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APPENDIX A: INTRODUCTION

IN THIS ONLINE APPENDIX, we report the detailed derivations for our baseline model
with a single traded sector from Section 2 of the paper.

APPENDIX B: BASELINE DYNAMIC SPATIAL MODEL

The model environment is summarized in Table I in the paper. We begin by providing
additional derivations for capital accumulation decisions.

B.1. Capital Accumulation

Combining landlords’ intertemporal utility (5) and budget constraint (6), the landlord’s
intertemporal optimization problem is

max
{ckit+s�kit+s+1}∞

s=0

Et

∞∑
s=0

βt+s
(
ckit+s

)1−1/ψ

1 − 1/ψ
�

subject to pitckit +pit
(
kit+1 − (1 − δ)kit

) = ritkit � (B.1)

LEMMA—Lemma 1 in the Paper: We denote Rit ≡ 1 − δ+ rit/pit as the gross return on
capital. The optimal consumption of location i’s landlords satisfies cit = ςitRitkit , where ςit is
defined recursively as

ς−1
it = 1 +βψ(Et[Rψ−1

ψ

it+1ς
− 1
ψ

it+1

])ψ
�

Landlord’s optimal saving and investment satisfies kit+1 = (1 − ςit)Ritkit .
PROOF: For notational simplicity, we drop the locational subscript. Consider a landlord

facing linear returnsRt on wealth kt for all t. Let v(kt; t) denote the value function at time
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t; we can rewrite the landlord’s consumption-saving problem recursively as

v(kt; t) = max
{ct �kt+1}

c1−1/ψ
t

1 − 1/ψ
+βEtv(kt+1; t + 1) s.t. ct + kt+1 =Rtkt�

where, with a slight abuse of notation, we denote landlord consumption as c instead of
ck for the purpose of this proof. We guess and verify that there exists at , ςt such that
v(k; t) = (atRtkt )1−1/ψ

1−1/ψ , and that optimal ct = ςtRtkt .
Under the conjecture, vk(kt; t) = a

1−1/ψ
t R

1−1/ψ
t k

−1/ψ
t

1−1/ψ , we set up the Lagrangian as

Lt = c1−1/ψ
t

1 − 1/ψ
+βEtv(kt+1; t + 1) + ξt[Rtkt − ct − kt+1]�

The first-order conditions imply

{ct} c−1/ψ
t = ξt�

{kt+1} ξt = βk−1/ψ
t+1 Et

[
a1−1/ψ
t+1 R1−1/ψ

t+1

]
�

Hence,

ct = β−ψkt+1Et
[
a1−1/ψ
t+1 R1−1/ψ

t+1

]−ψ
� (B.2)

The envelope condition vk(kt; t) = ξtRt implies

a1−1/ψ
t R1−1/ψ

t k−1/ψ
t = c−1/ψ

t Rt� (B.3)

Substituting our guess that ct ≡ ςtRtkt into the envelope condition (B.3), we obtain

a1−ψ
t = ςt�

The budget constraint implies kt+1 = (1 − ςt)Rtkt , and substituting this result into (B.2),
we get

ςt = β−ψEt
[
a1−1/ψ
t+1 R1−1/ψ

t+1

]−ψ
(1 − ςt)

⇐⇒ ς−1
t = 1 +βψEt

[
R

ψ−1
ψ

t+1 ς
−1/ψ
t+1

]ψ
� (B.4)

Q.E.D.

In the special case of logarithmic flow utility (ψ= 1), landlord’s optimal consumption
and saving rate is independent of future returns to capital, and ςt = (1 −β) for all t, as in
Moll (2014).

B.2. Existence and Uniqueness (Proof of Proposition 1 in the Paper)

We now use the system of general equilibrium equations (10)–(16) in the paper to char-
acterize the existence and uniqueness of a deterministic steady-state equilibrium with
time-invariant fundamentals {zi� bi� τni� κni} and endogenous variables {v∗

i �w
∗
i �R

∗
i � �

∗
i � k

∗
i}.

Given these time-invariant fundamentals, we can drop the expectation over future funda-
mentals, such that Etvwgt+1 = vwgt+1.
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B.2.1. Capital Labor Ratio

In steady state, kit+1 = kit = k∗
i , c

k
it+1 = ckit = ck∗

i , and ςit+1 = ςit = ς∗
i , which implies 1 −

ς∗
i = β. Using these results and the capital accumulation condition in equation (11) in the

paper, we can solve for the steady-state capital-labor ratio:

k∗
i

�∗
i

= β

1 −β(1 − δ)
1 −μ
μ

w∗
i

p∗
i

� (B.5)

B.2.2. Price Index

Using this result for the steady-state capital-labor ratio, we can rewrite the price index
in equation (10) in the paper as follows:

(
p∗
n

)−θ =
N∑
i=1

ζτ̃ni
(
w∗
i

)−θμ(
p∗
i

)−θ(1−μ)
�

ζ ≡
(

1 −β(1 − δ)
β

)−θ(1−μ)

� τ̃ni ≡ (τni/zi)−θ�

(B.6)

B.2.3. Goods Market Clearing Condition

Using this result for the steady-state capital-labor ratio, we can also rewrite the goods
market clearing condition in equation (12) in the paper as follows:

�∗
i

(
w∗
i

)1+θμ(
p∗
i

)θ(1−μ) =
N∑
n=1

ζτ̃ni
(
p∗
n

)θ
w∗
n�

∗
n� (B.7)

B.2.4. Value Function

The value function in equation (14) in the paper can be rewritten as follows:

exp
(
β

ρ
vw∗
n

)
=

(
w∗
n

p∗
n

)β/ρ

φβn � φn ≡
N∑
g=1

κ̃gn exp
(
β

ρ
vw∗
g

)
� (B.8)

Using this solution in the definition of φn immediately above, we have

φn =
N∑
g=1

κ̃gn
(
p∗
g

)−β/ρ(
w∗
g

)β/ρ
φβg � (B.9)

B.2.5. Population Flow Condition

The population flow condition in equation (15) in the paper can be rewritten as follows:

�∗
g =

N∑
i=1

κ̃gi exp
(
β

ρ
vw∗
g

)
φ−1
i �

∗
i � φi ≡

N∑
m=1

κ̃mi exp
(
β

ρ
vw∗
m

)
�

Now using the value function result (B.8) above, we have

(
p∗
g

)β/ρ(
w∗
g

)−β/ρ
�∗
gφ

−β
g =

N∑
i=1

κ̃gi�
∗
i φ

−1
i � (B.10)
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B.2.6. System of Equations

Collecting together these results, the steady-state equilibrium of the model {p∗
i �w

∗
i �

�∗
i �φ

∗
i} can be expressed as the solution to the following system of equations:

(
p∗
i

)−θ =
N∑
n=1

ζτ̃in
(
p∗
n

)−θ(1−μ)(
w∗
n

)−θμ
� (B.11)

(
p∗
i

)θ(1−μ)(
w∗
i

)1+θμ
�∗
i =

N∑
n=1

ζτ̃ni
(
p∗
n

)θ
w∗
n�

∗
n� (B.12)

(
p∗
i

)β/ρ(
w∗
i

)−β/ρ
�∗
i

(
φ∗
i

)−β =
N∑
n=1

κ̃in�
∗
n

(
φ∗
n

)−1
� (B.13)

φ∗
i =

N∑
n=1

κ̃ni
(
p∗
n

)−β/ρ(
w∗
n

)β/ρ(
φ∗
n

)β
� (B.14)

where we have the following definitions:

ζ ≡
(

1 −β(1 − δ)
β

)−θ(1−μ)

� τ̃ni ≡ (τni/zi)−θ�

φ∗
i ≡

N∑
n=1

κ̃ni exp
(
β

ρ
vw∗
n

)
� κ̃in ≡ (

κin/b
β
n

)−1/ρ
�

We now provide a sufficient condition for the existence of a unique steady-state equi-
librium in terms of the properties of a coefficient matrix (A) of model parameters
{ψ�θ�β�ρ�μ�δ} following the approach of Allen, Arkolakis, and Li (2020).

PROPOSITION—Existence and Uniqueness (Proposition 1 in the Paper): A sufficient
condition for the existence of a unique steady-state spatial distribution of economic activity
{�∗
i � k

∗
i �w

∗
i �R

∗
i � v

∗
i} (up to a choice of units) given time-invariant locational fundamentals

{z∗
i � b

∗
i � τ

∗
ni� κ

∗
ni} is that the spectral radius of a coefficient matrix (A) of model parameters

{ψ�θ�β�ρ�μ�δ} is less than or equal to one.

