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APPENDIX A: ADDITIONAL DETAILS FOR SECTION 3

WE FILL IN THE MISSING STEPS for Section 3. First, in Section A.1, we show how to formu-
late the Ramsey problem recursively, then in the context of the Section 3.1 economy, how
our method extends to higher-order approximations. Second, we show how to generalize
the expansions so that we can deal with persistent aggregate and idiosyncratic shocks as
well as additional state variables, as discussed in Section 3.2.

A.1. Recursive Formulation of the Ramsey Problem

Here, we show that the Lagrangian in equation (21) in Section 3 of the main text admits
a recursive solution from t ≥ 1. We will also describe the F and R mappings that appear
in equations (22) and (23) in this case. For completeness, we repeat the maximization
problem here and list all implementability constraints. Given {bi�−1}i and μi�−1 = 0, the
planning problem is

inf supE0

∞∑
t=0

βt
∫ [

u(ci�t� ni�t) + (
uc�i�tci�t + un�i�tni�t − uc�i�t

{
Tt +

(
1 −ϒdt

)
Dt

})
μi�t

+
(

1 −ϒbt
1 +�t

)
bi�t−1uc�i�t(μi�t−1 −μi�t)

]
di

subject to

Qt−1Mt−1 = βm−1
i�t−1Et−1

[
uc�i�t

(
1 −ϒbt

)
(1 +�t)−1

]
� (41a)

uc�i�tWt

(
1 −ϒnt

)
Etε�i�t = −un�i�t� (41b)

Mt =m−1
i�t uc�i�t� (41c)
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uc�i�t di=Mt� (41d)∫
ci�t di= Ct� (41e)

Ct + Ḡ=
∫

Etε�i�tni�t di− ψ

2
�2
t � (41f)

Dt = (1 −Wt)
∫

Etε�i�tni�t di− ψ

2
�2
t � (41g)

First-Order Conditions. Let βt−1ρi�t−1, βtφi�t , βtϕi�t be Lagrange multipliers on house-
hold-level constraints (41a)–(41c); let βtλt , βtχt , βt�t , βtζt be Lagrange multipliers on
aggregate constraints (41d)–(41g). First-order conditions with respect to household-level
variables: bi�t−1, ci�t , ni�t , m−1

i�t , μi�t are

0 = Et−1

(
1 −ϒbt
1 +�t

)
uc�i�t(μi�t−1 −μi�t)� (42a)

0 = μi�t (ucc�i�t
[
ci�t −

(
Tt +

(
1 −ϒdt

)
Dt

] + uc�i�t
) +

(
1 −ϒbt
1 +�t

)
bi�t−1ucc�i�t(μi�t−1 −μi�t)

−φi�tWt

(
1 −ϒnt

)
εi�tucc�i�t + ρi�t−1m

−1
i�t−1

(
1 −ϒbt

)
(1 +�t)−1ucc�i�t

+ϕi�tucc�itm−1
i�t −χt − λt + uc�i�t� (42b)

0 = un�i�t +μi�t (unn�i�tni�t + un�i�t) −φi�tunn�i�t +
[
�t + ζt (1 −Wt)

]
Etε�i�t� (42c)

0 = βEt
[
ρi�tuc�i�t+1

(
1 −ϒbt+1

)
(1 +�t+1)−1

] +ϕi�tuc�it� (42d)

0 = (
uc�i�tci�t + un�i�tni�t − uc�i�t

{
Tt +

(
1 −ϒdt

)
Dt

})
−

(
1 −ϒbt
1 +�t

)
bi�t−1uc�i�t +βEt

(
1 −ϒbt+1

1 +�t+1

)
bi�tuc�i�t+1� (42e)

First-order conditions with respect to aggregate variables Ct , Dt , Mt , Qt , Wt , (1 +�t)−1,
and Tt , ϒdt , ϒbt , ϒ

n
t are

0 = χt −�t� (43a)

0 = −(
1 −ϒdt

)∫
uc�i�tμi�t di− ζt� (43b)

0 = −
∫
ρi�tQt −

∫
ϕi�t di+ λt� (43c)

0 = −
∫
ρi�t−1 di� (43d)

0 = −
∫
φi�tuc�i�t

(
1 −ϒnt

)
Etε�i�t di− ζt

∫
Etε�i�tni�t di� (43e)

0 = (
1 −ϒbt

)∫
bi�t−1uc�i�t(μi�t−1 −μi�t) di+ψ�t (1 +�t)2(�t + ζt)
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+β(
1 −ϒbt

)∫
ρi�t−1m

−1
i�t−1uc�i�t di� (43f)

0 =
∫
uc�i�tμi�t di� (43g)

0 =
∫
uc�i�tμi�t di� (43h)

0 = −
∫
bi�t−1uc�i�t(μi�t−1 −μi�t) di−β

∫
ρi�t−1m

−1
i�t−1uc�i�t di� (43i)

0 =Wt

∫
φi�tuc�i�tEtε�i�t � (43j)

We can simplify some equations. We can set�t = ζt = 0 and define T̂t ≡ Tt + (1−ϒdt )Dt

and ignore (43f). Solving equations (42a)–(43j) is then the same as solving the following
equations:

0 = Et−1

(
1 −ϒbt

)
uc�i�t(μi�t−1 −μi�t)� (44a)

0 = μi�t
(
ucc�i�t[ci�t − T̂t] + uc�i�t

) + (
1 −ϒbt

)
bi�t−1ucc�i�t(μi�t−1 −μi�t)

−φi�tWt

(
1 −ϒnt

)
εi�tucc�i�t + ρi�t−1m

−1
i�t−1

(
1 −ϒbt

)
ucc�i�t

+ϕi�tucc�itm−1
i�t −�t − λt + uc�i�t� (44b)

0 = un�i�t +μi�t (unn�i�tni�t + un�i�t) −φi�tunn�i�t +�tεi�t� (44c)

0 = βEt
[
ρi�tuc�i�t+1

(
1 −ϒbt+1

)] +ϕi�tuc�it� (44d)

0 = uc�i�tci�t + un�i�tni�t − uc�i�t T̂t�
− (

1 −ϒbt
)
bi�t−1uc�i�t +βEt

(
1 −ϒbt

)
bi�tuc�i�t+1� (44e)

0 = −
∫
ϕi�t di+ λt� (44f)

0 =
∫
ρi�t−1 di� (44g)

0 =
∫
φi�tuc�i�tεi�t di� (44h)

0 =
∫
bi�t−1uc�i�t(μi�t−1 −μi�t) di� (44i)

0 =
∫
uc�i�tμi�t di� (44j)

Recursive Ramsey Problems. For t ≥ 1, define individual-level states

zi�t−1 ≡ (mi�t−1�μi�t−1)�
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and the aggregate state as a joint distribution over zi�t−1 to be denoted�t−1; the individual-
level choice variables as

x̃i�t ≡ (ci�t� ni�t� bi�t−1�ρi�t−1�φi�t�ϕi�t�μi�t�mi�t)�

and the aggregate-level choice variables as

X̃t ≡
(
Ct�Dt�Qt�Wt�Mt� T̂t�ϒ

b
t �ϒ

n
t �λt��t

)
�

For t ≥ 1, given�t−1 and shocks (Et �{ε�i�t}i), functions X̃(��E), x̃(z���ε�E), in the main
text are defined as solutions to 17 equations (41a)–(41g) and (44a)–(44j) to be solved
for 17 unknowns x̃i�t and Xt . The collection of equations (41a)–(41g) constitutes the F
mapping in the text, and the collection of equations (44a)–(44j) constitutes theRmapping
in the text.

For t = 0, define vectors x̃i�0 and X̃0 as

x̃i�0 ≡ (ci�0� ni�0�φi�0�ϕi�0�μi�0�mi�0)�

X̃0 ≡ (
C0�D0�Q0�W0�M0� T̂0�ϒ

b
0�ϒ

n
0�λ0��0

)
�

Given an initial condition �b
−1 ≡ {bi�−1}i and shocks (E0�{ε�i�0}i) the time-0 policy func-

tions X̃0(�b
−1�E), x̃0(b��b

−1�ε�E) solve 15 equations (41b)–(41g), and (44b)–(44j) for 15
unknowns x̃i�0 and X̃0 given x̃i�1 and X̃1.

A.2. Higher-Order Approximations for Section 3.1

We start with a second-order approximation to the model presented in Section 3.1.
These are given by

X̃(��σE;σ) = X̄ + σ (X̄EE + X̄σ)

+ 1
2
σ2

(
X̄EE�(E�E ) + 2X̄EσE + X̄σσ

)
+O

(
σ3

)
�

where the symbol a · (b� c) denotes a bilinear map.32 A similar expansion can be written
for x̃(z���σε�σE;σ).

To obtain the necessary terms, we proceed in two steps: Section A.2.1 computes in-
termediate terms including higher-order Fréchet derivatives for individual and aggregate
policy functions, and Section A.2.2 uses these terms to compute the second-order expan-
sion. Although the second-order expansion requires additional notation, the steps below
highlight how the the same fundamental insights presented in Section 3 maintain the
tractability of the problem.

