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S.1. EXTENSIONS

FOR THE NOTATION AND DEFINITIONS, we refer to the main text. Let B(Ω�F) be the set
of all F measurable real-valued functions on Ω. Any Banach space contained in B(Ω�F)
satisfies the requirements for H. In our examples, we used the spaces L1(Ω�F�P),
L2(Ω�F�P), L1(Ω�F�M), and Bb(Ω�F), the set of all bounded functions in B(Ω�F),
with the supremum norm. In the latter case, the superhedging functional enjoys several
properties as discussed in Remark 2.3 in the main text.

Since we require that I ⊂H, in the case of H = Bb(Ω�F) this means that all the trading
instruments are bounded. This could be restrictive in some applications and we now pro-
vide another example that overcomes this difficulty. To define this set, fix L∗ ∈ B(Ω�F)
with L∗(ω) ≥ 1 for every ω ∈ Ω. Consider the linear space

B� := {
X ∈ B(Ω�F) : ∃α ∈R+ such that

∣∣X(ω)
∣∣ ≤ αL∗(ω) ∀ω ∈Ω

}
equipped with the norm,

‖X‖� := inf
{
α ∈ R+ : ∣∣X(ω)

∣∣ ≤ αL∗(ω) ∀ω ∈Ω
} =

∥∥∥∥ X

L∗

∥∥∥∥
∞
�

We denote the topology induced by this norm by τ�. Then B�(Ω�F) with τ� is a Banach
space and satisfies our assumptions. Note that if L∗ = 1, then B�(Ω�F)= Bb(Ω�F).

Now, suppose that

L∗(ω) := c∗ + �̂(ω)� ω ∈ Ω� (S.1.1)

for some c∗ > 0, �̂ ∈ I . Then one can define the superreplication functional as in Re-
mark A.3 of the main paper.
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Another important extension is to relax the assumption that the consumption sets is
equal to the entire space H. This hypothesis is taken in the classical literature as well as
in the main body of the paper but it might be restrictive in some applications. We show
here that, within our framework, we may accommodate a smaller consumption set, in
particular, we are able to restrict to consumption sets bounded from below. Let us fix
the lower bound to be 0 for the sake of discussion, which also correspond to the most
relevant case of non-negative consumption. Consider a market (H�τ�≤�I�R) where the
topology is generated by open intervals with respect to the (strict) order; by definition,
the set O := {X > 0} is open. Given a preference relation on O, we can extend it to the
whole space by treating all elements of {X ≤ 0} as indifferent and X ≺ Y if X /∈ O and
Y ∈ O. Since the preferences in our definition of A are only required to be τ-lower semi-
continuity, this class satisfies all the required properties. In particular, the class of linear
agents constructed in the proofs of Theorems 2.1 and 2.2 in the main text may be modified
accordingly: for a given linear continuous functional ϕ, we may set utility to minus infinity
on the complement of O. The induced preference relation is in A. Additionally, agents
with power utilities

U(X)= E

[
(X + c)1−γ

1 − γ

]

with a constant c can be included in A. Restricting consumption to be positive may result
in the failure of extendability of the pricing functional,1 therefore the classical theory of
Harrison and Kreps (1979), Kreps (1981) does not apply. On the contrary, since we do not
insist on a single representative agent, this aspect does not affect the results of Section 2
of the main text.

S.2. NO ARBITRAGE VERSUS NO FREE-LUNCH-WITH-VANISHING-RISK

Let (H� τ�≤�I�R) be a financial market. An arbitrage opportunity is always a free
lunch with vanishing risk. The purpose of this section is to investigate when these two
notions are equivalent.

S.2.1. Attainment

DEFINITION S.2.1: We say that a financial market has the attainment property, if for
every X ∈ H there exists a minimizer in equation (5.1) of the main text, that is, there
exists �X ∈ I satisfying,

D(X)+ �X ≥ X�

PROPOSITION S.2.2: Suppose that a financial market has the attainment property. Then it
is strongly free of arbitrage if and only if it has no arbitrages.