PROOF: We begin by deriving the sufficient condition for the existence a unique steady-
state spatial distribution of economic activity {�∗

i � k
∗
i �w

∗
i �R

∗
i � v

∗
i}. The exponents on the

variables on the left-hand side of the system of equations (B.11)–(B.14) can be repre-
sented as the following matrix:

�=
⎡⎢⎣ −θ 0 0 0
θ(1 −μ) (1 + θμ) 1 0
β/ρ −β/ρ 1 −β

0 0 0 1

⎤⎥⎦ �
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The exponents on the variables on the right-hand side of the system of equations (B.11)–
(B.14) can be represented as the following matrix:

� =
⎡⎢⎣−θ(1 −μ) −θμ 0 0

θ 1 1 0
0 0 1 −1

−β/ρ β/ρ 0 β

⎤⎥⎦ �
Let A≡ |��−1| and denote the spectral radius (eigenvalue with the largest absolute value)
of this matrix by ρ(A). From Theorem 1 in Allen, Arkolakis, and Li (2020), a sufficient
condition for the existence of a unique equilibrium (up to a choice of units) is ρ(A) ≤ 1.

We next derive a sharper sufficient condition for the case of quasi-symmetric trade and
migration costs: τ̃in = τ̃sinτ̃ai τ̃bn and κ̃in = κ̃sinκ̃ci κ̃dn , where τ̃sin = τ̃sni and κ̃sin = κ̃sni, as assumed
in our empirical application. In this case of quasi-symmetric trade and migration costs, we
can rewrite the system of equations (B.11)–(B.14) as follows:

p−θ
i

(̃
τai

)−1 =
N∑
n=1

τ̃sinτ̃
b
np

−θ
n q

−θμ
n � (B.15)

pθ−1
i q1+θμ

i �i
(̃
τbi

)−1 =
N∑
n=1

τ̃sinτ̃
a
np

θ−1
n qn�n� (B.16)

q−β/ρ
i �iφ

−β
i

(̃
κci

)−1 =
N∑
n=1

κ̃sinκ̃
d
n�nφ

−1
n � (B.17)

φi
(̃
κdi

)−1 =
N∑
n=1

κ̃sinκ̃
c
nq

β/ρ
n φβn � (B.18)

From equation (B.18), we know

1 =
N∑
n=1

κ̃sinκ̃
c
nq

β/ρ
n φβn

φi
(̃
κdi

)−1 �

Multiply the left-hand side of equation (B.17) by
∑N

n=1
κ̃sinκ̃

c
nq
β/ρ
n φ

β
n

φi (̃κdi )−1 , and move (̃κci )
−1φ−β

i ×
q−β/ρ
i to the right-hand side to obtain

N∑
n=1

κ̃sinκ̃
c
nq

β/ρ
n φβn

φi
(̃
κdi

)−1 �i =
N∑
n=1

κ̃sinκ̃
c
iφ

β
i q

β/ρ
i

φn
(̃
κdn

)−1 �n

⇐⇒ �iκ̃
d
i /φi

N∑
n=1

κ̃sin�nκ̃
d
n/φn

= κ̃ciφ
β
i q

β/ρ
i

N∑
n=1

κ̃sinκ̃
c
nq

β/ρ
n φβn

�



6 B. KLEINMAN, E. LIU, AND S. J. REDDING

Let γi ≡ �iκ̃
d
i /φi∑N

n=1 κ̃
s
in�nκ̃

d
n/φn

, then

�iκ̃
d
i /φi =

N∑
n=1

γiκ̃
s
in�nκ̃

d
n/φn�

κ̃ciφ
β
i q

β/ρ
i =

N∑
n=1

γiκ̃
s
inκ̃

c
nq

β/ρ
n φβn �

By the Perron–Frobenius theorem, �iκ̃di /φi = xκ̃ciφ
β
i q

β/ρ
i for some constant x. Since the

scale of �i is not pinned down by the system of equations—if {�i} is part of a solution to
the system of equations, so is {2�i}—we can without loss of generality set x= 1. Hence,

�i = κ̃ci
(̃
κdi

)−1
φ1+β
i qβ/ρi � (B.19)

Now we use the same strategy to reduce equations (B.15) and (B.16) down to one. Rewrite
equation (B.15) as

1 =
N∑
n=1

τ̃sinτ̃
b
np

−θ
n q

−θμ
n

p−θ
i

(̃
τai

)−1 �

Substitute (B.15) into equation (B.16), then multiply the left-hand side by
∑N

n=1
τ̃sinτ̃

b
np

−θ
n q

−θμ
n

p−θ
i (̃τai )−1 :

N∑
n=1

τ̃sinτ̃
b
np

−θ
n q

−θμ
n

p−θ
i

(̃
τai

)−1 pθ−1
i q1+θμ+β/ρ

i φ1+β
i

(̃
τbi

)−1
κ̃ci

(̃
κdi

)−1 =
N∑
n=1

τ̃sinτ̃
a
np

θ−1
n φ1+β

n q1+β/ρ
n κ̃cn

(̃
κdn

)−1

⇐⇒ τ̃ai p
θ−1
i q1+β/ρ

i φ1+β
i κ̃ci

(̃
κdi

)−1

N∑
n=1

τ̃sinτ̃
a
np

θ−1
n φ1+β

n q1+β/ρ
n κ̃cn

(̃
κdn

)−1

= τ̃bi p
−θ
i q

−θμ
i

N∑
n=1

τ̃sinτ̃
b
np

−θ
n q

−θμ
n

�

Now let ϕi ≡ τ̃ai p
θ−1
i q

1+β/ρ
i φ

1+β
i κ̃ci (̃κdi )−1∑N

n=1 τ̃
s
inτ̃

a
np

θ−1
n φ

1+β
n q

1+β/ρ
n κ̃cn (̃κdn)−1

. We know

τ̃ai p
θ−1
i q1+β/ρ

i φ1+β
i κ̃ci

(̃
κdi

)−1 =
N∑
n=1

ϕiτ̃
s
inτ̃

a
np

θ−1
n φ1+β

n q1+β/ρ
n κ̃cn

(̃
κdn

)−1
�

τ̃bi p
−θ
i q

−θμ
i =

N∑
n=1

ϕiτ̃
s
inτ̃

b
np

−θ
n q

−θμ
n �

Again by the Perron–Frobenius theorem, τ̃ai p
θ−1
i q1+β/ρ

i φ1+β
i κ̃ci (̃κ

d
i )

−1 = yτ̃bi p
−θ
i q

−θμ
i for

some constant y . Since pi is a nominal variable, we can without loss of generality set
y = 1. Hence,

pθ−1
i q1+β/ρ

i φ1+β
i τ̃ai κ̃

c
i

(̃
κdi

)−1(̃
τbi

)−1 = p−θ
i q

−θμ
i

⇐⇒ p−θ
i = q−θ 1+β/ρ+θμ

1−2θ
i φ

−θ 1+β
1−2θ

i ei� (B.20)

where ei ≡ (̃τai κ̃
c
i (d̃

d
i )−1 (̃τbi )

−1)
−θ

1−2θ .
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Now substitute (B.19) and (B.20) into (B.15) and (B.18):

q
−θ 1+β/ρ+θμ

1−2θ
i φ

−θ 1+β
1−2θ

i ei
(̃
τai

)−1 =
N∑
n=1

τ̃sinτ̃
b
nq

−θ 1+β/ρ+θμ
1−2θ −θμ

n φ
−θ 1+β

1−2θ
n en�

φi
(
κdi

)−1 =
N∑
n=1

κ̃sinκ̃
c
nq

β/ρ
n φβn �

We now have two sets of equations in two sets of endogenous variables qi, φi. We now
again apply Theorem 1 in Allen, Arkolakis, and Li (2020) for this system of two equations:

�=
⎡⎣−θ1 + θμ+β/ρ

1 − 2θ
−θ 1 +β

1 − 2θ
0 1

⎤⎦ �
� =

⎡⎣−θ1 + θμ+β/ρ
1 − 2θ

− θμ −θ 1 +β
1 − 2θ

β/ρ β

⎤⎦ �

A≡ ∣∣��−1∣∣ =

∣∣∣∣∣∣∣∣
⎡⎢⎢⎣
β+ ρ+μρ−μρθ
β+ ρ+μρθ

μρθ(β+ 1)
β+ ρ+μρθ

β(2θ− 1)
θ(β+ ρ+μρθ)

β− β(β+ 1)
β+ ρ+μρθ

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣ � Q.E.D.