32Specifically, if a is a n1 × n2 × n3 tensor, b is a n2 × n4 matrix and c is a n3 × n5 matrix then d = a · (b� c) is
n1 × n4 × n5 tensor defined by

dilm =
∑
j�k

aijkbjlckm�

This definition generalizes to when a, b, or c is infinite dimensional, such as with ∂x̄z.
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A.2.1. Intermediate Terms for Second-Order Expansions

Differentiating equation (22) twice with respect to z� we find

0 = F̄x− x̄zz + F̄xx̄zz + F̄x+ (x̄zz + x̄zpx̄zz)

+ F̄zz + F̄zx− · (I� x̄z) + F̄zx · (I� x̄z) + F̄zx+ · (I�xz)

+ F̄x−z · (x̄z� I) + F̄x−x− · (x̄z� x̄z) + F̄x−x · (x̄z� x̄z) + F̄x−x+ · (x̄z�xz)

+ F̄xz · (x̄z� I) + F̄xx− · (x̄z� x̄z) + F̄xx · (x̄z� x̄z) + F̄xx+ · (x̄z�xz)

+ F̄x+z · (x̄z� I) + F̄x+x− · (x̄z� x̄z) + F̄x+x · (x̄z� x̄z) + F̄x+x
+ · (x̄z�xz)�

where I represents the identity matrix and we use a · (b� c) to denote a bilinear map.
Lines 2–5 appear complicated but are actually simply combining all of the already known
derivatives of x with cross derivatives of F . It will prove convenient to combine all of
these terms into a single term:

∑
α�β∈{z�x−�x�x+} F̄αβ · (ᾱz� β̄z) with the knowledge that z̄z ≡ I,

x̄−
z ≡ x̄z, and x̄+

z ≡ x̄z. In doing this, x̄zz can be represented by a simple linear equation

x̄zz = −[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1
( ∑

α�β∈{z�x−�x�x+}

F̄αβ · (ᾱz� β̄z)
)
�

In a similar manner, one can show that

∂xz ·�= −[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1
( ∑

α∈{z�x−�x�x+}
β∈{x−�x�x+�X}

F̄αβ · (ᾱz� ∂β̄ ·�)
)
�

where we use ∂x̄− ·�≡ ∂x̄+ ·�≡ ∂x̄ ·�.
The last of the derivatives with respect to the state variables that are required for the

second-order expansion is ∂2x̄ · (�1��2). We will use the precomputed expressions for ∂x̄
and ∂X̄ evaluating them in the directions �1 and �2. Differentiating (22), we find

0 = F̄x−∂2x̄ · (�1��2) + F̄x∂
2x̄ · (�1��2) + F̄x+

(
∂2x̄ · (�1��2) + x̄zp∂

2x̄ · (�1��2)
)

+ F̄X∂
2X̄ · (�1��2)

+
∑

α�β∈{x−�x�x+�X}

F̄αβ · (∂ᾱ ·�1� ∂β̄ ·�2)�

In solving this equation for ∂2x̄ · (�1��2), we find

∂2x̄ · (�1��2) = A(z��1��2) + C(z)∂2X̄ · (�1��2)�

where A(z��1��2) equals

−[
F̄x− + F̄x + F̄x+ (I + x̄zp)

]−1
( ∑

α�β∈{x−�x�x+�X}

F̄αβ · (∂ᾱ ·�1� ∂β̄ ·�2)
)
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from terms already known and C(z) is the same term computed in Section 3.1. To find
∂2X̄ · (�1��2), we differentiate (23) to find

0 = R̄x

∫
∂2x̄(y) · (�1��2) d�(y) + R̄X∂

2X̄ · (�1��2)

+
∫ ∑

α�β∈{x(y)�X}

R̄αβ · (∂α ·�1� ∂β ·�2) d�(y)

+ R̄x

∫
∂x̄(y) ·�1 d�2(y) + R̄x

∫
∂x̄(y) ·�2 d�1(y)�

Plugging in for ∂2x̄ · (�1��2) yields a linear equation which can be easily solved for ∂2X̄ ·
(�1��2).

A.2.2. Second-Order Expansions

We can use these derivatives to compute the second-order terms. To find x̄εε, differen-
tiate F twice with respect to ε to get the linear equation33

0 = F̄xx̄εε + F̄x+ x̄zpx̄εε +
∑

α�β∈{x�x+�ε}

F̄αβ · (ᾱε� β̄ε)�

where x̄+
ε ≡ x̄zpx̄ε and εε ≡ I. Similarly, x̄εE solves the following linear equation:

0 = F̄xx̄εE + F̄x+ x̄zpx̄εE +
∑

α∈{x�x+�ε}
β∈{x�x+�X�E}

F̄αβ · (ᾱε� β̄E)�

with the understanding that ĒE ≡ I and x̄+
E ≡ x̄zpx̄E + ∂x̄ · �̄E .

Differentiating twice with respect to E yields

0 = F̄xx̄EE + F̄x+ (x̄zpx̄EE + ∂x̄ · �̄EE) + F̄XX̄EE

+ F̄x+
(
x̄zz · (px̄E�px̄E) + ∂x̄z · (px̄E� �̄E) + ∂x̄z · (�̄E�px̄E) + ∂2x̄ · (�̄E� �̄E)

)
+

∑
α�β∈{x�x+�X�E}

F̄αβ · (ᾱE� β̄E) (45)

and ∫
R̄xx̄EE (y) + R̄XX̄EE +

∑
α�β∈{x̄(y)�X̄}

R̄αβ · (ᾱE� β̄E) d�(y)� (46)

All the terms in the second line can be computed from our analysis of the previous section
and all the terms in the third line are known. What remains is to find x̄EE and X̄EE . This
requires us extend the steps we used in the proof of Theorem 1.

33For parsimony, we have dropped the dependence on z when not necessary.
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Differentiating (24) twice with respect to E , evaluated at σ = 0, yields

�̄EE (y) = −
∫ ∑

i

δ
(
zi − yi

)∏
j �=i
ι
(
zj − yj

)
z̄iEE (z) d�(z)

−
∫ ∑

i

δ′(zi − yi
)∏
j �=i
ι
(
zj − yj

)[
z̄iE (z)

]2
d�(z)

+
∫ ∑

i

δ
(
zi − yi

)∑
j �=i
δ
(
zj − yj

) ∏
k �=i�j

ι
(
zk − yk

)
z̄
j
E (z)z̄iE (z) d�(z)�

The density is then

ω̄EE (y) = ∂nz

∂y1∂y2 · · ·∂ynz �̄EE (y)

= −
∑
i

∂

∂yi
(
z̄iEE (y)ωE (y)

) +
∑
i

∑
j

∂2

∂yi∂yj
(
z̄iE (y)z̄jE (y)ωE (y)

)
�

The identical steps to (1) then show that

∂x̄(z) · �̄EE

= C(z)∂X̄ · �̄EE ≡ C(z)X̄ ′
EE

with X̄ ′
EE equals

−
(
R̄x

∫
C(y) d�(y) + R̄X

)−1

R̄x

(∫
x̄z(y)px̄EE (y) + x̄zz(y) · (px̄E�px̄E) d�(y)

)
� (47)

As with X̄E , rather than solving for x̄EE (z) and X̄EE jointly, we substitute for ∂x̄(z) · �̄EE
in (45) and solve for x̄EE (z) yielding the linear relationship

x̄EE (z) = D1(z) · [X̄EE X̄
′
EE

]ᵀ + D2(z)�

where D1(z) is identical to the D1 in Section 3.1. We then use this relationship to substitute
into equations (46) and (47) to find X̄EE and X̄

′
EE .

A key part of the second-order approximations is capturing the effect of risk via the
terms x̄σσ (z) and X̄σσ (z).34 Let Cε ≡ Eεᵀε and CE ≡ EEᵀE be the variance-covariance
matrix of the idiosyncratic and aggregate shocks, respectively. Differentiating (22) and
(23) yields35

0 = F̄x− (x̄εε ·Cε + x̄EE ·CE) + F̄xx̄σσ

+ F̄XX̄σσ + Fx+(x̄εε ·Cε + x̄EE ·CE + x̄zpx̄σσ + ∂x̄ · �̄σσ) (48)

34It is easy to verify that the cross derivatives with shocks and σ are zero.
35If a is a n1 × n2 × n2 tensor and C is a n2 × n2 matrix, then d = a ·C is length n1 vector defined by

di =
∑
j�k

aijkCjk�
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and

0 = R̄x

∫
x̄σσ (y) + x̄εε(y) ·Cε d�(y) + R̄XX̄σσ � (49)

Before this set of equations can be solved for x̄σσ , we must evaluate �̄σσ . Differentiating
(24) and evaluating at σ = 0 yields

�̄σσ (y) = −
∫ ∑

i

δ
(
zi − yi

)∏
j �=i
ι
(
zj − yj

)(
z̄iσσ (z) + z̄iεε ·Cε

)
d�(z)

−
∫ ∑

i

δ′(zi − yi
)∏
j �=i
ι
(
zj − yj

)[
z̄iε(z)

]2 ·Cε d�(z)

+
∫ ∑

i

δ
(
zi − yi

)∑
j �=i
δ
(
zj − yj

) ∏
k �=i�j

ι
(
zk − yk

)(
z̄jε(z)z̄iε(z)

) ·Cε d�(z)

which gives

ω̄σσ (y) = −
∑
i

∂

∂yi
((
z̄iσσ (y) + z̄iεε(y) ·Cε

)
ω(y)

)
+

∑
i

∑
j

∂2

∂yi∂yj
((
z̄iε(y)z̄jε(y)

) ·Cεω(y)
)
�

Following the identical steps as Theorem 1 to show that show that

∂x̄(z) · �̄σσ = C(z)∂X̄ · �̄σσ ≡ C(z)X̄ ′
σσ

with

X̄ ′
σσ = −

(
R̄x

∫
C(y) d�(y) + R̄X

)−1

R̄x

∫ (
x̄z(y)p

(
x̄σσ (y) + x̄εε(y) ·Cε

)
+ x̄zz(y) · (px̄ε�px̄ε) ·Cε

)
d�(y)� (50)

We then substitute for ∂x̄ · �̄σσ = C(z)X̄ ′
σσ in (48) to and solve for x̄σσ (z) to find the

linear relationship

x̄σσ (z) = E0(z) + E1(z)
[
X̄σσ X̄

′
σσ

]ᵀ
�

This relationship can then be plugged into (49) and (50) to yield a linear equation for X̄σσ

and ¯X ′
σσ .

A.3. Expansions in the General Case of Section 3.2

We extend our method to handle persistent shocks and other endogenous persistent
state variables besides the distributional state �. To do so, we extend the equilibrium
conditions in the following manner:

F (E−x̃� x̃�E+x̃� X̃�����ε�E�z) = 0� (51)
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which must hold for all z in the support of �,

R

(∫
x̃d�dPr(ε)� X̃�E+X̃�����E

)
= 0� (52)

and a first-order vector autoregression model �′ = ρ��+ (1 − ρ�)�̄+ E for the exoge-
nous shocks. The law of motion of the distribution is given by

�̃(������E)(z) =
∫
ι
(
z̃(y�������ε�E) ≤ z

)
dPr(ε) d�(y) ∀z� (53)

We consider a family of perturbations indexed by a positive scalar σ that scales all shocks
ε, E so that the policy functions are X̃(������σE;σ) and x̃(z�������σε�σE;σ). We
will use ·̄ to denote these functions evaluated at σ = 0.