PROOF: Let R∗ ∈ R. By hypothesis, there exist � ∈ I∗ so that D(R∗) + �∗ ≥ R∗. If the
market has no arbitrage, then we conclude that D(R∗) > 0. In view of Proposition 5.1 of
the main text, this proves that the financial market is also strongly free of arbitrage. Since
no arbitrage is weaker condition, they are equivalent. Q.E.D.

1We thank an anonymous referee for pointing out this aspect.
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S.2.2. Discrete Time Markets With Finite Horizon

In this subsection and in the next section, we restrict ourselves to arbitrage considera-
tions in finite discrete-time markets.

We start by introducing a discrete filtration F := (Ft)
T
t=0 on subsets of Ω. Let S = (St)

T
t=0

be an adapted stochastic process2,3 with values in RM
+ for some M . For every � ∈ I , there

exist predictable integrands Ht ∈ Bb(Ω�Ft−1) for all t = 1� � � � �T such that

�= (H · S)T :=
T∑
t=1

Ht ·�St� where �St := (St − St−1)�

Denote by �t := (H · S)t for t ∈ I and � := �T .
Set �̂ = ∑

k�i S
i
k − Si

0. Then one can directly show that with an appropriate c∗, we have
L∗ := c∗ + �̂ ≥ 1. Define B� using �̂, set H = B� and denote by I� the subset of I with Ht

bounded for every t = 1� � � � � T .
We next prescribe the equivalence relation and the relevant sets. Our starting point

is the set of negligible sets Z which we assume is given. We also make the following
structural assumption.

ASSUMPTION S.2.3: Assume that the trading is allowed only at finite time points labeled
through 1�2� � � � � T . Let I be given as above and let Z be a lattice which is closed with
respect to pointwise convergence.

We also assume that R=P+ and the preorder is given by

X ≤ Y ⇔ ∃Z ∈Z such that X ≤Ω Y +Z�

where ≤Ω denotes the pointwise order of functions. In particular, X ∈ P if and only if
there exists Z ∈Z such that Z ≤Ω X .

For an example of the above structure, refer to Example 2.6 of the main text. In that
example, Z consists of the polar sets of a given class Q of probabilities. Then, in this
context all inequalities should be understood as Q quasi-surely. Also note also that the
assumptions on Z are trivially satisfied when Z = {0}. In this latter case, inequalities are
pointwise.

Observe that in view of the definition of ≤ and the fact R = P+, � ∈ I is an arbitrage
if and only if there is R∗ ∈ P+ and Z∗ ∈ Z , so that � ≥Ω R∗ + Z∗. Hence, � ∈ I is an
arbitrage if and only if � ∈ P+. We continue by showing the equivalence of the existence
of an arbitrage to the existence of a one-step arbitrage.

LEMMA S.2.4: Suppose that Assumption S.2.3 holds. Then there exists arbitrage if and only
if there exists t ∈ {1� � � � � T }, h ∈ Bb(Ω�Ft−1) such that � := h ·�St is an arbitrage.

2When working with N stocks, a canonical choice for Ω would be

Ω= {
ω = (ω0� � � � �ωT ) :ωi ∈ [0�∞)N� i = 0� � � � �T

}
�

Then one may take St(ω) =ωt and F to be the filtration generated by S.
3Note that we do not specify any probability measure.
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PROOF: The sufficiency is clear. To prove the necessity, suppose that � ∈ I is an arbi-
trage. Then there is a predictable process H so that � = (H · S)T . Also � ∈ P+, hence,
� /∈Z and there exists Z ∈Z such that �≥ Z. Define

t̂ := min
{
t ∈ {1� � � � � T } : (H · S)t ∈P+} ≤ T�

First, we study the case where �t̂−1 ∈Z . Define

�∗ :=Ht̂ ·�St̂�

and observe that �t̂ = �t̂−1 + �∗. Since �t̂−1 ∈ Z , we have that �∗ ∈ P+ iff �t̂ ∈ P+, and
consequently the lemma is proved.