A sufficient condition for a unique equilibrium is again that the spectral radius of A is
less than or equal to one (ρ(A) ≤ 1), which is satisfied for our baseline parameter values
and symmetric trade and migration costs in our empirical application.

B.3. Dynamic Exact-Hat Algebra (Proof of Proposition 2 in the Paper)

Given an initial allocation of the economy ({li0}Ni=1�{ki0}
N
i=1�{ki1}

N
i=1�{Sni0}

N
n�i=1�

{Dni�−1}Nn�i=1), and an anticipated sequence of changes in fundamentals, {{żit}Ni=1�{ḃit}
N
i=1�

{τ̇ijt}Ni�j=1�{κ̇ijt}
N
i�j=1}

∞
t=1, the solution to the sequential equilibrium in time differences solves

the following system of nonlinear equations:

Ḋigt+1 = u̇gt+2/(κ̇git+1)1/ρ

N∑
m=1

Dimtu̇mt+2/(κ̇mit+1)1/ρ

�

u̇it+1 =
(
ḃit+1

ẇit+1

ṗit+1

) β
ρ

(
N∑
g=1

Digtu̇gt+2/(κ̇git+1)
1
ρ

)β

�

ṗit+1 =
(

N∑
m=1

Simt
(
τ̇imt+1ẇmt+1(l̇mt+1/k̇mt+1)1−μ/żmt+1

)−θ
)−1/θ

�

�gt+1 =
N∑
i=1

Digt�it�
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ẇit+1�̇it+1 =
N∑
n=1

Snit+1wnt�nt
N∑
k=1

Skitwkt�kt

ẇnt+1�̇nt+1�

Ṡnit+1 ≡
(
τ̇nit+1ẇit+1(l̇it+1/k̇it+1)1−μ/żit+1

)−θ

N∑
k=1

Snkt
(
τ̇nkt+1ẇkt+1(l̇kt+1/k̇kt+1)1−μ/żkt+1

)−θ
�

ςit+1 = βψRψ−1
it+1

ςit

1 − ςit �

kit+1 = (1 − ςit)Ritkit�(
Rit − (1 − δ)

) = ṗit+1k̇it+1

ẇit+1 l̇it+1

(
Rit+1 − (1 − δ)

)
�

where we define uit ≡ exp(β
ρ
vwit ),1 and we use a dot above a variable to denote a time

difference: ẋit+1 = xit+1/xit . Note that the solution to this system of equations does not
require information on the level of fundamentals, {{zit}Ni=1�{bit}

N
i=1�{τijt}

N
i�j=1�{κijt}

N
i�j=1}

∞
t=0.

B.4. Linearization

We now derive our main linearization results for the comparative statics of the econ-
omy’s steady state and its transition path.

B.4.1. Comparative Statics

Expenditure Shares. Totally differentiating expenditure shares (snt), we get

d lnSnit = θ
(

N∑
h=1

Snht d lnpnht − d lnpnit

)
� (B.21)

Prices. Totally differentiating the pricing rule from equation (2) in the paper, using
equation (9) in the paper, we have

d lnpnit = d lnτnit + d lnwit − (1 −μ) d lnχit − d lnzit � (B.22)

Price Indices. Totally differentiating the price index in equation (4) in the paper, we
have

d lnpnt =
N∑
m=1

Snmt d lnpnmt� (B.23)

1Note that we express the set of equilibrium conditions in terms of transformed worker utility uit ≡
exp( β

ρ
vwit ), whereas in Caliendo, Dvorkin, and Parro (2019), the equilibrium conditions are expressed in terms

of exp(vwit ).
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Real Income. Totally differentiating real income, we have

d ln
(
wit

pit

)
= d lnwit −

N∑
m=1

Snmt
[
d lnτnmt + d lnwmt − (1 −μ) d lnχmt − d lnzmt

]
� (B.24)

Migration Shares. Totally differentiating the outmigration share in equation (16) in the
paper, we get

d lnDigt = 1
ρ

[
(βEt dvgt+1 − d lnκgit) −

N∑
h=1

Diht (βEt dvht+1 − d lnκhit)

]
� (B.25)

Goods Market Clearing. Totally differentiating the goods market clearing condition
from equation (12) in the paper, and using equations (B.21) and (B.22), we have

[d lnwit + d ln�it] =
[

N∑
n=1

Tint (d lnwnt + d ln�nt)

+ θ
N∑
n=1

N∑
m=1

TintSnmt
(
d lnτnmt + d lnwmt

− (1 −μ) d lnχmt − d lnzmt
)

− θ
N∑
n=1

Tint
(
d lnτnit + d lnwit − (1 −μ) d lnχit − d lnzit

)]
�

Tint ≡ Snitwnt�nt

wit�it
�

(B.26)

Population Flow. Totally differentiating the population flow condition in equation (15)
in the paper we have

d ln�gt+1 =
N∑
i=1

Egit

[
d ln�it + 1

ρ

(
βEt dvgt+1 − d lnκgi

−
N∑
m=1

Dimt (βEt dvmt+1 − d lnκmit)

)]
� (B.27)

Value Function. Totally differentiating the value function, we have

dvit = −1
θ

d lnSiit + d lnwit − d lnpiit + d lnbit +βEt dvit+1 − ρd lnDiit �

Using the total derivatives of d lnSiit and d lnDiit in this expression for dvit above, we have

dvit =
[

d lnwit −
N∑
m=1

Simt d lnpimt

+ d lnbit +
N∑
m=1

Dimt (βEt dvmt+1 − d lnκmit)

]
�
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where we have used d lnκiit = 0. Using the total derivative of the pricing rule (B.22), we
can rewrite this derivative of the value function as follows:

dvit =
[

d lnwit −
N∑
m=1

Simt
(
d lnτnmt + d lnwmt − (1 −μ) d lnχmt − d lnzmt

)
+ d lnbit +

N∑
m=1

Dimt (βEt dvmt+1 − d lnκmit)

]
� (B.28)

B.4.2. Steady-State Sufficient Statistics

Suppose that the economy starts from an initial steady state with constant values
of the endogenous variables: kit+1 = kit = k∗

i , �it+1 = �it = �∗
i , w

∗
it+1 = w∗

it = w∗
i , and

v∗
it+1 = v∗

it = v∗
i , where we use an asterisk to denote a steady-state value, and drop the

time subscript for the remainder of this subsection, since we are concerned with steady
states. We consider small shocks to productivity (d lnz) and amenities (d lnb) in each
location, holding constant the economy’s aggregate labor endowment (d ln� = 0), trade
costs (d lnτ = 0), and commuting costs (d lnκ = 0).

Capital Accumulation. From the capital accumulation equation (11) in the paper, the
steady-state stock of capital solves(

1 −β(1 − δ)
)
χ∗
i = (

1 −β(1 − δ)
)k∗

i

�∗
i

= β1 −μ
μ

w∗
i

p∗
i

�

Totally differentiating, we have

d lnχ∗
i = d ln

(
w∗
i

p∗
i

)
�

Using the total derivative of real income (B.24) above, this becomes

d lnχ∗
i = d lnw∗

i −
N∑
m=1

S∗
im

[
d lnw∗

m − (1 −μ) d lnχ∗
m − d lnzm

]
�

where we have used and d lnτnm = 0. This relationship has the matrix representation:(
I − (1 −μ)S

)
d lnχ∗ = (I − S) d lnw∗ + Sd lnz� (B.29)

Goods Market Clearing. The total derivative of the goods market clearing condition
(B.26) has the following matrix representation:

d lnwt + d ln�t = T (d lnwt + d ln�t) + θ(TS− I)
(
d lnwt − (1 −μ) d lnχt − d lnz

)
�

where we have used d lnτ = 0. We can rewrite this relationship as[
I − T + θ(I − TS)

]
d lnwt = −(I − T) d ln�t + θ(I − TS)

(
d lnz+ (1 −μ) d lnχt

)
�

In steady state, we have[
I − T + θ(I − TS)

]
d lnw∗

= [−(I − T) d ln�∗ + θ(I − TS)
(
d lnz+ (1 −μ) d lnχ∗)]� (B.30)
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Population Flow. The total derivative of the population flow condition (B.27) has the
following matrix representation:

d ln�t+1 =Ed ln�t + β

ρ
(I −ED) dvt+1�

In steady state, we have

d ln�∗ =Ed ln�∗ + β

ρ
(I −ED) dv∗� (B.31)

