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B Different Universe of Questions
Our baseline model assumes that the universe of questions can be represented on the
real line. That is, we implicitly assume an order on questions. In this part, we show
that all our results extend to a more general question space.

To begin with, consider our baseline model and fix some knowledge Fm. As
described in Section 2, knowledge pins down Xk—a set composed of (half-)open
intervals: bounded intervals [xi, xi+1) of length Xi each, and two unbounded intervals
(−∞, x1) and [xk, ∞) of length ∞. All our results survive if knowledge partitions the
question space into a set of intervals on the real line (possibly of infinite length).

To see this, consider any set X̂m = X̂k ∪ X̂n that contains k + n elements: k ≥ 0
convex-valued and bounded intervals on R with Euclidean distance between its upper
and lower bound, X

i∈X̂k
, and n > 0 convex-valued but unbounded intervals on R of

infinite length, X
i∈X̂n

= ∞. For any tuple (d, X) with X ∈ X̂m and d ∈ [0, X/2] all
our definitions and expressions for benefits and cost are well-defined regardless of how
X̂m was generated.

For any given set X̂m generated by some existing knowledge Fm, suppose that the
truth-generating process Y is such that the answer to question x characterized by
(d, X) is normally distributed with a variance of σ2(d; X).1 Then, all of our results
continue to hold.

Using this formulation, it becomes clear which formal requirements we impose on
the set of questions: (i) There are no circular paths in the set of questions X̂m, (ii)
the set of questions is piecewise convex-valued, (iii) there is at least one unbounded
area. One way to interpret these requirements is to assume a forest network in which
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1Note that the dependence of the variance of the conjecture depends solely on d and X. Thus,

the truth-generating process has to satisfy a Markov property as the Brownian motion on the real
line in our main model. Moreover, note that the specification of the expected value of the answer is
not relevant for our results as long as it is well-defined given Fm.
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the set of nodes represents knowledge and each edge represents an area. We augment
this network with (at least) one “frontier”—a standard Wiener process, and define
Brownian bridges over each edge of the network.

Figure 7 depicts different question spaces. While the left panel is our baseline
setting, the other two provide alternatives, in the middle there are a number of different
directions at which we could expand the frontier starting from the origin. In each
direction, the truth would be defined by an independent Wiener process starting at
(0, y(0)). The right panel shows the limit in which the number of directions becomes a
continuum. Still, in each direction there is an independent Wiener process governing
the truth over this part of the question space such that circles are excluded.

0

(a) Baseline

0

(b) Tree

0

(c) Ocean

Figure 7: Different Question Spaces.

For our static considerations (Sections 3 and 4), all of these models are equivalent
because at least one area of infinite length exists at all times allowing the researcher
to expand knowledge. Because there are no circles, knowledge partitions the question
space into (conditionally) independent segements, just like in the baseline version.

For our dynamic considerations (Section 5), all models are identical as well as
long as we focus on symmetric pure strategies. Because researchers ignore previous
failures and always pick the same direction, the number of additional directions is not
important. If we allow for mixed strategies instead, the models differ. For example,
when randomizing over the direction from the continuum of directions of the ocean
model, the probability that the researcher draws a direction that a previous generation
had selected (and failed at) is zero. As we discuss in Section 6, such a model may
provide a microfoundation for our assumption of “non-observed failures.”
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We now describe two specific extensions to our baseline setting to illustrate the
abstract discussion above.

B.1 General Universe of Questions

Here, we show a mapping from a model with an n−dimensional question space.
Suppose that the set of research questions consists of n real lines, I = {I1, . . . , In}.
In addition, the answers on each of these real lines are determined by a realized
path of a one-dimensional standard Brownian motion, such that the truth-generating
process is an n-dimensional independent Brownian motion Wz = (W 1

z , ..., W n
z ).2

Suppose F i
j(i) is the finite set of j(i) known realizations of the Brownian path in

dimension i and Fk = ∪n
i=1F i

j(i) is knowledge. As described in Section 2, each F i
j(i)

determines a partition of the domain of W i
z denoted by X i

j(i) with j(i) + 1 elements.
As in the baseline case, the knowledge in dimension i decomposes the dimension-i
process into j(i) − 1 independent Brownian bridges each associated with a length X i

l ,
l = {1, ..., j(i) − 1} and two independent Brownian motions. Therefore, the union Fk

determines k = (∑n
i=1 j(i)) − n independent Brownian bridges of length X i

l each and
2n Brownian motions. By the martingale property of the Brownian motion and the
fact that realizations are not directly payoff relevant, the setting is isomorphic to one
in which we have k independent standard Brownian bridges of length X i

l each and 2n

standard Brownian motions. Thus, the set X̂k = {X i
l(i)} ∪ {∞} is a sufficient statistic

to calculate any of the results in the text. However, the set X̂k = {X i
l(i)} ∪ {∞} can

also be generated with an appropriate realized path of a one-dimensional Brownian
motion with a corresponding Fk.

B.2 Seminal Discoveries

We conclude this part by presenting a model with seminal discoveries—discoveries
that open new fields of research—that builds on the multidimensional universe of
questions described above. For example, Friedrich Miescher’s isolation of the “nuclein”
in 1869 was initially intended to contribute to the study of neutrophils, yet, in addition,
it opened up the new and, to a large extent, orthogonal field of DNA biochemistry.