Suppose now �t̂−1 /∈ Z . If �t̂−1 ≥Ω 0, then �t̂−1 ∈ P , and thus, also in P+, which is not
possible from the minimality of t̂. Hence the set A := {�t̂−1 <Ω 0} is nonempty and Ft̂−1-
measurable. Define h :=Ht̂χA and �∗ := h ·�St̂ . Note that

�∗ = χA(�t̂ − �t̂−1)≥Ω χA�t̂ ≥Ω χAZ ∈Z�

This implies �∗ ∈P . Toward a contradiction, suppose that �∗ ∈Z . Then

�t̂−1 ≥Ω χA�t̂−1 ≥ χA

(
Z − �∗) ∈Z�

Since by assumption, �t̂−1 /∈Z we have �t̂−1 ∈P+ from which t̂ is not minimal. Q.E.D.

The following is the main result of this section. For the proof, we follow the approach
of Kabanov and Stricker (2001) which is also used in Bouchard and Nutz (2015). We
consider the financial market Θ∗ = (B��‖ · ‖��≤Ω�I�P+) described above.

THEOREM S.2.5: In a finite discrete time financial market satisfying Assumption S.2.3, the
following are equivalent:

1. The financial market Θ∗ has no arbitrages.
2. The attainment property holds and Θ∗ is free of arbitrage.
3. The financial market Θ∗ is strongly free of arbitrages.

PROOF: In view of Proposition S.2.2, we only need to prove the implication 1 ⇒ 2.
For X ∈H such that D(X) is finite, we have that

cn +D(H)+ �n ≥Ω X +Zn�

for some cn ↓ 0, �n ∈ I and Zn ∈ Z . Note that since Z is a lattice we assume, without loss
of generality, that Zn = (Zn)

− and denote by Z− := {Z− | Z ∈Z}.
We show that C := I − (L0

+(Ω�F)+Z−) is closed under pointwise convergence where
L0

+(Ω�F) denotes the class of pointwise nonnegative random variables. Once this result
is shown, by observing that X − cn − D(X) = Wn ∈ C converges pointwise to X − D(X)
we obtain the attainment property.

We proceed by induction on the number of time steps. Suppose first T = 1. Let

Wn = �n −Kn −Zn → W� (S.2.1)

where �n ∈ I , Kn ≥Ω 0 and Zn ∈ Z−. We need to show W ∈ C. Note that any �n can be
represented as �n =Hn

1 ·�S1 with Hn
1 ∈L0(Ω�F0).
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Let Ω1 := {ω ∈ Ω | lim inf |Hn
1 | < ∞}. From Lemma 2 in Kabanov and Stricker (2001)

there exist a sequence {H̃k
1 } such that {H̃k

1 (ω)} is a convergent subsequence of {Hk
1 (ω)}

for every ω ∈ Ω1. Let H1 := lim infHn
1χΩ1 and � :=H1 ·�S1.

Note now that Zn ≤Ω 0, hence, if lim inf |Zn| = ∞ we have lim infZn = −∞. We show
that we can choose Z̃n ∈Z−, K̃n ≥Ω 0 such that W̃n := �n − K̃n − Z̃n → W and lim inf Z̃n is
finite on Ω1. On {�n ≥Ω W } set Z̃n = 0 and K̃n = �n −W . On {�n <Ω W } set

Z̃n =Zn ∨ (�n −W )� K̃n = Knχ{Zn=Z̃n}�

It is clear that Zn ≤Ω Z̃n ≤Ω 0. From Lemma S.4.1, we have Z̃n ∈Z . Moreover, it is easily
checked that W̃n := �n − K̃n − Z̃n → W . Nevertheless, from the convergence of �n on Ω1

and Z̃n ≥Ω −(W − �n)
+, we obtain {ω ∈ Ω1 | lim inf Z̃n > −∞} = Ω1. As a consequence,

also lim inf K̃n is finite on Ω1; otherwise, we could not have that W̃n →W . Thus, by setting
Z̃ := lim inf Z̃n and K̃ := lim inf K̃n, we have W = �− K̃ − Z̃ ∈ C.

On ΩC
1 we may take Gn

1 :=Hn
1 /|Hn

1 | and let G1 := lim infGn
1χΩC

1
. Define, �G :=G1 ·�S1.