Unlike Section 3.1, we cannot assume that �̄(�����) is stationary but we recover the
independence property.

LEMMA 2: For any �, �, �, the policy functions z̄(z������) satisfy ∂z̄(z������) = 0
for all z and z̄z(z������) independent of z.

PROOF: We proceed similar to the proof of Lemma 1 in the main text. The first-order
condition with respect to bi�t−1 yields

E

[[
c̃(z������� ·� ·)]−ν

1 + �̃(������ ·� )

(
μ− μ̃(z������� ·� ·))] = 0�

When σ = 0, this yields μ̄(z������) = μ for all z. While equation (20) to the zeroth
order is

Q̄(�����)M̄(�����)m= m̄(z������)M̄
(
�̄(�����)

)(
1 + �̄(

�̄(�����)
))−1

�

By construction, the Pareto weights integrate to one, which implies m̄(z������) = m
for all z. Finally, the law of motion for θ implies

θ̄(z������) = ρθθ�
Together they imply ∂z̄(z������) = 0 for all z and z̄z(z������) independent of z.

Q.E.D.

A by product of Lemma 2 is that z̄z is diagonal. Although we exploit this property in
the next section it is not essential.

We start by showing how our expansion extends to the transition path. We assume for
a given �, �, � we have solved for the σ = 0 transition dynamics {�̄n� �̄n� �̄

n
}Nn=0 with

(�̄0� �̄0� �̄
0
) = ����� and (�̄N� �̄N� �̄

N
) = (
̄� �̄� �̄) at a nonstochastic steady state.

Solving the the transition dynamics is eased by the fact that we know, a priori, the transi-
tion dynamics of �. For the remainder of this Appendix, we use ·̄n to denote derivatives
evaluated at (�̄n� �̄n� �̄

n
) and, to save on notation, and use ·̄ to denote derivatives evalu-

ated at the steady state (�̄N� �̄N� �̄
N

). We’ll start by showing how to compute derivatives
at the steady state and then show how to evaluate derivatives along the path.
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The policy rules for X and x can then be approximated via Taylor expansion. The first-
order expansions for these variables are given by

X̃(������σE;σ) = X̄
0 + σ(

X̄
0
EE + X̄

0
σ

) +O
(
σ2

)
and

x̃(z�������σε�σE;σ) = x̄0(z) + σ(
x̄0
ε(z)ε+ x̄0

E (z)E + x̄0
σ (z)

) +O
(
σ2

)
�

For brevity, we present the necessary derivatives for the first order expansions. Higher-
order terms extend analogously to Section A.2.

A.3.1. Derivatives at the Steady State

The derivatives of the policy functions with respect to � and � as well as the Fréchet
derivative with respect to the distribution � are used repeatedly in what follows.

Differentiating (51) with respect to � yields (Lemma 2 implies that �̄� = 0).

F̄x−(z)x̄�(z) + F̄x(z)x̄�(z) + F̄x+(z)
(
x̄�(z)�̄�

) + F̄X(z)X̄� = 0

and

R̄x

∫
x̄�(z) d�(z) + R̄XX̄� + R̄X+X̄��̄� + R̄� = 0�

The object �̄�is unknown. It requires solving a nonlinear equation, which we show below
can be expressed using operations that involve matrices of small dimension. First, note
that

x̄�(z) = −(
F̄x−(z) + F̄x(z) + �̄�F̄x+(z)

)−1
F̄X(z)X̄��

Let A(z) = −(F̄x−(z) + F̄x(z) + �̄�F̄x+(z))−1F̄X(z), then

X̄� = −
(
R̄x

∫
A(z) d�(z) + R̄X + �̄�R̄X+

)−1

R̄��

Let P be such that �= PX. Therefore, �̄� must solve

�̄� = −P

(
R̄x

∫
A(z) d�(z) + R̄X + �̄�R̄X+

)−1

R̄��

This can be found easily with a 1-dimensional root solver as all the matrices that need to
be inverted are small dimensional.

Next, differentiating (51) with respect to � yields (Lemma 2 implies that �̄� = 0).

F̄x−(z)x̄�(z) + F̄x(z)x̄�(z)

+ F̄x+(z)
(
x̄�(z)ρ� + x̄�(z)PX̄�

) + F̄X(z)X̄� + F̄�(z) = 0�
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This yields a linear equation in x̄� and X̄� which we can solve for x̄�.36 Plugging in for
the linear relationship between x̄� and X̄� in

R̄x

∫
x̄�(z) d�(z) + R̄XX̄� + R̄X+X̄�ρ� + R̄X+X̄�PX̄� + R̄� = 0�

yields a linear equation for X̄�.
Finally to determine the Fréchet derivative, we differentiate (51) along the direction �.

Doing so yields (
F̄x−(z) + F̄x(z)

)
∂x̄(z) ·�+ F̄x+(z)∂x̄(z) · ∂�̄ ·�

+ F̄x+(z)x̄�(z)P∂X̄ ·�+ F̄X(z)∂X̄ ·�= 0�

We first derive an analogue of the property ∂�̄ ·�= �. This holds in the simple Section 3.1
economy but fails in the more general case. We proceed by showing that we can evaluate
∂�̄ along a direction �j that satisfies the property that there exists a function a(·) such
that the density of �j takes the form

∂

∂yj
(
a(y)ω̄(y)

)
�

Begin by differentiating the law of motion for �̃ at σ = 0. Since ∂z̄= 0, we get(
∂�̄ ·�j)(y) =

∫ ∏
i

ι
(
z̄i(z) ≤ yi

) ∂
∂zj

(
a(z)ω̄(z)

)
dz

=
∫ ∑

i

δ
(
z̄i(z) − yi

)∏
k �=i
ι
(
z̄k(z) ≤ yk

)∂z̄i
∂zj

(z)a(z)ω̄(z) dz�

= z̄jz

∫
δ
(
z̄j − yj

)∏
k �=j
ι
(
z̄k ≤ yk

)
a(z)ω̄(z) dz�

where the second line was achieved through integration by parts. The third line was
achieved by noting that ω̄ is the density of the steady state so z̄(z) = z for all z in its
support and exploiting that ∂z̄i

∂zj
(z) is both independent of z and diagonal. We can also

compute the density of (∂�̄ ·�j)(y) by applying the derivative ∂nz

∂y1∂y2···∂ynz , which gives

z̄jz
∂

∂yj

∫ ∏
k

δ
(
zk − yk

)
a(z)ω̄(z) dz= z̄jz

∂

∂yj
(
a(y)ω̄(y)

)
�

We conclude that ∂�̄ ·�j = z̄jz�
j .

Evaluating the Fréchet derivative of (51) in this particular direction �j , we find(
F̄x−(z) + F̄x(z) + F̄x+(z)x̄zp + zjzF̄x+(z)

)
∂x̄(z) ·�j + F̄x+(z)x̄�(z)P∂X̄ ·�j

+ F̄X(z)∂X̄ ·�j = 0�

36Easiest to exploit ρ� = ( ρ� 0

0 ρ�

)
and solve for each column of x̄� separately.
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Solving for ∂x̄(z) ·�j we conclude that37

∂x̄(z) ·�j

= −(
F̄x−(z) + F̄x(z) + F̄x+(z)x̄zp + zjzF̄x+(z)

)−1(
F̄x+(z)x̄�(z)P + F̄X(z)

)
∂X̄ ·�j

≡ Cj(z)∂X̄ ·�j�
Taking the derivative of R along this direction, we get

∂X̄ ·�j = −
(
R̄x

∫
Cj(z) d�(z) + R̄X+

(
zjzI + X̄�P

) + R̄X

)−1

R̄x

∫
x̄(z) d�j(z)

≡ (
Dj

)−1
R̄x

∫
x̄(z) d�j(z)�

From the definition of �j , we can use integration by parts to find that

∂X̄ ·�j = (
Dj

)−1
R̄x

∫
x̄zj (z)a(z) d�(z)�

A.3.2. Expansion Along the Path

We will use the derivatives of the state variables at the end of the transition path to eval-
uate our expansion along the path using backward induction. This approach is recursive,
so we will compute the derivatives at (�̄n� �̄n� �̄

n
) assuming derivatives at period n+ 1 of

the transition are known.
Differentiating (51) and (52) with respect to �, we obtain

F̄nx−(z)x̄n�(z) + F̄nx (z)x̄n�(z) + F̄nx+(z)x̄n+1
� (z)PX̄

n

� + F̄X(z)X̄
n

� = 0

and

R̄nx

∫
x̄n�(z) d�(z) + R̄nXX̄n

� + R̄nX+X̄
n+1
� PX̄

n

� + R̄n� = 0�

As both x̄n+1
� (z) and X̄

n+1
� are already known, we can solve for x̄n�(z) to find

x̄n�(z) = −(
F̄nx−(z) + F̄nx(z)

)−1
(
F̄nx+(z)x̄n+1

� (z)P + F̄nX(z)
)
X̄
n

��

and, therefore, X̄
n

� equals

−
(

−R̄n
x

∫ (
F̄nx−(z) + F̄nx(z)

)−1
(
F̄nx+(z)x̄n+1

� (z)P + F̄nX(z)
)
d�(z) + R̄n

X + R̄n
X+X̄

n+1
� P

)−1

R̄n
��

Differentiating with respect to �, we find

F̄nx−(z)x̄n�(z) + F̄nx (z)x̄n�(z) + F̄nx+(z)
(
x̄n+1
� (z)ρ� + x̄n+1

� (z)PX̄
n

�

)
+ F̄nX(z)X̄

n

� + F̄n�(z) = 0�

37For generality, we have written this as one value of C for each individual state, that is, Cj . In fact, one only
needs one value for each level of z̄jz, which in our case is two: 1 and ρθ.
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This yields a linear equation in x̄n� and X̄
n

�, which we can solve for x̄n� as a linear function
of X̄

n

�. Plugging in for the linear relationship between x̄n� and X̄
n

� in

R̄nx

∫
x̄n�(z) d�(z) + R̄nXX̄n

� + R̄nX+X̄
n+1
� ρ� + R̄X+X̄

n+1
� PX̄

n

� + R̄n� = 0

yields a linear equation that can be solved for X̄
n

�.
To compute the Fréchet derivative, we will evaluate the derivative in direction �j�n with

density of the form

∂

∂yj
(
an(y)ω̄n(y)

