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APPENDIX B: SUPPLEMENTAL ONLINE APPENDIX

SECTION B.1 PROVES SOME further corollaries of Proposition 1 beyond those given in
Section 3. Section B.2 expands on Appendix A.3 with further properties of the CREMR
demand function and its demand manifold. Section B.3 uses the Kullback–Leibler Di-
vergence to compare the goodness of fit for both sales and markups of Indian firms of
different assumptions about the productivity distribution and demand. Section B.4 ex-
plores how the relative performance of different specifications, especially the choice of
Pareto versus lognormal productivity, is affected by truncating the sample. Section B.5
shows that the results are robust to an alternative distance measure, the QQ estimator.
Finally, Section B.6 shows that similar results are obtained with a different data set of
exports by French firms to Germany.

B.1. Other Implications of Proposition 1

The proof of each of these corollaries to Proposition 1 proceeds in the same way. Given
two distributions y ∼G(y) and z ∼ F(z), we first solve for y =G−1(F(z)), and then solve
the resulting differential equation to derive the implied demand function.

B.1.1. Self-Reflection of Productivity and Output

We first explore the conditions under which output follows the same distribution as
productivity. Proposition 1 implies that a necessary and sufficient condition for this form
of self-reflection is that productivity is a simple power function of output: ϕ = ϕ0x

E . Re-
placing ϕ by r ′(x)−1 as before yields a new differential equation in r(x), the solution to
which is

p(x) = 1
x

(
α+βx

σ−1
σ

)
� (35)

This demand function plays the same role with respect to firm output as the CREMR de-
mand function does with respect to firm sales (recall (6)). It is necessary and sufficient for
a constant elasticity of marginal revenue with respect to output, equal to E = 1

σ
. Hence,

we call it “CEMR” for “Constant (Output) Elasticity of Marginal Revenue.”26
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Unlike CREMR, there are some precedents for the CEMR class. It has the same
functional form, except with prices and quantities reversed, as the direct PIGL (“Price-
Independent Generalized Linearity”) class of Muellbauer (1975).27 In particular, the lim-
iting case where σ approaches 1 is the inverse translog demand function of Christensen,
Jorgenson, and Lau (1975). However, except for the CES (the special case when α = 0),
CEMR demands bear little resemblance to commonly-used demand functions.28 When
the common distribution of productivity and output is a Pareto, we can immediately state
a further corollary of Proposition 1:

COROLLARY 4: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is Pareto: GP(ϕ) = 1 −ϕkϕ−k.
(B) The distribution of firm output is Pareto: FP(x)= 1 − xmx−m.
(C) The demand function belongs to the CEMR family in (35),

where the parameters are related as follows:

m= k

σ
and x =

(
β
σ − 1
σ

ϕ

)σ

�

A similar result holds if firm productivities have a lognormal distribution, though, as in
the CREMR case of Corollary 2, we have to allow for the possibility that the distribution
is left-truncated, as the value of output for the smallest firm may be strictly positive.

COROLLARY 5: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm productivity is truncated lognormal with support [ϕ�+∞):

GtLN (ϕ) = �((logϕ−μ)/s)−T

1−T
.

(B) The distribution of firm output is truncated lognormal with support [x�+∞):
FtLN (x)= �((logx−μ′′)/s′′)−T

1−T
.

(C) The demand function belongs to the CEMR family in (35),
where the parameters are related as follows:

s′′ = σs�

μ′′ = σ

(
μ+ log

(
β
σ − 1
σ

))
�

x =
(
β
σ − 1
σ

ϕ

)σ

�

T = �
(
(logϕ−μ)/s

) = �
((

logx−μ′′)/s′′)�
B.1.2. Self-Reflection of Output and Sales

A final self-reflection corollary of Proposition 1 relates to the case where output and
sales follow the same distribution. This requires that the elasticity of one with respect to

27For this reason, Mrázová and Neary (2017) called it the “inverse PIGL” class of demand functions.
28As shown by Mrázová and Neary (2017), the CEMR demand manifold implies a linear relationship

between the convexity and elasticity of demand, passing through the Cobb–Douglas point (ε�ρ) = (1�2):
ρ = 2 − ε−1

σ
. The manifold for the inverse translog special case (σ → 1) coincides with the SM locus in Fig-

ure 2(b). For smaller firms when demand is subconvex, CEMR demands are qualitatively similar to CREMR,
except that they are somewhat more elastic: the CREMR manifold from (11) is, for large ε, asymptotically
equivalent to ρ = 2 − ε−2

σ−1 .
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the other is constant, which implies that the demand function must be a CES.29 Formally,
we have the following:

COROLLARY 6: Given Assumption 1, any two of the following imply the third:
(A) The distribution of firm output x is a member of the generalized power function class.
(B) The distribution of firm sales revenue r is a member of the same family of the general-

ized power function class.