Formally, consider the following model of the evolution of knowledge. Initially, there
2Each process starts at an initial point (0, 0), has a drift of zero, a variance of one, and independent,

normal increments.
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is a single field of research A and a single known question-answer pair, (x0, y(x0)) =
(0, 0). The set of all questions in field A is known to be one-dimensional and represented
by R. The truth is known to be generated by a standard Brownian path Y passing
through (0, 0). However, with an exogenous probability p ∈ [0, 1] any discovery
(x, y(x)) is seminal and opens a new, independent field of research Bx. A seminal
discovery is a question-answer pair (x, y(x)) that is an element of two independent
Brownian paths crossing only at (x, y(x)). Thus, upon occurrence, a seminal discovery
generates knowledge in multiple dimensions. Because it is a priori unknown whether
a discovery is seminal, the payoff from generating knowledge in another dimension is
constant in expected terms—it does not influence a researcher’s (or designer’s) choices.
After the seminal discovery, the updated model of truth and knowledge is the one
described above with the multi-dimensional universe of questions. As we argued above,
that model can, in turn, be mapped into our baseline. The special case with p = 0 is
our baseline model.

It should become clear from our discussion that even the case in which the
probability of a seminal discovery depends on the question is qualitatively similar to
what we discuss in the baseline model. The quantitative differences in such a model
come from the fact that questions which are likely to be a seminal discovery are more
attractive to address for all parties involved.

C Comparison to Kuhn (1962)
In this part, we compare our model and findings in detail to the work of Kuhn (1962).
We demonstrate which aspects we cover and where we differ from his seminal ideas.
Similarities. Kuhn himself claims that the

paradigm as shared example[s] is the central element of the most novel
and least understood aspect of ‘The Structure of Scientific Revolutions.’

(Kuhn, 1962, p. 187).

Our concept of “conjectures” based on existing knowledge offers an economic interpre-
tation of this idea. The paradigm in a specific field is determined by discoveries (that
constitute knowledge in our model) and their implications (which follow from the
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conjectures derived from knowledge). The discoveries and derived conjectures in our
model provide comprehensive information on how society and researchers approach
questions.

Furthermore, we believe that our framework and the reoccuring phases of expanding
research in our model (see Proposition 5) closely resemble an economic approach to
Kuhn (1962)’s idea of normal science (described in Kuhn (1962), Chapter 3). Normal
science in the Kuhnian sense consists of researchers solving puzzles in the context of
a given paradigm. Similarly, researchers in our model build on existing knowledge
(and the truth following a Brownian motion) to form conjectures about the location of
answers and search for answers where they expect them to be. Whenever a researcher
finds an answer, she finds it close to where it was expected to be.

Our analysis of this model then gives rise to a formalized economic theory that
explains “how little [researchers] aim to produce major novelties, conceptual or phe-
nomenal” (Kuhn, 1962, p. 35).
Differences. Much in the spirit of Kuhn (1962), there are times at which normal
science in our model fails to advance knowledge: The Brownian motion eventually
takes an unexpected turn, and researchers will fail to recognize them when expanding
knowledge step-by-step building on their conjectures. Kuhn (1962)’s somewhat radical
idea then is that anomalies (Kuhn, 1962, Chapter 6) pile up to a crisis (Kuhn, 1962,
Chapter 7) in which normal science desperately tries to connect seemingly contradictory
information to an old model of the world. At least in our baseline model, such chaos is
absent. Instead, while research produces discoveries during the step-by-step expansion
of knowledge, conjectures shift only gradually because the discoveries realize within
the search intervals chosen by the researcher, and therefore, close to where they were
expected. This gradual revision of conjectures appears closer to Toulmin (1970)’s
evolutionary model of science, with constant adaptation and revision of theories. When
a researcher fails finding an answer building on her conjecture, science gets stuck as
researchers keep repeating the same mistakes applying the old, misleading conjecture.
Only some exogenous shock (for example, a moonshot or a serendipitous discovery)
can take them out of their misery by providing new guidance. Such exogenous shocks
may be closer to what Kuhn (1962) has in mind as it follows a period of little progress
and sparks a sudden appearance of highly productive research. Thus, while Kuhn
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(1962) depicts “revolutions” as settings where researchers go out of their way and
wildly experiment with no discipline to uncover the new paradigm, such phases in our
setting are either directed (through moonshots) or happen by chance when normal
science seizes to advance knowledge.
Summary. Our model can capture many of the observations Kuhn (1962) makes.
Yet, there are important differences in the mechanics: While Kuhn (1962) diagnoses
that “[w]ithout commitment to a paradigm there could be no normal science” (Kuhn,
1962, p.100), our paradigms evolve as researchers go along. While our findings are
in line with Kuhn (1962)’s statement that “surprises, anomalies, or crises . . . are just
the signposts that point the way to extraordinary science, (p.101), our framework
does not describe that researchers respond to crisis by “searching at random, trying
experiments just to see what will happen” (Kuhn, 1962, p.87).