)
�

where ω̄n is the density of �̄n and an(y) is some arbitrary function. For this derivative, we
find (

∂�̄n ·�j�n)(y) =
∫ ∏

i

ι
(
z̄i(z) ≤ yi

) ∂
∂zj

(
an(z)ω̄n(z)

)
dz

=
∫ ∑

i

δ
(
z̄i(z) − yi

)∏
k �=i
ι
(
z̄k(z) ≤ yk

)∂z̄i�n
∂zj

(z)an(z)ω̄n(z) dz�

= z̄jz

∫
δ
(
z̄i(z) − yj

)∏
k �=j
ι
(
z̄i(z) ≤ yk

)
an(z)ω̄n(z) dz�

The density of (∂�̄n ·�j�n)(y) is found by applying the derivative ∂nz

∂y1∂y2···∂ynz to get

z̄jz
∂

∂yj

∫ ∏
k

δ
(
z̄k − yk

)
an(z)ω̄n(z) dz= z̄jz

∂

∂yj
(
an+1(y)ω̄n+1(y)

)
�

where an+1(y) = an(z̄−1(y)). We conclude therefore that ∂�̄n · �j�n = z̄jz�
j�n+1 were we ac-

knowledge the implicit relationship between �j�n and �j�n+1 through an+1(y) = an(z̄−1(y)).
The Fréchet derivative of F then is(

F̄nx−(z) + F̄nx (z)
)
∂x̄n(z) ·�j�n + zjzF̄x+(z)∂x̄n+1(z) ·�j�n+1

+ F̄nx+(z)x̄n+1
� (z)P∂X̄

n ·�j�n + F̄X(z)∂X̄ ·�j�n = 0�

Since the previous equation is recursive in ∂x̄n(z) ·�j�n, we can solve it forward to obtain

∂x̄n(z) ·�j�n =
N−n∑
k=0

Cj�n
k (z)∂X̄

n+k ·�j�n+k

with Cj�N
0 defined from Cj in the previous section and

Cj�n
0 (z) = −(

F̄nx−(z) + F̄nx (z)
)−1(

F̄nx+(z)x̄n+1
� (z)P + F̄X(z)

)
�

Cj�n
k (z) = −zjz

(
F̄nx−(z) + F̄nx (z)

)−1
Cj�n+1
k−1 (z)�
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Similarly, differentiating R generates

R̄nx

∫
∂x̄n(z) ·�j�n d�n(z) + zjzR̄

n
X+∂X̄

n+1 ·�j�n+1 + X̄
n+1
� P∂X̄

n ·�j�n)

+ R̄nX(z)∂X̄
n ·�j�n + R̄nx

∫
x̄n(z) d�j�n(z) = 0�

Substituting for ∂x̄n(z) ·�j�n yields a recursive equation with solution

∂X̄
n ·�j�n = −(

Dj�n
)−1

(
R̄nx

∫
x̄n(z) d�j�n +

N−n∑
k=1

Ej�nk ∂X̄
n+k ·�j�n+k

)

with Dj�N defined by Dj in the previous section and

Dj�n = R̄nx(z)
∫

Cj�n
0 (z) d�n(z) + R̄nX+X̄

n+1
� P + R̄nX

and

Ej�nk = R̄nx
∫

Cj�n
k (z) d�n(z) + 1k=1z

j
zR̄

n
X+�

Finally, we can use this knowledge to solve for X̄E . We will give expressions for X̄
0
E and

all others are analogous. Differentiating with respect to E yields

F̄0
x(z)x̄0

E (z) + F̄0
x+(z)

(
x̄1
�(z) + x̄1

z(z)px̄0
E (z) + ∂x̄1(z) · �̄0

E + x̄1
�(z)PX̄

0
E
)

+ F̄0
X(z)X̄

0
E + F̄0

E (z) = 0� (54)

In order to proceed, we need to determine �̄0
E . Differentiating the law of motion of �

gives

�̄0
E = −

∑
j

∫
δ
(
z̄j(z) − yj

)∏
i

ι
(
z̄i(z) ≤ yi

)
z̄
j�0
E (z)ω̄0(z) dz�

The density of �̄0
E is therefore

−
∑
j

∂

∂yj

∫ ∏
i

δ
(
z̄i(z) − yi

)
z̄
j�0
E (z)ω̄0(z) dz= −

∑
j

∂

∂yj
(
z̄
j�0
E

(
z̄−1(y)

)
ω̄1(y)

) ≡
∑
j

ω̄
0�j�1
E �

where 1 here represents that the objects are evaluated using the density of the transition
path at time 1, ω̄1(y). If we define �̄0�j�n

E as the measure with density

ω̄
0�j�n
E (y) = − ∂

∂yj
(
z̄
j�0
E

(
z̄−1(· · · z̄−1(y)

)︸ ︷︷ ︸
n times

)
ω̄n(y)

)
�

then

∂x̄1(z) · �̄0�j�1
E =

N−1∑
k=0

Cj�1
k (z)∂X̄

1+k · �̄0�j�1+k
E ≡

N−1∑
k=0

Cj�1
k X̄ ′j�1+k

E �
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Combined with (54) gives a linear system

M0(z)x̄0
E (z) = N0(z)

[
I X̄ ′1�1

E X̄ ′2�1
E · · · X̄ ′nz�N

E

]ᵀ

and which can be solved for x̄0
E (z). To find X̄ ′j�n

E , we note that they satisfy the equation

X̄ ′j�n
E = −(

Dj�n
)−1

(
R̄n

zj
+ R̄nx

∫ [
x̄n
zj

(z)z̄j�0E
(
z̄−1(· · · z̄−1(z)

)︸ ︷︷ ︸
n times

)]
d�n(z) +

N−n∑
k=1

Ej�nk X̄ ′j�n+k
E

)
�

Combining the previous equation with

R̄0
x

∫
x̄0
E (z) d�0(z) + R̄0

XX̄
0
E + R̄0

X+
(
X̄

1
� + X̄

1
E + X̄

1
�PX̄

0
E
) + R̄0

E = 0

yields a linear system

O ·
[
X̄

0
E X̄ ′1�1

E X̄ ′2�1
E · · · X̄ ′nz�N

E

]ᵀ = P

which can be solved for X̄
0
E .

The term x̄0
ε(z) satisfies

x̄0
ε(z) = (

F̄ 0
x (z) + F̄ 0

x+(z)x̄1
z

(
z̄(z)

)
p
)−1
F̄ 0
ε (z)�

A.3.3. An Alternative Approximation

In this section, we present the alternative approach highlighted in Section 3.2 where we
scale {σE�σε�σ��σθ} and expand with respect to σ instead of just {σE�σε}.

For this approach, the full policy function for X can be written as X̃(�(σ)���σ��σE;
σ) where �(y;σ) incorporates the fact that we are scaling θ with σ and, therefore, also
scaling �. Formally, we have (assuming the simplest case where m, μ and θ are the only
individual state variables for our problem)

�(y;σ) =
∫
ι(m≤ y1)ι(μ≤ y2)ι(σθ≤ y3) d�(m�μ�θ)� (55)

The same proof can be used to show that Lemma 2 holds for this approximation as well.
There still may be transition dynamics with respect to �, at which point it will be necessary
to follow Sections A.3.1 and A.3.2 to compute the relevant derivatives for the expansion.38

X̃ and x̃ can then be approximated using Taylor expansions with respect to σ . For
brevity, we only report the first-order expansion of X̃� which given by

X̃
(
�(σ)���σ��σE;σ) = X̄

0 + σ(
∂X̄

0 · �̄σ + X̄
0
��+ X̄

0
EE + X̄

0
σ

) +O
(
σ2

)
�

To obtain ∂X̄ · �̄σ , we differentiate (55) with respect to σ to obtain

�̄σ (y) = −
∫
ι(m≤ y1)ι(μ≤ y2)δ(0 − y3)θd�(m�μ�θ)�

38In the case where there is no endogenous aggregate state variable, only Section A.3.1 is required.
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The density of this object is constructed by applying the derivative ∂3

∂y1∂y2∂y3
to get

ω̄σ (y) = − ∂

∂y3

(∫
δ(m− y1)δ(μ− y2)δ(0 − y3)θd�(m�μ�θ)

)
= − ∂

∂y3

(
δ(0 − y3)

∫
ω(y1� y2� θ)θdθ

)
= − ∂

∂y3

(
Eθ(y1� y2)ω̄(y)

)
�

where in the last equality we defined Eθ(y1� y2) =
∫
ω(y1�y2�θ)θdθ∫
ω(y1�y2�θ) dθ as the cross-sectional mean

of θ conditional on (m�μ) = (y1�y2). From this expression, we know that ∂X̄
0 · �̄σ can be

solved for in the same manner as ∂X̄
0 · �̄0

E using the tools in Section (A.3.2).

A.3.4. Simulation and Clustering

To simulate an optimal policy at each date with N agents, we discretize the distribution
across agents with K grid points that we find each period using a k-means clustering al-
gorithm. Let {zi}Ni=1 represent the current distribution of agents. The k-means algorithm
generates K points {z̄k}Kk=1 with each agent i assigned to a cluster k(i) to minimize the
squared error

∑
i ‖zi − z̄k(i)‖2. We let � represent the distribution of N agents and �̄ rep-

resent our approximating distribution of clusters.39 At each history, we compute �̄ and
then apply our algorithm to approximate the optimal policies around �̄.40 When K =N ,
we exactly approximate around �, but for K <N we can speed up the computations by a
factor of N

K
.

A.3.5. Solving the t = 0 Problem

For the Ramsey problem (21), optimality conditions at t = 0 are different from t ≥ 1.
The full set of optimality conditions are represented by expanding equations (22)–(24).
We describe how to apply our procedure for the Section 3.1 simple case. The extension
to the general problem in Section 2 is straightforward. We outline two ways to solve the
t = 0 problem below. Both the methods have the same degree of approximation errors
for impulse responses but they would differ for other simulations of Ramsey allocation.

