣∣∣∣∣
1+1/2K

≤ 2
n∑

i=1

a1+1/2K
ni E|T5i|1+1/2K ≤ 2 max

i
a1/2K
ni max

j
E|T5j|1+1/2K

n∑
k=1

ank → 0�

Let Ij denote the set of observations for which an observation j is used as a match. To
show that the remaining terms converge to zero, let we use the fact #Ij is bounded by JL,
where L is the kissing number, defined as the maximum number of nonoverlapping unit
balls that can be arranged such that they each touch a common unit ball (Miller, Teng,
Thurston, and Vavasis (1997), Lemma 3.2.1; see also Abadie and Imbens (2008)). L is a
finite constant that depends only on the dimension of the covariates (for example, L = 2
if dim(xi)= 1). Now,

∑
i

aniT4i = 1
J2

n∑
j=1

(
uj − σ2

j

)∑
i∈Ij

ani�

and so by the von Bahr–Esseen inequality,

E

∣∣∣∣
∑
i

aniT4i

∣∣∣∣
1+1/2K

≤ 2
J2+1/K

n∑
j=1

E
∣∣uj − σ2

j

∣∣1+1/2K
(∑

i∈Ij

ani

)1+1/2K

≤ (JL)1/2K

J2+1/K max
k

E
∣∣uk − σ2

k

∣∣1+1/2K
max

i
a1+1/2K
ni

n∑
j=1

∑
i∈Ij

ani�

which is bounded by a constant times maxi a
1+1/2K
ni

∑n

j=1

∑
i∈Ij

ani = maxi a
1+1/2K
ni J

∑
i ani →

0. Next, since E[uiui′u
j(i)u
k(i
′)] is nonzero only if either i = i′ and 
j(i)= 
k(i

′), or else if
i = 
k(i

′) and i′ = 
j(i), we have
∑n

i′=1 ani′E[uiui′u
j(i)u
k(i
′)] ≤ maxi′ ani′(σ

2
i σ

2

j(i)

+σ2

j(i)

σ2
i ),
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so that

var
(∑

i

aniT2i

)
= 1

J2

∑
i�j�k�i′

aniani′E[uiu
k(i
′)ui′u
j(i)] ≤ 2K2 max

i′
ani′

∑
i

ani → 0�

Similarly for j 
= k and j′ 
= k,
∑n

i′=1 ani′E[u
j(i)u
k(i)u
j′ (i′)u
k′ (i′)] ≤ maxi′ 2σ2

j(i)

σ2

k(i)

, so that

var
(∑

i

aniT3i

)

= 1
J4

∑
i�i′�j�j′

j−1∑
k=1

j′−1∑
k′=1

aniani′E[u
j(i)u
k(i)u
j′ (i′)u
k′ (i′)] ≤ 2K2 max
i′

ani′
∑
i

ani → 0�
Q.E.D.

D.6. Asymptotic Efficiency of the Matching Estimator

By Theorem 2.2, the matching estimator with M = 1 is efficient in finite samples if the
Lipschitz constant C is large enough. We now give conditions for its asymptotic optimality.

THEOREM D.1: Suppose that the assumptions of Theorem 4.1 hold, and that σ2(x�d) is
bounded away from zero and infinity. Suppose that, for some functions G : R+ → R

+ and
G : R+ → R

+ with limt→0 G(G−1(t))2/[t/ log t−1]2/p+1 = 0,

G(a)≤ P
(‖Xi − x‖X ≤ a�Di = d

) ≤G(a)�

Let R∗
n�match�RMSE denote the worst-case RMSE of the matching estimator with M = 1, and let

R∗
n�opt�RMSE denote the minimax RMSE among linear estimators, conditional on {Xi�Di}ni=1,

for the class FLip(C). Then R∗
n�match�RMSE/R

∗
n�opt�RMSE → 1 almost surely. The same holds with

“RMSE” replaced by “CI length” or “β quantile of excess length of a one-sided CI.”