In our world, it is not that there is a missing link in the set of problems to cover,
but a missing connection to the problems down the line that needs to be discovered.
In Kuhn (1962)’s world, crisis is the (endogenous) driver behind radical change. He
claims that:

Confronted with anomaly or with crisis, scientists take a different attitude
toward existing paradigms, and the nature of their research changes
accordingly.

Kuhn (1962, p. 90f).

Because the researcher is freed from paradigmatic discipline when in crises, his
mind evolves more freely, yet the resolution is then modeled as the “stroke of genius”
or, as he puts it:

More often no such structure is consciously seen in advance. Instead, the
new paradigm, or a sufficient hint to permit later articulation, emerges all
at once, sometimes in the middle of the night, in the mind of a man deeply
immersed in crisis. What the nature of that final stage is-how an individual
invents (or finds he has invented) a new way of giving order to data now
all assembled-must here remain inscrutable and may be permanently so.
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(Kuhn, 1962, p. 89f).

While the consequences of a stroke of genius are similar in our model to what
we believe Kuhn (1962) has in mind, we do not model the crisis-plagued researcher.
Partially, that is because it remains also opaque within Kuhn (1962) how such thinking
comes about. Instead, we ask whether and how well-designed funding institutions
(absent in Kuhn (1962)) can help to start research cycles that reduce the risk of crisis
and the need for a genius. Here, we connect to Merton (1957) or Partha and David
(1994) and take the general freedom of scientists as given, but also acknowledge that
they respond to incentives (see, e.g., Myers, 2020), a notion completely absent in
Kuhn (1962).

D The Cost of Research and Proof of Lemma 1
In this section, we provide a detailed derivation of the cost of research. Lemma 1 is a
corollary to the results we obtain. The cost implies an endogenous measure of the
productivity of research. We model research as sampling a set of candidate answers
to question x with the goal of discovering the actual answer, y(x).

Formally, we assume that, conditional on a question x, the sampling decision
consists of selecting an interval [a, b] ∈ R. If the true answer lies inside the chosen
interval, such that y(x) ∈ [a, b], research succeeds and a discovery is made. If
y(x) /∈ [a, b], research fails and no discovery is made. Thus, the choice of the research
interval entails an ex-ante probability of successful research. Restricting the sampling
decision to a single interval [a, b] comes without loss for our purposes, as conjectures
Gx(y|Fk) follow a normal distribution.

We now characterize the cost of research in terms of the three variables of interest:
the research area, X, the novelty of the question, d, and the expected output, ρ.

We begin by defining a prediction interval and characterize it based on the conjec-
ture Gx(y|Fk).
Definition 4 (Prediction Interval). The prediction interval α(x, ρ) is the shortest
interval [a, b] ⊆ R such that the answer to question x is in the interval [a, b] with
probability ρ.

Proposition 8. Suppose α(x, ρ) is the prediction interval for probability ρ and question
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Figure 8: Cost of research and interference. The dotted vertical lines represent the 95% prediction
intervals for the answers to questions x = −0.2 and x′ = 0.2, assuming the answer to questions 0 and
−0.4 are known.

x when answer y(x) is normally distributed with mean µ and standard deviation σ.
Then, any prediction interval has the following two features:

1. The interval is centered around µ.
2. The length of the prediction interval is 23/2 erf−1(ρ)σ, where erf−1 is the inverse

of the Gaussian error function.

Proof. The normal distribution is symmetric around the mean with a density decreasing
in both directions starting from the mean. It follows directly that the smallest interval
that contains the realization with a particular likelihood is centered around the mean.

Take an interval [zl, zr] of length Z < ∞ that is symmetric around the mean µ and
let it be such that it contains a total mass of ρ < 1 in the interval. Then, a probability
mass of (1−ρ)/2 lies to the left of the interval by symmetry of the normal distribution.
Moreover, the left bound zl of the interval has (by symmetry of the interval around
the mean µ) a distance µ − Z/2 from the mean. From the properties of the normal
distribution,

Φ(zl) = 1/2
(

1 + erf
(

zl − µ

σ
√

2

))
= 1/2

(
1 + erf

(
−Z/2
σ

√
2

))
.

Solving, using the symmetry of erf, yields

1/2
(

1 − erf
(

Z

σ23/2

))
= 1 − ρ

2 ⇔ erf
(

Z

σ23/2

)
= ρ ⇔ Z = 23/2 erf−1(ρ)σ.
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Figure 8 indicates that the prediction interval depends on the location of the
question. Two questions with the same distance from existing knowledge (that is,
distance from question x = 0) have different 95% prediction intervals depending on
whether research deepens knowledge or expands it. That difference translates into
different costs.

Proposition 8 implies that if the cost function is homogeneous of any degree in
interval length (b−a), we can represent it with an alternative cost function proportional
to c(ρ, d, X) that is multiplicatively separable in (d, X) and ρ without having to keep
track of the exact location of the search interval [a, b], which proves to be convenient.

It also implies that, fixing ρ, the changes in the cost with respect to distance d

and area length X vary in their effect on σ(d; X) only. Similarly, holding distance and
area length constant, changes in ρ translate into cost changes according to a function
of erf−1(ρ)—a convex increasing function.