We start with some notation for the first method. Let �B be a measure over the claims
to risk-free debt. Denote the t = 0 aggregate policy functions as X̃0(�B�E0) and individual
policy functions as x̃0(b��B�ε0�E0). Augment the system (22)–(24) with mappings F0 and
R0, capturing the time 0 first-order conditions, such that

F0(x̃0�E+x̃� X̃0�ε0�E0� b0) = 0� (56)

R0

(∫
x̃0 d�

B� X̃0�E0

)
= 0� (57)

39Formally, �(z) has density
∑

i
1
N
δ(z− zi) while �̄(z) has density

∑
i

1
N
δ(z− z̄k(i)).

40Similar to Section (A.3.3), this is done by constructing a distribution �(σ) with density
∑

i
1
N
δ(z− z̄k(i) −

σ (zi − z̄k(i))) and then computing ∂X̄
0 · �̄σ in the same manner as Section (A.3.3).
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Policy functions for t ≥ 1 individual states z0 = (m0�μ0) are components of x̃0. Let func-
tion�0(�B�E0) map the initial condition�B and aggregate shock E0 to a measure� over
z using

�0

(
�B�E0

)
(z) =

∫
ι
(
z̃0

(
y��B�ε0�E0

) ≤ z
)
dPr(ε0) d�B(y) ∀z� (58)

Section 3.1 characterizes the small-noise approximations of the t ≥ 1 policy functions
around an arbitrary �. We update � along the path by iterating between an approxima-
tion and a simulation step. At some t ≥ 1, taking as input �t−1, we draw idiosyncratic
shocks ε for each agent as well as aggregate shocks E , and use the policy functions ap-
proximated around �t−1 to move to the next period �t . All that remains to be specified
is how the t = 1 state, �0, is obtained. We do that below by constructing small-noise ap-
proximations to t = 0 policy functions: X̃0(�B�σE0;σ) and x̃0(b��B�σε0�σE0;σ). We
present a first- order expansion. Higher-order expansions along the lines of Section A.2
are analogous.

1. Zeroth order: For some choice of �B, the σ = 0 allocation consists of {x̄0(b)� x̄(b)}
for b in support of �B as well as {X̄0� X̄} such that

F0(x̄0� x̄� X̄0�0�0� b0) = 0� R0

(∫
x̄0(b) d�B(b)� X̄0�E0

)
= 0�

F (x̄� x̄� x̄� X̄�0�0� z̄) = 0� R

(∫
x̄(b) d�B(b)� X̄�0

)
= 0�

2. To compute derivatives {x̄0�ε(b)� x̄0�E (b)� x̄0�σ (b)� X̄0�E� X̄0�σ}, we use the formulas
from Section A.3.2. The expressions that appear in Section A.3.2 use superscript
n to denote the period of transition path for the σ = 0 allocation. We can obtain
{x̄0�ε(b)� x̄0�E (b)� x̄0�σ (b)� X̄0�E� X̄0�σ} by using those formulas after replacing F 0

• with
F0�•, Fn• with F• for n≥ 1 and similarly for R0

• and Rn• .
3. Simulation: Draw idiosyncratic shocks ε0 for each agent as well as aggregate shocks

E0 and use the approximations to policy functions

X̃0

(
�B�σE0;σ

) = X̄0 + σ (X̄0�EE0 + X̄0�σ) +O
(
σ2

)
and

x̃
(
b��B�σε0�σE0;σ

) = x̄0(b) + σ(
x̄0�ε(b)ε0 + x̄0�E (b)E0 + x̄0�σ (b)

) +O
(
σ2

)
to obtain the �0(z0) for t = 1.

We now describe the second method. The second method is quicker to implement and
provides equally accurate (as compared to the first method) approximations as far as
impulse responses of the Ramsey allocation are concerned. Define �̄0 as the state chosen
by a Ramsey planner when σ = 0 for some initial condition �B. The σ = 0 problem is
easy to solve because the optimal allocation is stationary. This follows from the feature
that t = 0 the planner can set all fiscal instruments, ϒ = (ϒn�ϒd�ϒb) and in absence of
shocks does not need to reoptimize. One can show that �0 = �̄0 +O(σ2) and, therefore,
impulse response functions replacing �0 with �̄0 agree up to order O(σ3). We use the
second method to compute impulse responses in the main text.
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A.4. Additional Details for Section 3.3

In this section, we provide more details concerning Acharya and Dogra (2018)
“PRANK” economy, which we use as a laboratory to test the accuracy of our algorithm
and compare it to alternative methods. We start with equilibrium conditions, next we dis-
cuss the calibration, and report the accuracy tests for our method. Finally, we present a
simplified version of this economy for which we can solve for all gradients in closed form.

A.4.0.1. Equilibrium in the PRANK Economy. To obtain the PRANK setting, we im-
pose the following assumptions: (i) labor is supplied inelastically, and period utility func-
tion U (ct� nt) = −exp(−γct), (ii) the distribution of shares is uniform, (iii) idiosyncratic
productivity shocks are i.i.d, and (iv) all tax rates are constant and the monetary policy
follows a Taylor rule given by

Q−1
t − 1 = a0(1 +�t)a1 � (59)

In the PRANK economy, a perfect foresight equilibrium is constructed as follows. For
a sequence of innovations to TFP {E��s}Ts=0, Agent is consumption ci�t satisfies

ci�t = Ct +μt
(
bi�t−1

1 +�t

+ yi�t
)
� (60)

where yi�t = (1 − ϒt)Wtεi�tni�t + Tt + di�t is the households income at date t. The two pa-
rameters Ct and μt that are common to all agents are given by

μt =
μt+1

(
Qt

1 +�t+1

)
1 +μt+1

(
Qt

1 +�t+1

) � (61)

Ct
[

1 +μt+1

(
Qt

1 +�t+1

)]
= − 1

γ
lnβ

(
Qt

1 +�t+1

)
+ Ct+1 +μt+1ȳt+1 − γμ2

t+1σ
2
y�t+1

2
� (62)

where ȳt+1 = ∫
yi�t+1 di is the average household income, and σ2

y�t+1 is the variance in
household level income. A perfect foresight equilibrium can by solving equations (59)–
(62) along with equations (8), (10), (16), and (17).

We check the accuracy of our approximations using an exact solution to the perfect
foresight equilibrium. Section A.4.0.2 discusses how we calibrate the PRANK economy,
Sections A.4.0.3 and A.4.0.4 compare approximation errors using several diagnostics.

A.4.0.2. Calibration. We study several cases. For the parameters that are common
across these cases, we use Acharya and Dogra (2018) targets, which are are quite standard
in the representative agent New Keynesian literature. The discount rate β to 0�96 to get
a real rate of 4% per year, the elasticity of substitution parameter, �, to 6 to target an
average markup of 20%. The share of intermediate inputs α is set to 0�6 to target a labor
income share of 2/3, and we set the adjustment cost parameter ψ to 41�6 to target a
slope of the Phillips curve of 0�06. Aggregate productivity follows an AR(1) process with
a decay parameter 0�73, and the standard deviation of the innovation is set to 1�23% to
be consistent with de trended output per hour and we turn off the markup shocks. For
the Taylor rule parameters, we set a1 = 1�5 and choose a0 to target 0% inflation rate
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in absence of aggregate risk. We vary the standard deviation of idiosyncratic risk, σε ∈
{0�5�0�75�1}, and the risk aversion parameter, γ ∈ {1�3}. Our calibrations cover a range
that includes Acharya and Dogra (2018) as well as what we use in our baseline Section 4.
Since the distribution of assets is nonstationary, we set�0(b) to be Gaussian and calibrate
the parameters to be consistent with the distribution of wealth in the SCF. For simulation,
we approximate the distribution with 150 points and the idiosyncratic shocks with 10-point
Gaussian quadrature.

A.4.0.3. Diagnostics. In this section, we compare the accuracy of our policy functions
in two settings. We start with a stationary environment with no aggregate risk and study
the policy function for individual consumption as well as values for the aggregate vari-
ables. Then we study impulse responses of several aggregate variables to a TFP shock. As
mentioned before, the advantage of PRANK is that in both cases, the true solution can
be solved exactly.

We report three types of approximation errors for the individual policy functions that
are defined in the main text. For all of the experiments, we use a second-order approxima-
tion of our method. As a point of comparison, we report the errors when policy functions
are approximated using the Reiter-approach (also used in Acharya and Dogra (2018))
in which the no-aggregate risk economy is solved exactly, and then the policy functions
are linearized with respect to aggregate shocks. In all our plots, our method will be rep-
resented by a bold blue line, the Reiter approximation will be represented by a dashed
black line and the exact solution will be a bold black line.

We begin with the approximation errors turning off aggregate risk. By construction,
the errors for the Retier-method are zero and so we report the error diagnostics just for
our method for several values of {σε�γ} in Table V. The maximum percent errors in the
individual policy rules for consumption relative to the exact solution are small starting
at 0�0039% for our baseline calibration and raising to only 0�0328% when we double the
size of the idiosyncratic risk. The Euler equation errors are comparable. We see a similar
pattern in the errors for the aggregate variables, though the errors for those are an order
of magnitude smaller.

Next, we compare the errors in the policy functions in response to an one time one
standard deviation unanticipated shock to aggregate productivity. We report these errors
in Table VI. For the individual consumption policy functions, the maximum errors (across
the state space (b�ε) and across time t) for our second-order approach are comparable
to the Reiter method. In fact, while the Euler equation errors EEE

c�t (b�ε) for the Reiter
method are generally smaller than our second-order approximation, the errors relative to

TABLE V

APPROXIMATION ERRORS—NO AGGREGATE RISK.

Maximum Errors (%)

Individual Consumption

Agg. Output Inflation Interest RatePolicy Euler Dyn. Euler

γ = 1, σε = 0�5 0.0039 0.0031 0.0097 5.2e−6 3.1e−5 4.3e−5
γ = 1, σε = 0�75 0.0134 0.0105 0.0207 2.6e−5 1.6e−4 2.2e−4
γ = 1, σε = 1�0 0.0328 0.0249 0.0705 4.9e−4 6.9e−4 8.2e−4
γ = 3, σε = 0�5 0.0453 0.0280 0.1220 4.1e−4 2.4e−3 3.4e−3

Note: Percentage errors in policy functions with no aggregate risk. The values reported are the maximum errors across the state

space (b�ε). The columns “Policy,” “Euler,” and “Dyn. Euler” refer to the diagnostic measure Epol
c�t (b�ε), EEE

c�t (b�ε), and EdynEE
c�t (b�ε),

respectively.
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TABLE VI

APPROXIMATION ERRORS—AGGREGATE RISK.

