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S1. THEORY

S1.1. Unobserved Heterogeneity in Choice Sets as Additively Separable Disturbances

IT IS POSSIBLE TO REPRESENT UNOBSERVED HETEROGENEITY in choice sets through ad-
ditively separable disturbances. In a classic random utility model with Ui(c)=Wi(c)+ εic ,
one may let εic ∈ {−∞�0} for each alternative c ∈ D and allow εic to be correlated with
εic′ for any two alternatives c� c′ ∈ D. One would then posit that: if κ = |D|, then εic = 0
for each alternative c ∈D; if κ = |D| − 1, then εic = −∞ for at most one alternative in D
(the identity of which is left unspecified); if κ = |D| − 2, then εic = −∞ for at most two
alternatives in D (the identities of which are left unspecified); and so forth. This model
yields that alternative c is not chosen if εic = −∞, which is analogous to alternative c not
being chosen when it is not contained in the agent’s choice set.

S1.2. Positive Probability of Utility Ties

When utility ties are allowed, one can adapt the definition of D∗
κ(xi�νi;δ) as follows:

D∗
κ(xi�νi;δ) =

⋃
G⊆D:|G|≥κ

{
arg max

c∈G
W (xic�νi;δ)

}
=

⋃
G⊆D:|G|=κ

{
arg max

c∈G
W (xic�νi;δ)

}
� (S1.1)

where again the last equality follows from Sen’s property α, and now arg maxc∈GW (xic�νi;
δ) may include multiple elements of D due to the possibility of utility ties. The random
closed set D∗

κ(xi�νi;δ) contains alternatives up to the (|D| − κ + 1)th best in D, where
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“best” is defined with respect to W (xic�νi;δ). Due to the possibility of ties, |D∗
κ(xi�νi;δ)|

may be larger than |D| − κ+ 1.1
To see that our characterization in Theorem 3.1 applied with this new definition of

D∗
κ(xi�νi;δ) remains sharp, note that the model-implied optimal choice for an agent with

attributes (xi�νi), utility parameters δ, and choice set G is no longer unique. But this
additional multiplicity of optimal choices is incorporated into D∗

κ(xi�νi;δ), and all model
restrictions continue to be embedded in the requirement that di ∈ D∗

κ(xi�νi;δ), almost
surely. The proof of Theorem 3.1 continues to apply, although at the price of additional
notation (a selection mechanism that determines the probability with which each optimal
choice d∗

i (G�xi�νi;δ) ∈ arg maxc∈GW (xic�νi;δ) is selected when multiple alternatives are
optimal for a realization G of Ci).

S1.3. Computational Simplifications

We omit the subscript i on random variables and random sets throughout this section.

S1.3.1. Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of ΘI as the collection of
θ ∈ Θ that satisfy a finite number of conditional moment inequalities, indexed by the test
sets K ⊂ D. In this subsection, we provide results to reduce the collection of test sets K
for which to check the inequalities from all nonempty proper subsets of D to a smaller
collection.

THEOREM S1.1: Let the assumptions of Theorem 3.1 hold. Then the following steps yield
a sufficient collection of sets K, denoted K, on which to check the inequalities in equation
(3.5) to verify if θ ∈ΘI . Initialize K = {K ⊂D : |K|< κ}. Then:

(1) For a given set K ∈ K, if it holds that ∀ν ∈ V an element of K (possibly different across
values of ν) is among the |D| − κ+ 1 best alternatives in D, then set K =K \K;2

(q) Repeat the following step for q = 2� � � � �κ − 1. Take any set K ∈ K such that K =
Kq−1 ∪ {cj} for some Kq−1 with |Kq−1| = q − 1 and {cj} ∈ K, Kq−1 ∈ K after Steps (1)
and (q − 1). If �ν ∈ V such that both cj and at least one element of Kq−1 are among
the |D| − κ+ 1 best alternatives in D, then set K =K \K.

If the set D∗
κ does not depend on δ, as in our application in Sections 4–5, the collection K is

invariant across θ ∈ Θ.

PROOF: Step (1) follows because under the stated condition, Pr(D∗
κ(x�ν;δ) ∩

K �= ∅)= 1. Step (q) follows because under the stated condition, the events {D∗
κ(x�ν;δ)∩

{cj} �= ∅} and {D∗
κ(x�ν;δ)∩Kq−1 �= ∅} are disjoint. This implies that the right-hand side of

the inequality in equation (3.5) is additive, and therefore that inequality evaluated at K is
implied by the ones evaluated at {cj} and at Kq−1. Q.E.D.

Depending on the structure of the realizations of the random set D∗
κ(x�ν;δ), Theo-

rem S1.1 can be further simplified. The following corollary provides an example.

1To illustrate, consider the case |D| = 5 and κ = 4. When utility ties occur with positive probability, for a
given (x�ν;δ) it might be, for example, that three alternatives are tied as first best, and hence at least one of
them is in any realization of Ci and |D∗

κ(xi�νi;δ)| = 3.
2Here the notation K \K indicates that the set K is removed from the collection of sets K. In practice, one

can implement this step first on sets K : |K| = 1, and for K that satisfies the condition, remove from K all sets
K′ ⊇K. Then repeat the procedure for the remaining sets K : |K| = 2, and so forth.
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COROLLARY S1.1: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of
D∗

κ(x�ν;δ) are given by adjacent elements of D, as {cj� cj+1� � � � � cj+|D|−κ}, for j = 1� � � � �κ.
Then the collection of test sets K in Theorem S1.1 can be initialized to

K = {{c1}� {c1� c2}� {c1� c2� c3}� � � � � {c1� c2� � � � � cκ−1}�
{c|D|}� {c|D|� c|D|−1}� {c|D|� c|D|−1� c|D|−2}� � � � � {c|D|� c|D|−1� � � � � c|D|−κ+2}

}
� (S1.2)

which contains 2(κ− 1) elements.