Proposition 8 intuitively links the cost of research effort to the probability of a
discovery. Because the inverse error function is increasing and convex, the cost of
finding an answer with probability ρ is increasing and convex in ρ.

In the paper we assume the cost to be proportional to (a − b)2. As should be clear
from Proposition 8, the quadratic formulation is for convenience only. What matters
for our results qualitatively is that the cost is (i) homogeneous, (ii) increasing, and
(iii) convex in the sampling interval (a − b). Under the quadratic assumption, the cost
function is characterized by a simple corollary to Proposition 8: Lemma 1.
Corollary 1. For knowledge Fk, probability ρ, and question x, the minimal cost of
obtaining an answer to question x with probability ρ is proportional to c(ρ, d; X) =
c̃(ρ)σ2(d; X).

E Properties of c̃

Summary. The function c̃(ρ) is convex and increasing on [0, 1) with c̃(0) = 0 and
limρ→1 c̃(ρ) = ∞.3 The derivative c̃ρ(ρ) =

√
π erf−1(ρ)ec̃(ρ) is increasing and convex

with the same limits.
We use that, for ρ ∈ (0, 1), c̃(ρ) has a convex and increasing elasticity bounded
3Due to this limit and the researcher’s ability to choose ρ = 1, we augment the support of the

cost function to include ρ = 1 with c̃(1) = ∞. However, the optimal ρ is always strictly interior
unless the cost parameter η is chosen to be zero in which case we assume that ηc̃(ρ = 1) = 0.
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below by 2 and unbounded above. Its derivative c̃ρ(ρ) has an increasing elasticity
bounded below by 1 and unbounded above. We want to emphasize that these properties
are not special to our quadratic cost assumption. To the contrary, erf−1(x)k for any
k ≥ 2 admits similar properties with only the lower bounds changing. The following
properties are invoked in the proofs:

ρ
c̃ρ(ρ)
c̃(ρ) ∈ (2, ∞) and increasing,

ρ
c̃ρρ(ρ)
c̃ρ(ρ) ∈ (1, ∞) and increasing,

ρc̃ρ(ρ) − c̃(ρ) ∈ (0, ∞) and increasing,

c̃−1
ρ (x) = erf

√W (2x2/π)
2

 .

with W (·) the principal branch of the Lambert W function. We formally prove the
properties that do not directly follow from the definition of the inverse of the error
function below.

E.1 Proofs of properties of c̃(ρ)
Here, we provide the formal proofs. To simplify notation, we suppress the argument ρ

and denote the inverse error function by ι := erf−1(ρ).
Lemma 22. The derivatives of the inverse error function satisfy (i) d

dρ
ι = 1

2
√

πe
(

ι2
)
,

(ii) d2

dρ2 ι = 2ιι′2, and (iii) d3

dρ3 ι = 2ι′3 (1 + 4ι2).

Proof. See Dominici (2008).

Lemma 23. (i) limρ→0 ρ ι′

ι
= 1, (ii) limρ→1 ρ ι′

ι
= ∞, (iii) limρ→0

d
dρ

(
ρ ι′

ι

)
= 0, and

(iv) limρ→0
d2

dρ2

(
ρ ι′

ι

)
= π

3 .

Proof. We will make use of L’Hôpital’s rule and the properties from Lemma 22.
(i) follows from

lim
ρ↓0

ρ
ι′

ι
= lim

ρ↓0

ι′ + ρι′′

ι′ = lim
ρ↓0

ι′ + 2ριι′2

ι′ = lim
ρ↓0

(1 + ριι′) = 1.

(ii) follows from

lim
ρ↑1

ρ
ι′

ι
= lim

ρ↑1

ι′ + ρι′′

ι′ = lim
ρ↑1

ι′ + 2ριι′2

ι′ = lim
ρ↑1

(1 + 2ριι′) = ∞.

(iii) follows from

lim
ρ→0

d

dρ

(
ρ

ι′

ι

)
= lim

ρ→0

ι′

ι

(
1 − ρ

ι′

ι

)
+ lim

ρ→0
ρ

ι′′

ι
= lim

ρ→0
ι′︸ ︷︷ ︸

=
√

π/2

lim
ρ→0

ι − ρι′

ι2 + lim
ρ→0

2ρι′2︸ ︷︷ ︸
=0
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= − lim
ρ→0

√
π

2
ρι′′

2ιι′ = − lim
ρ→0

√
π

2
ρι(ι′)2

2ιι′ = − lim
ρ→0

√
π

2 ρι′ = 0.

(iv) follows from4

lim
ρ→0

d2

dρ2

(
ρ

ι′

ι

)
= lim

ρ→0
2ι′′ι − ι′2

ι2

(
1 − ρ

ι′

ι

)
+ lim

ρ→0
4ρ ι′ι′′︸︷︷︸

=2(ι′)3ι︸ ︷︷ ︸
=0

= lim
ρ→0

2ι′′ι − ι′2

ι2

(
1 − ρ

ι′

ι

)
= lim

ρ→0
2ι′′ι

ι2

(
1 − ρ

ι′

ι

)
− 2 lim

ρ→0

ι′2

ι2

(
1 − ρ

ι′

ι

)

= lim
ρ→0

4ι′2
(

1 − ρ
ι′

ι

)
︸ ︷︷ ︸

=0

−2 lim
ρ→0

ι′2

ι2

(
1 − ρ

ι′

ι

)
= −2 lim

ρ→0

(
ρ

ι′

ι

)2
ι − ρι′

ρ2ι

= 2 lim
ρ→0

ρι′′

2ρι + ρ2ι′ = 4 lim
ρ→0

ι′2

2 + ρ ι′

ι

= 4
3 lim

ρ→0
ι′2 = π

3 .