(C) The demand function is CES: p(x) = βx− 1
σ , where β = x

− 1
E

0 and σ = E
E−1 .

In the Pareto case, the sufficiency part of this result is familiar from the large litera-
ture on the Melitz model with CES demands: it is implicit in Chaney (2008), for example.
The necessity part, taken together with earlier results, shows that it is not possible for all
three firm attributes, productivity, sales, and revenue, to have the same distribution from
the generalized power class under any demand system other than the CES. Corollary 6
follows immediately from previous results when productivities themselves have a gener-
alized power function distribution, since the only demand function which is a member
of both the CEMR and CREMR families is the CES itself. However, it is much more
general than that, since it does not require any assumption about the underlying distribu-
tion of productivities. It is an example of a corollary to Proposition 1 which relates two
endogenous firm outcomes rather than an exogenous and an endogenous one.

B.2. Further Properties of CREMR Demand Functions

To establish conditions for demand to be superconvex, we solve for the points of inter-
section between the demand manifold and the CES locus, the boundary between the sub-
and superconvex regions. From Mrázová and Neary (2017), the expression for the CES
locus is ρ = ε+1

ε
. Eliminating ρ using the CREMR demand manifold (11) and factorizing

gives

ρ− ε+ 1
ε

= −(ε− σ)(ε− 1)
(σ − 1)ε

= 0�

Given 1 < σ ≤ ∞, this expression is zero, and so every CREMR manifold intersects the
CES locus, at two points. One is at {ε�ρ} = {1�2}, implying that all CREMR demand
manifolds must pass through the Cobb–Douglas point. The other is at {ε�ρ} = {σ�1 + 1

σ
}.

Hence, every CREMR demand manifold lies strictly within the superconvex region
(where ρ > ε+1

ε
) for σ > ε > 1, and strictly within the subconvex region for ε > σ . The

condition for superconvexity, ε ≤ σ , can be reexpressed in terms of γ by using the fact that
the elasticity of demand is ε = x−γ

x−γσ
σ . Substituting and recalling that σ must be strictly

greater than 1, we find that CREMR demands are superconvex if and only if γ ≤ 0. As
with many other demand manifolds considered in Mrázová and Neary (2017), this implies
that, for a given value of σ , the demand manifold has two branches, one in the supercon-
vex region corresponding to negative values of γ, and the other in the subconvex region
corresponding to positive values of γ. Along each branch, the equilibrium point converges
towards the CES locus as output rises without bound, as shown by the arrows in Figure 2.

Similarly, to establish conditions for profits to be supermodular, we solve for the points
of intersection between the demand manifold and the SM locus, the boundary between

29Suppose that x = x0r(x)
E . Recalling that r(x) = xp(x), it follows immediately that the demand function

must take the CES form.
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the sub- and supermodular regions. From Mrázová and Neary (2017), the expression for
the SM locus is ρ= 3 −ε. Eliminating ρ using the CREMR demand manifold and factor-
izing gives

ρ+ ε− 3 =
(
(σ − 2)ε+ 1

)
(ε− 1)

(σ − 1)ε
= 0�

Once again, this expression is zero at two points: the Cobb–Douglas point {ε�ρ} = {1�2},
and the point {ε�ρ} = { 1

2−σ
� 5−3σ

2−σ
}. The latter is in the admissible region only for σ < 2.

Hence, for σ ≥ 2, the CREMR demand manifold is always in the supermodular region.