PROOF: We first establish that if the inequalities in equation (3.5) are satisfied for sets
of size |K| =m, m = 1� � � � � κ−1, comprised of adjacent alternatives (with respect to |D|),
then they are satisfied for all K ⊂D.

Let the inequality in equation (3.5) be satisfied for K1 = {cj� cj+1� � � � � cp}, for K2 =
{cq� cq+1� � � � � ct}, with p< q−1 so that K1 ∩K2 = ∅, and for K =K1 ∪{cp+1� � � � � cq−1}∪K2

(the set that comprises all adjacent alternatives between cj and ct). We then show that the
inequality for K1 ∪K2 is redundant. The same argument generalizes to sets comprised of
the union of disjoint collections of adjacent alternatives.

Consider first the case that q−p ≥ |D| −κ+ 1. Then D∗
κ(x�ν;δ) cannot intersect both

K1 and K2, and hence

P
(
D∗

κ(x�ν;δ)∩ (K1 ∪K2) �= ∅;γ)
= P

(
D∗

κ(x�ν;δ)∩K1 �= ∅;γ) + P
(
D∗

κ(x�ν;δ)∩K2 �= ∅;γ)
and the result follows.

Consider next the case that q−p< |D| − κ+ 1. We claim that in this case

D∗
κ(x�ν;δ)∩K \ (K1 ∪K2) �= ∅ ⇒ D∗

κ(x�ν;δ)∩ (K1 ∪K2) �= ∅� (S1.3)

To establish this claim, take cs ∈ {cp+1� � � � � cq−1} ≡K \ (K1 ∪K2). Suppose cs ∈D∗
κ(x�ν;δ).

Then either cp ∈ D∗
κ(x�ν;δ) or cq ∈ D∗

κ(x�ν;δ), because |D∗
κ(x�ν;δ)| = |D| − κ+ 1. The

claim follows because K1 ∪ K2 ⊂ K, and hence Pr(d ∈ K1 ∪ K2|x) ≤ Pr(d ∈ K|x), while
P(D∗

κ(x�ν;δ)∩ (K1 ∪K2) �= ∅;γ)= P(D∗
κ(x�ν;δ)∩K �= ∅;γ) due to equation (S1.3).

Finally, we show that it suffices to verify equation (3.5) for the sets K ∈ K as specified
in equation (S1.2). Consider first the case where |D| − κ + 1 > κ − 1. Then, for all 1 <
p< q < κ and K = {cp� cp+1� � � � � cq}, it holds that |K|< κ− 1 and, denoting Kc =D \K,

P
(
D∗

κ(x�ν;δ)∩K �= ∅;γ)
= 1 − P

(
D∗

κ(x�ν;δ) ⊂Kc;γ)
= 1 − P

(
D∗

κ(x�ν;δ) ⊂ {c1� � � � � cp−1};γ
) − P

(
D∗

κ(x�ν;δ) ⊂ {cq+1� � � � � cD};γ)
= 1 − P

(
D∗

κ(x�ν;δ) ⊂ {cq+1� � � � � cD};γ)
� (S1.4)

where the first equality follows by definition, the second follows because D∗
κ(x�ν;δ) is

composed of |D| − κ + 1 adjacent alternatives, and the last follows because
P(D∗

κ(x�ν;δ) ⊂ {c1� � � � � cp−1};γ) = 0 as |{c1� � � � � cp−1}| < κ − 1 < |D| − κ + 1. On the
other hand,

Pr
(
d ∈ {cp� � � � � cq}

) ≤ Pr
(
d ∈ {c1� � � � � cq}

)
�
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and hence if equation (3.5) is satisfied for K = {c1� � � � � cq}, it is also satisfied for K =
{cp� cp+1� � � � � cq} for all 1 < p < q < κ. A similar reasoning, with appropriate modifica-
tions, holds for sets K = {c|D|−q+1� cp+1� � � � � c|D|−p+1}.

When |D| − κ + 1 ≤ κ − 1, equation (S1.4) continues to hold as stated whenever p <
|D| − κ + 1. If p > |D| − κ + 1, the result follows by the additivity in the second line of
equation (S1.4) and the additivity of probabilities, because

Pr(d ∈ K|x)≤ P
(
D∗

κ(x�ν;δ)∩K �= ∅;γ) ⇔ Pr
(
d ∈ Kc|x) ≥ P

(
D∗

κ(x�ν;δ) ⊂Kc;γ)
�

Hence, the inequality for K = {cp� � � � � cq} is implied whenever it is satisfied for K =
{c1� � � � � cp} and K = {cq� � � � � c|D|}. Q.E.D.

The following claim establishes that Corollary S1.1 applies when ν ∈ R and the alterna-
tives in the feasible set are vertically differentiated.

CLAIM S1.1: Let Assumptions 2.1 and 2.2 hold. Let D = {c1� � � � � c|D|} and ν = ν ∈ R.
Suppose that: (I) for every pair of alternatives cj� ck ∈ D, j < k, and given any x ∈ X , there
exists a unique threshold ν̄j�k(x) such that, for all ν > ν̄j�k(x), alternative cj has greater utility
than alternative ck, and for all ν < ν̄j�k(x), alternative ck has greater utility than alternative
cj ; and (II) for every alternative cj ∈ D and given any x ∈ X , there exists a ν ∈ R such that
cj is the first best in D. Then, given any (x� ν) ∈ X × R and any κ ≥ 2, the set D∗

κ(x�ν;δ)
comprises adjacent elements of D, as {cj� cj+1� � � � � cj+|D|−κ}, for j = 1� � � � �κ.

