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This supplementary material consists of a section discussing the limitations of partial

equilibrium analysis and disposal cone, a section on Rebate Walras Law, proofs of Propositions

1 and 2 in Anderson and Duanmu (2025), a special case of Theorem 2 in Anderson and

Duanmu (2025), and detailed analysis of the examples from Anderson and Duanmu (2025).

1. Additional Literature Review

In this section, we compare the formulation in Anderson and Duanmu (2025) to partial

equilibrium analysis and the disposal cone formulation proposed in Florenzano (2003).

1.1. Limitations of Partial Equilibrium Analysis. Partial equilibrium arguments are

unsatisfactory, for three fundamental reasons:

(1) Introducing a quota or tax on some commodities can result in substantial changes

in sectors that appear to have little to do with the regulated commodities. These

changes are not predictable through partial equilibrium arguments. Indeed, Examples

4 and 5 in Anderson and Duanmu (2025) show that, due to multiplicity of equilibria,

it may be impossible to achieve an emissions target by setting an emission tax rate;

(2) Once the government sets the quotas or taxes, and the rebate scheme, partial equilib-

rium arguments cannot guarantee that an equilibrium price exists. Inded, we show in

Examples 4 and 5 in Anderson and Duanmu (2025), that emission tax equilibria in

fact need not exist;

(3) The formulation of Pareto Optimality requires the definition of the set of all feasible

consumption-production pairs, but these cannot be defined in partial equilibrium;
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(4) Pigou (1920) proposed levying an add-on tax equal to the difference between the

social and private costs, in order to restore the first order conditions. There is

considerable literature on Pigouvian taxation through partial equilibrium analysis.

However, levying a tax results in a new equilibrium with different prices, productions,

and consumptions. At the new equilibrium, the marginal costs and benefits are

different, and there is no reason to think that the same tax will restore the first order

conditions for Pareto optimality at the new equilibrium.1

1.2. Disposal Cone. Free-disposal equilibrium (excess demand must be nonnegative) and

non-free-disposal equilibrium (excess demand must be zero) are classical equilibrium notions.2

“Free disposal” of bads is a euphemism for unconstrained emissions. Florenzano (2003)

formulated a hybrid of the two notions, via a disposal cone that specifies a subset of

commodities that may be freely disposed. Florenzano’s work is a substantial improvement on

the pre-existing literature, but it has three significant limitations:

(1) The disposal cone formulation does not allow a positive cap on emissions;

(2) A “complementary slackness” condition rules out a positive tax on emissions;3

(3) Florenzano (2003) establishes the existence of a price for which the excess demand lies

in the disposal cone. However, her proof does not establish the existence of equilibria

with positive disposal. Since it is not practical to eliminate all pollution in the near

term, one should demonstrate the existence of equilibrium with positive emissions.

Our quota equilibrium model, on the other hand, defines a quota-compliance region Z(m)

that reflects the society’s choice on what quantities of pollution may be emitted. Any revenue

generated from emissions via a quota or tax is rebated to agents, which allows us to avoid

complementary slackness so that nonzero emissions and nonzero prices may coexist.

2. Miscellaneous Results

In this section, we present Rebate Walras Law, an example comparing fuel tax and emissions

tax regulatory schemes, a special case of Theorem 2 in Anderson and Duanmu (2025), and

proofs of Propositions 1 and 2 in Anderson and Duanmu (2025).

1Goulder and Williams III (2003) point out that there is a substantial bias from ignoring general equilibrium
effects in estimating excess burden.
2While Arrow and Debreu (1954) used free-disposal equilibrium as the equilibrium concept, McKenzie (1981)
used non-free-disposal equilibrium as the equilibrium concept.
3Complementary slackness is a consequence of budget balance in the Arrow-Debreu and related models.
If a tax on pollution generates positive revenues, these revenues would evaporate from the model, leaving
consumers without sufficient income to buy the goods produced by the firms.
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2.1. Rebate Walras’ Law. Walras’ Law states that the value of excess demand at any

price vector p must be 0 for each agent. This is true whether p is an equilibrium price or not.

Walras’ Law implies that if prices are strictly positive and there is positive excess demand in

one market, then there is negative excess demand in another market. As noted on page 42 of

Florenzano (2003), the equilibrium definition requires that, if any commodity is in excess

supply, its price must be 0. However, emission tax equilibrium usually involves nonzero

prices and nonzero excess supply of regulated commodities, and zero excess supply among

unregulated commodities. Thus, Walras’ Law is inconsistent with our definition of emission

tax equilibrium. However, a modification, Rebate Walras’ Law, does hold at the aggregate

level.4 It states that the value of excess demand for the unregulated commodities is 0.

Definition 2.1. Given a price vector p and a production vector y of all firms, let x be the

demand vector for all agents. Rebate Walras’ Law states that

ℓ∑
n=k+1

pnx̄n =
ℓ∑

n=k+1

pn(ēn + ȳn)

where x̄ =
∑

ω∈Ω x(ω), ē =
∑

ω∈Ω e(ω) and ȳ =
∑

j∈J y(j) are the aggregate demand, the

aggregate endowment and the aggregate production.

Theorem 2.2. Let F = {(X,≻ω, Pω, eω, θ)ω∈Ω, (Yj)j∈J ,V , t, λ} be an emission tax production

economy. Suppose, for all ω ∈ Ω and (x, y, p) ∈ A× Y ×∆, the own-consumption preference

Pω(x−ω, y, p) is locally nonsatiated. Then Rebate Walras’ Law holds.

