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APPENDIX A: DERIVATIONS AND PROOFS FOR THE BASELINE MODEL

A.1. Task Model Microfoundation and Details

THIS APPENDIX provides a microfoundation for the aggregate production function in
equation (2). The Appendix also provides a derivation of equation (9) and primitive con-
ditions to ensure Assumption 1 holds.

Each skill type z works in a different sector that produces output Yz . The economy
produces a final good Y using these sectoral outputs according to a Cobb–Douglas aggre-
gator

Y =A
∏
z

Yηz
z with

∑
z

ηz = 1�

Here, ηz denotes the importance of the sectoral output produced by skill type z in pro-
duction. The productivity shifter A captures the role of factor-neutral technological im-
provements.

The production of sectoral output Yz involves the completion of a unit continuum of
tasks u, which are then combined via a Cobb–Douglas aggregator:

lnYz =
∫ 1

0
lnYz(u) du�

These tasks can be produced using capital and skill-z labor as follows:

Yz(u) =
{
ψz�z(u) + kz(u) if u ∈ [0�αz]�
ψz�z(u) if u ∈ (αz�1]�

The threshold αz summarizes the possibilities for the automation of tasks performed by
workers of skill z. Tasks u ∈ [0�αz] are technologically automated and can be produced by
capital kz(u) or labor �z(u). The remaining tasks are not technologically automated and
must be produced by labor.
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The unit cost of producing a task with capital is R and that of producing it with labor is
wz/ψz . Denote by pz(u) the price of task Yz(u), and by pz the price of sector z output Yz .
Cost minimization in the production of sector z output implies that the quantity of task u
used is given by

Yz(u) = pzYz

pz(u)
�

Assumption 1 implies that all tasks u ∈ [0�αz] are produced with capital. It follows
that for those tasks, pz(u) = R and the quantity of capital required to produce Yz(u) is
pzYz/R. It follows that the total amount of capital used in sector z is

Kz = αzpzYz

R
� (19)

Assumption 1 implies that all tasks u ∈ (αz�1] are produced with labor. It follows
that for those tasks, pz(u) = wz

ψz
and the quantity of labor required to produce Yz(u) is

pzYz/wz . It follows that the total amount of labor of skill z used in sector z is

�z = (1 − αz)pzYz
wz

� (20)

With perfect competition, the price of sector z output equals the marginal cost of pro-
duction. Because tasks are combined via a Cobb–Douglas aggregator, the price is given
by the dual ln(pz) = ∫ 1

0 ln(pz(u)) du. It follows that

pz =Rαz
(
wz

ψz

)1−αz
� (21)

Combining the formula for pz in (21) with capital and labor demand conditions (19)
and (20) gives the production of sector z as a function of the total capital and labor used
in this sector, Kz and �z:

Yz =
(
Kz

αz

)αz( ψz�z

1 − αz
)1−αz

� (22)

We now turn to aggregate output. We normalize the price of the final good to 1, so that
the demand for sector z output satisfies pzYz = ηzY .

Using equations (19), we can compute the demand for capital in sector z as

Kz = αzpzYz

R
= αzηzY

R
�

Adding this formula across sectors, it follows that the total amount of capital used in the
economy is

K = αY
R
� (23)

where recall that α := ∑
z αzηz . The share of capital allocated to sector z is therefore

equal to

Kz =Kαzηz
α
� (24)
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Substituting this formula into (22), we get

Yz =
(
K
ηz

α

)αz( ψzLz

1 − αz
)1−αz

� (25)

Substituting sectoral outputs into the aggregate production function, we obtain the for-
mula in equation (2), with

A :=Aα−α∏
z

(
ηz(1 − αz)

)−ηz (1−αz) ∏
z

ηηzz � (26)

PROOF OF THE EXPRESSION FOR PRODUCTIVITY GAINS FROM AUTOMATION: The for-
mula in equation (2) can be written as

Y =A
∏
z

ηηzz

(
K

α

)α∏
z

(
ψz�z

ηz(1 − αz)
)ηz (1−αz)

�

It follows that

d lnY = ηz ln
(
K

α

)
− ln

(
ψz�z

ηz(1 − αz)
)

+ αd lnK

= ηz ln
(
Y

R

)
− ln

(
ψz
Y

wz

)
+ αd lnK

= ηz ln
(
wz

ψzR

)
+ αd lnK > 0�

The third row substitutes factor prices for their marginal products. Subtracting αd lnY
from both sides of this equation and dividing through by 1 − α yields the formula in (9).

Q.E.D.

LEMMA 2—Lemma ensuring adoption of automation technologies: Suppose that for all
z, the following inequality holds:

(ρ+pσ + δ)− 1
1−αA 1

1−α α
α

1−α >
1

(1 − αz)ηz
�zψz∏

v

(�vψv)
ηv (1−αv)

1−α
� (27)

where A is defined in (26). The equilibrium will involve the adoption of all available automa-
tion technologies. The above inequality holds for values of A above a threshold Ā.

PROOF: We assume that all automation technologies are adopted and verify that in
equilibrium, the condition above ensures that w∗

z > ψzR
∗.