PROOF: The proof builds on Fact 4 in Barseghyan, Molinari, and Thirkettle (2021).
Let |D| ≥ 3 (otherwise the claim holds trivially). Take any x ∈ X and any three alterna-
tives cj� cj+1� cj+2 ∈ D. Conditions (I) and (II) imply that ν̄j�j+1(x) > ν̄j�j+2(x) > ν̄j+1�j+2(x).
(In particular, ν̄j+1�j+2(x) > ν̄j�j+2(x) > ν̄j�j+1(x) violates condition (II) because cj+1 is not
first best for any ν ∈R, and every other permutation violates condition (I) due to the tran-
sitivity of utility.) In other words, the alternatives are vertically differentiated in that cj is
first best for all ν > ν̄j�j+1(x); cj+1 is first best for all ν ∈ (ν̄j+1�j+2(x)� ν̄j�j+1(x)); and cj+2 is
first best for all ν < ν̄j+1�j+2(x). Consequently, for all ν ∈ R, the only possible strict utility
rankings of the three alternatives are: U(cj) > U(cj+1) > U(cj+2) (when ν > ν̄j�j+1(x));
U(cj+1) > U(cj) > U(cj+2) (when ν̄j�j+1(x) > ν > ν̄j�j+2(x)); U(cj+1) > U(cj+2) > U(cj)
(when ν̄j�j+2(x) > ν > ν̄j+1�j+2(x)); and U(cj+2) > U(cj+1) > U(cj) (when ν < ν̄j+1�j+2(x)).
Thus, alternative cj+1 is never the third best among the three alternatives. This implies
that if cj and cj+2 both have greater utility than a fourth alternative cm, m /∈ {j� j+1� j+2},
then cj+1 also has greater utility than cm. It follows that for any (x� ν) ∈ X × R, the
set D∗

κ(xi�νi;δ) comprises adjacent elements of D, as {cj� cj+1� � � � � cj+|D|−κ), for j =
1� � � � � κ. Q.E.D.

When Assumption 3.1 is maintained, the logic of Theorem S1.1 can be used to ob-
tain a collection of sufficient test sets K on which to verify the inequalities in (3.7), by
applying its Steps 2.1-2(κ − 1) to the random sets D∗

q(x�ν;δ), q = κ� � � � � |D|. Further
simplifications are possible when interest centers on specific projections of ΘI , using the
fact that D∗

q+1(xi�νi;δ) ⊂ D∗
q(xi�νi;δ) for all q ≥ κ. As discussed following Corollary 3.1,

when Assumption 3.1 is maintained, the projection of ΘI on [δ;γ] is obtained by setting
πκ(x;η) = 1 and πq(x;η) = 0, q = κ + 1� � � � � |D|. Hence, Steps 2.1-2(κ − 1) in Theo-
rem S1.1 applied only to D∗

κ(x�ν;δ) deliver the sufficient collection of sets K on which
to verify (3.7) to obtain the sharp identification region for [δ;γ]. On the other hand,
the projection of ΘI on πq(x;η), q = κ + 1� � � � � |D|, is obtained by setting πl(x;η) = 0
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for all l /∈ {q�κ}, and that on πκ(x;η) by setting πl(x;η) = 0 for all l = κ + 2� � � � � |D|.
Hence, Steps 2.1-2(κ− 1) in Theorem S1.1 applied, respectively, to only D∗

κ(x�ν;δ) and
D∗

q(x�ν;δ) deliver the sufficient collection of sets K on which to verify (3.7) to obtain the
sharp identification region for πq, q = κ+ 1� � � � � |D|, and applied only to D∗

κ(x�ν;δ) and
D∗

κ+1(x�ν;δ) deliver the sufficient collection of sets K on which to verify (3.7) to obtain
the sharp identification region for πκ.

The two corollaries that follow illustrate the specific adaptations of Theorem S1.1 that
we use in our application in Sections 4–5. Proofs are omitted because the corollaries fol-
low immediately from Theorem S1.1.

COROLLARY S1.2: Let D = {c1� c2� c3� c4� c5} and κ = 3. Suppose that all assumptions
in Corollary 3.1 hold and that ν = ν ∈ R with support [0� ν̄], ν̄ < ∞. Then the following
steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in
equation (3.7) to obtain sharp bounds on π5. Initialize K = {K :K ⊂D}. Then:

1. For any set K = {cj� ck} ⊂ D, if �ν ∈ [0� ν̄] such that both cj and ck are among the best
three alternatives in D, then set K =K \ {cj� ck};

2. Set K = K \ {cj� ck� cl} for all j�k� l ∈ {1�2�3�4�5}.
COROLLARY S1.3: Let D = {c1� c2� c3� c4� c5} and κ = 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν = ν ∈ R with support [0� ν̄], ν̄ < ∞. Then the following
steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in
equation (3.7) to obtain sharp bounds on π4. Initialize K = {K :K ⊂D}. Then:

1. For any set K = {cj� ck} ⊂ D, if �ν ∈ [0� ν̄] such that both cj and ck are among the best
three alternatives in D, then set K =K \ {{cj� ck}� {D \ {cj� ck}}};

2. For any set K = {cj� ck� cl} ⊂ D such that {cj� ck} ∈ K after Step 1, if �ν ∈ [0� ν̄] such
that both cl and at least one element of {cj� ck} are among the best three alternatives in
D, then set K = K \ {cj� ck� cl};

3. For any set K ∈K, if ∀ν ∈ [0� ν̄], one element of K, possibly different across values of ν,
is among the best two alternatives in D, then set K =K \K.

In our application in Sections 4–5, the number of inequalities obtained through ap-
plication of the foregoing results (taking into account the 65 hypercubes on (μ� p̄)) is
6 × 65 = 390 for the sharp identification region of γ ; 17 × 65 = 1105 for the sharp identi-
fication region of π5; and 15 × 65 = 975 for the sharp identification region of π4.

S1.4. An Equivalent Characterization Based on Convex Optimization

The characterization in Theorem 3.1 can equivalently be written in terms of a convex
optimization problem.