Maximum Errors (%)

Individual Consumption

Agg. Output Inflation Interest RatePolicy Euler Dyn. Euler

2nd Order
γ = 1, σε = 0�50 0.0039 0.0031 0.0103 4.2e−6 3.1e−5 4.3e−5
γ = 1, σε = 0�75 0.0134 0.0105 0.0402 2.6e−5 1.5e−4 2.2e−4
γ = 1, σε = 1�00 0.0328 0.0249 0.0853 8.2e−5 4.9e−4 6.9e−4
γ = 3, σε = 0�5 0.0453 0.0280 0.1091 0.0011 0.0024 0.0034

Reiter-Based
γ = 1, σε = 0�50 0.0374 0.0022 0.0153 0.0616 0.0337 0.0505
γ = 1, σε = 0�75 0.0466 0.0022 0.0208 0.0610 0.0335 0.0501
γ = 1, σε = 1�00 0.0492 0.0023 0.0364 0.0602 0.0329 0.0493
γ = 3, σε = 0�5 0.0896 0.0038 0.0462 0.2252 0.1327 0.1991

Note: Percentage errors in policy functions in response to an one standard deviation unanticipated shock to aggregate TFP. The
values reported are the maximum errors across states (b�ε) and time t . The columns “Policy,” “Euler,” and “Dyn. Euler” refer to the

diagnostic measure Epol
c�t (b�ε), EEE

c�t (b�ε), and EdynEE
c�t (b�ε), respectively.

the exact solution Epol
c�t (b�ε) are an order of magnitude larger (0�0039% vs. 0�0404%). The

diagnostic errors Epol
c�t (b�ε) clearly captures errors coming from aggregate shocks that are

not reflected in the Euler equation errors. We also see that the dynamic Euler equation
errors remain small and comparable to those of the Reiter approach, which indicates that
one should not be too concerned with errors accumulating over time.

Tables V and VI also report errors for the alternative calibrations where we increase risk
aversion, γ, to 3. Not surprisingly increasing risk aversion leads to the largest policy errors
for both our second-order approximation as well as the Retier methods, but the policy
errors remain small and are comparable to those from the Reiter approach. Figure 10
reproduces the impulse responses in Figure 1 of the main text for γ = 3. For larger values

FIGURE 10.—Comparisons for impulse responses to a 1% TFP shock at t = 1 in the top panel and t = 250
in the bottom panel.
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of risk aversion, we see a visible deviation of the Reiter approach from both the exact
solution and our second-order approximations. The visible deviation reflects the errors in
aggregates of the Reiter approach documented in Table VI.

A.4.0.4. Long Run Errors. In the PRANK economy, individual assets follow an ap-
proximate random walk and, therefore, the distribution of individual savings drifts over
time. Since our method approximates with respect to the size of idiosyncratic risk, a diag-
nostic for whether small errors at a point in time accumulate to large error over time, we
check how well the approximated distribution of assets tracks the true distribution with
our method as well as with the Reiter method.

In Figure 11, we plot the distribution of assets obtained at t = 250 after a one-standard
deviation shock at t = 0. We see the second-order approximation lines up very closely with
the Reiter method and to the outcomes from the exact solution. This figure also explains
the finding in Section 3.3, why our method captures the the response of inequality to an
unanticipated TFP shock t = 250 so well.

We next compare the distribution of assets after a sequence of TFP shocks in a stochas-
tic PRANK economy. The TFP shocks follow an AR(1) and for this exercise we do not
have the true solution in an analytic form. However, we can still compare our second-
order approximation and the Reiter approach. In addition, we include a “hybrid” method
where we take a second-order approximation with respect to idiosyncratic shocks and a
first-order approximation with respect to aggregate shocks.

In Figure 12, we see that the hybrid and Reiter approaches produce nearly identical dis-
tributions after these shocks, but the second-order approach delivers a tighter distribution
over time. As the hybrid approach was obtained by dropping the second-order terms with
respect to aggregate shocks, we take this as evidence that, in this model, ignoring those
second-order terms can lead long run drift away from the true solution.

FIGURE 11.—Distribution of assets at t = 250 following a one-time unanticipated TFP shock at t = 0.
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FIGURE 12.—Distribution of assets t = 250 in the stochastic PRANK economy after a sequence of TFP
shocks.

A.4.0.5. A Simplified Example. To illustrate how our approach from Section 3 is ap-
plied to the PRANK economy, we present a version of the PRANK economy where we
can explicitly show how to compute all the gradients that appear that section. We assume
aggressive enough monetary policy to ensure �t = 0 for all t; that share of intermediate
inputs, 1 − α, is 0, which ensures that output is linearly related to productivity; and fi-
nally that �→ ∞ to ensure that there are no markups and dividends. The environment is
similar to the well-known Huggett (1993) model and can be trivially solved with standard
methods; we use it to illustrate transparently how to construct all the objects that appear
in Section 3.

The economy is populated with a continuum of infinitely lived consumers who receive
endowment shocks. Let ei�t be endowment of consumer i in period t. Endowments are
subject to aggregate shock Et and idiosyncratic shock εi�t and satisfy

ei�t = 1 + εi�t + Et �

Shocks Et and εi�t are mean zero and i.i.d. over time.
Competitive equilibrium in this economy is fully characterized by consumer budget

constraint and the Euler equation

ci�t +Qtbi�t − 1 − εi�t − Et − bi�t−1 = 0�

Qt exp(−γci�t) −βEi�t exp(−γci�t) = 0

as well as the feasibility ∫
ci�t di− 1 − Et = 0�

We now show how to use our approximation techniques in this simple example to find
competitive equilibrium. To make it similar to our notation in Section 3, let y = exp(−γc)
and rewrite this problem as

ci�t +Qtbi�t − 1 − εi�t − Et − bi�t−1 = 0�
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Qtyi�t −βEi�tyi�t+1 = 0�

yi�t − exp(−γci�t) = 0�

The first pair of equations correspond to (22) and define mapping F , the last equation
corresponds to (23) and define R. This problem is recursive in the distribution of agents’
assets. In our notation of Section 3, we have z = b and � is the distribution of b such
that

∫
bd�= 0. Vector x̃ of individual policy functions is given by three policy functions

[b̃ c̃ ỹ]T, and Q̃ is the only aggregate policy function in vector X. Selection matrix p is
simply [1 0 0].

It is immediate to verify that without shocks consumption smoothing implies that
b̄(b) = b for all b, so that Lemma 1 holds and equation (27) becomes

c̄(b) + Q̄b̄(b) − 1 − b= 0�

Q̄ȳ(b) −βȳ(b̄(b)
) = 0�

ȳ(b) − exp
(−γc̄(b)

) = 0

and ∫
c̄(b) d�− 1 = 0�

which immediately gives Q̄= β and c̄(b) = 1+ (1−β)b, ȳ(b) = exp(−γc̄(b)). From these,
we construct mappings Rx = [1 0 0], RX = 0, RE = −1, and Fx−(b) = 0,

Fx(b) =
⎡⎣Q̄ 1 0

0 0 Q̄
0 −γ exp

(−γc̄(b)
)

1

⎤⎦ � Fx+(b) =
⎡⎣0 0 0

0 0 −β
0 0 0

⎤⎦ �
FX(b) =

⎡⎣ b
ȳ(b)

0

⎤⎦ � Fε(b) =
⎡⎣−1

0
0

⎤⎦ � FE (b) =
⎡⎣−1

0
0

⎤⎦ � Fz(z) =
⎡⎣−1

0
0

⎤⎦ �
All elements of these matrices are know from the zeroth-order expansion. Using them,
we construct first-order approximations of policy functions as described in the text.

APPENDIX B: ADDITIONAL DETAILS FOR SECTION 4

In this section, we provide details of how we calibrate the initial distribution of nominal
and real claims using the Doepke and Schneider (2006) procedure. Then we show the
dynamics of the calibrated competitive equilibrium using simulations.

Initial Distribution of Nominal and Real Claims. We combine the rich house-level data
on financial assets from the Survey of Consumer Finances (SCF) and the aggregated Flow
of Funds for intermediate investors to obtain nominal and real exposures. We start with
the 2007 Wave of the SCF and restrict our sample to married households who work at
least 100 hours. We drop observations where equity or bond holdings are more than 100
times the average yearly wage. These turned out to be about 0.5% of the total sample.
We extract household-level data on their financial holdings and categorize them into (i)
deposits, government bonds, liquid assets (net of unsecured credit), (ii) direct holdings of
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claims to corporate equities and corporate bonds, and (iii) indirect holdings of (i) and (ii)
through mutual funds and retirement accounts.

We then use Flow of Funds data to obtain balance sheet information for private pen-
sions (Table L.118), for state and local pensions (Table L.119) and mutual funds (Ta-
ble L.122). Since pension funds have a nontrivial exposure to mutual funds and not vice
versa, we start with the aggregated mutual fund balance sheet and map it into broad cate-
gories that represent deposits, corporate bonds, government bonds, corporate equities. In
the year 2007, mutual funds invested 84% of their assets in corporate equities and bonds,
16% in government bonds and other liquid claims.

We next turn pension funds and after aggregating private and public pension funds
categorize the combined assets into deposits, government-issued debt, corporate debt,
corporate equities, and mutual funds. For the year 2007, the pension funds assets were
invested 22% in mutual funds, 63% in corporate equities and bonds, and the rest being
15% in government bonds and other liquid claims.

We define nominal claims as money-like assets plus government issued bonds and
claims to real profits as corporate bonds plus corporate equities. Using the information
above, we first consolidate the mutual funds into these two categories and then reassign
the mutual funds to pension funds, and finally the mutual funds and pensions funds to the
individuals in the SCF.

To fit initial states, we sample directly from the SCF log wages, nominal claims, and
claims to real profits that we constructed. The SCF provides population weights for each
observation. Given these weights, we set the initial condition by drawing with replacement
a random sample of 100,000 agents from a discrete distribution.