In steady state, we have that ρ + pσ > r∗, which can be seen from the fact that r∗ =
ρ+pσα∗

net. Using the fact that r∗ + δ= αY
K

, we can rewrite ρ+pσ > r∗ as

(K/Y )∗ >
α

ρ+pσ + δ� (28)



4 B. MOLL, L. RACHEL, AND P. RESTREPO

Turning to wages, we have that

w∗
z = (1 − αz)ηz

�z
Y ∗

= (1 − αz)ηz
�z

A 1
1−α (K/Y )∗ α

1−α
∏
v

(ψv�v)
ηz (1−αz )

1−α

>
(1 − αz)ηz

�z
A 1

1−α α
α

1−α
∏
z

(ψz�z)
ηz (1−αz )

1−α (ρ+pσ + δ)− α
1−α �

where the last line uses inequality (28).
Finally, because ψz(ρ+pσ + δ) >ψzR∗, a sufficient condition to ensure w∗

z > ψzR
∗ is

(1 − αz)ηz
�z

A 1
1−α α

α
1−α

∏
z

(ψz�z)
ηz (1−αz )

1−α (ρ+pσ + δ)− α
1−α > ψz(ρ+pσ + δ)�

This inequality is equivalent to (27). Finally, the definition of A in (26) implies that (27)
holds for large values of A, concluding the proof of the lemma. Q.E.D.

A.2. Propositions for Baseline Model A

PROOF OF LEMMA 1: Let xz�t :=wz/r + az�t denote effective wealth. Equation (1) can
be rewritten as

max
{cz�t �xz�t}t≥0

∫ ∞

0
e−ρt c

1−σ
z�t

1 − σ dt

s.t. ẋz�t = rxz�t − cz�t� and xz�t ≥ 0� (29)

The Hamiltonian associated with this maximization problem is

H(cz�xz�λz) := c1−σ
z

1 − σ + λ(rxz − cz)� (30)

where λz is the costate for effective wealth.
We can write the candidate solution given in Lemma 1 as (time arguments are ignored

to save on notation)

ẋz = r − ρ
σ

xz� cz =
(
r − r − ρ

σ

)
xz� (31)

We will show that the unique solution to this system of differential equations starting from
xz�0 =wz/r solves the maximization problem in (29).

Theorem 7.14 in Acemoglu (2009) implies that this candidate path reaches an optimum
if there exists a costate variable λz such that:

1. the path satisfies the restrictions ẋz = rxz − cz , and xz ≥ 0;
2. the following necessary conditions hold:

c−σ
z = λz�

ρλz − λ̇z = rλz;
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3. the maximized Hamiltonian M(xz�λz) = maxc H(c�xz�λz) is concave in xz along
the candidate path;

4. the transversality condition holds. That is, for the candidate path, we have

lim
s→∞

e−ρsxzλz = 0�

and for all other feasible paths, x̂z , we have

lim
s→∞

e−ρsx̂zλz ≥0�

To prove condition 1, note that starting from any xz�0 ≥ 0, we will have xz ≥ 0. Moreover,
for any path satisfying equations (31) the flow budget constraint holds:

rxz − cz = rxz −
(
r − r − ρ

σ

)
xz

= r − ρ
σ

xz

= ẋz�
To prove condition 2, define λz := (r− (r−ρ)/σ)−σx−σ

z > 0 (here we used the condition
r > (r − ρ)/σ). By construction, c−σ

z = λz . Moreover,

ρλz − λ̇z = ρ
(
r − r − ρ

σ

)−σ
x−σ
z +

(
r − r − ρ

σ

)−σ
σx−σ−1

z�t ẋz

=
(
ρ+ σ ẋz

xz

)(
r − r − ρ

σ

)−σ
x−σ
z

=
(
ρ+ σ ẋz

xz

)
λz

=
(
ρ+ σ r − ρ

σ

)
λz

= rλz�
To prove condition 3, note that

max
c
H(c�xz�λz) = λ

σ−1
σ
z

1 − σ + λz
(
rxz − λ− 1

σ
z

)
�

which is concave (linear) in xz .
To prove the first part of condition 4, note that along the candidate path, xz grows at a

rate r−ρ
σ

, and λz at a rate ρ− r. It follows that the first part of the transversality condition
holds if

−ρ+ r − ρ
σ

+ ρ− r < 0�

which is equivalent to the condition r > (r − ρ)/σ .
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The second part of the transversality condition follows from the fact that, along any
feasible path, we have x̂z ≥ 0.

It follows that the candidate paths given in Lemma 1 provide optimal paths for con-
sumption and asset accumulation in a steady state. Q.E.D.

PROOF OF PROPOSITION 1: The main text presents the derivations of the supply curve
(equation (6)) and the demand curve (equation (7)).

The supply curve (K/w̄)s increases from zero to infinity as r increases from ρ to ρ+pσ .
For r < ρ, households supply no capital. For r > ρ+ pσ , households amass a divergent
amount of capital.

The demand curve (K/w̄)s decreases from (α/(1−α))/(ρ+δ) > 0 to (α/(1−α))/(ρ+
pσ + δ) > 0 as r increases from ρ to ρ+pσ .