We now observe that
{
ω ∈ ΩC

1 | �G(ω) ≤ 0
} ⊆ {

ω ∈ ΩC
1 | lim infZn(ω) = −∞}

�

Indeed, if ω ∈ ΩC
1 is such that lim infZn(ω) > −∞, applying again Lemma 2 in Kabanov

and Stricker (2001), we have that

lim inf
n→∞

X(ω)+Zn(ω)∣∣Hn
1 (ω)

∣∣ = 0�

implying �G(ω) is nonnegative. Set now

Z̃n :=Zn ∨ −(�G)
−�

From Zn ≤Ω Z̃n ≤Ω 0, again by Lemma S.4.1, Z̃n ∈ Z . By taking the limit for n → ∞, we
obtain (�G)

− ∈Z , and thus, �G ∈P . Since the financial market has no arbitrages G1 ·�S1 =
Z ∈Z , and hence one asset is redundant. Consider a partition Ωi

2 of ΩC
1 on which Gi

1 �= 0.
Since Z is stable under multiplication (Lemma S.4.2), for any �∗ ∈ I , there exists Z∗ ∈ Z
and H∗ ∈ L0(Ωi

2�F0) with (H∗)i = 0, such that �∗ = H∗ · �S1 + Z∗ on Ωi
2. Therefore, the

term �n in (S.2.1) is composed of trading strategies involving only d − 1 assets. Iterating
the procedure up to d-steps, we have the conclusion.

Assuming now that (S.2.1) holds for markets with T − 1 periods, with the same argu-
ment we show that we can extend to markets with T periods. Set again Ω1 := {ω ∈ Ω |
lim inf |Hn

1 | <∞}. Since on Ω1, we have that

Wn −Hn
1 ·�S1 =

T∑
t=2

Hn
t ·�St −Kn −Zn → W −H1 ·�S1�

The induction hypothesis allows to conclude that W −H1 · S1 ∈ C and, therefore, W ∈ C.
On ΩC

1 we may take Gn
1 := Hn

1 /|Hn
1 | and let G1 := lim infGn

1χΩC
1

. Note that Wn/|Hn
1 | → 0,

and hence
T∑
t=2

Hn
t∣∣Hn
1

∣∣ ·�St − Kn∣∣Hn
1

∣∣ − Zn∣∣Hn
1

∣∣ → −G1 ·�S1�
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Since Z is stable under multiplication Zn

|Hn
1 | ∈Z , and hence, by inductive hypothesis, there

exists H̃t for t = 2� � � � �T and Z̃ ∈Z such that

�̃ :=G1 ·�S1 +
T∑
t=2

H̃t ·�St ≥Ω Z̃ ∈Z�

The no arbitrage condition implies that �̃ ∈ Z . Once again, this means that one asset is
redundant and, by considering a partition Ωi

2 of ΩC
1 on which Gi

1 �= 0, we can rewrite the
term �n in (S.2.1) with d − 1 assets. Iterating the procedure up to d-steps, we have the
conclusion. Q.E.D.

The above result is consistent with the fact that in classical “probabilistic” model for
finite discrete-time markets only the no-arbitrage condition and not the no-free lunch
condition has been utilized.

S.3. COUNTABLY ADDITIVE MEASURES

In this section, we show that in general finite discrete time markets, it is possible to
characterize viability through countably additive functionals. Also in this section, ≤Ω de-
notes the pointwise order for functions. We prove this result by combining some results
from Burzoni, Frittelli, Hou, Maggis, and Obłój (2019), which we collect in Section S.4.2.
We refer to that paper for the precise technical requirements for (Ω�F� S), we only point
out that, in addition to the previous setting, Ω needs to be a Polish space.

We let Qca be the set of countably additive positive probability measures Q, with finite
support, such that S is a Q-martingale and Z− := {−Z− | Z ∈Z}. For X ∈H, set

Z(X) := {
Z ∈Z− : ∃� ∈ I such that D(X)+ �≥Ω X +Z

}
�

which is always nonempty when D(X), for example, ∀X ∈ Bb. By the lattice property of Z ,
if D(X)+ �≥Ω X +Z the same is true if we take Z =Z−. From Theorem S.2.5, we know
that, under no arbitrage, the attainment property holds and, hence, Z(X) is nonempty
for every X ∈H. For A ∈F , we define

DA(X) := inf
{
c ∈ R : ∃� ∈ I such that c + �(ω) ≥X(ω)�∀ω ∈ A

}
�

Qca
A := {

Q ∈Qca :Q(A) = 1
}
�

We need the following technical result in the proof of the main theorem.