B.3. Fitting Sales and Markup Distributions

Section 6.2 in the text focused on how different assumptions compare in predicting the
distribution of markups. Here we supplement this by showing in addition how they com-
pare in predicting the distribution of sales. To compare the “goodness of fit” of different
models, we use the Kullback–Leibler Divergence (denoted “KLD” hereafter), introduced
by Kullback and Leibler (1951). This measures the divergence of the predicted distribu-
tion from the actual one, and is asymptotically equivalent to maximum likelihood.30 It
equals the information loss from using the theory rather than knowing the true distribu-
tion. Whereas information scientists typically present KLD values in “bits” (log to base
2) or “nats” (log to base e), units with little intuitive appeal in economics, we present its
values normalized by the value implied by a uniform distribution. This is an uninforma-
tive prior in the spirit of the Laplace principle of insufficient reason; it is analogous to
the “dartboard” approach to benchmarking the geographic concentration of manufactur-
ing industry of Ellison and Glaeser (1997), or the “balls and bins” approach to bench-
marking the world trade matrix of Armenter and Koren (2014). The value of the KLD
is unbounded, but a specification that gave a value greater than that implied by a uni-
form distribution would be an unsatisfactory explanation of the data. Appendix B.5 shows
that an alternative criterion for choosing between distributions, the QQ estimator, gives
qualitatively similar results.

The minimized KLD values for each specification are given in Table B.I and illus-
trated in Figure B.1. The rankings of different specifications for sales are very different
in the Pareto and lognormal cases. Conditional on a Pareto distribution of productivities,
CREMR demands give the worst fit to sales, with translog demands performing best, and
linear-LES intermediate between the others. However, the differences between the KLD
values for these specifications are much less than those conditional on lognormal pro-
ductivities. In this case, CREMR does best, with translog performing much less well and
linear-LES worst of all.

As for the results for markups, these imply exactly the same ranking of different speci-
fications as the estimates given in Table II in Section 6.2, despite the different methodolo-
gies used (using individual observations and minimizing the AIC rather than using data
grouped in bins and minimizing the KLD as here). Once again, CREMR demands clearly
do best, irrespective of the assumed distribution, with translog and LES performing at the

30The KLD weights the log of the ratio of the estimated density to the empirical density by the empirical
density itself. Many alternative weighting schemes have been proposed, such as Exponential Tilting, which
weights the ratio of the empirical density to the estimated density by the estimated density. (See Nevo (2002)
for further discussion.)
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TABLE B.I

KLD FOR INDIAN SALES AND MARKUPS COMPARED WITH PREDICTIONS FROM SELECTED PRODUCTIVITY
DISTRIBUTIONS AND DEMAND FUNCTIONSa

CREMR Translog LES Linear

A. Sales
Pareto 0.2253 0.1028 0.1837 0.1837
Lognormal 0.0140 0.5825 0.7266 0.7266

B. Markups
Pareto 0.1851 0.2205 0.2191 0.2512
Lognormal 0.1863 0.2228 0.2083 0.2075

aEach KLD value measures the divergence of the predicted from the empirical distribution. A value of zero indicates no diver-
gence, a value of 1 a divergence as great as a uniform distribution.

same level, and linear doing better under Pareto assumptions but less well in the lognor-
mal case. This reinforces the conclusion drawn in the text that the choice between Pareto
and lognormal distributions is less important than the choice between CREMR and other
demands.

To assess whether the KLD values in Table B.I are significantly different from one an-
other, we use a bootstrapping approach. We construct one thousand samples of the same
size as the data (i.e., 2457 observations), by sampling with replacement from the original
data. For each sample, we then compute the KLD value for each of the six models. Ta-
bles B.II and B.III give the results for Indian sales and markup data, respectively. Each
entry in the table is the proportion of samples in which the combination in the relevant
column gives a higher value of the KLD than that in the relevant row. All the values are
equal to or very close to 100%, which confirms that the results in Table B.I are robust.