These observations imply that equation (4) has a unique solution r∗ and that this unique
solution lies in (ρ�ρ+pσ). In fact, r∗ can be computed analytically as

r∗ = −(
(1 − α)δ− ρ− αpσ) +

√(
(1 − α)δ− ρ− αpσ)2 + 4(1 − α)ρδ

2
� (32)

The equilibrium return r∗ determines the remaining aggregates as follows. First, the
capital-output ratio is given by

(K/Y )∗ = α

r∗ + δ�

The output level is given by

Y ∗ =A 1
1−α

(
α

r∗ + δ
) α

1−α ∏
z

(�zψz)
ηz (1−αz )

1−α �

These two equations combined imply

K∗ =A 1
1−α

(
α

r∗ + δ
) 1

1−α ∏
z

(�zψz)
ηz (1−αz )

1−α � (33)

Turning to wages, we have that w∗
z = (1 − αz) ηz�z Y ∗, which implies

w∗
z = (1 − αz)ηz

�z
A 1

1−α

(
α

r∗ + δ
) α

1−α ∏
z

(�zψz)
ηz (1−αz )

1−α �

Finally, equation (5) can be derived from the household side. As explained in the main
text, in steady state we must have

0 = r∗ − ρ
σ

(
K∗ + w̄∗

r∗

)
−pK∗�

This expression can be rearranged as

r∗ = ρ+pσ r∗K∗

r∗K∗ + w̄∗ = ρ+pσα∗
net�
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Note that the condition r∗ > (r∗ − ρ)/σ , which is needed to ensure the households’
policy functions are an optimum is equivalent to ρ+ pα∗

net(σ − 1) > 0, which we assume
holds throughout.

Turning to the comparative statics exercises, we can rearrange (4) as(
1 − ρ

r∗

)(
r∗ + δ)

pσ + ρ− r∗ = α

1 − α�

The right-hand side of this equation is increasing in r∗, and the left is increasing in α. It
follows that r∗ is increasing in α.

The household accumulation rate is given by (r∗ −ρ)/σ , and so it also increases with α.
The net capital share satisfies the identity in equation (5), and so it increases with α.
Denote the capital-output ratio by (K/Y )∗. We have

α∗
net = r∗(K/Y )∗

1 − δ(K/Y )∗ �

Rearranging this equation and using the fact that r∗ = ρ+pσα∗
net, we obtain

(K/Y )∗ = α∗
net

ρ+ (pσ + δ)α∗
net

� (34)

which is an increasing function of α∗
net, and hence α.

Finally, turning to output, from equation (2) we have

d lnY ∗ = 1
1 − α d ln TFPα + α

1 − α d ln(K/Y )∗�

Because d ln TFPα > 0 and d ln(K/Y )∗ > 0 following any increase in the αz ’s, we have
that automation always increase output. Q.E.D.

PROOF OF PROPOSITION 2: Equilibrium factor prices imply that relative wages satisfy

wz

wv
= (1 − αz)

(1 − αv)
ηz

ηv

�v

�z
�

It follows that an increase in αz reduces wz/wv for v �= z.
Turning to the wage bill, we can add up individual wages for all z to obtain

w̄= (1 − α)Y�

It follows that

d ln w̄= − 1
1 − α

∑
ηz dαz + 1

1 − α d ln TFPα + α

1 − α d ln(K/Y )∗�

We now show that the terms d ln TFPα and d ln(K/Y )∗ are both decreasing in p and
converge to zero as p increases. Because the term −(1/(1 − αz))

∑
ηz dαz is negative,

this establishes the existence of the threshold p̄.
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We first analyze the term d ln TFPα. This is given by

d ln TFPα =
∑
z

ηz ln
(
w∗
z

ψzR
∗

)
=

∑
z

ηz ln
(
K∗

α

)
−ηz ln

(
ψz�z

ηz(1 − αz)
)
�

where we used the formulas for equilibrium factor prices. It is enough to show that K∗

is decreasing in p and that K∗ converges to zero as p increases. Because K∗ is given by
(33), it is enough to show that r∗ is increasing in p and that r∗ converges to infinity as p
increases.

The fact that r∗ increases in p follows from equation (4). An increase in p contracts the
supply of capital, which results in a higher r∗. Moreover, equation (32) shows that r∗ → ∞
as p→ ∞. Note that the formal limit of d ln TFPα as p→ ∞ is zero, since asK∗ declines,
we eventually reach a point where Assumption 1 starts failing and increases in αz do not
affect productivity.

We now turn to the term d ln(K/Y )∗. We have that

α= (K/Y )∗(ρ+pσα∗
net + δ

)
�

Differentiating this expression, we obtain

1 = pσα∗
net

ρ+pσα∗
net + δ

∂ lnα∗
net

∂ lnα
+ ∂ ln(K/Y )∗

∂ lnα
� (35)

Moreover, equation (34) implies that

∂ ln(K/Y )∗

∂ lnα
= ρ

ρ+ (pσ + δ)α∗
net

∂ lnα∗
net

∂ lnα
� (36)

Solving equations (35) and (36), we obtain

∂ ln(K/Y )∗

∂ lnα
= 1

1 + pσα∗
net

ρ+pσα∗
net + δ

ρ+ (pσ + δ)α∗
net

ρ

�

We now show that the elasticity ∂ ln(K/Y )∗
∂ lnα∗

net
converges to zero as p rises. A sufficient con-

dition for this to be the case is that α∗
net is nondecreasing in p, which holds when δ= 0 and

α∗
net = α. To show this is the case more generally, start from the fact that α = R(K/Y ).

Rewriting the right-hand side in terms of α∗
net, we obtain

α= (
ρ+pσα∗

net + δ
) α∗

net

ρ+ (pσ + δ)α∗
net

�

This equation can be rearranged as

α

(
1 − δ

(
1 − α∗

net

)
ρ+pσα∗

net + δ
)

= α∗
net�

This equation defines α∗
net implicitly as a function of α and p. The left-hand side is in-

creasing in α∗
net and intercepts the right-hand side (the 45-degree line) from above at a
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single equilibrium point. An increase in p shifts the left-hand side upwards, which results
in a higher equilibrium value for α∗

net as claimed.
The above argument shows that there exists some p̄ such that, for p > p̄, d ln w̄ < 0.