Lemma 24. The following hold: (i) For all ρ ∈ (0, 1), d
dρ

(ρc̃ρ(ρ) − c̃(ρ)) > 0. (ii)
For all ρ ∈ (0, 1), ρc̃ρ(ρ) − c̃(ρ) > 0. (iii) limρ→0 ρ c̃ρ(ρ)

c̃(ρ) = 2. (iv) limρ→1 ρ c̃ρ(ρ)
c̃(ρ) = ∞.

Proof. (i) holds because d
dρ

(ρc̃ρ(ρ) − c̃(ρ)) = ρc̃ρρ(ρ) > 0 by convexity of the inverse
error function. (ii) holds due to (i) and (ρc̃ρ(ρ) − c̃(ρ)) |ρ=0 = 0. (iii) holds as the
elasticity is equal to 2ρ ι′

ι
and (i) in Lemma 23. (iv) holds by the same observations

and (ii) in Lemma 23.

Lemma 25. The elasticity of c̃(ρ), ρ c̃ρ(ρ)
c̃(ρ) , is increasing in ρ.

Proof. Recall that ρ c̃ρ(ρ)
c̃(ρ) = 2ρ ι′

ι
. Therefore, it is sufficient to prove that the inverse

error function has an increasing elasticity.
Note that d

dρ

(
ρ ι′

ι

)
= ι′

ι
+ ρ ι′′ι−ι′2

ι2 . From Lemma 23 know that

lim
ρ→0

d

dρ

(
ρ

ι′

ι

)
= 0 lim

ρ→0

d2

dρ2

(
ρ

ι′

ι

)
= π

3 .

Thus, there exists an ε > 0 such that the elasticity is increasing for ρ ∈ (0, ε). To
show that it is increasing for all ρ ∈ (0, 1) suppose –toward a contradiction– that the
derivative of the elasticity crosses 0. In this case, it has to hold that ι′′ι−ι′2

ι2 = − ι′

ρι
.

4To arrive at the first line let λ := ι′/ι and observe that (ρλ)′′ = (λ + ρλ′)′ = 2λ′ + ρλ′′ and
λ′ = 2(ι′)2 − λ2 which implies λ′′ = 4ι′ι′′ − 2λλ′.
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Consider the second derivative of the elasticity at such a critical point
d2

dρ2

(
ρ

ι′

ι

)
| d

dρ

(
ρ ι′

ι

)
=0 = 2ι′′ι − ι′2

ι2

(
1 − ρ

ι′

ι

)
+ ρ

ι′′′ι − ι′′ι′

ι2

= −2 ι′

ιρ

(
1 − ρ

ι′

ι

)
+ ρ

ι′′′ι − ι′′ι′

ι2 = 2 ι′

ιρ

(
ρ

ι′

ι
− 1

)
+ 2ρ

ι′3

ι
4ι2 > 0

where the last inequality follows because the elasticity is weakly greater than one and
all other terms are positive.

Thus, any critical point must be a minimum. However, the elasticity is continuous
and increasing at ρ ∈ (0, ε). Thus, there is no interior maximum and the elasticity is
increasing throughout.

Lemma 26. The elasticity of c̃ρ(ρ), ρ c̃ρρ(ρ)
c̃ρ(ρ) , is increasing in ρ.

Proof. Note that the elasticity of c̃ρ(ρ) is equal to

ρ
c̃ρρ(ρ)
c̃ρ(ρ) = ρ

d
dρ

(2ιι′)
2ιι′

= ρ
2ιι′′ + 2ι′2

2ιι′

= ρ
ι′

ι

(
2ι2 + 1

)
,

where the last equality follows by replacing ι′′ = 2ιι′2 from Lemma 22 and factoring
out ι′2. The derivative of this elasticity is

d

dρ

(
ρ

c̃ρρ(ρ)
c̃ρ(ρ)

)
= d

dρ

(
ρ

ι′

ι

)(
2ι2 + 1

)
+ d

dρ

(
2ι2 + 1

)
ρ

ι′

ι
.

Note that the second term is unambiguously positive as ι′ > 0 and ι > 0. The sign of
the first term is determined by the sign of d

dρ

(
ρ ι′

ι

)
: the derivative of the inverse error

function elasticity. It is
d

dρ

(
ρ

ι′

ι

)
= ι′′

ι′ + ρ
ι′′′ι′ − ι′′2

ι′2 = ι′′

ι′ + 2ρι′′2(1 + 2ι(2ι − 1)).