Properties of the Competitive Equilibrium. In this section, we report several moments
from our calibrated competitive equilibrium along a transition path. We draw a sequence
of markup and TFP shocks of length 100 and simulate the competitive equilibrium poli-
cies using 100,000 agents. When we simulate the competitive equilibria, we keep the tax
rates ϒt = ϒ̄ and use a Taylor rule with Q−1

t = 1
β
�2�5
t .

In Figure 13, we plot the time series for aggregate output and labor share. We see
that the aggregates are quite stationary and exhibit small fluctuations due to produc-
tivity and markup shocks. In Table VII, we report cross-sectional moments at dates

FIGURE 13.—Simulated paths for aggregate variables using the calibrated competitive equilibrium.
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TABLE VII

DISTRIBUTIONAL MOMENTS ALONG THE PATH.

Moments Data

Model

t = 10 t = 25 t = 50 t = 75

Std. share of equities 2.63 2.62 2.62 2.62 2.62
Std. bond 6.03 6.18 6.46 7.06 7.31
Std. ln wages 0.80 0.81 0.81 0.80 0.80
Std. ln hours 0.42 0.42 0.45 0.49 0.51
Corr(share of equities, ln wages) 0.40 0.37 0.33 0.27 0.22
Corr(share of equities, bond holdings) 0.62 0.59 0.50 0.33 0.22
Corr(bond, ln wages) 0.33 0.40 0.44 0.48 0.50

Note: The data moments correspond to SCF 2007 wave with sample restrictions explained in the text and after scaling wages,
equity holdings, and debt holdings by the average yearly wage in our sample. The share of equities refers to the ratio of individual
equity holdings to the total in our sample such that the weighted sum of shares equals one. The model columns correspond to simulated
sample of 100,000 agents using the baseline calibration from Section 4.

t ∈{10�25�50�75}. Here, we notice a small drift in the distribution of the risk-free assets.
The more significant drifts are in the correlations of of log wages and dividend shares
as well as risk-free assets and dividend shares, which steadily declines over time and the
correlation between bonds and log wages that increase over time. These patterns are the
outcomes of the features in the baseline that claims to equity are not traded and house-
holds are subject to natural debt limits.

APPENDIX C: ADDITIONAL DETAILS FOR SECTION 5

C.1. Cyclical Properties of Optimal Policies

In this section, we present the counterpart of Table III in the main text for two inter-
mediate economies between our baseline HANK and RANK: (i) first, we turn off the
idiosyncratic shocks, and (ii) then we additionally allow agents trade a full set of Arrow
securities. In the top panel of Table VIII, we see that the moments are very similar be-
tween the baseline HANK and the HANK with no idiosyncratic risk. In the bottom panel
of Table VIII, we see that HANK with complete markets is quite similar to RANK, and
very different from either the baseline HANK or the HANK with no idiosyncratic risk.
From this, we can deduce that optimal policies are driven mainly by how much of the
aggregate shocks agents can hedge using private markets.

C.2. Example With Perfectly Aligned Distribution of Equity Shares

As noted in Section 6.1, the quantitative driver of the need for insurance concerns
against the markup shocks is the misalignment of dividend income from labor income.
To illustrate this point, we construct a calibration with a nontrivial amount of inequality
but in which these shares are perfectly aligned. To achieve this, we take the distribution
of labor productivities from the benchmark calibration; assume Pareto weights such that
optimal tax rates ϒ̄ equal zero; and then assign dividend shares such that individuals initial
share of labor income εi�oni�0∫

i εi�0ni�0
equals their share of dividend income si. Figure 14 plots the
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TABLE VIII

MOMENTS.

HANK HANK No Idiosyncratic

Std.
Dev (%)

Correlations Std.
Dev (%)

Correlations

it �t Wt lnYt it �t Wt lnYt

Nominal rate it 1.82 1 1.50 1
Inflation �t 0.46 −0�94 1 0.41 −0�93 1
Labor share Wt 2.13 −0�78 0�78 1 1.83 −0�69 0�73 1
Log output lnYt 0.88 −0�31 0�10 0�12 1 0.82 −0�31 0�02 0�04 1

HANK Complete Markets RANK

Std.
Dev (%)

Correlations Std.
Dev (%)

Correlations

it �t Wt lnYt it �t Wt lnYt

Nominal rate it 0.87 1 0.87 1
Inflation �t 0.03 0�01 1 0.03 −0�01 1
Labor share Wt 1.20 −0�14 −0�25 1 1.18 −0�09 −0�32 1
Log output lnYt 0.92 −0�98 −0�1 0�30 1 0.92 −0�98 −0�09 0�24 1

Note: Moments are computed using allocations under HANK (top left); HANK without idiosyncratic shocks (top right); HANK
with complete markets (bottom left); and RANK (bottom right) optimal monetary policies.

optimal response and its when the shares are aligned. We see that the alignment of shares
nearly removes all need for insurance bringing the policy responses in line with those of
the representative agent.41

FIGURE 14.—Optimal monetary response to a markup shock. The bold blue and red lines are the calibrated
HANK and RANK responses, respectively. The dashed black lines with circles are responses under HANK
when the shares of labor and dividend income are aligned.

41There is some difference in insurance needs arising from differential labor responses to the markup shock.
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APPENDIX D: ADDITIONAL DETAILS FOR SECTION 6

In the main body, we focused on the results under the baseline calibration and briefly
discuss sensitivity checks and special cases. In this section, we provide all the omitted
details.

D.1. Sensitivity With Respect to Price Adjustment Costs

In this section, we present the impulse responses under alternative choices for the price
adjustment cost parameter ψ. As mentioned in Section 6.1, we vary ψ from twice the
baseline calibration to one quarter of the baseline calibration, and also when ψ is ap-
proximately zero. Figure 15 plots the responses to a markup shock while Figure 16 plots
responses to a productivity shock.

As is readily apparent in both figures, the effect on inflation is roughly linear for a large
range of ψ. Doubling ψ leads to a halving of inflation while halving ψ leads to a doubling
of inflation. The effect on the nominal rate is quite small. In the limit as ψ approaches
zero, the planner can no longer effect real variables through monetary policy and instead
relies more on unexpected inflation to provide insurance through the ex post real return
as instead of distorting the allocation by varying the ex ante real rate.

D.2. Sensitivity With Respect to Choice of Pareto Weights

Here, we present sensitivity to the choice of Pareto weights. As mentioned in the main
text, we set Pareto weights using a thee parameter exponential specification, which loads
on the three dimensions of initial heterogeneity and maps to optimal levels of tax rates ϒ̄,
on labor income, dividend income, and bond income. For the purpose of sensitivity, we
vary these implied tax rates in a large range: from 0% to 50%. In addition, we also study
a Utilitarian planner that weights all agents equally.

We start with the experiments that vary the labor income tax rate and the responses
are depicted in Figures 17 and 18 to markup and productivity shocks, respectively. We

FIGURE 15.—Optimal monetary response to a markup shock. The bold blue lines are the responses for
the baseline calibration. The dashed black lines with squares, circles, and triangles are responses under a
calibration in which we double the price adjustment costs parameter, half the price adjustment cost parameter,
and finally set it near zero, respectively.
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FIGURE 16.—Optimal monetary response to a TFP shock. The bold blue lines are the responses for the
baseline calibration. The dashed black lines with squares, circles, and triangles are responses under a calibra-
tion in which we double the price adjustment costs parameter, half the price adjustment cost parameter, and
finally set it near zero, respectively.

see that the responses to both the shocks are larger when labor tax rates are higher and
lower when labor taxes are lower. Raising the labor tax compresses labor shares pushing
the economy further away from full insurance, while decreasing the labor tax pushes the
economy closer to full insurance. In line with this, we see that the increasing the labor tax
leads to a stronger policy response while decreasing the labor tax diminishes the response.

Next, we vary the tax on dividend income and report the results in Figures 19 and 20.
Our baseline calibration exhibits are far more unequal distribution of dividend share than
labor shares. Increasing the dividend tax brings the economy closer to full insurance while
decreasing the dividend tax pushes the economy away from full insurance. As such, we see
that the response of inflation and other variables is stronger when the dividend tax is low

FIGURE 17.—Optimal monetary response to a markup shock with alternative Pareto weights. The bold
blue lines are the responses for the baseline calibration. The dashed black lines with squares and circles are
responses under a calibration with higher and lower labor taxes respectively.
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FIGURE 18.—Optimal monetary response to a TFP shock for alternative Pareto weights. The bold blue lines
are the responses for the baseline calibration. The dashed black lines with squares and circles are responses
under a calibration with higher and lower labor taxes respectively.

and weaker when it is high when we look at markup shocks. Since productivity shocks
affect wages and dividends symmetrically, we should expect that the responses are not
very different across cases that vary in the level of tax on dividend income. This prior is
confirmed in Figure 20.

On the contrary, a bond tax directly controls the dispersion in after-tax bond income,
which is key statistic for insurance against a productivity shock. In Figures 21 and 22,
we see that a higher bond tax lowers the response to the productivity shock and leaves
the response to markup shock barely unchanged. To make our plots comparable with the
baseline case, we report impulse responses to the after-tax nominal and real interest rates.

Finally, we study the utilitarian planner who sets Pareto weights equal. In our setup, a
utilitarian planner would set labor tax rate of 68%, a dividend tax rate of 116%, and a

FIGURE 19.—Optimal monetary response to a markup shock for alternative Pareto weights. The bold blue
lines are the responses for the baseline calibration. The dashed black lines with squares and circles are re-
sponses under a calibration with higher and lower dividend taxes respectively.
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FIGURE 20.—Optimal monetary response to a TFP shock for alternative Pareto weights. The bold blue lines
are the responses for the baseline calibration. The dashed black lines with squares and circles are responses
under a calibration with higher and lower dividend taxes respectively.

bond tax rate of 118%. These effects go in offsetting directions but overall we find little
deviation from the baseline responses. The results are summarized in Figures 23 and 24.