To conclude the proof, we show that p̄ > 0. This follows from the fact that, for p = 0,
d ln w̄ > 0.

To show this, note that for p= 0 we get

d ln(K/Y )∗ = dα

α
= 1
α

∑
z

ηz dαz

and, therefore,

d ln w̄= − 1
1 − α

∑
ηz dαz + 1

1 − α d ln TFPα + α

1 − α
1
α

∑
z

ηz dαz

= 1
1 − α d ln TFPα > 0� Q.E.D.

PROOF OF PROPOSITION 3: Below we derive the effective wealth distribution, the
wealth distribution, and the income distribution. To save on notation, we do not include
asterisks when denoting steady-state objects.

Effective wealth distribution: Denote the stationary density of effective wealth condi-
tional on a given skill type z by fz(x). fz satisfies the Kolmogorov Forward Equation
(KFE):

0 = −∂x
(
r − ρ
σ

xfz(x)
)

−pfz(x)

on (wz/r�∞). We guess and verify that f is Pareto, that is, fz(x) = cζx−ζ−1 for some
constants c and ζ. Substituting in the guess

0 = ζ r − ρ
σ

cζx−ζ−1 −pcζx−ζ−1�

0 = ζ r − ρ
σ

−p�
1
ζ

= r − ρ
pσ

= αnet�

Since fz(x) = cζx−ζ−1 must integrate to 1 on (wz/r�∞), we must have c = (wz/r)−ζ .
Hence, this is a Pareto distribution with tail parameter ζ = 1

αnet
and scale parameter

xz(0) =wz/r.
Because the distribution of effective wealth is Pareto, the conditional counter-CDF for

effective wealth of each skill type z is of the form:

Pr(effective wealth ≥ x|z) =
(

x

wz/r

)− 1
αnet

� x≥wz/r� (37)
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Wealth distribution: We now derive the counter-CDF for wealth. Recall that effective
wealth x is x := a+wz/r. Therefore,

Pr(wealth ≥ a|z) = Pr(effective wealth ≥ a+wz/r|z) =
(
a+wz/r
wz/r

)− 1
αnet

� a≥ 0�

To find the unconditional distribution, we add across the different skill-types, which yields

Pr(assets ≥ a) =
∑
z

�z

(
a+wz/r
wz/r

)− 1
αnet

�

Income Distribution: We now derive the counter-CDF for income. The income of a
person with effective wealth x is rx. Therefore,

Pr(income ≥ y|z) = Pr(effective wealth ≥ y/r|z) =
(
y/r

wz/r

)− 1
αnet

� y ≥wz�

To find the unconditional distribution, we add across the different skill-types, which yields

Pr(income ≥ y) =
∑
z

(
max{y�wz}

wz

)− 1
αnet

�

Finally, when δ = 0, we have αnet = α and 1
ζ

= α. When δ > 0, Proposition 1, implies
that 1

ζ
is increasing in α. Q.E.D.

APPENDIX B: DERIVATIONS AND PROOFS FOR THE EXTENDED MODEL

B.1. Derivations and Lemmas

Before presenting the proofs, we generalize the model in the text so that investors could
also face a borrowing constraint of the form

−bz�t ≤ θaz�t + wz + T
rB − g �

where θ ∈ (0�1] parameterizes the extent to which investors can pledge their capital.44

The results in the main text follow in the special case with θ= 1. We also provide a lemma
characterizing investors policy functions.

LEMMA 3—Achdou, Han, Lasry, Lions, and Moll (2022): Let rI = κrK + (1 − κ)rB.
Investors’ policy functions are given by

cz�t =
ρ+ (σ − 1)rI − 1

2
(σ − 1)γν2κ2

σ
xz�t�

κ= min
{

1
1 − θ�

rK − rB
γν2

}
�

44The usual formulation used in the literature is −bz�t ≤ θaz�t . Relative to this, our formulation assumes that
human wealth is pledgable, which makes the model more tractable.
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which imply that effective wealth follows a random growth process:

dxz�t =
rI − ρ+ 1

2
(σ − 1)γν2κ2

σ
xz�t dt + κνxz�t dWt�

PROOF: Using the definition of effective wealth and the fact that in a balanced growth
equilibrium wages and tax revenue grow at a constant rate g, we have

dxz�t = daz�t + dbz�t + gwz + T
rB − g dt�

Substituting the investors’ budget constraint in place of daz�t + dbz�t and rearranging
terms, we obtain

dxz�t = rB
(
az�t + bz�t + wz + T

rB − g
)
dt + (rK − rB)az�t dt + νaz�t dWt − cz�t dt

= rBxz�t dt + (rK − rB)az�t dt + νaz�t dWt − cz�t dt�
Let κ denote the share of effective wealth held in equity, so that az�t = κxz�t . We can

rewrite the budget constraint as

dxz�t = (rIxz�t − cz�t) dt + νκxz�t dWt� (38)

In what follows, we drop the subscript z and time t, and examine the savings problem
in terms of the state variable x—effective wealth. The HJB equation for this problem is

0 = max
c>0�κ∈[0�1/(1−θ)]

f
(
c� v(x)

) + (rIx− c)v′(x) + 1
2
ν2κ2x2v′′(x)�

Using the Duffie–Lions aggregator and guessing v(x) =�x1−γ/(1−γ), the HJB equation
becomes

ρ�x1−γ

1 − σ = max
c>0�κ∈[0�1/(1−θ)]