We know that ι′′ > 0 and ι′ > 0. Thus, we only need to show that 1 + 2ι(2ι − 1) > 0.
Note that this is a convex function of ρ with a minimum at ιι′ = 1

4 which is solved by

ρ = erf
(√

W
(

1
2π

)
2

)
≈ 0.29 where W denotes the principal branch of the Lambert-W
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function. Evaluating 1 + 2ι(2ι − 1) at this minimum yields

1 +
√2W

( 1
2π

)
− 1

√2W
( 1

2π

)
≈ 0.75.

Hence, we can conclude that d
dρ

(
ρ ι′

ι

)
is positive and the result follows.

F Comparative Statics of Expanding Knowledge
Recall that the optimal distance dη(∞) and the optimal success probability ρη(∞)
when expanding knowledge are implicitly defined by the system of first-order conditions.
The comparative statics then follow from applying the implicit function theorem. In
particular, we obtain

 d
dη

dη(∞)
d

dη
ρη(∞)

 = − 1
det(H)

fdηfρρ − fρηfdρ

fρηfdd − fdηfdρ

 (8)

where we use the shorthand f = uR(d, ρ; X) for the researcher’s value from expanding
knowledge with distance d and success probability ρ. We obtain

fdη = −c̃(ρ)

fρη = −c̃ρ(ρ)d

fdd = ρVdd(d; ∞)

fρρ = −ηc̃ρρ(ρ)d

fdρ = Vd(d; ∞) − ηc̃ρ(ρ).

Suppressing the point of evaluation and plugging in, the comparative statics yields at
the optimal distance dη(∞) and success probability ρη(∞)

d

dη
dη(∞) = − 1

det(H) (c̃(ρ)ηc̃ρρ(ρ)d + c̃ρ(ρ)d(Vd(d; ∞) − ηc̃ρ(ρ)))

= − ηd

det(H) (c̃(ρ)c̃ρρ(ρ) + c̃ρ(ρ)(c̃(ρ)/ρ − c̃ρ(ρ)))

< 0,

where the first equality follows from the first-order condition with respect to d and
factoring out ηd. The inequality follows from the fact that the determinant of the
Hessian is positive and that the elasticity of c̃(ρ) is increasing in ρ (Lemma 25).
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For the optimal success probability, we obtain at the optimal distance dη(∞) and
success probability ρη(∞)

d

dη
ρη(∞) = − 1

det(H) (−c̃ρ(ρ)dρVdd(d; ∞) + c̃(ρ)(Vd(d; ∞) − ηc̃ρ(ρ)))

= −d/(3q)c̃(ρ)
det(H)

(
c̃ρ(ρ)ρ
c̃(ρ) + Vd(d; ∞) − V (d; ∞)/d

d/(3q)

)
< 0,

where the equality follows from the first-order condition with respect to ρ, plugging in
the expression for Vdd(d; ∞) (noticing that dη(∞) < 4q) and factoring out d/(3q)c̃(ρ).
The inequality follows from the fact that the determinant of the Hessian is positive,
that the elasticity of c̃(ρ) increases in ρ and that it is greater than two (Lemma 24),
and that the term in parentheses is equal to negative one half after plugging in.

Hence, both the optimal distance and the optimal success probability decrease in
the cost parameter η when expanding knowledge.

G Omitted Proofs
Lemma 27. ∂V (d;∞|d>4q)

∂d
< 0.

Proof.
∂V (d; ∞|d > 4q)

∂d
= − d

3q
+ 1 +

√
d − 4q

d

d − q

3q

Letting τ := d/q(> 4 by assumption) the statement is negative if 3−τ
3 +

√
τ−4

τ
τ−1

3 < 0.

The left-hand side is increasing in τ and converges to 0 as τ → ∞.

Lemma 28. Vd(d; X) > 0 if d ∈ [0, X − 4q] and X ∈ (4q, 6q].

Proof. Note that for X ∈ (4q, 6q] and d ∈ [0, X − 4q],

Vd = 1
3q

X − 2d − (X − d − q)
√

X − d − 4q

X − d

 .

Assume towards a contradiction that there is a feasible combination of d and X such
that Vd(d; X) ≤ 0. Then, the following inequality must hold

X − 2d

X − d − q
≤
√

X − d − 4q

X − d
.
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Observe that this inequality cannot hold at the bounds d = 0 and d = X − 4q: If
d = 0, then the left-hand side is strictly greater than one while the right-hand side is
strictly less than one. If d = X − 4q, then the left-hand side reduces to (8q − X)/(3q)
which is strictly positive as X ≤ 6q, while the right-hand side is equal to zero.

Hence, if the inequality is ever satisfied for some feasible (X, d), then by continuity
and the intermediate value theorem, there must be a feasible (X, d) combination such
that Vd(d; X) = 0. Thus, for a feasible d, there must be a solution X to the quadratic
equation (in X)

X − 2d

X − d − q
=
√

X − d − 4q

X − d
.

The solution to this equation is

X1,2 = 1
4

(
5d + 3q ± (d − q)

√
d + 5q

d − 3q

)
.

However, no feasible solution exists, as d ≤ 2q (due to the upper bound X − 4q on d

and the upper bound 6q on X), leading to no solution for X in the real domain. A
contradiction.

Lemma 29. VX(d0(X); X) < 0 if X ≥ 4q and d ∈ [0, X − 4q].