B.4. Robustness to Truncation

The results for Indian sales data in the preceding subsection are broadly similar to those
with French sales data in Appendix B.6 below, except for the case of CREMR demands
combined with Pareto productivity: this gives a good fit with French data but performs

FIGURE B.1.—KLD for Indian sales and markups. Data from Table B.I.
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TABLE B.II

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: INDIAN SALESa

CREMR +LN CREMR +P Translog +P Linear +P Translog +LN Linear +LN

CREMR +LN – 0% 0% 0% 0% 0%
CREMR +P 100% – 0% 0% 0% 0%
Translog +P 100% 100% – 0% 0% 0%
Linear +P 100% 100% 100% – 0% 0%
Translog +LN 100% 100% 100% 100% – 0%
Linear +LN 100% 100% 100% 100% 100% –

aSee text for explanation. “LN ” denotes lognormal, “P” denotes Pareto.

less well with Indian data. One possible explanation for this is that the French data relate
to exports, whereas the Indian data are for total domestic production. Presumptively,
smaller firms have been selected out of the French data, so we might expect the Pareto
assumption to be more appropriate. To throw light on this issue, we explore the robustness
of the Indian results to left-truncating the data; specifically, we repeat a number of the
comparisons between different specifications for the Indian sales distribution dropping
one observation at a time.

Figure B.2 compares the KLD for the Pareto and lognormal, conditional on CREMR
demands, starting on the left-hand side with all observations (so the values are the same as
in Figure B.1) and successively dropping up to 809 observations one at a time.31 Although
the curves are not precisely monotonic, the broad picture is clear: conditional on CREMR
demands, Pareto does better and lognormal does worse as more and more observations
are dropped. The Pareto specification dominates when we drop 663 or more observations:
these account for 27% of all firm-product observations, but only 1�2% of total sales.

Figure B.3 shows that a similar pattern emerges when we compare the performance of
different demand functions in explaining the sales distribution, conditional on a Pareto
distribution for productivity. (Note that the horizontal scale differs from that in Fig-
ure B.2.) In this case, the CREMR specification overtakes the linear one when we drop

TABLE B.III

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: INDIAN MARKUPSa

CREMR +P CREMR +LN Linear +LN LES +LN LES +P Translog +P Translog +LN Linear +P

CREMR +P – 2% 0% 0% 0% 0% 0% 0%
CREMR +LN 98% – 0% 0% 0% 0% 0% 0%
Linear +LN 100% 100% – 0% 0% 0% 0% 0%
LES +LN 100% 100% 100% – 0% 0% 0% 0%
LES +P 100% 100% 100% 100% – 16% 6% 0%
Translog +P 100% 100% 100% 100% 84% – 0% 0%
Translog +LN 100% 100% 100% 100% 94% 100% – 0%
Linear +P 100% 100% 100% 100% 100% 100% 100% –

aSee text for explanation. “LN ” denotes lognormal, “P” denotes Pareto.

31Each KLD value is normalized by the value of the KLD for a uniform distribution corresponding to
the number of observations used to calculate it, that is, excluding the observations dropped. Alternative ap-
proaches would make very little difference, however, as the KLD value for the uniform varies very little, from
3.940 with no observations dropped to 3.560 with 809 observations dropped.
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FIGURE B.2.—CREMR versus CREMR: KLD for Indian sales.

11 or more observations, which account for 0�44% of all firm-product observations, and
only 0�0002% of sales. As for the translog, CREMR overtakes it when we drop 118 or
more observations, which account for 4�80% of observations, and 0�03% of sales.

These findings confirm that the combination of CREMR demand and Pareto productiv-
ities fits the sales data relatively better when the smallest observations are dropped. They
also make precise the pattern observed in many data sets, whereby the Pareto assumption
outperforms the lognormal in the right tail of the sales distribution. For example, Fig-
ure B.2 shows that the relevant region in the right tail begins at exactly 663 observations.

B.5. Robustness to Divergence Criterion: The QQ Estimator

To check the robustness of our results, we consider an alternative criterion to the KLD
for comparing predicted and actual distributions. Here we consider the QQ estimator, de-
veloped by Kratz and Resnick (1996), and previously used by Head, Mayer, and Thoenig

FIGURE B.3.—CREMR versus the rest, given Pareto: KLD for Indian sales.
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(2014) and Nigai (2017). This estimator does not have the same desirable theoretical
properties as the KLD, in particular it is not asymptotically equivalent to maximum likeli-
hood, but it has a simple interpretation. It equals the parameter vector θ∗ that minimizes
the sum of the squared deviations of the quantiles of the predicted distribution from those
of the actual distribution:

QQ
(
F̃‖F(·;θ)) =

n∑
i=1

(
log q̃i − logqi(θ)

)2
�

where q̃i = F̃−1(i/n) is the ith quantile observed in the data, while qi(θ) = F−1(i/n;θ) is
the ith quantile predicted by the theory.