ρ�x1−γ

1 − σ
(

c

�1/(1−γ)x

)1−σ
+ (rIx− c)�x−γ − γ

2
ν2κ2�x1−γ�

The optimal consumption and portfolio choice are given by

c = ρ 1
σ �− 1

σ
1−σ
1−γ x� κ= min

{
1

1 − θ�
rK − rB
γν2

}
�

Plugging into the HJB equation and canceling terms, we get

ρ

1 − σ = ρ

1 − σ
(
ρ

1
σ �− 1

σ
1−σ
1−γ

�1/(1−γ)

)1−σ
+ rI − ρ 1

σ �− 1
σ

1−σ
1−γ − 1

2
γν2κ2�

This is an equation in c/x= ρ 1
σ �− 1

σ
1−σ
1−γ , which yields

c/x=
ρ+ (σ − 1)rI − 1

2
(σ − 1)γν2κ2

σ
�
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The policy function for cz�t follows from this expression, and the behavior of xz�t follows
after plugging this policy function in the the budget constraint in equation (38). Q.E.D.

B.2. Propositions for Extended Model

PROOF OF PROPOSITION 4: Lemma 3 implies that investors accumulate wealth at a rate

μI = rW − ρ
σ

� (39)

Lemma 1 applies to the remaining households, whose wealth then grows at a rate

μH = rB − ρ
σ

�

In what follows, we will describe the BGE in terms of rW and rB. In particular, we define
h(rW − rB) = rK − rB and m(rW − rB) = κ implicitly as the solution to

rW − rB =mh+ 1
2

(σ − 1)γν2m2� m= min
{

1
1 − θ�

h

γν2

}
�

We can then write the return to capital and portfolio choice implicitly as

rK = h(rW − rB) + rB� κ=m(rW − rB)�

where h is a continuous and increasing function and m is continuous and nondecreasing.
Denote by XI the aggregate effective wealth of investors and by XH the aggregate ef-

fective wealth of the remaining households, and bond holdings by BI and BH , respectively.
Optimal household saving behavior combined with the dissipation shocks implies that

ẊI = μIXI −p(K +BI)� ẊH = μHXH −pBH�
Moreover, because the value of capital installed in firms must be equal to the total capital
owned by investors, aggregate effective wealths are given by

XI =K +BI +χw̄+ T
rB − g � XH = BH + (1 −χ)

w̄+ T
rB − g �

Human wealth now depends on the sum of wages and transfers, whose present discounted
value is obtained by dividing them by rB − g to account for their growth over time. It is
convenient to analyze the BGE in terms of capital and bonds normalized by the value of
human wealth, which are constant along a BGE:

kn = K

(w̄+ T )/(rB − g)
� bI = BI

(w̄+ T )/(rB − g)
� bH = BH

(w̄+ T )/(rB − g)
�

Along a BGE, the effective wealth of investors grows at a rate g, so that ẊI = gXI and
ẊH = gXH . The effective wealth of investors grows at a rate g if and only if rW > ρ+ σg
and the BGE values of kn and bI satisfy(

rW − ρ
σ

− g
)

(kn + bI +χ) = p(kn + bI)� (40)
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In addition, because a fraction κ=m(rW − rB) of investors wealth is held in equity,

m(rW − rB)(kn + bI +χ) = kn� (41)

Likewise, the effective wealth of households grows at a rate g if and only if rB > ρ+ σg
and (

rB − ρ
σ

− g
)

(bH + 1 −χ) = pbH� (42)

or rB ≤ ρ+ σg and bH = 0.
We now characterize the production side of the economy. We focus on a balanced-

growth equilibrium in which Assumption 1 holds, so that output is given by (2). Because
of markups, total wage payments are now given by

w̄= 1 − α
ϕ

Y�

which implies that firms pay a share (1−α)/ϕ of their revenue to labor; while the remain-
ing share of revenue 1 − (1 − α)/ϕ constitutes gross capital income, which is taxed at a
rate 1 − τ (recall that we assumed a gross tax on capital income) and must cover for the
depreciation of capital. Thus, we can compute the after-tax gross income from capital as

(rK + δ)K = (1 − τ)
(

1 − 1 − α
ϕ

)
Y�

Tax revenue from capital taxation, and thus the lump-sum transfers, are equal to

T = τ
(

1 − 1 − α
ϕ

)
Y�

We can combine the equations for after-tax gross capital income and labor income and
transfers to obtain an expression of the demand for financing by firms:

kn = α̃

1 − α̃
rB − g

h(rW − rB) + rB + δ� (43)

A balanced-growth equilibrium is characterized by constant values for rW , rB, kn, bI , bH
that solve equations (40), (41), (42), and (43) and where rB is endogenous and ensures
market clearing in the bonds market

bI + bH = 0�

In this case, we will assume that ρ+ (σ−1)g > 0, which is a sufficient condition to ensure
that the equilibrium exists and features finite wealth.

We start with the case in which investors are risk neutral (γ = 0 in the Duffie–Lions
aggregator) and their borrowing constraint does not bind. We will provide necessary and
sufficient conditions for this to be the case below.

Because we assumed that the borrowing constraint does not bind, it must be the case
that rW = rK = rB = r∗.
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Adding equations (40) and (42), we obtain(
r∗ − ρ
σ

− g
)

(kn + 1) = pkn� (44)

Solving for kn and substituting into equation (43) shows that an equilibrium is fully deter-
mined by a level of returns that satisfies

1 − (
ρ+ (σ − 1)g

)
/
(
r∗ − g)

σ (p+ g) + ρ− r∗ = α̃

1 − α̃
1

r∗ + δ� (45)

The left-hand side of this equation is increasing in r∗; while the right-hand side is decreas-
ing in r∗. Moreover, at r∗ = ρ+ σg, the left-hand side is lower than the right-hand side;
and at r∗ = ρ+σ (p+g), the the left-hand side converges to infinity and exceeds the right-
hand side. This implies a unique solution exists and satisfies r∗ ∈ (ρ+ σg�ρ+ σ (p+ g)).