Proof. Let p be a price vector and y be a production vector of all firms. Let x be the demand

vector for all agents. We have
∑ℓ

n=1 pnx̄n =
∑k

n=1 pnx̄n +
∑ℓ

n=k+1 pnx̄n. The aggregate

budget of agents consists of the value of aggregate supply and the total tax revenue. So

we have
∑ℓ

n=1 pn(ȳn + ēn)−
∑k

n=1 pn(ȳn + ēn − x̄n) =
∑k

n=1 pnx̄n +
∑ℓ

n=k+1 pn(ȳn + ēn). As

Pω(x, y, p) is locally non-satiated for all ω ∈ Ω and (x, y, p) ∈ A× Y ×∆, we have

ℓ∑
n=1

pnx̄n =
ℓ∑

n=1

pn(ȳn + ēn)−
k∑

n=1

pn(ȳn + ēn − x̄n)

⇐⇒
k∑

n=1

pnx̄n +
ℓ∑

n=k+1

pnx̄n =
k∑

n=1

pnx̄n +
ℓ∑

n=k+1

pn(ȳn + ēn)

⇐⇒
ℓ∑

n=k+1

pnx̄n =
ℓ∑

n=k+1

pn(ȳn + ēn).

4Because of the rebate scheme, the Rebate Walras’ Law does not hold at an individual level.
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Hence, the Rebate Walras’ Law holds. □

Rebate Walras Law and its Effect on unregulated Commodities

Figure 1. The figure plots the tax rebate effect on demands of unregulated
commodities. The figure shows net trades, i.e., the endowments are placed at
the origin. The curve OC1 is the offer curve for agent 1, and it goes through
ω1. The curve OC2 is the offer curve for agent 2, and it goes through ω2. The
curve OC is the aggregate offer curve, and it goes through the origin.

We consider an exchange economy with two agents, one regulated commodity, and two

unregulated commodities. Both agents derive utility from unregulated commodities, and

the marginal utility of the regulated commodity is 0. Hence, agents consume the regulated

commodity only to generate additional income to consume unregulated commodities. Fig. 1

shows net trades, i.e., the endowments ei are placed at the origin. Given an emission tax

rate and agents’ consumption of the regulated commodity, for i ∈ {1, 2}, we denote agent i’s

available additional income for consuming commodities 1 and 2 by Ii, where Ii is the sum of

the value of agent i’s excess consumption of the regulated commodity and agent i’s rebate

from the government’s emission tax revenue. We implement Ii through an increment ωi to

ei.
5 Since ei is placed at the origin in the figure, the augmented endowment ei + ωi is placed

at ωi. Notice that ω1 = −ω2.

5Since the emission tax rate is fixed, by the normalization of prices, we have p1 + p2 = c. Let ωi =
1
c (Ii, Ii) be

the additional endowment of commodities 1 and 2 for agent i. Then ωi implements the additional available
income Ii for agent i.
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Deriving the Aggregate Offer Curve OC from OC1 and OC2

Figure 2. The figure plots how the aggregate offer OC is derived from the
offer curves OC1 and OC2. For the price vector p and i ∈ {1, 2}, the line
through ωi perpendicular to p crosses OCi at exactly one point OCi(p). The
line through the origin perpendicular to p crosses OC at exactly one point
OC(p). The point OC(p) is the sum of OC1(p) and OC2(p). The four points
OC1(p), OC2(p), OC(p), and the origin, form a parallelogram.

The offer curve OCi goes through the augmented endowment, and hence in Fig. 1 goes

through ωi. In the usual setting with monotonic preferences and no rebate, each agent’s offer

curve goes through the origin. In the setting with tax rebate, the individual offer curves OCi

do not go through the origin. However, the aggregate offer curve OC does go through the

origin. This fact is both necessary and sufficient for the existence of equilibrium. In the usual

setting with monotonic preferences and no rebate, Walras’ Law (for all commodities) holds at

an individual level. In this setting, with regulated commodities and rebate, Rebate Walras’

Law holds for the unregulated goods at an aggregate, rather than individual, level.

Fig. 2 provides a graphical illustration on the derivation of the offer curve OC from

individual offer curves OC1 and OC2. At an equilibrium price p (not shown in Fig. 2), the

diagonal of the parallelogram through OC1(p) and OC2(p) goes through the origin.

The distinction between Walras’ Law, and Rebate Walras’ Law, is critical to the existence of

emission tax equilibrium. In the classical setting with no rebate and possibly non-monotonic

preferences, Walras’ Law implies complementary slackness: any good in excess supply must

have a price of zero. Here, by contrast, there is excess supply of regulated commodities (i.e.

the excess supply is released into the environment), but the emission price is nonzero. This is

possible because Rebate Walras’ Law applies only to the unregulated commodities. Thus,
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Rebate Walras’ Law makes the existence of Emissions Tax Equilibrium conceivable. Rebate

Walras’s Law does not hold at the individual level, but it does hold at the aggregate level.

As in the usual case, we only require (Rebate) Walras’ Law at the aggregate level to show

that the aggregate offer curve OC goes through the origin, i.e. equilibrium exists.