To implement the QQ estimator, we need analytic expressions for the quantiles of the
sales and markup distributions under each of the eight combinations of assumptions about
demand and the distribution of productivity we consider. These are given in Tables B.IV
and B.V. We set the number of quantiles n equal to 100. The resulting values of the QQ
estimator for Indian sales and markups are given in Table B.VI, and they are illustrated
in Figure B.4.

Comparing Table B.VI and Figure B.4 with Table B.I and Figure B.1 in Appendix B.3
respectively, it is evident that the results based on the QQ estimator are qualitatively
very similar to those for the KLD. In particular, the Pareto assumption gives a better
fit for sales than for markups, except in the CREMR case; while the lognormal assump-
tion tends to give a better fit for markups than for sales. Comparing different demand
functions, CREMR demands give a better fit to the markup distribution than any other
demands, irrespective of which productivity distribution is assumed. As for sales, the re-
sults differ between the Pareto and lognormal cases. Conditional on lognormal, CREMR
again performs much better, whereas, conditional on Pareto, it performs least well, with
the translog doing best. The only qualitative difference between the results using the two
criteria is that, with the QQ estimator, the translog does somewhat better than the LES
in fitting the markup distribution. Overall, we can conclude that the rankings given in
Section 6.1 are not unduly sensitive to our choice of criterion for comparing actual and
predicted distributions.

TABLE B.IV

QUANTILE FUNCTIONS FOR SALES DISTRIBUTIONS IMPLIED BY ASSUMPTIONS ABOUT PRODUCTIVITY
(PARETO (P) OR TRUNCATED LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES, OR TRANSLOG)a

Demand Function Pareto Productivity Truncated Lognormal Productivity

GP(ϕ) = 1 −ϕkϕ−k GtLN (ϕ) = �(
logϕ−μ

s )−T

1−T

CREMR Q(y) = βσ( σ−1
σ

ϕ)σ−1(1 − y)
1−σ
k Q(y) = βσ( σ−1

σ
eμ+s�−1(y(1−T)+T))σ−1

p(x)= β
x
(x− γ)

σ−1
σ

Linear Q(y) = α2ϕ2−(1−y)
2
k

4βϕ2 Q(y) = α2−e−2(μ+s�−1(y(1−T)+T))

4β
p(x)= α−βx

LES Q(y) = δ−
√

γδ
ϕ
(1 − y)

1
2k Q(y) = δ−

√
γδ

e
1
2 (μ+s�−1(y(1−T)+T))

p(x)= δ
x+γ

Translog Q(y) = η(W(ϕe1+ γ

η (1 − y)− 1
k )− 1) Q(y) = η(W(e1+ γ

η +μ+s�−1(y(1−T)+T))− 1)
x(p)= γ−η logp

p

a�(·): c.d.f. of a standard normal; W(·): the Lambert function.
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TABLE B.V

QUANTILE FUNCTIONS FOR MARKUP DISTRIBUTIONS IMPLIED BY ASSUMPTIONS ABOUT PRODUCTIVITY
(PARETO (P) OR TRUNCATED LOGNORMAL (tLN )) AND DEMAND (CREMR, LINEAR, LES, OR TRANSLOG)a

Demand Function Pareto Productivity Truncated Lognormal Productivity

GP (ϕ)= 1 −ϕkϕ−k GtLN (ϕ)= �(
logϕ−μ

s )−T
1−T

CREMR Q(y) = σ
σ−1

1

(1+ω−σ (1−y)
σ
k )

Q(y) = σ
σ−1

1
1+e−μ̃−sσ�−1(y(1−T)+T)

p(x)= β
x
(x− γ)

σ−1
σ ω = ϕβ

γ
1
σ

σ−1
σ

μ̃= σ(μ− log( σ
σ−1

γ
1
σ

β
))

Linear Q(y) = 1
2 (1 +ω(1 − y)− 1

k ) Q(y) = 1
2 (1 + eμ̃+s�−1(y(1−T)+T))

p(x)= α−βx ω = αϕ μ̃= μ+ logα

LES Q(y) = √
ω(1 − y)−1/k Q(y) = e

1
2 (μ̃+s�−1(y(1−T)+T))

p(x)= δ
x+γ

ω = δϕ

γ
μ̃ = μ+ log( δ

γ
)

Translog Q(y) = W(ω(1 − y)−1/k) Q(y) = W(eμ̃+s�−1(y(1−T)+T))

x(p)= γ−η logp
p

ω = e1+ γ
η ϕ μ̃= μ+ 1 + γ

η

a�(·): c.d.f. of a standard normal; W(·): the Lambert function.