If Xi has sufficiently regular support and the conditional density of Xi given Di is
bounded away from zero on the support of Xi for both Di = 0 and Di = 1, then the
conditions of Theorem D.1 hold with G(a) and G(a) both given by constants times ap,
so that G(G(a)) decreases like a as a → 0. Thus, the conditions of Theorem D.1 hold so
long as p> 2 and there is sufficient overlap.

PROOF: Let sdδRMSE�n and biasδRMSE�n denote the standard deviation and worst-case
bias of the minimax linear estimator and let sdmatch�1 and biasmatch�1 denote the stan-
dard deviation and worst-case bias of the estimator with a single match (conditional on
{(Xi�Di)

n
i=1}). Since worst-case bias is increasing in δ and variance is decreasing in δ, and

since the matching estimator with M = 1 solves the modulus problem for small enough δ

by Theorem 2.3, we have biasδRMSE�n ≥ biasmatch�1. Thus,

1 ≤ bias
2

match�1 + sd2
match�1

bias
2

δRMSE�n + sd2
δRMSE�n

≤ bias
2

δRMSE�n + sd2
match�1

bias
2

δRMSE�n + sd2
δRMSE�n

≤ 1 + sd2
match�1

bias
2

δRMSE�n + sd2
δRMSE�n

�

By the arguments in the proof of Theorem 4.1, there exists ε > 0 such that biasδRMSE�n ≥
εn−2/p almost surely. In addition, by Theorem 37 in Chapter 2 of Pollard (1984), the
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conditions of Theorem 4.3 hold almost surely (with G(a) and G(a) multiplied by some
positive constants). Arguing as in the proof of Theorem 4.3 then gives the bound
sd2

match�1 ≤ [2 max1≤i≤n K1(i)]2/n ≤ [2nG(an)]2/n for any sequence an = G−1(cn(logn)/n)
with cn = nG(an)/ logn→ ∞. Plugging these bounds into the above display gives a bound
proportional to

G
(
G−1(cn(logn)/n

))2
n2/p+1 = b

(
cn(logn)/n

)[ cn(logn)/n
logn− log cn − log logn

]2/p+1

n2/p+1�

where b(t)= G(G−1(t))2/[t/ log t−1]2/p+1. If limt→0 b(t)= 0, then this can be made to con-
verge to zero by choosing cn to increase slowly enough. Similar arguments apply to the
other performance criteria. Q.E.D.

D.7. Verification of the Conditions in Theorem B.1 for the Matching Estimator

For matching estimators with a fixed number of matches, we use results from Abadie
and Imbens (2006) and Abadie and Imbens (2016) to verify Assumption B.1. Since such
results appear to be available only for the case where Xi is scalar, we restrict ourselves to
this case, and we leave the question of verifying Assumption B.1 when Xi is multivariate
for future research. Since these results are stated for a single underlying distribution, we
restrict attention to the case where the distribution of (Xi�Di) is fixed over P ∈ P (but
where the conditional expectation function fP is allowed to vary over the given class F).

THEOREM D.2: Suppose that the class P is such that the marginal distribution of (Xi�Di)
and the conditional variance function σ2

P(x�d) is the same for all P ∈ P , and such that
the following conditions hold: (i) Xi is scalar, and is supported on a compact interval [a�b]
with continuous density (ii) σ2

P(x�d) is continuous and uniformly bounded away from zero
and infinity (iii) 0 < P(Di = 1) < 1 and letting g(x | d) denote the density of Xi given Di,
g(x | 1)/g(x | 0) is uniformly bounded from above and below away from zero on [a�b].
Suppose, in addition, that, for some η, EP(u

2+η
i | Xi = x�Di = d) ≤ 1/η for d ∈ {0�1}, all x

and all P ∈P . Then Assumption B.1 holds for the weights k(Xi�Di)= 1
n
(2Di −1)(1+ KM(i)

M
)

for the matching estimator with M matches.