COROLLARY S1.4: Let Assumptions 2.1 and 2.2 hold and let Θ= 
× �. Then

ΘI =
{
θ ∈Θ : max

u∈R|D|:||u||≤1

[
u�p(x)−

∫
τ∈V

max
d∗∈D∗

κ(x�τ;δ)

(
u�qd∗)

dP(τ;γ)
]

= 0�x-a.s.
}
� (S1.5)

where p(x) = [Pr(d = c1|x) · · ·Pr(d = c|D||x)]� and, for a given d∗ ∈ D∗
κ(x�ν;δ), qd∗ =

[1(d∗ = c1) � � �1(d∗ = c|D|)]�.
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PROOF: We establish the equivalence between equations (3.5) in the paper and (S1.5)
here.3 Due to the positive homogeneity in u of u�p(x)−∫

τ∈V maxd∗∈D∗
κ(x�τ;δ) u�qd∗

dP(τ;γ),
we have that

u�p(x)−
∫
τ∈V

max
d∗∈D∗

κ(x�τ;δ)
u�qd∗

dP(τ;γ)≤ 0 (S1.6)

holds for all u : ||u|| ≤ 1 if and only if expression (S1.6) holds for all u ∈ R|D|. Consider
the specific subset of vectors U = {u ∈ R|D| : uj ∈ {0�1}� j = 1� � � � � |D|}. Each vector u ∈ U
uniquely corresponds to a subset Ku = {c1u1� � � � � c|D|u|D|}. For a given u, u�qd∗ = 1 if
d∗ ∈ Ku and u�qd∗ = 0 otherwise. Hence, the corresponding inequality in (S1.6) reduces
to

Pr(d ∈ Ku|x) = u�p(x)≤ E
[

max
d∗∈D∗

κ(x�τ;δ)
u�qd∗ |x;γ

]
= P

(
D∗

κ(x�ν;δ)∩Ku �= ∅;γ)
�

It then follows that any θ in the set defined in equation (S1.5) belongs to the set defined
in equation (3.5) because {K :K ⊆D} = {Ku : u ∈ U}.

Conversely, take a θ in the set defined by equation (3.5). Then, by Theorem A.1, there
exists a selection d∗ of D∗

κ(x�ν;δ) such that, for all c ∈ D and x-a.s., Pr(d = c|xi) =
Pr(d∗ = c|xi). Hence, θ belongs to the set defined in equation (S1.5). Q.E.D.

As the set D∗
κ(x�ν;δ) is composed of the |D| − κ + 1 best alternatives in D, it can

have only a finite number of realizations, as discussed in Section 3.4, which we denote
D1� � � � �Dh. Hence, the characterization in equation (S1.5) can be rewritten as

ΘI =
{
θ ∈Θ : max

u∈R|D|:||u||≤1

[
u�p(x)−

h∑
j=1

(
max
d∗∈Dj

u�qd∗)
P

(
D∗

κ(x�ν;δ) = Dj;γ)] = 0�x-a.s.

}
�

This means that to determine whether a given θ ∈Θ belongs to ΘI , it suffices to maximize
an easy-to-compute superlinear, hence concave, function over a convex set, and check if
the resulting objective value vanishes. Several efficient algorithms in convex programming
are available to solve this problem; see, for example, the Matlab software for disciplined
convex programming CVX (Grant and Boyd (2010)).

S1.5. Additively Separable Extreme Value Type 1 Unobserved Heterogeneity

We now explain how to compute P(D∗
κ(x�ν;δ) ∩ K �= ∅;γ) when ν = (υ� (εc� c ∈ D))

and W (xc�ν;δ) = ω(xc�υ;δ) + εc , with εc independently and identically distributed Ex-
treme Value Type 1 and independent of υ, as in a mixed logit (McFadden and Train
(2000)), and no restrictions on the dependence between (εc� c ∈ D) and C, and between
υ and C.

Given a realization G of the choice set and c̃ ∈ G (and no utility ties), we have

Pr
(
d∗(G�x�ν;δ) = c̃|x�υ) = Pr

(
W (xc̃�ν;δ) ≥W (xc�ν;δ)∀c ∈ G|υ)

= exp
(
ω(xc̃�υ;δ))∑

c∈G
exp

(
ω(xc�υ;δ)) � (S1.7)

3The argument of proof goes through similar steps as in Molchanov and Molinari (2018, Theorem 3.28).
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Conditional on υ, one can leverage the closed-form expressions in equation (S1.7) to
compute P(D∗

κ(x�ν;δ) ∩ K �= ∅;γ) so that numerical integration is needed only for υ.
The same result applies, with q replacing κ, to compute P(D∗

q(x�ν;δ) ∩ K �= ∅;γ) in
Corollary 3.1.

THEOREM S1.2: Suppose that ν = (υ� (εc� c ∈ D)) and W (xc�ν;δ) = ω(xc�υ;δ) + εc ,
with εc independently and identically distributed Extreme Value Type 1 and independent of υ.
Conditional on υ, any P(D∗

κ(x�ν;δ)∩K �= ∅|υ;γ) can be computed as a linear combination
over different sets G of expression (S1.7). Hence, any P(D∗

κ(x�ν;δ) ∩ K �= ∅;γ) can be
computed as an integral with respect to the distribution of υ of linear combinations over
different sets G of expression (S1.7).

To prove this theorem, we first establish two auxiliary results. The first one states that
the probability of at least one alternative in K being preferred to all alternatives in D \K
is the sum over all elements of K that each is first best in D.

CLAIM S1.2: Conditional on υ, the probability that at least one alternative in a set K ⊂D
is better than all alternatives in the set D \K is given by

Pr
(∨c′∈KW (xc′�ν;δ) >W (xc�ν;δ) ∀c ∈D \K|υ) =

∑
c′∈K

exp
(
ω(xc′�υ;δ))∑

c∈D
exp

(
ω(xc�υ;δ)) �

PROOF OF CLAIM S1.2: We first establish equivalence of the following events:{∃c′ ∈ K s.t. W (xc′�ν;δ) >W (xc�ν;δ); ∀c ∈D \K}
⇐⇒

⋃
c′∈K

{
W (xc′�ν;δ) >W (xc�ν;δ)�∀c ∈D \ c′}� (S1.8)

The right-to-left implication in (S1.8) is immediate. The left-to-right implication can be
established by contradiction, observing that the complement of the event in the right-hand
side of (S1.8) is that there exists a c ∈D \K that is preferred to all other alternatives. The
result then follows because the events in the right-hand side of (S1.8) are disjoint. Q.E.D.