Value Function. The total derivative of the value function (B.28) has the following
matrix representation:

dvt = (I − S) d lnwt + S
(
d lnz+ (1 −μ) d lnχt

) + d lnb+βDdvt+1�

where we have used d lnτ = d lnκ = 0. In steady state, we have

dv∗ = (I − S) d lnw∗ + S
(
d lnz+ (1 −μ) d lnχ∗) + d lnb+βDdv∗� (B.32)

System of Steady-State Equations. Collecting together the system of steady-state equa-
tions, we have

d lnχ∗ = (
I − (1 −μ)S

)−1(
(I − S) d lnw∗ + Sd lnz

)
� (B.33)

d lnw∗ = (
I − T + θ(I − TS)

)−1

× (−(I − T) d ln�∗ + (I − TS)θ
(
d lnz+ (1 −μ) d lnχ∗))� (B.34)

d ln�∗ = β

ρ
(I −E)−1(I −ED) dv∗� (B.35)

dv∗ = (I −βD)−1
{
d lnw∗ − S

(
d lnw∗ − d lnz− (1 −μ) d lnχ∗) + d lnb

}
�(B.36)

B.4.3. Steady-State Elasticities

We now use equation (B.33) to substitute for d lnχ∗ in the value function (B.36) to
obtain

dv∗ = (I −βD)−1
{
d lnw∗ − S

(
d lnw∗ − d lnz− (1 −μ) d lnχ∗) + d lnb

}
= (I −βD)−1

{
(I − S) d lnw∗ + Sd lnz+ S(1 −μ) d lnχ∗ + d lnb

}
= (I −βD)−1

(
I + S(1 −μ)

(
I − (1 −μ)S

)−1)[
(I − S) d lnw∗ + Sd lnz+ d lnb

]
= (I −βD)−1

[
d lnb+ (

I − (1 −μ)S
)−1(

(I − S) d lnw∗ + Sd lnz
)]
� (B.37)

We now use equation (B.33) to substitute for d lnχ∗ in the wage equation (B.34) to obtain(
I − T + θ(I − TS)

)
d lnw∗

= −(I − T) d ln�∗ + (I − TS)θ
(
d lnz+ (1 −μ) d lnχ∗)�(

I − T + θ(I − TS)
)

d lnw∗
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= [−(I − T) d ln�∗ + (I − TS)θd lnz

+ (I − TS)θ(1 −μ)
(
I − (1 −μ)S

)−1(
(I − S) d lnw∗ + Sd lnz

)]
�(

I − T + θ(I − TS)
)

d lnw∗

= [−(I − T) d ln�∗ + (I − TS)θ
(
I + (

I − (1 −μ)S
)−1

(1 −μ)S
)

d lnz

+ (I − TS)θ(1 −μ)
(
I − (1 −μ)S

)−1
(I − S) d lnw∗]�(

I − T + θ(I − TS)
)

d lnw∗

= −(I − T) d ln�∗ + (I − TS)θ
(
d lnz+ (1 −μ) dχ∗)

= −(I − T) d ln�∗ + (I − TS)θd lnz

+ (I − TS)θ(1 −μ)
(
I − (1 −μ)S

)−1(
(I − S) d lnw∗ + Sd lnz

)
= −(I − T) d ln�∗ + (I − TS)θ

(
I + (

I − (1 −μ)S
)−1

(1 −μ)S
)

d lnz

+ (I − TS)θ(1 −μ)
(
I − (1 −μ)S

)−1
(I − S) d lnw∗(

I − T + θ(I − TS)
(
I − (1 −μ)

(
I − (1 −μ)S

)−1
(I − S)

))
d lnw∗

= −(I − T) d ln�∗ + θ(I − TS)
(
I − (1 −μ)S

)−1
d lnz�(

I − T + θ(I − TS)
((
I − (1 −μ)S

)−1 − (1 −μ)
(
I − (1 −μ)S

)−1))
d lnw∗

= −(I − T) d ln�∗ + θ(I − TS)
(
I − (1 −μ)S

)−1
d lnz�(

I − T + θ(I − TS)μ
(
I − (1 −μ)S

)−1)
d lnw∗

= −(I − T) d ln�∗ + θ(I − TS)
(
I − (1 −μ)S

)−1
d lnz� (B.38)

Collecting together the capital accumulation equation (B.33), the population equation
(B.35), the value function (B.37), and the wage equation (B.38), we have

dv∗ = (I −βD)−1
[
d lnb+ (

I − (1 −μ)S
)−1(

(I − S) d lnw∗ + Sd lnz
)]
� (B.39)

d lnw∗ = [
I − T + θ(I − TS)μ

(
I − (1 −μ)S

)−1]−1[−(I − T) d ln�∗

+ θ(I − TS)
(
I − (1 −μ)S

)−1
d lnz

]
� (B.40)

d lnχ∗ = (
I − (1 −μ)S

)−1[
(I − S) d lnw∗ + Sd lnz

]
� (B.41)

d ln�∗ = β

ρ
(I −E)−1(I −ED) dv∗� (B.42)

We now show that we can further simplify this system of equations. We begin by defining
the following composite matrices:

G≡ (I −E)−1(I −ED)(I −βD)−1�

O≡ (
I − (1 −μ)S

)−1
� (B.43)
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M ≡ (TS− I)�

which implies the following relationships:

I + (1 −μ)SO =O�

I − (1 −μ)O(I − S) = I + (1 −μ)OS− (1 −μ)O= μO�
Using these definitions and relationships, we can rewrite the wage equation (B.40) as

(I − T − θM) d lnw∗

= −(I − T) d ln�∗ − θM[
d lnz+ (1 −μ)O(I − S) d lnw∗ + (1 −μ)OSd lnz

]
�[

I − T − θM(
I − (1 −μ)O(I − S)

)]
d lnw∗

= −(I − T) d ln�∗ − θMOd lnz�

d lnw∗ = [
I − T + θ(I − TS)μ

(
I − (1 − λ)S

)−1]−1[−(I − T) d ln�∗

+ θ(I − TS)
(
I − (1 −μ)S

)−1
d lnz

]
�

d lnw∗ = [I − T − θμMO]−1
[−(I − T) d ln�∗ − θMOd lnz

]
� (B.44)

Using the value function (B.39), we can rewrite the employment equation (B.42) as

d ln�∗ = β

ρ
(I −E)−1(I −ED)(I −βD)−1

× [
d lnb+ (

I − (1 −μ)S
)−1[

(I − S) d lnw∗ + Sd lnz
]]
�

Using the capital accumulation equation (B.41) and our definitions (B.43), we can further
rewrite this employment equation as

d ln�∗ = β

ρ
G

[
d lnχ∗ + d lnb

]
� (B.45)

Using the definitions (B.43), we can rewrite the capital accumulation equation (B.41) as
follows:

d lnχ∗ =O

[
(I − S)(I − T − θMμO)−1

(
−(I − T)

β

ρ
G

[
d lnχ∗ + d lnb

] − θMOd lnz
)

+ Sd lnz
]
�[

I +O(I − S)(I − T − θMμO)−1(I − T)
β

ρ
G

]
d lnχ∗

= [[
OS− θO(I − S)(I − T − θMμO)−1MO

]
d lnz

−O(I − S)(I − T − θMμO)−1(I − T)
β

ρ
Gd lnb

]
� (B.46)
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We thus obtain the following representation of the steady-state elasticity of the endoge-
nous variables in each location with respect to a shock in any location (omitted from the
paper for brevity).