2.2. Fuel Taxes Versus Emission Taxes. We have so far focused on emission taxes on

regulated commodities instead of fuel taxes. In this section, we present examples of economies

with three commodities: CO2, coal and electricity. However, instead of placing an emission

tax on CO2, we place a tax on total utilization of coal as a consumption good and as an

input to production. Moreover, our tax on coal is an add-on to the equilibrium price. In

other words, to buy coal, one must pay the equilibrium price plus the tax.6 These examples

fit the model in Shafer and Sonnenschein (1976).

Example 2.3. In this example, we consider fuel taxes in the economy described in Example 4

of Anderson and Duanmu (2025). We show that, for every given total net CO2 emissions level

v ∈ (0, 1), every fuel tax equilibrium with emissions level v is strictly Pareto dominated7 by

every emission tax equilibrium in Example 4 of Anderson and Duanmu (2025) with the same

emissions level v. Let F = {(X,≻ω, Pω, eω, θω)ω∈Ω, (Yj)j∈J ,V , t, λ} be a fuel tax production

economy such that:

(1) The economy F has the same agent and set of commodities as the emission tax

production economy E in Example 4 of Anderson and Duanmu (2025). The agent’s

endowment, consumption set and preference are also the same for F and E ;
(2) F and E have the same private firms. Since there is only one agent, all firms distribute

profit to the single agent;

(3) F and E have the same compliance region V = R≤0 ×{0}2. We allow for free disposal

of CO2 while requiring non-free-disposal at equilibrium for coal and electricity;

(4) The government sets a fuel tax rate t on coal, and rebate all the tax revenue to the

single agent. We let the tax rate on coal vary to compute fuel tax equilibrium for

different tax rates.

In particular, let t ≥ 0 be the tax rate on coal. Through normalization, for a price vector p,

we require that t+
∑3

k=1 |pk| = 1, that is, (t, p) ∈ ∆. Note that only the first firm uses coal

as an input in production, and the agent does not desire coal.

6Our “tax” could be either positive or negative; in the latter case, it serves as a subsidy of the commodity.
7At the emissions levels 0 and 1, weak Pareto domination holds.
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We now define the fuel tax equilibrium for a given tax rate t. For every price vector p such

that (t, p) ∈ ∆ and every y ∈ Y , the agent’s fuel tax budget set Bt
ω(y, p) is defined to be:{

z ∈ X : p · z ≤ p · e+
∑
j∈J

(p · y(j) + ty(j)2) +
∑
j∈J

t|y(j)2| = p · e+
∑
j∈J

p · y(j)

}
.

For every price vector p such that (t, p) ∈ ∆ and every (x, y) ∈ A× Y , the agent’s fuel tax

demand set Dt
ω(x, y, p) is{

z ∈ Bt
ω(y, p) : v ≻x−ω ,y,ω,p z =⇒ v ̸∈ Bt

ω(x, y, p)
}
.

For every price vector p such that (t, p) ∈ ∆ and each j ∈ J , the firm’s supply set St
j(p) is

argmax
z∈Yj

(p · z + tz2). A V-compliant fuel tax equilibrium under the tax rate t is (x̄, ȳ, p̄):

(1) (t, p̄) ∈ ∆;

(2) x̄(ω) ∈ Dt
ω(x̄, ȳ, p̄) for the single agent ω;

(3) ȳ(j) ∈ St
j(p̄) for all j ∈ J . Every firm is profit maximizing given the fuel tax rate t

and the price vector p̄;

(4) x̄−
∑

j∈J ȳ(j)− e ∈ V .

We first consider the existence of fuel tax equilibrium.

Claim 2.4. For every t ∈ [0, 1), there exists a V-compliant fuel tax equilibrium with tax rate

t. Moreover, for every v ∈ [0, 1], there exists a V-compliant fuel tax equilibrium such that the

total net CO2 emissions level is v.

Proof. We first show that there exists a V-compliant fuel tax equilibrium for any tax rate

t ∈ [0, 1). We break our analysis into two cases:

(1) Suppose t < 1
2
. Let x = (0, 0, 1), y =

(
(1,−1, 1), (0, 0, 0)

)
and p = (0, 1

2
− t, 1

2
). Both

firms are profit maximizing with zero profit given p and t. The agent’s total income is
1
2
−t+t = 1

2
. Since the agent only derives utility from consuming electricity, x = (0, 0, 1)

is in the agent’s fuel tax demand set. Finally, we have x−e−
∑

j∈J y(j) = (−1, 0, 0) ∈ V .
Hence, (x, y, p) is a V-compliant fuel tax equilibrium;

(2) Suppose t ≥ 1
2
. Let x = (0, 1, 0), y =

(
(0, 0, 0), (0, 0, 0)

)
and p = (0, 0, 1 − t). Note

that no trade occurs, and no firm operates. Both firms are profit maximizing with

zero profit given p and t. The agent’s total income is 0. So x = (0, 1, 0) is in the

agent’s fuel tax demand set. Finally, we have x−e−
∑

j∈J y(j) = (0, 0, 0) ∈ V . Hence,
(x, y, p) is a V-compliant fuel tax equilibrium.
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We now show that, for v ∈ [0, 1], there exists a V-compliant fuel tax equilibrium whose

total net CO2 emissions is v. Given v ∈ [0, 1], let xv = (0, 1− v, v), yv =
(
(v,−v, v), (0, 0, 0)

)
,

t = 1
2
and pv = (0, 0, 1

2
). Both firms are profit maximizing with zero profit given p and t.