We now derive conditions for θ that ensure the borrowing constraint does not bind.
Denote by k∗

n the value of kn in the balanced growth equilibrium above, which is given by

k∗
n = α̃

1 − α̃
r∗ − g
r∗ + δ�

and is independent of θ by construction. Equations (40) and (42) imply that investors
must borrow and amount

b∗ = (1 −χ)k∗
n

from households, and so we must have

κ∗ = k∗
n

k∗
n − b∗ +χ = 1

χ

k∗
n

k∗
n + 1

�

It follows that the borrowing constraint will be slack if and only if

1
1 − θ ≥ 1

χ

k∗
n

k∗
n + 1

⇔ θ≥ 1 −χk
∗
n + 1
k∗
n

:= θ̄�

Note that θ̄≤ 1, as claimed in the proposition.
We now turn to the case in which investors are risk averse and/or θ < θ̄ and we have a

closed economy. In what follows, we will assume that rW > ρ+σg, which must hold in any
equilibrium. To see this, notice that for rW ≤ ρ+ σg, investors do not accumulate wealth
and the supply of capital is zero, which cannot be the case in a BGE.

Combining equations (40) and (42), we obtain a supply of (normalized) capital

kn = pσm(rW − rB)
σ (p+ g) + ρ− rW χ� (46)

Combining this with the demand for firm financing in equation (43) yields the market
clearing condition in the capital market:

DK(rW � rB) = α̃

1 − α̃
rB − g

h(rW − rB) + rB + δ − pσm(rW − rB)
σ (p+ g) + ρ− rW χ= 0� (47)
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where DK(rW � rB) is the excess demand for capital, and the curve DK(rW � rB) = 0 defines
the locus of points for which the capital market clears. Likewise, the market clearing
condition in the bond market is given by

DB(rW � rB) = pσ
(
m(rW − rB) − 1

)
σ (p+ g) + ρ− rW χ+χ− rB − ρ− σg

σ (p+ g) + ρ− rB (1 −χ) = 0� (48)

where DB(rW � rB) is the excess demand for bonds, and the curve DB(rW � rB) = 0 defines
the locus of points for which the bond market clears.

The following lemmas characterize the behavior of these loci.

LEMMA 4: The curve DK(rW � rB) = 0 gives a continuous and upward sloping locus in the
(rW � rB) space defined for rW ∈ (g�ρ+ σ (p+ g)) and rB ∈ (g� rW ). Moreover:

1. as rW ↓ g, the locus converges to the point (g�g);
2. as rW ↑ ρ+ σ (p+ g), the locus converges to the point (ρ+ σ (p+ g)�ρ+ σ (p+ g)).

LEMMA 5: The curve DB(rW � rB) = 0 gives a continuous and initially decreasing locus in
the (rW � rB) space defined for rW ∈ (ρ+ σg�ρ+ σ (p+ g)) and rB < rW . Moreover:

1. as rW ↓ ρ+ σg, the locus converges to the point (ρ+ σg�ρ+ σg);
2. as rW ↑ ρ+ σ (p+ g), the locus converges to the point (ρ+ σ (p+ g)� r̃B), where

r̃B := ρ+ σ (p+ g) − 1
2

(σ + 1)γν2�

3. let γ̄ := 2p σ
1+σ (1 −χ).

• if γν2 > γ̄, then rW − rB increases from zero to a maximum of 1
2 (σ + 1)γν2 along

the locus DB(rW � rB) = 0;
• if γν2 < γ̄, then rW − rB increases from zero up to a maximum and then decreases

and reaches 1
2 (σ + 1)γν2 along the locus DB(rW � rB) = 0.

The proof of these lemmas is technical and relegated to Appendix F.
The two lemmas combined imply that the lociDK(rW � rB) = 0 andDB(rW � rB) = 0 are as

depicted in Figure B.1. The lemmas imply that at rW = ρ+σg, the locus forDB(rW � rB) = 0
is above that for DK(rW � rB) = 0 (recall that, by assumption, ρ+ σg > g). On the other
hand, at rW = ρ+σ (p+ g), the locus for DK(rW � rB) = 0 is above that forDB(rW � rB) = 0.
The intermediate value theorem then implies that these loci intercept at a point r∗W , r∗B and
an equilibrium exists. Moreover, as the figure shows, r∗W > r

∗
B > g and r∗W ∈ (ρ+ σg�ρ+

σ (p+ g)).
Finally, the characterization of the tail properties of the income and wealth distribution

follows as a corollary of Proposition 6. Q.E.D.