PROPOSITION A.1: The general equilibrium response of the steady-state distribution of
economic activity {w∗

i � v
∗
i � �

∗
i � k

∗
i} to small productivity (d lnz) and amenity shocks (d lnb) is

uniquely determined by the matrices {Lz∗�Kz∗�W z∗�V z∗�Lb∗�Kb∗�W b∗�V b∗}, which depend
solely on the structural parameters {ψ�θ�β�ρ�μ�δ} and the observed matrices of expenditure
shares (S), income shares (T), outmigration shares (D), and inmigration shares (E):⎡⎢⎣d ln�∗

d lnk∗

d lnw∗

d lnv∗

⎤⎥⎦ =
⎡⎢⎣Lz∗

Kz∗

W z∗

V z∗

⎤⎥⎦ d lnz+

⎡⎢⎢⎣
Lb∗

Kb∗

W b∗

V b∗

⎤⎥⎥⎦ d lnb� (B.47)

PROOF: The proposition follows from the value function (B.39), wage equation (B.44),
population equation (B.45), and capital-labor equation (B.46). In particular, from the
population equation (B.45) and the capital-labor equation (B.46), we have

Lz∗ ≡ β

ρ
G

[
I +O(I − S)(I − T − θMμO)−1(I − T)

β

ρ
G

]−1

× (
OS− θO(I − S)(I − T − θMμO)−1MO

)
�

Lb∗ ≡ β

ρ
G− β

ρ
G

[
I +O(I − S)(I − T − θMμO)−1(I − T)

β

ρ
G

]−1

×O(I − S)(I − T − θMμO)−1(I − T)
β

ρ
G�

From the capital-labor equation (B.46) and population equation (B.45), we have

Kz∗ ≡
[
I + β

ρ
G

][
I +O(I − S)(I − T − θMμO)−1(I − T)

β

ρ
G

]−1

× (
OS− θO(I − S)(I − T − θMμO)−1MO

)
�

Kb∗ ≡ Lb∗ −
[
I +O(I − S)(I − T − θMμO)−1(I − T)

β

ρ
G

]−1

×O(I − S)(I − T − θMμO)−1(I − T)
β

ρ
G�

From the wage equation (B.44) and population equation (B.45), we have

W z∗ ≡ [I − T − θMμO]−1
[−(I − T)Lz∗ − θMO

]
�

W b∗ ≡ [I − T − θMμO]−1
[−(I − T)Lb∗]�

From the value function (B.39) and the wage equation (B.44), we have

V z∗ ≡ (I −βD)−1
(
I − (1 −μ)S

)−1[
(I − S)W z∗ + S

]
�
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V b∗ ≡ (I −βD)−1 + (I −βD)−1
(
I − (1 −μ)S

)−1
(I − S)W b∗�

Note that the matrices of steady-state elasticities {Lz∗�Kz∗�W z∗�V z∗�Lb∗�Kb∗�W b∗�V b∗}
are linear combinations of the structural parameters {ψ�θ�β�ρ�μ�δ} and the observed
matrices of expenditure shares (S), income shares (T), outmigration shares (D), and in-
migration shares (E). Therefore, the steady-state changes in the endogenous variables
{w∗

i � v
∗
i � �

∗
i � k

∗
i} in response to productivity and amenity shocks are unique (up to a choice

of numeraire for wages). Q.E.D.

As the expenditure shares (S) and income shares (T) are homogeneous of degree zero
in factor prices, we require a numeraire in order for solve for changes in wages. We choose
the total labor income of all locations as our numeraire (

∑N

i=1w
∗
i �

∗
i = ∑N

i=1 q
∗
i = q = 1),

which implies q∗ d lnq∗ = ∑N

i=1 q
∗
i d lnq∗

i = ∑N

i=1 q
∗
i

dq∗
i

q∗
i

= ∑N

i=1 dq∗
i = 0, where q∗ is a row

vector of the steady-state labor income of each location. Similarly, the outmigration
shares (D) and inmigration shares (E) are homogeneous of degree zero in the total pop-
ulation of all locations, which requires a choice of units to solve for population levels. We
solve for population shares, imposing the requirement that the population shares sum to
one:

∑N

i=1 �i = �= 1, which implies �∗ d ln�∗ = ∑N

i=1 �
∗
i d ln�∗

i = 0, where �∗ is a row vector
of the steady-state population of each location.

B.4.4. Derivations of the Linearized Equilibrium Conditions

We suppose that we observe the initial values of the state variables (�0, k0) and the trade
and migration share matrices (S, T , D, E) at time t = 0, which need not correspond to
a steady state of the model. Throughout the following, we use a tilde above a variable to
denote a log deviation from the steady state implied by the initial fundamentals (the “ini-
tial steady state”), such that χ̃it+1 = lnχit+1 − lnχ∗

i , for all variables except for the worker
value function vit ; with a slight abuse of notation, we use ṽit ≡ vit −v∗

i to denote the devia-
tion in levels for the worker value function. We consider stochastic shocks to productivity
(d lnzt) and amenities (d lnbt) in each location, holding constant the economy’s aggregate
labor endowment (d ln�= 0), trade costs (d lnτt = 0), and commuting costs (d lnκt = 0).

Population Flow (equation (20) in the Paper). The total derivative of the population
flow condition (B.27) relative to the initial steady state has the following matrix represen-
tation:

˜�t+1 = E˜�t + β

ρ
(I −ED)Et ṽt+1� (B.48)

Capital Accumulation (equation (18) in the Paper). Note that in a deterministic steady
state, βR∗ = 1, and ς∗−1 = 1 + βψ(R∗)ψ−1ς∗−1, thereby implying ς∗ = 1 − β. We now lin-
earize (B.4) relative to the deterministic steady state (let x̃t ≡ lnxt − lnx∗),

ς̃t ≈ −Et ln
1 +βψ(R∗)ψ−1(

Rt+1/R
∗)ψ−1

ς−1
t+1

1 +βς−1
t+1

= −Et ln
1 + β

1 −β
(
Rt+1/R

∗)ψ−1(
ςt+1/ς

∗)−1

1 +β/(1 −β)
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≈ −Et ln
(
1 +β((

Rt+1/R
∗)ψ−1 − 1

) +β((
ςt+1/ς

∗)−1 − 1
))

= βEt ς̃t+1 − (ψ− 1)βEt R̃t+1�

c̃t = k̃t + R̃t + ς̃t = k̃t + R̃t − (ψ− 1)Et
∞∑
s=1

βsR̃t+s�

k̃t+1 = k̃t + R̃t + ˜(1 − ς t) = k̃t + R̃t − 1 −β
β

ς̃ t

= k̃t + R̃t + 1 −β
β

(ψ− 1)Et
∞∑
s=1

βsR̃t+s� (B.49)

We now derive R̃t+s. Note Rit = 1 − δ + rit/pit , and we know in steady state β(1 − δ +
r∗/p∗) = 1 and r∗/p∗ = β−1 + δ− 1. Thus,

R̃it = ln(
1 − δ+ rit/pit
1 − δ+ r∗/p∗ )

= ln(β(1 − δ+ r∗(rit/r∗ − 1 + 1)(p∗−1(p∗/pit − 1 + 1))))

≈ ln(1 +βr∗/p∗((rit/r∗ − 1) + (p∗−1(p∗/pit − 1)))) = βr∗/p∗ (̃rit − p̃it)
= (1 −β(1 − δ))(̃rit − p̃it) = (1 −β(1 − δ))(w̃it − p̃it − χ̃it)� (B.50)

where we have used χit ≡ kit/�it and rit = 1−μ
μ
wit�it/kit . Note (B.49) and (B.50) imply

k̃t+1 = k̃t +
(
1 −β(1 − δ)

)
×

[
(w̃t − p̃t − χ̃t) + 1 −β

β
(ψ− 1)Et

∞∑
s=1

βs(w̃t+s − p̃t+s − χ̃t+s)

]
� (B.51)

Value Function (equation (21) in the Paper). The total derivative of the value function
(B.28) relative to the initial steady state has the following matrix representation:

ṽt = w̃t − p̃t + ˜bt +βDEt ṽt+1� (B.52)

Goods Market Clearing (equation (19) in the Paper). The total derivative of the goods
market clearing condition (B.26) relative to the initial steady state has the following ma-
trix representation:

w̃t + ˜�t = T (w̃t + ˜�t) + θ(TS− I)
(
w̃t − (1 −μ)χ̃t − z̃t

)
�

where we have used d lnτ = 0. We can rewrite this relationship as[
I − T + θ(I − TS)

]
w̃t =

[−(I − T)˜�t + θ(I − TS)
(
z̃t + (1 −μ)χ̃t

)]
� (B.53)

Price Index (equation (17) in the Paper). We obtain the equation (17) by substituting
(B.22) into (B.23) and stack into a matrix to obtain

p̃t = S
(
w̃t − z̃t − (1 −μ)(˜kt − ˜�t)

)
� (B.54)
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System of Equations for Transition Dynamics Relative to the Initial Steady State. Col-
lecting together capital dynamics (B.51), goods market clearing (B.53), the population
flow condition (B.48), the value function (B.52), and the price index equation (B.54), the
system of equations for the transition dynamics relative to the initial steady state is

k̃t+1 = k̃t +
(
1 −β(1 − δ)

)
(w̃t − p̃t − k̃t + �̃t)

+ (
1 −β(1 − δ)