Next, recall that, as discussed in Section 3.4, the set D∗
κ(x�ν;δ) can only take on a finite

number of realizations, denoted D1� � � � �Dh, with |Dj| = |D| − κ + 1 for all j = 1� � � � �h.
We show how to compute the probability of any of these realizations.

CLAIM S1.3: For each j = 1� � � � �h, P(D∗
κ(x�ν;δ) =Dj|υ;γ) can be computed as a linear

combination of expression (S1.7) for different sets G.

PROOF OF CLAIM S1.3: Note that

P
(
D∗

κ(x�ν;δ) = Dj|υ;γ) = P
(
W (xc′�ν;δ) >W (xc�ν;δ)�∀c′ ∈ Dj�∀c ∈D \Dj|υ;γ)

�

Given this, the proof proceeds sequentially. Suppose |D∗
κ(x�ν;δ)| = 1. Then the result

follows immediately (with G =D). Suppose |D∗
κ(x�ν;δ)| = 2. Then we have Dj = {c′� c′′}
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for some c′� c′′ ∈D, and

P
({
W (xc′�ν;δ) >W (xc�ν;δ)} ∩ {

W (xc′′�ν;δ) >W (xc�ν;δ)} ∀c ∈D \Dj|υ;γ)
= P

(
W (xc′�ν;δ) >W (xc�ν;δ) ∀c ∈D \Dj|υ;γ)

+ P
(
W (xc′′�ν;δ) >W (xc�ν;δ|υ;γ) ∀c ∈D \Dj

)
− P

({
W (xc′�ν;δ) >W (xc�ν;δ)} ∪ {

W (xc′′�ν;δ) >W (xc�ν;δ)} ∀c ∈D \Dj|υ;γ)
�

The first term in this expression can be computed by applying equation (S1.7) with G =
D \ c′′; the second term can be computed by applying equation (S1.7) with G=D \ c′; the
last term, by Claim S1.2, can be computed as the sum over c̃ ∈ Dj of equation (S1.7) with
G=D.

For |D∗
κ(x�ν;δ)| ≥ 3, one can proceed iteratively using the inclusion/exclusion formula

and applying Claim S1.2. Q.E.D.

With these results in hand, we prove Theorem S1.2.

PROOF OF THEOREM S1.2: By Claim S1.3, we can compute P(D∗
κ(x�ν;δ) = Dj|υ;γ)

for each Dj such that |Dj| = |D| −κ+ 1 as a linear combination of expression (S1.7) with
different sets G. To obtain the result in Theorem S1.2, for each set K one can simply sum
P(D∗

κ(x�ν;δ) = Dj|υ;γ) over the sets Dj such that Dj ∩K �= ∅. Q.E.D.

S2. ADDITIONAL DETAILS ON STATISTICAL INFERENCE

As explained in Section 5, we base our confidence sets for the vector θ on the
Kolmogorov–Smirnov test statistic suggested by Andrews and Shi (2013, equation (3.7)
on p. 618) [hereafter, AS], which in our framework simplifies to

Tn(θ)= n max
j=1�����J;K∈K

max
{
m̄n�K�j(θ)

σ̂n�K�j(θ)
�0

}2

�

where m̄n�K�j(θ) and σ̂n�K�j(θ) are defined in Section 5. Our application of the method
proposed by AS computes bootstrap-based critical values to obtain a confidence set

CS = {
θ ∈Θ : Tn(θ)≤ ĉn�1−α+ξ(θ)+ ξ

}
�

where ξ > 0 is an arbitrarily small constant which we set equal to 10−6 as suggested by AS
(p. 625). In practice, we evaluate Tn(θ) and the bootstrap-based critical value ĉn�1−α+ξ(θ)
on a grid of values of θ designed to give good coverage of the (E(ν)�Var(ν))-space to
obtain a precise description of the confidence set for this pair of parameters. To explain
how this grid is constructed, we note that given the assumption that νi ∼ Beta(γ1�γ2) with
support [0�0�03], E(ν) ∈ 0�03×(0�1] and Var(ν) ∈ 0�0009×(0�0�25]. We therefore obtain
a grid of values over (γ1�γ2) composed of 665,603 points, such that the associated grid on
(E(ν)�Var(ν)) has first coordinate in 0�03 × [0�0005�0�9995] with step size 0�03 × 0�0005,
and second coordinate in 0�0009 × (0�0005�0�25] with step size 0�0009 × 0�0005.4 The ap-
proximation of ĉn�1−α+ξ(θ) is based on the bootstrap procedure detailed in AS (Section 9)

4To obtain confidence intervals on π5, π4, and π3, we first evaluate Tn(θ) on a coarser grid and compare it
with the AS critical value. For each πq , q = 3�4�5, we then refine the grid around the extreme values of πq that
are not rejected, for a final step size of 0�01 on πq and 0�05 on each component of (γ1�γ2).
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and uses 1000 bootstrap replications.5 The procedure takes as inputs a GMS function ϕ, a
GMS sequence τn such that τn → ∞ as n → ∞, and a non-decreasing sequence of positive
constants βn such that βn/τn → 0 as n → ∞, which together are used to determine which
moment inequalities are sufficiently close to binding to contribute to the limiting distri-
bution of Tn(θ). We use the GMS function proposed by AS (equation (4.10) on p. 627):6