PROPOSITION S.3.1: Suppose Assumption S.2.3 holds and the financial market has no
arbitrages. Then, for every X ∈H and Z ∈Z(X), there exists AX�Z such that

AX�Z ⊂ {
ω ∈ Ω :Z(ω)= 0

}
� (S.3.1)

and

D(X)=DAX�Z
(X)= sup

Q∈Qca
AX�Z

EQ[X]�

Before proving this result, we state the main result of this section.
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THEOREM S.3.2: Suppose Assumption S.2.3 holds. Then the financial market has no ar-
bitrages if and only if for every (Z�R) ∈Z− ×P+ there exists QZ�R ∈Qca satisfying

EQZ�R
[R]> 0 and EQZ�R

[Z] = 0� (S.3.2)

PROOF: Suppose that the financial market has no arbitrages. Fix (Z�R) ∈ Z− × P+

and ZR ∈Z(R). Set Z∗ := ZR +Z ∈Z(R). By Proposition S.3.1, there exists A∗ :=AR�Z∗
satisfying the properties listed there. In particular,

0 <D(R) = sup
Q∈Qca

A∗

EQ[R]�

Hence, there is Q∗ ∈Qca
A∗ so that EQ∗ [R]> 0. Moreover, since ZR�Z ∈Z−,

A∗ ⊂ {
Z∗ = 0

} = {ZR = 0} ∩ {Z = 0}�
In particular, EQ∗ [Z] = 0.

To prove the opposite implication, suppose that there exists R ∈ P+, � ∈ I and Z ∈ Z
such that �≥Ω R+Z. Then it is clear that �≥Ω R−Z−. Let Q∗ :=Q−Z−�R ∈Qca satisfying
(S.3.2). By integrating both sides against Q∗, we obtain

0 = EQ∗ [�] ≥ EQ∗
[
R−Z−] = EQ∗ [R] > 0

which is a contradiction. Thus, there are no arbitrages. Q.E.D.

We continue with the proof of Proposition S.3.1.

PROOF OF PROPOSITION S.3.1: Since there are no arbitrages, by Theorem S.2.5 we
have the attainment property. Hence, for a given X ∈H, the set Z(X) is nonempty.

Step 1. We show that, for any Z ∈Z(X), D(X)=D{Z=0}(X).
Note that, since D(X)+ �≥Ω X +Z, for some � ∈ I , the inequality D{Z=0}(X)≤D(X)

is always true. Toward a contradiction, suppose that the inequality is strict, namely, there
exist c <D(X) and �̃ ∈ I such that c + �̃(ω) ≥X(ω) for any ω ∈ {Z = 0}. We show that

Z̃ := (c + �̃−X)−χ{Z<0} ∈Z�

This together with c+ �̃≥Ω X+ Z̃ yields a contradiction. Recall that Z is a linear space so
that nZ ∈Z for any n ∈ N. From nZ ≤Ω Z̃∨ (nZ) ≤Ω 0, we also have Z̃n := Z̃∨ (nZ) ∈Z ,
by Lemma S.4.1. By noting that {Z̃ < 0} ⊂ {Z < 0}, we have that Z̃n(ω) → Z̃(ω) for every
ω ∈Ω. From the closure of Z , under pointwise convergence, we conclude that Z̃ ∈Z .

Step 2. For a given set A ∈ FT , we let A∗ ⊂ A be the set of scenarios visited by mar-
tingale measures (see (S.4.2) in the Appendix for more details). We show that, for any
Z ∈Z(X), D(X)=D{Z=0}∗(X).