)1 −β
β

(ψ− 1)Et
∞∑
s=1

βs(w̃t+s − p̃t+s − k̃t+s + �̃t+s)� (B.55)

w̃t = [
I − T + θ(I − TS)

]−1[−(I − T)˜�t + θ(I − TS)
(
z̃t + (1 −μ)χ̃t

)]
� (B.56)

˜�t+1 = E˜�t + β

ρ
(I −ED)Et ṽt+1� (B.57)

ṽt = (I − S)w̃t + Sz̃t + (1 −μ)Sχ̃t + ˜bt +βDEt ṽt+1� (B.58)

p̃t = S
(
w̃t − z̃t − (1 −μ)(˜kt − ˜�t)

)
� (B.59)

B.4.5. Equilibrium Conditions in Terms of the State Variables

We now reexpress the equilibrium conditions (B.55) through (B.59) and solve for the
law of motion of the endogenous state variables (�t and kt). For notational convenience,
we reexpress the state variables as labor and the capital-labor ratio (�t and χt), but note
that a law of motion for capital can always recovered since kit = �itχit . We begin by using
the wage equation (B.56) to substitute for d ln w̃t in the value function (B.58):

ṽt =
[
(I − S)

[
I − T + θ(I − TS)

]−1[−(I − T)˜�t

+ θ(I − TS)
(
z̃t + (1 −μ)χ̃t

)]
+ Sz̃t + (1 −μ)Sχ̃t + ˜bt +βDEt ṽt+1

]
�

ṽt =
[−(I − S)

[
I − T + θ(I − TS)

]−1
(I − T)˜�t

+ (1 −μ)
[
S+ θ(I − S)

[
I − T + θ(I − TS)

]−1
(I − TS)

]
χ̃t

+ [
S+ θ(I − S)

[
I − T + θ(I − TS)

]−1
(I − TS)

]
z̃t

+ ˜bt +βDEt ṽt+1

]

(B.60)

which can be rewritten more compactly as

ṽt =A˜�t +Bχ̃t +Cz̃t + ˜bt +βDEt ṽt+1�

A ≡ −(I − S)
[
I − T + θ(I − TS)

]−1
(I − T)�

B ≡ (1 −μ)
{
S+ θ(I − S)

[
I − T + θ(I − TS)

]−1
(I − TS)

}
�

C ≡ S+ θ(I − S)
[
I − T + θ(I − TS)

]−1
(I − TS)�

(B.61)
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Iterating equation (B.61) forward in time, we have

ṽt = Et

∞∑
s=0

(βD)s(A˜�t+s +Bχ̃t+s +Cz̃t+s + ˜bt+s)� (B.62)

Using equation (B.62) to substitute for ṽt+1 in equation (B.57), we obtain the following
autoregressive representation of the log deviations of population from steady-state value
(˜�t):

˜�t+1 −E˜�t =
[
β

ρ
(I −ED)Et

∞∑
s=0

(βD)s(A˜�t+s+1 +Bχ̃t+s+1 +Cz̃t+s+1 + ˜bt+s+1)

]
� (B.63)

Likewise, capital dynamics (B.55) can be rewritten as (noting w̃t − p̃t = Ã�t +Bχ̃t + C̃zt):

χ̃t+1 + �̃t+1 = χ̃t + �̃t +
(
1 −β(1 − δ)

)(
Ã�t + (B− I)χ̃t + C̃zt

)
+ (

1 −β(1 − δ)
)1 −β
β

(ψ− 1)

×Et

∞∑
s=1

βs
(
Ã�t+s + (B− I)χ̃t+s + C̃zt+s

)
� (B.64)

B.4.6. Proof of Proposition 3 in the Paper

We suppose that agents learn at time t = 0 about a one-time, unexpected, and perma-
nent change in productivity and amenities from time t = 1 onwards. Under this assump-
tion, we can write the sequence of future fundamentals (productivities and amenities)
relative to the initial level as (̃zt � b̃t) = (̃z� b̃) for t ≥ 1.

PROPOSITION—Transition Path (Proposition 3 in the Paper): There exists a 2N × 2N
transition matrix (P ) and a 2N×2N impact matrix (R) such that the second-order difference
equation system in equation (22) in the paper has a closed-form solution of the form:

x̃t+1 = Px̃t +R ˜ft for t ≥ 0� (B.65)

where x̃t =
[
�̃t
k̃t

]
is a 2N×2N vector of the state variables; ˜ft =

[ z̃t
˜bt

]
is a 2N×2N vector of the

shocks to fundamentals and {P �R} are 2N × 2N matrices that depend only on the structural
parameters {ψ�θ�β�ρ�μ�δ} and the observed trade and migration matrices {S�T�D�E}.

PROOF: We prove the proposition using the equivalent representation of �̃t and χ̃t ≡
k̃t − �̃t as the state variables, where χ̃t is the vector of capital-labor ratios in each location.
Since agents expect fundamentals to be constant for all t ≥ 1, we can drop the expectation
signs in equations (B.63) and (B.64) and write (̃zt � b̃t) = (̃z� b̃):

(I −ED)−1(˜�t+1 −E˜�t) = β

ρ

∞∑
s=0

(βD)s(A˜�t+s+1 +Bχ̃t+s+1 +Cz̃+ ˜b)� (B.66)

χ̃t+1 + �̃t+1 = χ̃t + �̃t +
(
1 −β(1 − δ)

)(
Ã�t + (B− I)χ̃t + C̃z

)
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+ (
1 −β(1 − δ)

)1 −β
β

(ψ− 1)

×
∞∑
s=1

βs
(
Ã�t+s + (B− I)χ̃t+s + C̃z

)
� (B.67)

Analogously,

(I −ED)−1(˜�t+2 −E˜�t+1) = β

ρ

∞∑
s=0

(βD)s(A˜�t+s+2 +Bχ̃t+s+2 +Cz̃+ ˜b)� (B.68)

χ̃t+2 + �̃t+2 = χ̃t+1 + �̃t+1 + (
1 −β(1 − δ)

)(
Ã�t+1 + (B− I)χ̃t+1 + C̃z

)
+ (

1 −β(1 − δ)
)1 −β
β

(ψ− 1)

×
∞∑
s=1

βs
(
Ã�t+s+1 + (B− I)χ̃t+s+1 + C̃z

)
� (B.69)

Multiply (B.68) by βD, subtract from (B.66), and rearrange to obtain

βD(I −ED)−1
˜�t+2 =

[[
βD(I −ED)−1E+ (I −ED)−1 − β

ρ
A

]
˜�t+1 − (I −ED)−1E˜�t

− β

ρ
Bχ̃t+1 − β

ρ
Cz̃− β

ρ
˜b

]
�

Likewise, multiply (B.69) by β, subtract from (B.67) to obtain

β(χ̃t+2 + �̃t+2) = (−I − (
1 −β(1 − δ)

)
A

)̃
�t +

(−I − (
1 −β(1 − δ)

)
(B− I)

)
χ̃t

+ (
(1 +β)I − (

1 −β(1 − δ)
)
(ψ− 1 −βψ)(B− I)

)
χ̃t+1

+ (
(1 +β)I − (

1 −β(1 − δ)
)
(ψ− 1 −βψ)A

)̃
�t+1

− (
1 −β(1 − δ)

)
ψ(1 −β)C̃z�

Stacking these two, second-order difference equations, we obtain[
βD(I −ED)−1 0

βI βI

][
˜�t+2

χ̃t+2

]
=

[
ϒ11 ϒ12

ϒ21 ϒ22

][
˜�t+1

χ̃t+1

]

+
[

11 0

21 
22

][
˜�t
χ̃t

]
+

⎡⎣−β
ρ
C −β

ρ
I

−H 0

⎤⎦[
z̃
˜b

]
� (B.70)

ϒ11 ≡ βD(I −ED)−1E+ (I −ED)−1 − β

ρ
A� ϒ12 ≡ −β

ρ
B�

ϒ21 ≡ [
(1 +β)I + (

1 −β(1 − δ)
)
(ψ− 1 −βψ)(I − S)

[
I − T + θ(I − TS)

]−1
(I − T)

]
�

ϒ22 ≡ [
(1 +β)I − {(

1 −β(1 − δ)
)
(ψ− 1 −βψ)
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× [
(1 −μ)

{
S+ θ(I − S)

[
I − T + θ(I − TS)

]−1
(I − TS)

} − I
]}]
�


11 ≡ −(I −ED)−1E�


21 ≡ −I + (
1 −β(1 − δ)

)
(I − S)

(
I − T + θ(I − TS)