Proof. Observe that for any X ≥ 4q and d ≤ X − 4q

VXd = 1
24q

(
8 − 3

√
X − d

X − d − 4q
− (5(X − d) + 4q)

√
X − d − 4q

(X − d)3/2

)
.

Denote a := X − d, this is an increasing function in a as dVXd

da
= 4q2

a5/2(a−4q)3/2 > 0.

Hence, the highest value of VXd is attained for a → ∞ and

lim
a→∞

1
24q

8 − 3
√

a

a − 4q︸ ︷︷ ︸
→1

−5 a
√

a − 4q

a3/2︸ ︷︷ ︸
→1

−4q

√
a − 4q

a3/2︸ ︷︷ ︸
→0

 = 0.

It follows that the VXd converges to zero from below implying that VXd < 0. Thus,
VX(d0(X), X) < VX(d = 0, X) and we obtain

VX(d, X|d ≤ 4q, X − d ≥ 4q) =
d + (X − d − q)

√
X−d−4q

X−d
− (X − q)

√
X−4q

X

3q
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< VX(d = 0, X|d ≤ 4q, X − d ≥ 4q) =
(X − q)

√
X−4q

X
− (X − q)

√
X−4q

X

3q
= 0.

Lemma 30. If X ∈ (4q, 8q), d2V (X/2, X)/dX2 < 0 and d2V (d0(X), X)/(dX)2 > 0.

Proof. Considering the boundary solution we obtain
d2V (X/2, X)

dX2 = −X2 − 2qX − 2q2

3qX3/2√X − 4q
+ 1

6q

d3V (X/2, X)
dX3 = 4q2

X5/2(X − 4q)3/2 > 0

implying that d2V (X/2,X)
dX2 ≤ d2V (4q,8q)

dX2 with
d2V (4q, 8q)

dX2 = −64q2 − 16q2 − 2q2

3q83/2q3/22q1/2 + 1
6q

= − 46q2

96
√

2q3
+ 1

6q
= 8 − 23/

√
2

48q
< 0.

Next, consider the value of any interior solution and apply the envelope and implicit
function theorem to obtain

dV (d0(X), X)
dX

= VX + d′(X) Vd︸︷︷︸
=0 by optimality of d

= VX

d2V (d0(X), X)
dX2 = VXX + d′(X)VdX + d′(X) (VXd + Vddd′(X))︸ ︷︷ ︸

=0 by IFT on FOC

+d′′(X) Vd︸︷︷︸
=0 by optimality

= VXX(d0(X), X) + d′(X)VdX = VXX(d0(X), X) −V 2
dX

Vdd︸ ︷︷ ︸
>0 as Vdd<0

.

Observing that VXXd(d, X|d ≤ 4q, X − d ≥ 4q) = 4q2

(X−d)5/2(X−d−4q)3/2 > 0, we can
compute as lower bound for

VXX(d0(X), X) = 1
24q

3
(√

X − d

X − d − 4q
−
√

X

X − 4q

)
+ 6

√X − d − 4q

X − d
−
√

X − 4q

X


+
(

X − 4q

X

)3/2
−
(

X − d − 4q

X − d

)3/2
 ≥ VXX(d = 0, X) = 0

implying that d2V (d0(X), X)/(dX2) ≥ 0.

Lemma 31. Assume X ∈ [4q, 8q], then d2UR(d = X/2; X)/(dX)2 < 0.

Proof. Take the case of the boundary solution: we are analyzing a one-dimensional
optimization problem with respect to ρ. Denote the objective f(ρ; X) and the optimal
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value by ϕ(X) = maxρ f(ρ; X). Then, the optimal ρ solves fρ = 0. We obtain

ϕ′(X) = fρ︸︷︷︸
=0 by optimality

ρ′(X) + fX

ϕ′′(X) = fρ︸︷︷︸
=0 by optimality

ρ′′(X) + (fρρρ′(X) + fXρ)︸ ︷︷ ︸
=0 by total differentiation of FOC

ρ′(X) + fXX + ρ′(X)fXρ

= fXX −
f 2

Xρ

fρρ

= ρη(X)VXX(X/2; X) +
(VX − V

X
)2

V c′′

c′

where we used that σ2
XX(X/2; X) = 0. The expression yields as condition for the

value to be strictly concave ρη(X)c′′/c′ > −(VX − V
X

)2/(VXXV ) where the inequality
sign changed direction as VXX(X/2; X) < 0 by Lemma 30 in the region considered.
Further, note that the left-hand side larger than two by the properties of the inverse
error function. We will show that the right-hand side is below one which is sufficient
for concavity. We therefore consider the right-hand side at the boundary solution,
which simplifies to

√
X − 4q

(
X3/2 − 2(X + 2q)

√
X − 4q

)2

4 (X2 − 2q2 − 2qX)
(
X3/2 − 2(X − 4q)

√
X − 4q

) .

We now show that it is also smaller than one. Because the denominator is positive, a
necessary and sufficient condition is
√

X − 4q
(
X3/2 − 2(X + 2q)

√
X − 4q

)2
− 4 (X2 − 2q2 − 2qX)

(
X3/2 − 2(X − 4q)

√
X − 4q

)
< 0.