ϕK�j(θ)=
{

0 if τ−1
n

√
nm̄n�K�j(θ)/σ̂n�K�j(θ)≥ −1�

−βn otherwise�

and we set τn = (0�3 lnn)1/2 and βn = (0�4 lnn/ ln lnn)1/2 as recommended by AS (p. 643).
Similarly to AS, the KMS procedure takes as inputs a GMS function ϕ and a GMS

sequence τn.7 To simplify computations, we use the hard threshold GMS function:8

ϕK�j(θ)=
{

0 if τ−1
n

√
nm̄n�K�j(θ)/σ̂n�K�j(θ)≥ −1�

−∞ otherwise�

The procedure also requires a regularization parameter ρ ≥ 0, which (like ϕ and τn) en-
ters the calibration of ĉfn�1−α and introduces a conservative distortion that is required to
obtain uniform coverage of projections. The smaller is the value of ρ, the larger is the
conservative distortion, but the higher is the confidence that the critical value is uniformly
valid in situations where the local geometry of ΘI makes inference especially challenging.
For a discussion, see KMS (Section 2.2). We choose the value of ρ as follows. We begin
with the recommendation in KMS (Section 2.4). To further guard against possible irregu-
larities in the local geometry of ΘI , we reduce the resulting value of ρ by 20 percent.

S3. ADDITIONAL RESULTS

S3.1. Claim Probabilities

The claim probabilities originate from Barseghyan, Teitelbaum, and Xu (2018). We esti-
mate the households’ claim probabilities using the company’s claims data. We assume that
household i’s auto collision claims in year t follow a Poisson distribution with mean λit .
We also assume that the household’s deductible choice does not influence its claim rates
λit (Assumption 4.1(II)). We treat the household’s claim rate as a latent random variable
and assume that lnλit = X′

itβ+εi, where Xit is a vector of observables and exp(εi) follows
a Gamma distribution with unit mean and variance φ. We perform a Poisson panel regres-
sion with random effects to obtain maximum likelihood estimates of β and φ. In an effort
to obtain the most precise estimates, we use the full set of auto collision claims data, which
comprises 1,349,853 household-year records. For each household, we calculate a fitted
claim rate λ̂i conditional on the household’s observables at the time of first purchase and
its subsequent claims experience. More specifically, λ̂i = exp(X′

iβ̂)E(exp(εi)|Yi), where

5Compared to the description in AS (Section 9), note that our moment inequalities are of the ≤ form,
whereas AS’s are of the ≥ form.

6AS labeled the GMS sequence κn, but we use τn to avoid confusion with our use of κ for the (known and
fixed) minimum choice set size in Assumption 2.2.

7Our findings based on the AS and KMS methods are robust to the choice of tuning parameters, as indicated
by results available from the authors upon request.

8This function was proposed by Andrews and Soares (2010) and labeled ϕ(1) on p. 131 of their article.
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Yi records household i’s claims experience after purchasing the policy and E(exp(εi)|Yi)
is calculated using the maximum likelihood estimate of φ. In principle, a household may
experience one or more claims during the policy period. We assume that households dis-
regard the possibility of experiencing more than one claim (Assumption 4.1(I)). Given
this, we transform λ̂i into a claim probability μi ≡ 1 − exp(−λ̂i), which follows from the
Poisson probability mass function, and round it to the nearest half percentage point. We
treat μi as data.

S3.2. Deductible Choices

Table SI reports the sample distribution of deductible choices by octiles of base price
p̄i and claim probability μi. The octiles are the hypercubes referenced in Sections 5 and
S2 (other than the one that contains all households).

S3.3. Subgroup Results

Figure S1 depicts the AS 95 percent confidence set for (E(νi)�Var(νi)) for population
subgroups based on gender, age, and insurance score of the principal driver. In addition,
Table SII reports (i) the KMS 95 percent confidence interval for the mean of νi and (ii) 95
percent confidence intervals for the 25th and 75th percentiles of νi based on projections
of the AS confidence set. For the mean, we report the actual confidence interval as well
as the risk premium, for a lottery that yields a loss of $1000 with probability 10 percent,
implied by each bound. For the percentiles, we report only the implied risk premia. For
the most part, the subgroup results are comparable to the results for all households. The
notable exceptions are the lower bounds on the mean for households with young principal
drivers and households with low insurance scores. These lower bounds are on the order
of 4 · 10−4 (which implies a risk premium of about $20), whereas the corresponding lower
bounds for the other subgroups and the population are on the order of 10−3 (which implies
a risk premium of about $60).9 Strikingly, the lower bounds on the 75th percentile for
these two subgroups correspond to risk premia of 17 cents and $7, respectively.

Table SIII reports KMS 95 percent confidence intervals for π5, π4, and π3 for the same
population subgroups. The interesting quantities are the upper bounds on π5 and π4. The
former is the maximum fraction of households whose deductible choices can be ratio-
nalized with full-size choice sets, while the latter is the maximum fraction of households
whose deductible choices can be rationalized with full-1 choice sets.10 We find, inter alia,
that: (i) at least 70 percent of households with female principal drivers require limited
choice sets to explain their deductible choices, whereas at least 74 percent of households
with male principal drivers require limited choice sets; (ii) at least 73 percent of house-
holds with old principal drivers require limited choice sets to explain their deductible
choices, whereas at least 75 percent of households with young principal drivers require
limited choice sets; and (iii) at least 67 percent of households with low insurance scores
require limited choice sets to explain their deductible choices, whereas at least 73 percent
of households with high insurance scores require limited choice sets.11

9Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that a result for all households is not a weighted average of the corresponding results within a subgroup.

10With κ = 3, the lower bounds on π5 and π4 are zero, the lower bound on π3 is 1 minus the upper bound
on π4, and the upper bound on π3 is 1.