Suppose that {Z = 0}∗ is a proper subset of {Z = 0} otherwise, from Step 1, there is
nothing to show. From Lemma S.4.6, there is a strategy �̃ ∈ I such that �̃≥ 0 on {Z = 0}.4

4Note that restricted to {Z = 0} this strategy yields no risk and possibly positive gains, in other words, this is
a good candidate for being an arbitrage.
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Lemma S.4.5 (and in particular (S.4.4)) yields a finite number of strategies �t1� � � � � �
t
βt

with
t = 1� � � � �T , such that

{Ẑ = 0} = {Z = 0}∗ where Ẑ :=Z −
T∑
t=1

βt∑
i=1

χ{Z=0}
(
�ti

)+
� (S.3.3)

Moreover, for any ω ∈ {Z = 0} \ {Z = 0}∗, there exists (i� t) such that �ti(ω) > 0. We are
going to show that, under the no arbitrage hypothesis, �ti ∈ Z for any i = 1� � � � �βt , t =
1� � � � � T . In particular, from the lattice property of the linear space Z , we have Ẑ ∈Z .

We illustrate the reason for t = T , by repeating the same argument up to t = 1 we have
the thesis. We proceed by induction on i. Start with i = 1. From Lemma S.4.5, we have that
�Ti ≥ 0 on {Z = 0} and, therefore, {�T1 < 0} ⊆ {Z < 0}. Define Z̃ := −(�T1 )

− ≤Ω 0. By using
the same argument as in Step 1, we observe that nZ ≤Ω Z̃ ∨ (nZ) ≤Ω 0 with nZ ∈ Z for
any n ∈ N. From {�T1 < 0} ⊆ {Z < 0} and the closure of Z under pointwise convergence,
we conclude that Z̃ ∈Z . From no arbitrage, we must have �T1 ∈Z .

Suppose now that �Tj ∈ Z for every 1 ≤ j ≤ i − 1. From Lemma S.4.5, we have that
�Ti ≥ 0 on {Z − ∑i−1

j=1 �
T
i = 0} and, therefore, {�Ti < 0} ⊆ {Z − ∑i−1

j=1 �
T
i < 0}. The argument

of Step 1 allows to conclude that �Ti ∈Z .
We are now able to show the claim. The inequality D{Z=0}∗(X) ≤ D{Z=0}(X) = D(X) is

always true. Toward a contradiction, suppose that the inequality is strict, namely, there
exist c <D(X) and �̃ ∈ I such that c + �̃(ω) ≥X(ω) for any ω ∈ {Z = 0}∗. We show that

Z̃ := (c + �̃−X)−χΩ\{Z=0}∗ ∈Z�

This together with c + �̃ ≥Ω X + Z̃, yields a contradiction. To see this recall that, from
the above argument, Ẑ ∈ Z with Ẑ as in (S.3.3). Moreover, again by (S.3.3), we have
{Z̃ < 0} ⊂ {Ẑ < 0}. The argument of Step 1 allows to conclude that Z̃ ∈Z .

Step 3. We are now able to conclude the proof. Fix Z ∈Z(X) and set AX�Z := {Z = 0}∗.
Then

D(X)=D{Z=0}(X)=D(AX�Z)∗(X)= sup
Q∈Qca

AX�Z

EQ[X]�

where the first two equalities follow from Step 1 and Step 2 and the last equality follows
from Proposition S.4.7. Q.E.D.

S.4. SOME TECHNICAL TOOLS

S.4.1. Preferences

We start with a simple but a useful condition for negligibility.

LEMMA S.4.1: Consider two negligible claims Ẑ� Z̃ ∈Z . Then any claim Z ∈H satisfying
Ẑ ≤ Z ≤ Z̃ is negligible as well.

PROOF: By definitions, we have

X ≤ X + Ẑ ≤X +Z ≤X + Z̃ ≤X ⇒ X ∼ X +Z�

Thus, Z ∈Z . Q.E.D.
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LEMMA S.4.2: Suppose that Z is closed under pointwise convergence. Then Z is stable
under multiplication, that is, ZH ∈Z for any H ∈H.

PROOF: Note first that Zn :=Z((H ∧ n)∨ −n) ∈Z . This follows from by Lemma S.4.1
and the fact that Z is a cone. By taking the limit for n → ∞, the result follows. Q.E.D.

We next prove that E(Z)= 0 for every Z ∈Z .