The agent’s total income consists only of rebate from fuel tax revenue, which is v
2
. Since the

agent only derives utility from consuming electricity, x = (0, 1− v, v) is in the agent’s fuel

tax demand set. Finally, we have xv − e−
∑

j∈J yv(j) = (−v, 0, 0) ∈ V . Hence, (xv, yv, pv) is

a V-compliant fuel tax equilibrium such that the total net CO2 emissions is v. □

We now study the welfare properties of V-compliant fuel tax equilibrium, and its comparison

to V-compliant emission tax equilibrium in Example 4 of Anderson and Duanmu (2025).

Coal is used to generate electricity for two purposes: consumption of electricity by the agent,

and sequestration of CO2 by the second firm. Because the fuel tax applies to coal used for

both purposes, it discourages sequestration and results in an inefficient outcome. We now

provide the detailed calculations in the context of this example.

As shown in Claim 5.3 in Anderson and Duanmu (2025), for every v ∈ [0, 1], the emission

tax production economy E has a V-compliant emission tax equilibrium such that the total net

CO2 emissions is v. By Claim 3.5, the equilibrium consumption-production pair always takes

the form (x̂v, ŷv) where x̂v = (0, 0, 1+v
2
) and ŷv =

(
(1,−1, 1), (v−1, 0, v−1

2
)
)
. We now compare,

for any given level of total net CO2 emissions level, the agent’s equilibrium consumption of

electricity between fuel tax equilibrium and emission tax equilibrium.

Claim 2.5. For v ∈ [0, 1], the agent’s electricity consumption at any fuel tax equilibrium

with total net CO2 emissions v is no greater than 1+v
2
, with strict inequality for v ∈ (0, 1).

Proof. Given v ∈ [0, 1], let (x̄v, ȳv, p̄v) be a V-compliant fuel tax equilibrium such that the

total net CO2 emissions is v. We break our analysis into the following two cases:

(1) We first consider the case where p̄v(1) ≥ 0.8 By the agent’s utility function and

unboundedness of the agent’s consumption set, we have p̄v(3) > 0. Hence, the

equilibrium production for the second firm is (0, 0, 0). As the total net CO2 emissions

is v, the first firm’s equilibrium production must be (v,−v, v). Hence, the agent’s

equilibrium consumption of electricity is bounded by v. It is clear that v ≤ 1+v
2

for

all v ∈ [0, 1], and the equality holds only when v = 1;

(2) We then consider the case where p̄v(1) < 0. If the second firm’s equilibrium production

is (0, 0, 0), then the result follows from the same analysis in the above paragraph. Now

8We use p̄v(i) to denote the i-th coordinate of p̄v.
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suppose the second firm’s equilibrium production is not (0, 0, 0). We conclude that

p̄v(3) = −2p̄v(1). As the second firm operates, the first firm’s equilibrium production

must also not be (0, 0, 0). Hence, we must have p̄v(1)− (p̄v(2) + t) + p̄v(3) = 0, which

implies p̄v(2) + t = p̄v(3) + p̄v(1) = −p̄v(1). Suppose the first firm’s equilibrium

production is (r,−r, r). Then the agent’s total income is given by

p̄v(2) + r
(
p̄v(1) + p̄v(3)− p̄v(2)

)
= p̄v(2) + rt ≤ p̄v(2) + t.

Thus, the agent’s equilibrium electricity consumption is bounded by p̄v(2)+t
p̄v(3)

= −p̄v(1)
p̄v(3)

=
1
2
. Thus, unless r = 1 and v = 0, the agent’s equilibrium consumption of electricity is

strictly less than 1+v
2
.

Combining the two cases together, we obtain the desired result. □

Note that the only externality arises from the total net CO2 emissions and the agent only

derives utility from consuming electricity. For every v ∈ (0, 1), every fuel tax equilibrium

with total net CO2 emissions v is Pareto dominated by every emission tax equilibrium with

total net CO2 emissions v. For v ∈ {0, 1}, an emission tax equilibrium with total net CO2

emissions v is at least as good as any fuel tax equilibrium with total net CO2 emissions v.

The next example shows that fuel tax equilibrium may also fail to exist.

Example 2.6. Let F = {(X,≻ω, Pω, eω, θω)ω∈Ω, (Yj)j∈J ,V , t, λ} be a finite production econ-

omy with fuel tax on coal:

(1) The economy E has three commodities CO2, coal and electricity;

(2) There are two agents with the same consumption set X = {0} × R2
≥0 and the same

endowment e = (0, 1, 0). Given the total net emissions v of CO2, the first agent’s

utility function fv(x11, x21, x31) = x31 − v2

2
where x11, x21, x31 are the first agent’s

consumption of CO2, coal and electricity. The second agent’s utility function is

gv(x12, x22, x32) = x22+x32− v2

2
, where x12, x22, x32 are the second agent’s consumption

of CO2, coal and electricity. Note that the second agent derives utility from consuming

both coal and electricity;

(3) There is one producer with production set Y1 = {(r,−r, r) : r ∈ R≥0}. So the producer

has the production technology to burn r units of coal to generate r units of electricity

and r units of CO2 as byproduct;

(4) The compliance region V = R≤0 × {0}2;
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(5) Both agents have the same shareholding of the private firm, i.e., θ1(1) = θ2(1) =
1
2
.