11Because the subgroups all have different confidence sets (as well as different sample sizes), it is possible
that the upper bound on π5 for all households is not a weighted average of the upper bounds on π5 within a
subgroup. The same is true for the upper bound on π4 (and, therefore, for the lower bound on π3).
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TABLE SI

DEDUCTIBLE CHOICES BY OCTILES OF p̄ AND μa

p̄ μ Percent choosing deductible

octile octile Obs. $100 $200 $250 $500 $1000

1 1 2756 3.3 31�2 18�9 43.8 2�9
1 2 2901 3.6 31�8 18�7 43.6 2�2
1 3 2661 2.9 32�1 20�0 43.6 1�5
1 4 2113 3.4 34�2 20�6 40.8 1�0
1 5 2116 3.9 32�1 20�2 42.2 1�5
1 6 1630 4.2 34�5 21�9 38.9 0�6
1 7 1233 4.4 34�1 22�8 38.7 0�0
1 8 660 5.0 39�4 25�6 30.0 0�0

2 1 1949 1.0 20�8 17�0 57.1 4�0
2 2 1944 2.0 22�3 16�9 56.4 2�5
2 3 1543 1.9 25�7 19�1 50.7 2�6
2 4 2152 2.0 23�1 18�5 54.4 2�0
2 5 1320 2.3 26�7 18�0 50.8 2�2
2 6 1979 1.6 25�6 20�1 51.1 1�6
2 7 1584 1.8 26�5 22�6 47.9 1�3
2 8 1151 2.0 26�5 22�7 48.7 0�2

3 1 1362 0.7 20�4 14�3 59.8 4�7
3 2 1914 0.8 18�5 14�6 62.1 3�9
3 3 2127 0.8 19�8 16�1 60.0 3�2
3 4 1518 1.3 20�3 17�7 59.4 1�4
3 5 2255 1.0 19�9 17�6 59.4 2�1
3 6 1773 0.8 19�9 18�4 59.1 1�9
3 7 1729 1.2 21�1 20�0 56.7 1�1
3 8 1602 1.2 20�7 22�2 54.9 0�9

4 1 1340 0.7 12�7 13�7 67.5 5�3
4 2 1458 0.8 14�1 15�2 65.8 4�3
4 3 1632 0.7 15�1 15�4 66.1 2�8
4 4 1595 0.6 14�7 16�6 64.8 3�3
4 5 1606 0.8 14�3 17�1 65.4 2�5
4 6 1705 0.6 16�1 15�2 65.5 2�6
4 7 1974 0.7 15�4 17�0 65.5 1�5
4 8 1914 1.0 17�3 17�7 62.8 1�2

5 1 1126 0.4 11�4 12�6 70.5 5�2
5 2 1547 0.1 11�8 11�9 71.7 4�5
5 3 1609 0.5 10�4 13�0 71.6 4�5
5 4 1522 0.5 10�6 14�5 71.4 3�0
5 5 2066 0.7 10�8 12�8 72.1 3�5
5 6 1697 0.6 12�5 14�7 69.2 2�9
5 7 1801 0.2 12�2 14�6 70.9 2�2
5 8 2128 0.5 11�9 17�1 68.8 1�6

6 1 1303 0.3 6�7 9�1 78.3 5�6
6 2 1403 0.2 6�9 11�4 75.5 6�0
6 3 1326 0.5 7�3 11�2 76.8 4�2
6 4 1784 0.3 8�1 11�2 76.2 4�2
6 5 1589 0.2 7�9 9�8 78.0 4�1
6 6 1725 0.5 8�9 12�0 74.7 3�9
6 7 2061 0.1 7�3 11�2 78.4 3�1
6 8 2363 0.1 9�0 12�3 76.3 2�2

(Continues)
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TABLE SI—Continued

p̄ μ Percent choosing deductible

octile octile Obs. $100 $200 $250 $500 $1000

7 1 1521 0.3 5�2 6�9 81.1 6�5
7 2 1351 0.1 5�6 7�5 80.1 6�7
7 3 1665 0.2 4�1 8�6 80.2 6�8
7 4 1646 0.1 5�0 6�7 81.7 6�4
7 5 1726 0.1 5�0 7�4 82.6 5�0
7 6 1865 0.1 4�9 7�9 82.5 4�6
7 7 2045 0.1 5�7 7�6 82.4 4�2
7 8 2452 0.2 5�4 9�1 81.0 4�4

8 1 2636 0.0 1�3 2�5 74.2 21�9
8 2 1553 0.1 1�5 1�8 80.3 16�4
8 3 1463 0.0 1�6 3�1 82.8 12�4
8 4 1568 0.0 1�4 2�7 80.2 15�6
8 5 1384 0.0 1�8 2�0 80.6 15�6
8 6 1570 0.1 2�0 3�0 78.9 16�1
8 7 1501 0.0 1�2 2�5 82.7 13�7
8 8 1698 0.1 2�1 3�3 81.0 13�5

aAnalysis sample (111,890 households).

S3.4. Admissible Probability Density Functions

Figure S2 depicts a 95 percent confidence set for an outer region of admissible prob-
ability density functions of νi for all households. To construct the outer region (shaded
in gray), we find at each point on a grid of 101 values of νi the minimum and maximum
values of all probability density functions implied by values of θ in the AS 95 percent
confidence set. This gives us 101 points on the lower and upper envelopes of admissible
probability density functions. In other words, we obtain pointwise sharp lower and upper
bounds on the set of admissible probability density functions. Although the bounds are
pointwise sharp, the region is labeled an outer region because not all probability density
functions in it are consistent with the distribution of observed choices. The figure also
superimposes the predicted density functions of νi based on point estimates obtained un-
der the UR and ASR models. The UR predicted density function does not lie entirely
inside the confidence set, whereas the AR predicted density function does (although we
note that this does not necessarily imply that the true choice formation process is an ASR
process).

S3.5. Suboptimal Choices

As we state in Section 5.2.1, with full-size choice sets, our model cannot explain the
frequency of the $200 deductible in our data. The reason is that, with full-size choice sets,
our model satisfies the following conditional rank order property, which is a generaliza-
tion of the rank order property established by Manski (1975) for random utility models
that are linear in the nonrandom parameters and feature an additive i.i.d. disturbance in
the utility function.