PROOF: Part (i) of Assumption B.1 follows from Lemma S.11 in Abadie and Imbens
(2016). The formula for V1�n(P) follows from this lemma as well, and is given by a constant
times 1/n (where, under our assumptions, the constant is strictly positive and does not
depend on P). Thus, to verify part (ii) of Assumption B.1, it suffices to show this condition
with V1�n(P) replaced by 1/n. To this end, note that replacing V1�n(P) with 1/n in this
condition gives

n2EP

[
k(Xi�Di)

2u2
i I

{
k(Xi�Di)

2u2
i > ε/n

}]
= EP

[(
1 +KM(i)/M

)2
u2
i I

{(
1 +KM(i)

)2
u2
i > ε · n}]

�

This will converge to zero by the standard arguments showing that the Lyapunov condi-
tion implies the Lindeberg condition, so long as EP[(1 + KM(i)/M)2+ηu2+η

i ] is uniformly
bounded. Indeed, the bound on the conditional 2 + η moment of ui implies that this is
bounded by a constant times EP[(1 +KM(i)/M)2+η], which is bounded uniformly in i and
n by Lemma S.8 in Abadie and Imbens (2016). Q.E.D.
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We now consider construction of the standard error seτ(L̂k). For matching estimators
with a fixed number of matches, standard errors for the PATE are available, for example,
in Abadie and Imbens (2006). For completeness, we provide a generic formulation and
consistency result that applies to arbitrary estimators L̂k in our setting.

In Theorems 4.2 and 4.3, we gave conditions under which the conditional standard er-
ror se(L̂k) is consistent in the sense that se(L̂k)

2/
∑n

i=1 k(Xi�Di)
2σ2

P(Xi�Di) converges
in probability to one conditional on {Xi�Di}ni=1, along with conditions on the marginal
distribution of (Xi�Di) such that this holds for {Xi�Di}∞

i=1 in a probability one set. This
implies that se(L̂k)

2/
∑n

i=1 k(Xi�Di)
2σ2

P(Xi�Di) converges in probability to one uncondi-
tionally under these conditions. Thus, if Assumption B.1 holds as well, se(L̂k)

2/V1�n(P)
will converge in probability to one.

Thus, it suffices to estimate nV2�n(P) = EP((fP(Xi�1) − f (Xi�0) − τ(P))2). Abadie
and Imbens (2006), Theorem 7, gave consistency conditions for the matching estima-
tor described in the text. We therefore focus on the estimator nV̂2 = 1

n

∑n

i=1(f̂ (Xi�1) −
f̂ (Xi�0))2 − L̂2

k.

THEOREM D.3: Suppose that max1≤i≤n�d∈{0�1}|f̂ (Xi�d) − fP(Xi�d)| p→ 0 and L̂k

p→
τ(P) uniformly over P ∈ P , and that Assumption B.1 holds, with n[V1�n(P) + V2�n(P)]
bounded away from zero uniformly over P ∈ P . Let V̂2�n be given above. Then [V̂2�n −
V2�n(P)]/[V1�n(P) + V2�n(P)] converges in probability to zero uniformly over P ∈ P . Fur-
thermore, if seτ(L̂k)

2 = se(L̂k)
2 + V̂2�n where se(L̂k)

2/V1�n(P) converges in probability to one
uniformly over P ∈P , then [V1�n(P)+ V2�n(P)]/seτ(L̂k)

2 p→ 1 uniformly over P ∈P .

PROOF: We have∣∣V̂2�n/n− V2�n(P)/n
∣∣

=
∣∣∣∣∣
1
n

n∑
i=1

{[
f̂ (Xi�1)− f̂ (Xi�0)

]2 − [
fP(Xi�1)− fP(Xi�0)

]2} + τ(P)2 − L̂2
k

∣∣∣∣∣
≤ 2 max

1≤i≤n�d∈{0�1}

∣∣f̂ (Xi�d)− fP(Xi�d)
∣∣2 + ∣∣L̂2

k − τ(P)2
∣∣�

which converges in probability to zero uniformly over P ∈P . By the O(1/n) lower bound
on V1�n(P)+ V2�n(P), it then follows that [V̂2�n − V2�n(P)]/[V1�n(P)+ V2�n(P)] converges in
probability to zero uniformly over P ∈P . Q.E.D.
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