LEMMA S.4.3: Let E be a sublinear expectation. Then

E
(
c + λ[X +Y ]) = c + E

(
λ[X +Y ]) = c + λE(X +Y)

≤ c + λ
[−(−E(X)− E(Y)

)]
� (S.4.1)

for every c ∈, λ≥ 0, X�Y ∈H. In particular,

E(Z) = 0� ∀Z ∈Z�

PROOF: Let X�Y ∈H. The subadditivity of UE implies that

UE
(
X ′) +UE

(
Y ′) ≤UE

(
X ′ +Y ′)� ∀X ′�Y ′ ∈H�

even when they take values ±∞. The definition of UE now yields

E(X +Y) = −UE(−X −Y) ≤ −[
UE(−X)+UE(−Y)

] = −(−E(X)− E(Y)
)
�

Then (S.4.1) follows directly from the definitions.
Let Z ∈ Z . Then −Z�Z ∈ P and E(Z)�E(−Z) ≥ 0. Since −Z ∈ P , the monotonicity

of E implies that E(X −Z) ≥ E(X) for any X ∈H. Choose X =Z to arrive at

0 = E(0)= E(Z −Z) ≥ E(Z)≥ 0�

Hence, E(Z) is equal to zero. Q.E.D.

S.4.2. Finite Time Markets

We here recall some results from Burzoni et al. (2019) (see Section 2 therein for the
precise specification of the framework). We are given a filtered space (Ω�F�F) with Ω a
Polish space and F containing the filtration generated by a Borel-measurable process S.
We denote by Q the set of martingale measures for the process S, whose support is a finite
number of points. For a given set A ∈F , QA = {Q ∈ Q | Q(A) = 1}. We define the set of
scenarios charged by martingale measures as

A∗ := {
ω ∈Ω | ∃Q ∈QA s.t. Q(ω) > 0

} =
⋃

Q∈QA

supp(Q)� (S.4.2)

DEFINITION S.4.4: We say that � ∈ I is a one-step strategy if � = Ht · (St − St−1) with
Ht ∈L(X�Ft−1) for some t ∈ {1� � � � �T }. We say that a ∈ I is a one-point Arbitrage on A
iff a(ω)≥ 0 ∀ω ∈ A and a(ω) > 0 for some ω ∈A.

The following lemma is crucial for the characterization of the set A∗ in terms of arbi-
trage considerations.



10 M. BURZONI, F. RIEDEL, AND H. M. SONER

LEMMA S.4.5: Fix any t ∈ {1� � � � �T } and � ∈F . There exist an index β ∈ {0� � � � � d}, one-
step strategies �1� � � � � �β ∈ I and B0� � � � �Bβ, a partition of �, satisfying:

1. if β = 0 then B0 = � and there are No one-point Arbitrages, that is,

�(ω) ≥ 0 ∀ω ∈ B0 ⇒ �(ω) = 0 ∀ω ∈ B0�

2. if β> 0 and i = 1� � � � �β then:
� Bi �= ∅,
� �i(ω) > 0 for all ω ∈ Bi,
� �i(ω) ≥ 0 for all ω ∈ ⋃β

j=i B
j ∪B0.

We are now using the previous result, which is for some fixed t, to identify A∗. Define

AT :=A�

At−1 :=At \
βt⋃
i=1

Bi
t� t ∈ {1� � � � � T }� (S.4.3)

where Bi
t := Bi��

t , βt := β�
t are the sets and index constructed in Lemma S.4.5 with �=At ,

for 1 ≤ t ≤ T . Note that, for the corresponding strategies �ti we have

A0 =
T⋂
t=1

βt⋂
i=1

{
�ti = 0

}
� (S.4.4)

LEMMA S.4.6: A0 as constructed in (S.4.3) satisfies A0 = A∗. Moreover, No one-point
Arbitrage on A ⇔A∗ = A.

PROPOSITION S.4.7: Let A ∈F . We have that for any F -measurable random variable g,

πA∗(g) = sup
Q∈QA

EQ[g] (S.4.5)

with πA∗(g) = inf{x ∈ R | ∃a ∈ I such that x + aT (ω) ≥ g(ω) ∀ω ∈ A∗}. In particular, the
left-Fnohand side of (S.4.5) is attained by some strategy a ∈ I .
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