PROPERTY S3.1—Conditional Rank Order Property: For all c� c′ ∈D, Pr(d = c′|x�ν)≥
Pr(d = c|x�ν) if and only if W (xc′�ν;δ) ≥W (xc�ν;δ)� (x�ν)-a.s.
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FIGURE S1.—AS 95 percent confidence sets for (E(ν)�Var(ν)).



14 BARSEGHYAN, COUGHLIN, MOLINARI, AND TEITELBAUM

TABLE SII

DISTRIBUTION OF ABSOLUTE RISK AVERSIONa

Implied risk premium

Mean Mean 25th pctl. 75th pctl.

LB UB LB UB LB UB LB UB

Male 0.00104 0.00321 $61 $279 $0 $73 $76 $426
Female 0.00101 0.00377 $59 $339 $0 $117 $81 $485
Young 0.00044 0.00306 $22 $263 $0 $95 $0 $407
Old 0.00107 0.00432 $63 $393 $0 $73 $95 $548
Low insurance score 0.00042 0.00315 $21 $273 $0 $73 $7 $425
High insurance score 0.00102 0.00501 $60 $452 $0 $127 $85 $591

a95 percent confidence intervals. LB = lower bound. UB = upper bound. Implied risk premia for a lottery that yields a loss of
$1000 with probability 10 percent.

TABLE SIII

DISTRIBUTION OF CHOICE SET SIZEa

π5 π4 π3
(full) (full-1) (full-2)

LB UB LB UB LB UB

Male 0 0.26 0 0�85 0�15 1
Female 0 0.30 0 0�90 0�10 1
Young 0 0.25 0 1 0 1
Old 0 0.27 0 0�96 0�04 1
Low insurance score 0 0.33 0 1 0 1
High insurance score 0 0.27 0 1 0 1

aKMS 95 percent confidence intervals. LB = lower bound. UB = upper bound

Indeed, any model that satisfies an analogous property is incapable of explaining the rel-
ative frequency of $200 in the distribution of observed deductible choices.12 This includes,
inter alia, the conditional logit model (McFadden (1974)), the mixed logit model (McFad-
den (1974), McFadden and Train (2000)), the multinomial probit model (e.g., Hausman
and Wise (1978)), and semiparametric models such as the one in Manski (1975). At the
same time, not all choice set formation processes can explain the relative frequency of
$200 in our data. For instance, UR cannot but ASR can.

CLAIM S3.1: Take the model in Section 2. Suppose for a given c ∈ D there exist a�b ∈
D, a �= b �= c, such that for each ν ∈ V , W (xa�ν;δ) > W (xc�ν;δ) or W (xb�ν;δ) >
W (xc�ν;δ). Then for any distribution of ν with support V :

(I) Property S3.1 implies Pr(d = a|x)+ Pr(d = b|x) > Pr(d = c|x)�x-a.s.
(II) Under UR, Pr(d = a|x)+ Pr(d = b|x) > Pr(d = c|x)�x-a.s.

(III) Under ASR, Pr(d = a|x)+ Pr(d = b|x) < Pr(d = c|x) is possible.

12In the case of a model with additively separable noise where ν = (υ� (εc� c ∈ D)) and W (xc�ν;δ) =
ω(xc�υ;δ) + εc , the analogous property is: For all c� c′ ∈ D, Pr(d = c′|x�υ) ≥ Pr(d = c|x�υ) if and only if
ω(xc′ �υ;δ) ≥ω(xc�υ;δ)� (x�υ)-a.s.



HETEROGENEOUS CHOICE SETS AND PREFERENCES 15

FIGURE S2.—Confidence set for outer region of admissible probability density functions of ν. The figure
depicts a 95 percent confidence set for an outer region of admissible probability density functions of νi . It also
superimposes the implied probability density functions of νi based on point estimates obtained under the UR
and ASR models.

PROOF: The implication in Claim S3.1(I) follows from Property S3.1 by integrating
with respect to the distribution of ν.

Claim S3.1(II) follows from the fact that the UR model satisfies Property S3.1. Sup-
pose alternative c′ is preferred to alternative c. Alternative c′ may be chosen from choice
sets that contain both c′ and c and from choice sets that contain c′ but not c. However,
alternative c may be chosen only from choice sets that contain c but not c′. Because all
choice sets, conditional on the draw of |C|, are equiprobable, c′ is chosen more frequently
than c.

We can establish Claim S3.1(III) with a trivial example. Suppose ϕ(a) = ϕ(b) = 0 and
ϕ(c)= 1. Then Pr(d = a|x) = Pr(d = b|x)= 0 and Pr(d = c|x) > 0 provided there exists a
positive measure of values ν ∈ V such that W (xc�ν;δ) >W (xc′�ν;δ) for all c′ ∈D \{a�b},
c′ �= c. More generally, Pr(d = a|x)+ Pr(d = b|x) < Pr(d = c|x) is possible provided ϕ(a)
and ϕ(b) are sufficiently low, ϕ(c) is sufficiently high, and c is the first best alternative in
D \ {a�b} for some positive measure of values ν ∈ V . Q.E.D.

We emphasize that Claim S3.1 does not rely on Assumption 3.1 or the assumptions of
the empirical model in Section 4.1. It thus exemplifies a new approach to testing assump-
tions on choice set formation in any random utility model under weak restrictions on the
utility function and without parametric restrictions on the distribution of preferences or
choice sets.

An analogous claim holds in the case of a model with additively separable disturbances,
such as the mixed logit model in Section 5.1.1, for any distribution of υ with support Υ ,
where the predicate is: Suppose for a given c ∈D there exist a�b ∈D, a �= b �= c, such that
for each υ ∈ Υ , ω(xa�υ;δ) > ω(xc�υ;δ) or ω(xb�υ;δ) > ω(xc�υ;δ).
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