)−1
(I − T)�


22 ≡ −I − (
1 −β(1 − δ)

)
× (

(1 −μ)
{
S+ θ(I − S)

(
I − T + θ(I − TS)

)−1
(I − TS)

} − I
)
�

H ≡ψ(1 −β)
(
1 −β(1 − δ)

)[
θ(I − S)

[
I − T + θ(I − TS)

]−1
(I − TS) + S

]
�

We first conjecture the linear closed-form solution (B.65) and substitute it into the
second-order difference equation (B.70) to obtain a matrix system of quadratic equations.
We next solve this matrix system of quadratic equations and confirm that our conjecture
of a linear closed-form solution is indeed satisfied. Using our conjecture (B.65) in the
system of second-order difference equations (B.70), we obtain

(
�P 2 − �P −


)[
˜�t
χ̃t

]
+ [

(�P +�− � )R−�
][

z̃
˜b

]
= 0�

�≡
[

(βD)(I −ED)−1 0
βI βI

]
� � ≡

[
ϒ11 ϒ12

ϒ21 ϒ22

]
� (B.71)


 ≡
[

11 0

21 
22

]
� � ≡

⎡⎣−β
ρ
C −β

ρ
I

−H 0

⎤⎦ �
For the system (B.71) to have a solution for

[
˜�t
χ̃t

] 
= 0 and
[
z̃
˜b

] 
= 0, we require

�P 2 − �P −
 = 0� (B.72)

R= (�P +�− � )−1�� (B.73)

Following Uhlig (1999), we can write this first condition (B.72) as the following gener-
alized eigenvector-eigenvalue problem, where e is a generalized eigenvector and ξ is a
generalized eigenvalue of 
 with respect to �:

ξ�e= 
e�

where


≡
[
� 

I 0

]
� � ≡

[
� 0
0 I

]
�

If eh is a generalized eigenvector and ξh is a generalized eigenvalue of 
 with respect to
�, then eh can be written for some h ∈ �N as

eh =
[
ξhēh
ēh

]
�

Assuming that the transition matrix has distinct eigenvalues, which we verify empirically,
there are 2N linearly independent generalized eigenvectors (e1� � � � � e2N) and correspond-
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ing stable eigenvalues (ξ1� � � � � ξ2N), and the transition matrix (P ) is given by

P =���−1�

where � is the diagonal matrix of the 2N eigenvalues and � is the matrix stacking the cor-
responding 2N eigenvectors {ēh}. The impact matrix (R) in the second condition (B.73)
can be recovered using

R= (�P +�− � )−1��

and our conjecture (B.65) is satisfied. Q.E.D.

B.4.7. Properties of the Transition Path

We now use the eigenvalue-eigenvector representation in Proposition 3 in the paper to
establish some properties of the transition path toward the new steady state.

B.4.8. Convergence Dynamics versus Fundamental Shocks

In particular, we now consider the case in which agents at time t = 0 learn of a perma-
nent change in fundamentals (z̃, ˜b) at time t = 1. From Proposition 3 in the paper and
equation (B.65) above, the initial impact of the productivity (̃z) and amenity (̃b) shocks in
the first period is

x̃1 =Rf̃ �

More generally, the impact of these productivity and amenity shocks in period t ≥ 1 is

x̃t+1 = Px̃t +Rf̃ =
(

t∑
s=0

P s

)
Rf̃ � (B.74)

If the spectral radius of P is less than one, a condition that we verify empirically, the
summation limt→∞

∑t

s=0 P
s converges, and we can rewrite the impact of the productivity

and amenity shocks in period t ≥ 1 as

x̃t+1 =
( ∞∑
s=0

P s −
∞∑

s=t+1

P s

)
Rf̃ = (

I − P t+1)(I − P )−1Rf̃ �

From this relationship, the new steady state must satisfy

lim
t→∞

x̃t = x∗
new − x̃∗

initial = (I − P )−1Rf̃ �

where (I − P )−1R coincides with the explicit solution for the changes in steady states in
Proposition A.1 in Online Appendix B.4.3:

(I − P )−1R=
[
Lz Lb

Kz Kb

]
�

Using Proposition 3 in the paper, we can also decompose the evolution of the spatial
distribution of economic activity across locations into the contributions of convergence
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toward steady state and shocks to fundamentals. In particular, from Proposition 3 in the
paper, we have

x̃t = P x̃t−1 +Rf̃ �

x̃t−1 = P x̃t−2 +Rf̃ �

x̃1 = P x̃0 +Rf̃ �

x̃0 = P x̃−1�

where the last equation at t = 0 differs from the others, because agents become aware at
time t = 0 of the shock to fundamentals a time t = 1, after they have migrated between
time t = −1 and time t = 0. Taking the difference between the equations for time t and
t − 1, we have

lnxt − lnxt−1 = P (lnxt−1 − lnxt−2) = P t−1(lnx1 − lnx0) = P t (lnx0 − lnx−1) + P t−1Rf̃ �

Therefore, we have

lnxt − lnx−1 = [lnxt − lnxt−1] + [lnxt−1 − lnxt−2] + · · ·
+ [lnx1 − lnx0] + [lnx0 − lnx−1]

= [
P t (lnx0 − lnx−1) + P t−1Rf̃

] + [
P t−1(lnx0 − lnx−1) + P t−2Rf̃

]
+ · · · + [

P (lnx0 − lnx−1) +Rf̃
] + [lnx0 − lnx−1]

=
t∑
s=0

P s(lnx0 − lnx−1) +
t−1∑
s=0

P sRf̃ � (B.75)

which corresponds to equation (24) in the paper.

B.4.9. Spectral Analysis of the Transition Matrix P

We now show that we can further characterize the economy’s transition path in terms
of the lower-dimensional components of the eigenvectors and eigenvalues of the transi-
tion matrix (P ). We have already shown that we can decompose the dynamic path of the
economy into one component capturing shocks to fundamentals and another component
capturing convergence to the initial steady state. Therefore, for the remainder of this
subsection, we focus for expositional simplicity on an economy that is initially in steady
state.

Eigendecomposition of the Transition Matrix. We use the eigendecomposition of the
transition matrix, P ≡ U�V , where � is a diagonal matrix of eigenvalues arranged in
decreasing order by absolute values, and V = U−1. For each eigenvalue λh, the hth column
of U (uh) and the hth row of V (v′

h) are the corresponding right and left eigenvectors of
P , respectively, such that

λhuh = Puh� λhv
′
h = v′

hP �
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That is, uh (v′
h) is the vector that, when left-multiplied (right-multiplied) by P , is propor-

tional to itself but scaled by the corresponding eigenvalue λh.2 We refer to uh simply as
eigenvectors. Both {uh} and {v′

h} are bases that span the 2N-dimensional vector space.
We next introduce a particular type of shock to productivity and amenities that proves

useful for characterizing the model’s transition dynamics. We define a non-trivial eigen-
shock as a shock to productivity and amenities ( ˜f (h)) for which the initial impact of these
shocks on the state variables (Rf̃ (h)) coincides with a real eigenvector of the transition
matrix (uh) or the zero vector. The eigenshock that corresponds to each eigenvector uh
can be recovered as f̃ (h) = �−1(�P + � − � )uh. Additionally, P has an eigenvector
u1 = [1� � � � �1�0� � � � �0]′ with a zero eigenvalue (λ1 = 0), because the population shares
sum to one, and thus one of the 2N dimensions of the state space is redundant. Recall
that all matrices involved in this operation and the eigenvectors of the transition matrix
(uh) can be computed using only our observed trade and migration share matrices (S, T ,
D, E) and the structural parameters of the model {ψ�θ�β�ρ�μ�δ}. Therefore, we can
solve for the eigenshocks from these observed data and the structural parameters of the
model.

Using our eigendecomposition and definition of an eigenshock, we can undertake a
spectral analysis of the economy’s dynamic response to shocks.

PROPOSITION—Spectral Analysis (Proposition 4 in the Paper): Consider an economy
that is initially in steady state at time t = 0 when agents learn about one-time, permanent
shocks to productivity and amenities ( ˜f = [

z̃
˜b

]
) from time t = 1 onwards. The transition path

of the state variables can be written as a linear combination the eigenvalues (λh) and eigen-
vectors (uh) of the transition matrix:

x̃t =
t−1∑
s=0

P sRf̃ =
2N∑
h=1

1 − λth
1 − λhuhv

′
hR

˜f =
2N∑
h=2

1 − λth
1 − λhuhah� (B.76)

where the weights in this linear combination (ah) can be recovered as the coefficients from a
linear projection (regression) of the observed shocks ( ˜f ) on the eigenshocks ( ˜f (h)).