The government’s rebate shares to both agents are the same, i.e., λ(1) = λ(2) = 1
2
.

By the agents’ utility functions, the equilibrium prices for coal and electricity must both

be positive. If the fuel tax is set to be greater than 1
2
, by normalization, the sum of absolute

values of equilibrium prices of CO2, coal and electricity must be less than 1
2
. Since the firm

is profit maximizing, the only possible equilibrium production for the producer is (0, 0, 0).

However, the first agent has a positive budget and wishes to only consume electricity. Hence,

there is no equilibrium.

2.3. Proofs of Propositions 1 and 2. In this section, we complete the proofs of Propositions

1 and 2 of Anderson and Duanmu (2025).

Proof of Proposition 1. Agent ω’s budget set Bm
ω (ȳ, p̄) is

{z ∈ Xω : p̄ · z ≤ p̄ · e(ω) +
∑
j∈J

θωj(p̄ · ȳ(j) + projk(p̄) ·m(j))}.

As
∑

j∈J θωjprojk(p̄) · m(j) = θ̃(ω)(0)projk(p̄) · m, the budget set B̃m
ω (ȳ, p̄) of agent ω in

the economy F is the same as Bm
ω (ȳ, p̄). Hence, x̄(ω) is an element of the quota demand

set D̃m
ω (x̄, ȳ, p̄) for all ω ∈ Ω in the economy F . As ȳ(j) ∈ Sm

j (p̄) for all j ∈ J , we have

ȳ(j) ∈ argmax
z∈Yj

p̄ · z. Finally, as
∑

ω∈Ω x̄(ω)−
∑

ω∈Ω e(ω)−
∑

j∈J ȳ(j) ∈ Z(m), we conclude

that (x̄, ȳ, p̄) is a Z(m)-compliant global quota equilibrium for F . □

Proof of Proposition 2. As k = 1,
∑

j∈J θωjπk(p) ·m(j) = θ̃(ω)(0)πk(p) ·m for p ∈ ∆. By the

same proof of Proposition 1, a quota equilibrium in E is a global quota equilibrium in F . □

2.4. A Special Case of Theorem 2. In this section, we consider a special case of Theorem 2

in Anderson and Duanmu (2025) in which agents cannot consume any regulated commodities.

Since endowments are fixed, the total net emissions of the regulated commodities depend only

on the production. The following result is similar to Theorem 2 in Anderson and Duanmu

(2025) except that the total net emissions of the regulated commodities are replaced by the

total net production of the regulated commodities.

Theorem 2.7. Let E = {(X,≻ω, Pω, eω, θ)ω∈Ω, (Yj)j∈J , (m
(j))j∈J ,Z(m)} be a quota produc-

tion economy as in Definition 3.2 of Anderson and Duanmu (2025), and suppose that the

only externality arises from the total net emissions of the first k commodities. Suppose

Z(m)n = {0} for all k < n ≤ ℓ and projk(Xω) = {0} for all ω ∈ Ω. Let (x̄, ȳ, p̄) is a

Z(m)-compliant quota equilibrium. Then:
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(1) (x̄, ȳ) is constrained weakly Pareto optimal, i.e., (x̄, ȳ) is weakly Pareto optimal among

all production-consumption pairs with the same total production of the regulated

commodities;

(2) Suppose Pω(x̄−ω, ȳ, p̄) is negatively transitive and locally non-satiated for all ω ∈
Ω. Then (x̄, ȳ) is constrained Pareto optimal, i.e., (x̄, ȳ) is Pareto optimal among

all production-consumption pairs with the same total production of the regulated

commodities.

3. Detailed Analysis of Examples

In this section, we provide detailed analysis and computation for Examples 1, 2, 3, and 4

in Anderson and Duanmu (2025).

3.1. Detailed Analysis of Example 1.

Claim 3.1. Let E be the quota production economy considered in Example 1 of Anderson and

Duanmu (2025). For any −m ∈ (0, 1], there is a unique Z(m)-compliant quota equilibrium:

• agents ω1 and ω2’s equilibrium consumption are (0, 0,−m) and (0, 1 +m, 0), respec-

tively;

• the private firm’s equilibrium production is (−m,m,−m);

• the equilibrium price is (−m−1
2

, −m
2
, 1
2
).

Proof. Fix −m ∈ (0, 1]. Let p̄ = (p̄1, p̄2, p̄3) be an equilibrium price associated with a Z(m)-

compliant quota equilibrium. As the consumption set for both agents is {0} × R2
≥0, The

equilibrium production of the private firm must be (−m,m,−m). By the agents’ utility

functions and unbounded consumption sets, we have p̄2 > 0 and p̄3 > 0. Hence, agent ω1

must sell all her endowment to consume electricity, and agent ω2 must use all her income to

consume coal. As we require non-free-disposal at equilibrium for both coal and electricity, the

equilibrium consumption for agent ω1 and ω2 are (0, 0,−m) and (0, 1 +m, 0), respectively.