Factoring out
√

X−4q
X

, dividing by X3/2, and simplifying the condition becomes√
X − 4q

X

(
13X2 − 48qX

)
− 8X2 + 16qX + 40q2 < 0. (9)

Notice that
√

X−4q
X

increases in X and thus attains its upper bound for X = 8q at
1/

√
2. Moreover, since 13X > 48q for any X ∈ [4q, 8q], this implies that (9) holds if

13X2 − 48qX√
2

− 8X2 + 16qX + 40q2 < 0(
13√

2
− 8

)
X2 + (16 − 48√

2
)qX + 40q2 < 0

Now notice that 13/
√

2 > 8 and thus the LHS is strictly convex meaning a maximum
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must be at one of the boundaries in X. But then at X = 4q we have(
13√

2
− 8

)
16q2 + (16 − 48√

2
)4q2 + 40q2 = 8(

√
2 − 3)q2 < 0

and at X = 8q(
13√

2
− 8

)
64q2 + (16 − 48√

2
)8q2 + 40q2 = 8(28

√
2 − 43)q2 < 0.

which implies that condition (9) holds, thus closing the proof.

Lemma 32. Let di < X/2 be a local maximum of uR(ρ, d, X). If di(X) exists on
X ∈ [4q, 8q], then d2UR(d = di(X); X)/(dX)2 > 0.

Proof. The implicit function theorem yields for d′(X) and ρ′(X)d′(X)
ρ′(X)

 = − 1
fddfρρ − f 2

ρd

fdXfρρ − fρXfdρ

fρXfdd − fdXfdρ

 .

Note that − 1
fddfρρ−f2

ρd
< 0 as this is − 1

det(H) and the determinant of the second principal
minor being positive is a necessary second order condition for a local maximum given
that the first (fρρ) is negative.

Denote the objective f(ρ, d; X) and the optimal value by ϕ(X) = maxρ,d f(d, ρ; X).
Then, the optimal (d, ρ) solves fρ = 0 and fd = 0. Differentiating the value of the
researcher twice with respect to X yields

ϕ′(X) = fρ︸︷︷︸
=0 by optimality

ρ′(X) + fd︸︷︷︸
=0 by optimality

d′(X) + fX

ϕ′′(X) = fρ︸︷︷︸
=0 by optimality

ρ′′(X) + fd︸︷︷︸
=0 by optimality

d′(X)

+ d′(X) (fdX + fddd′(X) + fdρρ′(X))︸ ︷︷ ︸
=0 by total differentiation of foc wrt d

+ρ′(X) (fρX + fρdd′(X) + fρρρ′(X))︸ ︷︷ ︸
=0 by total differentiation of foc wrt ρ

+ fdXd′(X) + fρXρ′(X) + fXX = fdXd′(X) + fρXρ′(X) + fXX .

Observe first that fXX > 0 as fXX = ρVXX(d; X) − ηc̃(ρ)σ2
XX(d; X) and VXX > 0 by

proof of Proposition 2 (in particular, Lemma 30) and σ2
XX(d; X) = −2d2

X3 . Next, we
show fdXd′(X) + fρXρ′(X) > 0 using the implicit function theorem together with the
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property of the local maximum that fρρfdd > f 2
ρd.

fdXd′(X) + fρXρ′(X) = −fdX

(
fdXfρρ − fρXfdρ

fddfρρ − f 2
ρd

)
− fρX

(
fρXfdd − fdXfdρ

fddfρρ − f 2
ρd

)
.

As we only need to sign this expression, we can ignore the denominator to verify

−fdX(fdXfρρ − fρXfdρ) − fρX(fρXfdd − fdXfdρ) > 0 ⇔ fdX

fρX

fρρ

fdρ

+ fρX

fdX

fdd

fρd

> 2.

where we used the signs of the terms that follow because

fρρ = −ηc̃ρρ(ρ)σ2 < 0

fdX = ρVdX − ηc̃(ρ)σ2
dX < 0

fdρ = Vd − ηc̃ρ(ρ)σ2
d < Vd − η

c̃(ρ)
ρ

σ2
d = 0

fρX = VX − ηc̃ρ(ρ)σ2
X < VX − ησ2

X c̃(ρ)/ρ < 0
which in turn follow from the first-order conditions and Proposition 2.
Because fρρfdd − f 2

ρd > 0, we can replace fρρ

fdρ
with fdρ

fdd
as fρρ

fdρ
>

fdρ

fdd
yielding

2 <
fdX

fρX

fdρ

fdd

+ fρX

fdX

fdd

fρd

which is true as the right-hand side can be written as g(a) = a + 1
a
. g(a) is a strictly

convex function for a > 0 and minimized at a = 1 with g(a = 1) = 2.

Lemma 33. dη(∞) is linear in q and ρη(∞) is constant in q.

Proof. The lemma follows because σ2(mq; ∞) = mq and thus (by Proposition 1) the
functions f(m, q) := V (mq; ∞)/σ2(mq; ∞) and g(m, q) := Vd(mq; ∞) are homoge-
neous of degree 0 in q. It is then immediate from (FOCd) and (FOCρ) that dη(∞) is
homogeneous of degree 1 in q and ρη(∞) is homogeneous of degree 0. Noticing that
dη(∞)(q = 0) = 0 implies the result.
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