D.3. Sensitivity With Respect to the Period of the Shock

In this section, we compare optimal responses to a shock that occurs at t = 25 as well
as t = 50 with our baseline in which the shocks occur at t = 1. For brevity, we only report
the optimal monetary response. Figure 25 plots the response to a markup shock, and
Figure 26 plots a response to a TFP shock. We find the responses to be very similar. The
response to the TFP shock are slightly larger with time because the distribution of risk-

FIGURE 21.—Optimal monetary response to a markup shock with alternative Pareto weights. The bold blue
lines are the responses for the baseline calibration. The dashed black lines with squares are responses under a
calibration with higher bond taxes.
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FIGURE 22.—Optimal monetary response to a TFP shock for alternative Pareto weights. The bold blue
lines are the responses for the baseline calibration. The dashed black lines with squares are responses under a
calibration with higher bond taxes.

free debt spreads out with idiosyncratic shocks and, therefore, there is a larger role for
providing insurance.

D.4. Sensitivity With Respect to Choice of Initial Conditions

In the main text, we set the initial distribution of productivities, risk-free nominal bonds
claims, and equity claims using the observed SCF distribution. Here, we redo the optimal
policy starting at a joint distribution of wealth and productivities that arises after simu-
lating 100 years in the calibrated competitive equilibrium with fixed policies. The results
are summarized in Figures 27 and 28. The response to a markup shock is a balance of two
forces. On the one hand, the passage of time diminishes the correlation between stock

FIGURE 23.—Optimal monetary response to a markup shock for utilitarian Pareto weights. The bold blue
lines are the responses for the baseline calibration. The dashed black lines with squares are responses under
utilitarian Pareto weights.
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FIGURE 24.—Optimal monetary response to a TFP shock for utilitarian Pareto weights. The bold blue
lines are the responses for the baseline calibration. The dashed black lines with squares are responses under
utilitarian Pareto weights.

holdings and labor earnings, which renders inequality more misaligned according to our
distance measure. That increases the planner’s gains from providing insurance. On the
other hand, the correlation of shares of equities and bond holdings diminishes, which di-
minishes the insurance gains from the unanticipated inflation. The increase in the spread
of nominal debt leads the planner to be more responsive to a TFP shock.

D.5. Example With Poor Hand-to-Mouth Agents

We can also consider an alternative calibration of the hand-to-mouth agents where we
restrict bottom 15% of the cash-in-hand distribution to be hand-to-mouth. This environ-
ment is similar in spirit to what would arise in an standard Aiyagari model as the new

FIGURE 25.—Optimal monetary response to a markup shock for alternative initial conditions. The bold blue
lines are the responses for the baseline calibration. The dashed lines are from the policies after initializing the
the Ramsey allocation with t = 1�25�50 years of the competitive equilibrium.
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FIGURE 26.—Optimal monetary response to a TFP shock for alternative initial conditions. The bold blue
lines are the responses for the baseline calibration. The dashed lines are from the policies after initializing the
the Ramsey allocation with t = 1�25�50 years of the competitive equilibrium.

hand-to-mouth agents more homogeneous and are almost entirely reliant on labor in-
come. We plot the optimal policy response with only poor hand-to-mouth agents using
the dashed red line in Figure 29. As opposed to the hand-to-mouth setting in the main
text that is calibrated to the evidence in Jappelli and Pistaferri (2014), the optimal policy
with only poor hand to mouth agents is almost identical to that of the baseline economy as
the government can construct a transfer scheme to smooth the consumption of the hand
to mouth agents by mirroring the path of wages.

FIGURE 27.—Optimal monetary response to a markup shock for alternative initial conditions. The bold blue
lines are the responses for the baseline calibration. The dashed lines are from the policies after initializing the
the Ramsey allocation with t = 100 years of the competitive equilibrium.
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FIGURE 28.—Optimal monetary response to a TFP shock for alternative initial conditions. The bold blue
lines are the responses for the baseline calibration. The dashed lines are from the policies after initializing the
the Ramsey allocation with t = 100 years of the competitive equilibrium.

D.6. Heterogeneous Marginal Propensity to Consume From Dividend Income and Wage
Income

In this section, we study optimal monetary responses in a variant in which liquidity con-
strained agents can smooth dividend income. This results in a lower marginal propensity
to consume out of income from capital income relative to income from labor. To model
this, we change the savings rule for agents with the hi = 1 from PtQtbi�t = P0Q0bi�0 to

PtQtbi�t = P0Q0bi�0 + siPtD̃t�

D̃t = D̃t−1 + (1 − divMPC) × (Dt −Dt)�

FIGURE 29.—Optimal monetary responses with hand-to-mouth agents. The top panel plots responses to a
markup shock and the bottom panel plots responses to a productivity shocks.



INEQUALITY, BUSINESS CYCLES, AND MONETARY-FISCAL POLICY 35

FIGURE 30.—Optimal monetary responses to the markup shock with heterogeneous marginal propensities
to consume. The bold blue lines are responses under the baseline and the dashed black lines with circles are
responses with heterogeneous marginal propensities to consume out of dividend and labor incomes.

where D̄t is the long run dividend level. The state variable D̃t is similar to holdings of
mutual fund in which households save the fluctuations in their dividend income and are
paid at a risk-free on the balance in return. For the rest of the section, we set divMPC = 0.
In Figures 30 and 31, we plot optimal monetary responses to the markup and the produc-
tivity shock, respectively.

As we describe in the main text in Section 6.2, heterogeneity in marginal propensity to
consume across households makes the path of the optimal interest rate smoother. Ma-
nipulating the timing of lump sum transfers is not sufficient to insure the consumption
path of the constrained agents who differ in their holdings on stocks and bonds. The plan-
ner uses monetary policy to directly smooth real returns and wages. While implementing
such smoothing, there is a tension: smoothing the wage and dividend share that helps

FIGURE 31.—Optimal monetary responses to productivity shock with heterogeneous marginal propensities
to consume. The bold blue lines are responses under the baseline and the dashed black lines with circles are
responses with heterogeneous marginal propensities to consume out of dividend and labor incomes.
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FIGURE 32.—Optimal monetary responses to productivity shock with mutual fund. The bold blue lines are
responses under the baseline and the dashed black lines with circles are responses under the mutual fund
setting.

liquidity constrained stockholders requires movements in natural rates that hurt liquidity
constrained bond holders. Allowing for the ability to additionally smooth dividends re-
laxes this tension and the results in paths of nominal rates that are even more smooth.
Quantitatively, this effect is larger for markup shocks than for productivity shocks.

D.7. Optimal Monetary-Fiscal Response With Mutual Fund

In this section, we present optimal monetary response to productivity shock, as well
as the optimal monetary-fiscal response to both under the mutual fund calibration. The
optimal monetary response to the productivity shock is in Figure 32.

One aspect of the mutual fund calibration is that it enforces a perfect correlation be-
tween bond and dividend wealth following any history of shocks. As a result, the optimal
policy the bond and dividend tax rates are indeterminate as the planner can achieve the
same effective returns with either instrument. To make the results comparable with our
benchmark calibration, we assume that the planner adjusts the dividend tax in response to
a markup shock and the bond rate in response to a markup shock. The results are plotted
in Figures 33 and 34. In both cases, the optimal policy under the mutual fund is almost
identical to the benchmark calibration.

D.8. Optimal Monetary and Monetary-Fiscal Response to a TFP Shock With
Heterogeneous Labor Income Exposures

As noted in Section 6.4, we calibrate the coefficients of f (θ) = f0 +f1θ+f2θ
2 by simulat-

ing the competitive equilibrium for 30 periods and extracting “recessions” as consecutive
periods where the growth rate of output one standard deviation below zero. Following
the empirical procedure in Guvenen, Ozkan, and Song (2014), we rank workers by per-
centiles of their average log labor earnings 5 years prior to the shock and compute the
percent earnings loss for each percentile relative to the median. The parameters f1, f2 are
set to match earnings losses of the 5th, 95th percentiles. The parameter f0 is set so that
agent with the median productivity faces a drop similar to the aggregate TFP. Figure 35
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FIGURE 33.—Optimal monetary-fiscal response to a markup shock with the mutual fund. The bold red are
the benchmark response while the bold blue lines are the responses for the mutual fund calibration.

plots the earnings losses by percentile of the income distribution relative to those found
by Guvenen, Ozkan, and Song (2014).

Figure 36 plots the responses of the monetary-fiscal policy. When the government has
access to fiscal policy, it no longer needs to rely solely on monetary policy. In Figure 36, we
see that in response to an inequality shock the planner raises the labor tax rate by nearly
1% and then allows it to mean revert back as the TFP shock dissipates. This mean re-
version arises because the level of inequality loads on TFP and partly captures the forces
laid out in Werning (2007) where the planner responds to changes in relative labor pro-
ductivity though changes in the labor tax rate. Unlike in the baseline case when nearly
all insurance can be provided through a surprise tax on bond income, the planner must
also rely on a surprise increase in the dividend tax rate to partially provide insurance. This
highlights a feature of heterogeneous agent models. Unlike representative agent models
where a single tax on returns can complete markets, with heterogeneous agents one tax

FIGURE 34.—Optimal monetary-fiscal response to a TFP shock with mutual fund. The bold blue lines are
the response under the baseline while the dashed black lines are the responses for the mutual fund calibration.
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FIGURE 35.—Relative income losses after recessions in data (solid line) and model (dashed line).

may not provide insurance for all agents and the planner may exploit multiple different
asset taxes.

In Figure 37, we apply our decomposition to the monetary response with setting with
heterogeneous exposures. The small difference in the rate of inflation in the HANK com-
plete market relative to RANK case captures the redistribution. In Figure 36, we saw that
labor income taxes are used to respond to inequality even with complete markets. When
the planner cannot adjust labor income tax, wages and thereby inflation is used to attain
similar objectives.

FIGURE 36.—Optimal monetary-fiscal response to a TFP shock with heterogeneous income exposures. The
bold blue lines are the response under the baseline calibration while the dashed black lines are the responses
calibration with heterogeneous exposures to TFP shocks.
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FIGURE 37.—Decomposition of the optimal monetary response to a TFP shock with heterogeneous expo-
sures. The bold blue and red lines are the calibrated HANK and RANK responses, respectively. The dashed
black lines with squares and circles are responses under HANK with idiosyncratic shocks shutdown and with
complete markets, respectively.
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