Since all quotas are assigned to the government firm and the government firm distributes all

its profit to agent ω2, agent ω2’s total income is −p̄1(−m) = p̄1m. As p̄2 > 0 and −m ∈ (0, 1],

agent ω2’s equilibrium consumption, which is (0, 1 +m, 0), has a positive value. Hence, we

have p̄1 < 0. By the private firm’s production technology, we have p̄1 − p̄2 + p̄3 = 0. As

p̄1 < 0 and p̄2 > 0, we have p̄3 = p̄2 − p̄1 = p̄2 + |p̄1|. As p̄ ∈ ∆, we have p̄3 + p̄2 + |p̄1| = 1,

which implies that p̄3 =
1
2
. Note that agent ω1’s total income is p̄2. Since agent ω1 uses all
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the income to consume electricity, we have p̄2 =
−m
2
. Hence, the equilibrium price must be

(−m−1
2

, −m
2
, 1
2
). □

Claim 3.2. The unregulated economy E ′ in Example 1 of Anderson and Duanmu (2025) has

a unique equilibrium with:

• agents ω1 and ω2’s equilibrium consumption are (0, 0, 1) and (0, 0, 0), respectively;

• the private firm’s equilibrium production is (1,−1, 1);

• the equilibrium price is (0, 1
2
, 1
2
)

Proof. Let p̄ = (p̄1, p̄2, p̄3) be an equilibrium price. By the agents’ utility functions and

unbounded consumption sets, we have p̄2 > 0 and p̄3 > 0. In the unregulated economy E ′, the

government firm’s profit is 0. As the private firm has a linear production technology, its profit

at any equilibrium must be 0. As agent ω2’s endowment is (0, 0, 0), agent ω2’s income at any

equilibrium is 0. Since agent ω2’s consumption set is {0} × R2
≥0 and p̄2, p̄3 > 0, agent ω2’s

equilibrium consumption must be (0, 0, 0). Note that agent ω1 derives utility from electricity

and is indifferent to coal consumption. As the equilibrium price p̄2 of coal is positive and

agent ω1 is only endowed with coal, agent ω1 must sell all the endowment (to the private

firm) to consume electricity. Hence, the equilibrium production of the private firm must

be (1,−1, 1). Since we require non-free-disposal at equilibrium for electricity, agent ω1’s

equilibrium consumption must be (0, 0, 1). Note that agent ω1’s total income is p̄2 and the

value of her total consumption is p̄3. Thus, we must have p̄2 = p̄3. By the private firm’s

production technology, we have p̄1 − p̄2 + p̄3 = 0, which implies that p̄1 = 0. As p̄ ∈ ∆, we

have p̄ = (0, 1
2
, 1
2
). □

3.2. Detailed Analysis of Example 2.

Claim 3.3. Let E be the quota production economy considered in Example 2 of Anderson

and Duanmu (2025). If the quota −m is less than 6, then there is a unique equilibrium price

(−1
4
, 1
4
, 1
2
), which is independent of quota levels and quota allocations among firms.

Proof. As agents derive utility from electricity and their consumption sets allow them to

consume an unbounded amount of electricity, the equilibrium price p̄3 of electricity must be

positive. If the equilibrium price p̄2 of coal is less than or equal to 0, the first private firm’s

production technology implies that the equilibrium price p̄1 < 0, and p̄3 + p̄1 ≤ 0.9 By the

9If p̄1 − p̄2 + p̄3 > 0, then the first firm’s profit is unbounded.
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second private firm’s production technology, −p̄3 − 2p̄1 ≤ 0. So we have p̄3 + p̄1 − p̄3 − 2p̄1 =

−p̄1 ≤ 0, which implies p̄1 ≥ 0. This is a contradiction with p̄1 < 0. Hence p̄2 > 0.

Since agents do not obtain utility from coal, the equilibrium price for coal is positive, and

the second firm’s production technology does not allow it to consume coal, the first firm must

purchase the entire endowment of coal. Hence, the equilibrium production of the first firm

must be (6,−6, 6). Since the quota is less than 6, the second firm’s equilibrium production

must not be 0. From the profit maximization of the first private firm, we have p̄1− p̄2+ p̄3 = 0,

which implies that p̄3 = p̄2− p̄1. As p̄ ∈ ∆, we have |p̄1|+ |p̄2|+ |p̄3| = −p̄1+ p̄2+ p̄3 = 2p̄3 = 1.

Hence, we have p̄3 =
1
2
. From the profit maximization of the second private firm, we have

p̄1 = −1
2
p̄3. Hence, we have p̄1 = −1

4
. As p̄ ∈ ∆ and p̄2 > 0, we have p̄2 = 1

4
. Hence, the

equilibrium price is (−1
4
, 1
4
, 1
2
). □

Claim 3.4. Let E be the quota production economy considered in Example 2 of Anderson and

Duanmu (2025). For every v = −m ∈ [0, 6) and agent ω ∈ Ω, her equilibrium consumption

is (0, 0, ω
2
+ v

6
) in the global quota case and is (0, 0, ω

2
+ vω

12
) in the cap-and-trade case.

Proof. Fix v = −m ∈ [0, 6). By Claim 3.3, the equilibrium price is (−1
4
, 1
4
, 1
2
).

We first consider the global quota case. That is, all quotas are allocated to the government

firm. For ω ∈ Ω, her total income consists of the value of her endowment plus the dividend

from the government firm,10 which is 1
4
ω + 1

3
v
4
= ω

4
+ v

12
. As the agent only derives utility

from consuming electricity, the agent must spend all income to consume electricity. As the

equilibrium price of electricity is 1
2
, the equilibrium consumption of agent ω is (0, 0, ω

2
+ v

6
).