PROPOSITION 6: Let x denote effective wealth and define normalized wealth by

x̃= x/wz
rB
�

Let fH (x̃) and fI(x̃) denote the PDFs of the distributions of normalized wealth for households
and investors. The distribution of normalized wealth for households is given by

fH (x̃) = ζHx̃−ζH−1 for x̃≥ 1� (49)
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FIGURE B.1.—Typical configurations of the locus for DK (rW � rB) = 0 and DB(rW � rB) = 0.

where
1
ζH

:= rB − ρ− σg
pσ

�

and the distribution of normalized wealth for investors is given

fI (x̃) =

⎧⎪⎨⎪⎩
1

1/ζP − 1/ζN
x̃−ζP−1 for x̃≥ 1�

1
1/ζP − 1/ζN

x̃−ζN−1 for x̃ ∈ [0�1)�
(50)

where

1
ζP

:=
rW − ρ− σg− σκ2ν2

2
+

√(
rW − ρ− σg− σκ2ν2

2

)2

+ 2σ2κ2ν2p

2pσ
> 0

and

1
ζN

:=
rW − ρ− σg− σκ2ν2

2
−

√(
rW − ρ− σg− σκ2ν2

2

)2

+ 2σ2κ2ν2p

2pσ
< 0�

Moreover, the distribution for investors’ income flows has a Pareto tail with index 1/ζP .

PROOF: The evolution of (normalized) effective wealth for households is given by

˙̃xt = (μH − g)x̃t�

where

μH := rB − ρ
σ

and x̃t resets to 1 with probability p.
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The Kolmogorov-forward equation characterizing fH in steady state is then given by

0 = −∂x
(
(μH − g)xfH (x)

) −pfH (x) +p℘(x− 1)� (51)

where ℘(·) is the Dirac’s delta function (a mass of 1 at 0). To solve this differential equa-
tion, we guess and verify that

fH (x) = CHx−ζH−1� for x≥ 1�

Plugging this guess in the KFE equation (51), we obtain

0 = ζH (μH − g)CHx−ζH−1 −pCHx−ζH−1� for x≥ 1�

This implies

1
ζH

= μH − g
p

= rB − ρ− σg
pσ

�

as claimed in the proposition. Moreover, because the density fH (x) must integrate to 1,
we obtain

1 =
∫ ∞

1
CHx

−ζH−1 dx ⇒ CH = ζH�

The evolution of (normalized) effective wealth for investors is given by

dx̃t = (μI − g)x̃t dt + κνx̃t dWt�

where

μI := rW − ρ
σ

and x̃t resets to 1 with probability p.
The Kolmogorov-forward equation characterizing fI in steady state is then given by

0 = −∂x
(
(μI − g)xfI (x)

) + 1
2
∂xx

(
ν2κ2x2fI (x)

) −pfI(x) +p℘(x− 1)� (52)

where ℘(·) is the Dirac’s delta function (a mass of 1 at 0). To solve this differential equa-
tion, we guess and verify a piecewise solution of the form

fI(x) = CPx−ζP−1� for x≥ 1�

and

fI (x) = CNx−ζN−1� for x ∈ (0�1)�

which allows for the possibility that the distribution might be different to the left and to
the right of the reinjection point (note also that the process for effective wealth implies
that x > 0).

Plugging this guess in the KFE equation (51), we obtain

0 = ζP (μI − g)CPx−ζP−1 + (ζP − 1)ζP
1
2
ν2κ2CPx

−ζP−1 −pCPx−ζP−1� for x≥ 1�
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This implies a quadratic equation for ζP given by

0 = ζP (μI − g) + (ζP − 1)ζP
1
2
ν2κ2 −p�

Because the integral of fI(x) must converge on (1�∞), ζP must be equal to the unique
positive root of the above quadratic equation, which is given by

ζP =

(
κ2ν2

2
−μI + g

)
+

√(
κ2ν2

2
−μI + g

)2

+ 2κ2ν2p

κ2ν2 �

Multiplying the numerator and denominator by(
κ2ν2

2
−μI + g

)
−

√(
κ2ν2

2
−μI + g

)2

+ 2κ2ν2p

and rearranging, this formula yields

1
ζP

=
μI − g− κ2ν2

2
+

√(
μI − g− κ2ν2

2

)2

+ 2κ2ν2p

2p
�

which is the same as the formula provided in the lemma.
Likewise, plugging our guess for x ∈ (0�1), we obtain the same quadratic equation for

ζN given by

0 = ζN (μI − g) + (ζN − 1)ζN
1
2
ν2κ2 −p�

Because the integral of fI (x) must converge on (0�1), ζN must be equal to the unique
negative root of the above quadratic equation, which is given by

1
ζN

=
μI − g− κ2ν2

2
−

√(
μI − g− κ2ν2

2

)2

+ 2κ2ν2p

2p
�

which is the same as the formula provided in the lemma.
Finally, we turn to the constants CP and CN . First, because fI(x) must be continuous

at x = 1, we obtain CP = CN . Second, because the density fI (x) must integrate to 1, we
obtain

1 =
∫ 1

0
CNx

−ζN−1 dx+
∫ ∞

1
CPx

−ζP−1 dx ⇒ CP = CN = 1
1/ζP − 1/ζN

�

Turning to the income distribution, Lemma 9 shows that, over a short period of time t,
the income received by an investor with effective wealth xz can be approximated as

yz�t = xz�0(rIt + κν
√
tu)�
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where u∼N(0�1). For large y , we have that

Pr(yz�t ≥ y) ∝
∫ ∞

− rI
√
t

κν

(rIt + κν
√
tu)ζP y−ζPφ(u) du∝ y−ζP �

where φ(u) is the pdf of a standard normal, and the second equality follows from the fact
that

∫ ∞
0 (rIt + κν

√
tu)ζPφ(u) du is a finite constant for any value of ζP ≥ 0 (which in turn

follows from the fact that the normal distribution has finite moments). Thus, the income
distribution also has a Pareto tail with tail index 1/ζP . Q.E.D.