PROOF: The proposition follows from the eigendecomposition of the transition matrix:
P ≡U�V , which implies Ps = ∑2N

h=1 λ
s
huhv

′
h, and hence

x̃t =
t−1∑
s=0

P sR ˜f =
t−1∑
s=0

(
2N∑
h=1

λshuhv
′
h

)
R ˜f =

2N∑
h=1

(
t−1∑
s=0

λsh

)
uhv

′
hR

˜f =
2N∑
h=1

1 − λth
1 − λh uhv

′
hR

˜f �

To decompose any observed shock f̃ as a linear combination a of the eigenshocks {̃f (h)},
let F denote the matrix whose hth column is the hth eigenshock. Then Fa= f̃ ⇐⇒ a =
(F ′F)−1Ff̃ , which implies that a can be recovered as the coefficients from a regression of
f̃ on the eigenshocks. Q.E.D.

We now show how this proposition can be used to characterize both the speed of con-
vergence to steady state and the heterogeneous impact of shocks across locations.

2Note that P need not be symmetric. This eigendecomposition exists if the transition matrix has distinct
eigenvalues, a condition that we verify is satisfied empirically. We construct the right eigenvectors such that
the 2-norm of uh is equal to 1 for all h, where note that v′

iuh = 1 if i= h and is equal to zero otherwise.
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Speed of Convergence. We measure the speed of convergence to steady state using the
conventional measure of the half-life. In particular, we define the half-life of a shock ˜f
for the ith state variable as the time it takes for that state variable to converge half of the
way to steady state:

arg max
t

|̃xit − x̃i∞|
max
s

|̃xis − x̃i∞| ≥ 1
2
� (B.77)

where x̃i∞ = x∗
i�new − x∗

i�initial.
We begin by considering the speed of convergence for nontrivial eigenshocks, for which

the initial impact on the state variables corresponds to a real eigenvector of the transition
matrix. For these eigenshocks, the state variables converge exponentially toward steady
state, and the speed of convergence depends solely on the corresponding eigenvalue (λh).

PROPOSITION—Speed of Convergence (Proposition 5 in the Paper): Consider an econ-
omy that is initially in steady state at time t = 0 when agents learn about one-time, permanent
shocks to productivity and amenities ( ˜f = [

z̃
˜b

]
) from time t = 1 onwards. Suppose that these

shocks are a nontrivial eigenshock (f̃ (h)), for which the initial impact on the state variables at
time t = 1 coincides with a real eigenvector (uh) of the transition matrix (P ): Rf̃ (h) = uh. The
transition path of the state variables (xt) in response to such an eigenshock (f̃ (h)) is

x̃t =
2N∑
j=2

1 − λtj
1 − λj ujv

′
juh = 1 − λth

1 − λhuh =⇒ lnxt+1 − lnxt = λthuh�

and the half-life is given by t (1/2)
i (f̃ ) = −� ln 2

lnλh
�, for all state variables i= 2� � � � �2N , where �·�

is the ceiling function. The eigenshock with associated eigenvalue of zero has zero half-life.

PROOF: If the initial impact of the shock to productivity and amenities on the state
variables (Rf̃ ) coincides with a real eigenvector (R ˜f (h) = uh), we can rewrite equation
(28) in Proposition 4 in the paper as follows:

x̃t =
2N∑
h=2

(
λth

1 − λh
)
uhv

′
hR

˜f =
2N∑
j=2

1 − λtj
1 − λj ujv

′
juh = 1 − λth

1 − λhuh�

where we have used v′
iuh = 0 for i 
= h and v′

iuh = 1 for i= h. Taking differences between
periods t + 1 and t, we have

x̃t+1 − x̃t = 1 − λt+1
h

1 − λh uh − 1 − λth
1 − λhuh�

which simplifies to (1 − λh)(̃xt+1 − x̃t) = (1 − λh)λthuh. Therefore, (̃xt+1 − x̃t) = λthuh.
Noting that x̃t = lnxt − lnx∗

initial, we have lnxt+1 − lnxt = λthuh. This implies exponential
convergence to steady state, such that for each location i, xit+1

xit
= exp(λthuih). Using the
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half-life definition (B.77), we can solve for the half-life as

1 − λth
1 − λhuh

1
1 − λhuh

= 1
2

⇒ λth = 1
2

⇒ ln
1
2

= t lnλh ⇒ t = − ln 2
lnλh

�

Imposing the requirement that t is an integer, we obtain t = −� ln 2
lnλh

�, for all state variables
i= 2� � � � �2N , where �·� is the ceiling function. Q.E.D.

B.4.10. Two-Region Example

In Section 3.3 of the paper, we illustrate our spectral analysis using a simple example
of two symmetric locations that begin in steady state. By location symmetry and trade
and migration frictions, the expenditure and migration share matrices (S and D) are both
symmetric and diagonal-dominant, with T = S and E = D. In this section of the Online
Appendix, we provide a further characterization of the four eigenvectors of the transition
matrix (P ) in this simple example. Following the Proof of Proposition 3 in Section B.4.6
of this Appendix, we provide this characterization using the equivalent representation of
�̃t and χ̃t ≡ k̃t − �̃t as the state variables, where χ̃t is the vector of capital-labor ratios in
each location.

As discussed in the paper, the four eigenvectors of the transition matrix (P ) in this
example take the following simple form:⎡⎢⎣1

1
0
0

⎤⎥⎦ �
⎡⎢⎣0

0
1
1

⎤⎥⎦ �
⎡⎢⎣ 1

−1
ζ

−ζ

⎤⎥⎦ �
⎡⎢⎣ 1

−1
−ξ
ξ

⎤⎥⎦ � (B.78)

for some constants ζ, ξ that depend on the model parameters and the trade and migration
share matrices (S= T , D=E).

We now provide a further analytical characterization of the properties of these four
eigenvectors. We know u is an eigenvector of P iff

λ2�u= λ�u+�u (B.79)

for some constant λ, which is the corresponding eigenvalue. �, �, and � are all 4 × 4
matrices from equation (22) in the paper. It is thus easy to verify by brute force (for
instance, using Matlab symbolic toolbox to express �, �, � as a function of model pa-
rameters and the entries in the S and D matrices) that [1�1�0�0]′ is an eigenvector with
eigenvalue 0 and [0�0�1�1]′ is also an eigenvector. The eigenvalue corresponding to the
latter is 1 − μ(1 − β(1 − δ)) if landlord’s intertemporal elasticity of substitution (ψ) is
equal to one (logarithmic preferences). More generally, for values of the intertemporal
elasticity of substitution (ψ) different from one, the eigenvalue (λ) corresponding to the
eigenvector [0�0�1�1]′ is the solution to the following quadratic equation:

λ=
(
β+ψ(1 −β)(1 −X) +X) −

√(
β+ψ(1 −β)(1 −X) +X)2 − 4βX

2β
�

where X ≡ 1 −μ(1 −β(1 − δ)).
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We can similarly verify that [1�−1�0�0]′ and [0�0�1�−1]′ are not eigenvectors. By sym-
metry, and because the eigenvectors form a basis, the remaining eigenvectors must take
the form [1�−1� ζ�−ζ]′ and [1�−1�−ξ�ξ]′ for some constants ζ, ξ. To find the corre-
sponding eigenshocks, use

�P 2 − �P −
= 0� (�P +�− � )R=��

Hence, for any eigenvector u with the corresponding eigenshock f̃ such that Rf̃ = u, it
must be the case that

�f̃ = (�P +�− � )u= 1
λ

(
λ�+�P 2 − �P

)
u= 1

λ
(λ�+
)u�

Because eigenvectors and eigenshocks are scale-invariant, we can ignore the constant 1
λ

and write the eigenshocks as

f̃ = �−1(λ�+
)u�

One can then verify that the eigenshock corresponding to u = [1�1�0�0]′ is f̃ =
[0�0�1�1]′, while the eigenshock corresponding to u = [0�0�1�1]′ is f̃ = [1�1�0�0]′. One
can also verify that generically [0�0�1�−1]’ is not an eigenshock (since the first two en-
tries of �−1(λ�+
)[1�−1� ζ�−ζ]′ are generically nonzero). Since the eigenshocks must
span the vector space, by symmetry the two remaining eigenshocks must be of the form
[1�−1� c�−c]′ and [1�−1� d�−d]′ for some constants c, d.
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