We now consider the cap-and-trade case. That is, all quotas are allocated to the first

private firm. For ω ∈ Ω, her total income consists of the value of her endowment plus the

dividend from the first private firm,11 which is 1
4
ω + ω

6
v
4
= ω

4
+ vω

24
. As the agent only derives

utility from consuming electricity, the agent must spend all income to consume electricity.

The equilibrium consumption of agent ω is (0, 0, ω
2
+ vω

12
). □

3.3. Computation of Agents’ Demands in Example 3. Recall that the government sets

a tax rate t, hence the price of commodity 0, p0 = −t ≤ 0. Moreover, we normalize p0, p1, p2

such that p1+p2 = 1. Given a price vector p = (p0, p1, p2) and a consumption vector (x01, x02)

of commodity 0, agent i’s emissions of commodity 0 equal (0.2− x0i), so agent i must pay a

10The two private firms have zero profit.
11The government firm and the second private firm have zero profit.
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tax of t(0.2− x0i) = −p0(0.2− x0i). The first agent’s expenditure12 on commodities 1 and 2

is the value of agent 1’s endowment of goods 1 and 2, minus the tax paid by agent 1, plus

agent 1’s rebate of the total taxes paid by both agents:

I1 = 2p1 + rp2 + p0(0.2− x01)−
p0
2

[
(0.2− x01) + (0.2− x02)

]
= 2p1 + rp2 +

p0
2
(x02 − x01).

Similarly, the second agent’s expenditure on commodities 1 and 2 is:

I2 = rp1 + 2p2 +
p0
2
(x01 − x02).

We first compute agents’ demand for commodities 1 and 2 as a function of p1, p2, I1, I2.

Since the first agent’s utility function U1(x01, x11, x21) =
(
x11 − 1

8
x−8
21

)
− 1

10
x2
01, we have(

∂U1

∂x11
, ∂U1

∂x21

)
= (1, x−9

21 ). Thus, the demand for commodities 1 and 2 must satisfy 1
x−9
21

= p1
p2
,

which implies that x21 =
(

p1
p2

) 1
9
. We also have p1x11 + p2x21 = I1. Hence, we have

x11 =
I1
p1

− p2
p1
x21 =

I1
p1

− p2
p1
(p1
p2
)
1
9 = I1

p1
−

(
p2
p1

) 8
9
. Thus, agent 1’s demand for commodities 1

and 2, as a function of p1, p2, I1, is

(
I1
p1

−
(

p2
p1

) 8
9
,
(

p1
p2

) 1
9

)
. To compute agent 1’s demand

for commodity 0, we first note that the marginal utility of consuming commodities 1 and 2

in terms of the expenditure I1 is 1
p1
. We also note that the marginal available income from

consumption of commodity 0 is −p0. Since agent 1’s demand for commodities 1 and 2 is(
I1
p1

−
(

p2
p1

) 8
9
,
(

p1
p2

) 1
9

)
, each unit of additional income generates 1

p1
additional utility to agent

1. Hence, the marginal utility of consumption of commodities 1 and 2 financed by consumption

of commodity 0 is −p0
p1

. The marginal disutility of agent 1 of consuming commodity 0 is

− ∂U1

∂x01
= 1

5
x01. Hence, agent 1’s demand for commodity 0 must satisfy 1

5
x01 = −p0

p1
, which

implies that agent 1’s demand for commodity 0 is −5p0
p1

. Thus, agent 1’s demand for all three

commodities is

(
−5p0
p1

, I1
p1

−
(

p2
p1

) 8
9
,
(

p1
p2

) 1
9

)
. By the same calculation, agent 2’s demand for

all three commodities is

(
−p0
p2

,
(

p2
p1

) 1
9
, I2
p2

−
(

p1
p2

) 8
9

)
. Let η = p1

p2
. As p1 + p2 = 1, we have

−5p0
p1

= −5p0
1+η
η

and −p0
p2

= −p0(1+η). Hence, we have I1 =
2η
1+η

+ r
1+η

+ p0
2

[
5p0

1+η
η

−p0(1+η)
]

and I2 =
rη
1+η

+ 2
1+η

+ p0
2

[
p0(1+ η)− 5p0

1+η
η

]
. Hence, agents’ demands are functions of the tax

rate and η = p1
p2
. In particular, for any given tax rate, agents’ excess demands are functions

12Agents consume commodity 0 only to generate additional income to consume commodities 1 and 2. Since
agents have monotone preferences for commodities 1 and 2, they will spend all of the income available on
commodities 1 and 2.
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of the single variable η = p1
p2
. We solve numerically for the values of η such that the excess

demand for good 1 is zero. By Rebate Walras’ Law (Theorem 2.2), the excess demand for

good 2 is also zero at those same values of η.

3.4. Detailed Analysis of Example 4. We provide rigorous proofs for Claim 5.1, Claim

5.2 and Claim 5.3 of Example 4 in Anderson and Duanmu (2025) to complete our analysis of

this example. We also present Claim 3.5, which plays an important role in Example 2.3.

Proof of Claim 5.1. Let t0 ≤ 1
4
be the tax rate on CO2. Let x̄ = (0, 0, 1), ȳ =

(
(1,−1, 1), (0, 0, 0)

)
and p̄ = (−t0,

1
2
− t0,

1
2
). We claim that (x̄, ȳ, p̄) is a V-compliant emission tax equilibrium

with tax rate t0 on CO2. At the equilibrium price p̄, both firms are profit maximizing with

zero profit. The budget set for the agent is:{
z ∈ X : p̄ · z ≤ 1

2
− t0 + t0 =

1

2

}
.