PROOF OF PROPOSITION 5: The equilibrium equations for rK , rB, κ, kn, bI , and bH are

( rB + κ · (rK − rB) + 1
2

(σ − 1)γν2κ2 − ρ
σ

− g
)

· (kn + bI +χ) = p · (kn + bI)�(
rB − ρ
σ

− g
)

· (bH + 1 −χ) = p · bH�

κ · (kn + bI +χ) = kn�
1
γν2 (rK − rB) = κ�

bI + bH = 0�

α

1 − α · rB − g
rK + δ = kn�

For α= 0, we get rK = rB = ρ+ σg, κ= kn = bH = bI = 0.
Linearizing the system of equations around this equilibrium, we get

drB

σ
·χ= p · (dkn + dbI)� drB

σ
· (1 −χ) = p · dbH�

dκ ·χ= dkn� drK − drB = γν2 dκ�

dbI + dbH = 0� dkn = ρ+ (σ − 1)g
ρ+ σg+ δ α�

which yields the solution

drK =
[
pσ + γν2

χ

]
ρ+ (σ − 1)g
ρ+ σg+ δ α�

drB = pσ · ρ+ (σ − 1)g
ρ+ σg+ δ α�

dκ= 1
χ

· ρ+ (σ − 1)g
ρ+ σg+ δ α�

It follows that for small values of α we can approximate all equilibrium objects as

rK = ρ+ σg+
[
pσ + γν2

χ

]
ρ+ (σ − 1)g
ρ+ σg+ δ α�
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rB = ρ+ σg+pσ · ρ+ (σ − 1)g
ρ+ σg+ δ α�

κ= 1
χ

· ρ+ (σ − 1)g
ρ+ σg+ δ α�

kn = ρ+ (σ − 1)g
ρ+ σg+ δ α�

Let α∗
net denote the capital share net of growth and depreciation in equation (16). By

definition, this is equal to kn/(kn + 1), and so for small values of α we get the approxima-
tion α∗

net = kn which implies α∗
net = ρ+(σ−1)g

ρ+σg+δ α.
We conclude that

rK = ρ+ σg+
[
pσ + γν2

χ

]
α∗

net�

rB = ρ+ σg+pσ · α∗
net�

κ= 1
χ
α∗

net�

as claimed in the proposition.
Finally, the formula for the return gap in equation (13) implies

rW − ρ− σg= pσα∗
net +

1
χ2α

∗
net

2γν2�

Using this expression for the return gap, we can compute the tail index for inequality
as

1
ζ

=
pσα∗

net + 1
χ2 α

∗
net

2γν2 − 1
χ2 α

∗
net

2 σ

2
ν2 +

√(
pσα∗

net + 1
χ2 α

∗
net

2γν2 − 1
χ2 α

∗
net

2 σ

2
ν2

)2

+ 2
χ2 α

∗
net

2σ2ν2p

2pσ
�

For small values of α, this can be linearized as

1
ζ

= α∗
net + α∗

net ·
ν2

pχ2

1 +
√

1 + 2
ν2

pχ2

�

Q.E.D.

Proposition 5 provides explicit formulas that are valid for small values of α̃. We now
provide an additional proposition characterizing the comparative statics of our extended
model away from α̃= 0.

PROPOSITION 7: Suppose that investors are risk averse and/or θ < θ̄. There exists a thresh-
old ᾱ ∈ (0�1] such that, for α̃ < ᾱ, the balanced-growth equilibrium in the closed economy is
unique, and following an increase in α̃, we have that:

• The return to wealth r∗W , the return gap r∗W − ρ− σg, and the return spread r∗K − r∗B all
strictly increase, and the portfolio share of capital κ∗ weakly increases;

• Top tail inequality 1/ζ∗ in (15) strictly increases.
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FIGURE B.2.—Effects of changes in the demand for capital on r∗W and r∗B .

PROOF OF PROPOSITION 7: Let r̄W denote the point at which rW − rB is maximized
along the locus DB(rW � rB) = 0. This definition implies that r̄W = ρ+ σ (p+ g) if γν2 < γ̄,
and r̄W < ρ+ σ (p+ g) if γν2 > γ̄.

We first show that there exists a threshold ᾱ such that, for α̃ < ᾱ, there is a unique
equilibrium, and this equilibrium satisfies r∗W < r̄W .

Suppose there are multiple equilibria, and let rMW (̃α) denote the value of r∗W in the equi-
librium with the highest return to wealth. In this equilibrium, the locus for DK(rW � rB)
cuts the locus for DB(rW � rB) from below, and so an increase in α̃ shifting the locus for
DK(rW � rB) outwards results in a higher rMW (̃α). Moreover, as α̃ → 0, rMW (̃α) → ρ + σg,
which implies that for small values of all α̃, we have r∗W < r̄W in any equilibria. Finally,
note that as α̃→ 0, the locus for DK(rW � rB) converges to the 45-degree line and so we
will have a unique equilibrium. This follows from the fact that, as shown in Lemma 5, the
locus for DB(rW � rB) = 0 moves away from the 45-degree line for rW ∈ (ρ+ σg� r̆W ), and
retains a gap of at least 1

2 (σ + 1)γν2 from there on. It follows that we can pick a ᾱ such
that, for α̃ < ᾱ, the equilibrium is unique and satisfies r∗W < r̄W .

For α̃ < ᾱ, the equilibrium will look as in Figure B.2, and increases in α̃ will result in
a higher r∗W . Moreover, because r∗W < r̄W , we have that the gap r∗K − r∗B rises following an
increase in automation (so long as α̃ remains below ᾱ). Q.E.D.
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