TABLE B.VI

QQ ESTIMATOR FOR INDIAN SALES AND MARKUPS

CREMR Translog LES Linear

A. Sales
Pareto 58�939 12�693 24�484 24�484
Lognormal 3�078 116�918 133�274 133�274

B. Markups
Pareto 0�113 0�978 1�133 3�606
Lognormal 0�110 0�990 0�340 0�325

FIGURE B.4.—QQ estimator for Indian sales and markups.
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TABLE B.VII

KLD FOR FRENCH EXPORTS COMPARED WITH PREDICTIONS FROM SELECTED DEMAND FUNCTIONS AND
PRODUCTIVITY DISTRIBUTIONS

CREMR/CES Translog Linear and LES

Pareto 0�0012 0�3819 0�4711
Lognormal 0�0001 0�7315 0�8314

B.6. French Exports to Germany

The Indian data used in Section 6 have the great advantage that they give both sales
and markups for all firms. This is important, for example, in allowing us to discriminate
between CES and CREMR, whose implications for sales are observationally equivalent.
However, relative to many data sets used in recent trade applications, they refer to total
sales rather than exports and they cover a relatively small number of firms. Hence, it is
useful to repeat the analysis on a more conventional data set on export sales, even if
this does not give information on markups. We do this in this section, using data on the
universe of French exports to Germany in 2005, drawn from the same source as that used
by Head, Mayer, and Thoenig (2014).32

As in Section B.3, we use the KLD as the criterion to determine how well different as-
sumptions fit the data. Table B.VII gives the values of the KLD measuring the divergence
from the empirical sales distribution from the distributions implied by CREMR/CES,
translog, and linear demand functions combined with either Pareto or lognormal produc-
tivities. These distributions are calculated by combining the relevant productivity distribu-
tion with the relationships between productivity and sales given in Table I. (Recall from
that table that the linear and LES specifications are observationally equivalent.) Each
entry in the table is the value of the KLD that measures the information loss when the
combination of assumptions indicated by the row and column is used to explain the ob-
served distribution of sales. (The data are again normalized by the value of the KLD for
a uniform distribution, which for this data set is 6.8082.)

Turning to the results in Table B.VII, the values of the minimized KLD show that, con-
ditional on CREMR or CES demands, the lognormal provides a better overall fit than the
Pareto: 0.0001 as opposed to 0.0012. However, the difference between distributions turns
out to be much less significant than those between different specifications of demand. The
KLD values for the translog and linear/LES specifications are much higher than for the
CREMR case, as shown in the third and fourth columns of Table B.VII, with the Pareto
now preferred to the lognormal. The overwhelming conclusion from these results is that,
if we want to fit the distribution of sales in this data set, then the choice between Pareto
and lognormal distributions is less important than the choice between CREMR and other
demands. This is broadly in line with the results for Indian sales data in Section B.3, es-
pecially when we exclude the smallest firms as in Section B.4.

Table B.VIII repeats for French exports data the bootstrapping comparisons presented
in Tables B.II and B.III for Indian sales and markup data, respectively. It is clear that
the comparisons between different values of the KLD for the French data shown in
Table B.VII are just as robust as those for the Indian data shown in Table B.I and Fig-
ure B.1 in the text.

32The data set contains 161,191 firm-product observations on export sales by 27,550 firms: 5.85 products per
firm.
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TABLE B.VIII

BOOTSTRAPPED ROBUSTNESS OF THE KLD RANKING: FRENCH SALESa

CREMR +LN CREMR +P Translog +P Linear +P Translog +LN Linear +LN

CREMR +LN – 0% 0% 0% 0% 0%
CREMR +P 100% – 0% 0% 0% 0%
Translog +P 100% 100% – 0% 0% 0%
Linear +P 100% 100% 100% – 0% 0%
Translog +LN 100% 100% 100% 100% – 0.3%
Linear +LN 100% 100% 100% 100% 99.7% –

aSee text for explanation.
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