Since the agent derives utility only from consuming electricity, x̄ is in the agent’s emission

tax demand set Dt(x̄, ȳ, p̄). Note that x̄ − e −
∑

j∈J ȳ(j) = (−1, 0, 0) ∈ V. So (x̄, ȳ, p̄) is a

V-compliant emission tax equilibrium with tax rate t0.

Now, suppose that t > 0 is an emission tax rate on CO2 under which there is a V-compliant

emission tax equilibrium (x̂, ŷ, p̂). By definition, we know that p̂1 = −t. The equilibrium

price p̂3 must not be less than 2t, since otherwise the second firm’s profit is unbounded. For

the same reason, we know that p̂2 ≥ p̂3 − t > 0. As the endowment e = (0, 1, 0), the agent’s

budget at equilibrium is positive. The equilibrium production for the first firm must not be

(0, 0, 0) since the agent has a positive budget that she will spend entirely on electricity. Hence,

we conclude that p̂3 = t + p̂2. As p̂ ∈ ∆, we have 2t + 2p̂2 = 1, which implies that p̂3 =
1
2
.

As p̂3 ≥ 2t, we know that t ≤ 1
4
. Thus, we conclude that F has a V-compliant emission tax

equilibrium if and only if the tax rate t ≤ 1
4
. □

Proof of Claim 5.2. Pick the emission tax rate 0 ≤ t0 <
1
4
of CO2. Claim 5.1 in Anderson

and Duanmu (2025) indicates that there is a V-compliant emission tax equilibrium (x̂, ŷ, p̂).

We first consider the case where t0 > 0. Using the same argument as in the second

paragraph of the proof of Claim 5.1, we conclude that p̂3 =
1
2
and p̂2 =

1
2
− t0. As p̂3 > 2t0,

the equilibrium production for the second firm is (0, 0, 0). Suppose that the equilibrium

production for the first firm is (r,−r, r) for r < 1. The emission tax budget set is:{
z ∈ X : p̂ · z ≤ 1

2
− t0 + rt0

}
.
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As t0 <
1
4
and r < 1, we have

1

2
r −

(
1

2
− t0 + rt0

)
=

1

2
(r − 1)− t0(r − 1) < 0. (3.1)

Equation Eq. (3.1) implies that the consumption (0, 0, r) is in the agent’s budget set. However,

the agent demands more than r units of electricity. So (0, 0, r) is not in the emission tax

demand set Dt(x̂, ŷ, p̂). Hence, the first firm’s equilibrium production is (1,−1, 1). So the

total net emissions of CO2 is 1. □

Proof of Claim 5.3. Pick v0 ∈ [0, 1]. Let x̂v0 = (0, 0, 1+v0
2

), ŷv0 =
(
(1,−1, 1), (v0 − 1, 0, v0−1

2
)
)
,

and p̂ = (−1
4
, 1
4
, 1
2
). We claim that (x̂v0 , ŷv0 , p̂) is a V-compliant emission tax equilibrium

associated with the emission tax rate 1
4
such that the total net CO2 emissions is v0. As p̂1 = −1

4
,

the associated emission tax rate is 1
4
. Note that x̂v0−e−

∑
j∈J ŷv0(j) = (−v0, 0, 0) ∈ V . Hence,

the total net CO2 emissions is v0. Both firms are profit maximizing, with zero profit, given the

price vector p̂. The emission tax budget set for the agent is {z ∈ X : p̂ · z ≤ 1
4
(1 + v0)}. Since

the agent derives utility only from consuming electricity, x̂v0 is an element of the emission

tax demand set Dt(x̂v0 , ŷv0 , p̂), completing the proof. □

The following claim is crucial for the comparison of welfare properties between the emission

tax equilibrium in this example and the fuel tax equilibrium in Example 2.3.

Claim 3.5. Given v ∈ [0, 1], let (x̂v, ŷv, p̂v) be a V-compliant emission tax equilibrium such

that the total net CO2 emissions is v. Then

x̂v =

(
0, 0,

1 + v

2

)
and ŷv =

(
(1,−1, 1),

(
v − 1, 0,

v − 1

2

))
.

Proof. We first consider the case where v = 1. The equilibrium production ŷv must be(
(1,−1, 1), (0, 0, 0)

)
. The emission tax rate associated with (x̂v, ŷv, p̂v) is t = −p̂v(1). The

agent’s total income is 1
2
− t+ t = 1

2
. Since the agent derives utility only from consuming

electricity, the agent’s equilibrium consumption x̂v is (0, 0, 1).

We now consider the case where v < 1. By Claims 5.2 and 5.3 in Anderson and Duanmu

(2025), the emission tax rate associated with (x̂v, ŷv, p̂v) must be 1
4
. Using the same argument

as in the second paragraph of the proof of Claim 5.1, the equilibrium price p̂v must be (−1
4
, 1
4
, 1
2
).

Since we require non-free-disposal of coal at equilibrium, the first firm’s equilibrium production

must be (1,−1, 1). So the second firm’s equilibrium production is (v− 1, 0, v−1
2
). The agent’s

total income is 1
4
+ v

4
. Since the agent derives utility only from consuming electricity, the

agent’s equilibrium consumption x̂v is (0, 0, 1+v
2
). □
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