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C Theoretical Appendix

C.1 Notation and Preliminary Results

Let Γl (x), l = 0, 1, ... be the orthonormal shifted Legendre polynomials on [0, 1]. The first

three polynomials are Γ0 (y) = 1, Γ1 (y) =
√

3 (2y − 1), and Γ2 (x) =
√

5 (6x2 − 6x− 1) . In

general, Γl (x) = ∑l
k=0 γl,kx

k for known constants γl,k. The Fourier-Legendre approximation

of degree m of a function g defined on [0, 1] evaluated at x is denoted by sm (g;x) and is

given by:

sm (g;x) =
m∑

l=0
Γl (x)

∫ 1

0
g (y) Γl (y) dy.

Because the Legendre polynomials are orthonormal, we can refer to terms
∫ 1

0 g (y) Γl (y) dy

as the l-th coefficient of the Fourier-Legendre approximation of g without explicitly referring

to the degree of the approximation. For the rest of this subsection, F (·) is a cumulative

distribution function for a random variable with support on [0, 1], i.e, F (1) = 1.

Lemma 3. If g (x) a continuous function for all x ∈ [a, b] ⊂ (0, 1), the partial average

Sn (g;x) = 1
n

∑n−1
m=0 sm (g;x) converges to g (x) uniformly in [a, b].

Proof. The result is a corollary of Theorem IV.3.2 in Freud (1971). To apply this result,

we will use the cumulative distribution function of the uniform distribution on [0, 1] as the

function α (x) in the statement of the theorem, and the Legendre polynomials Γn (x) as

pn (dα;x) for n = 0, 1, 2... It is straightforward to check that this sequence of polynomials

satisfies the conditions in Theorem I.1.2 of Freud (1971) for the chosen α (x). Moreover, this

sequence is unique as noted in the remark below Theorem I.1.2 in Freud (1971).

Therefore, it remains to show that pn (dα;x) satisfies requirement (3.2) in Chapter IV of

Freud (1971). The author notes that Theorem III.3.3 implies that it is sufficient to show
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that for every pair x2 and x1 in a neighborhood of x0 ∈ [a, b] ⊂ (0, 1), α(x2)−α(x1)

x2−x1
is bounded

below by some positive constant. This the case because for our chosen α (x), the expression

is equal to 1 for every x1, x2 ∈ (0, 1) .

Finally, sm (g;x), as defined in equation IV(1.3) of Freud (1971) is the m−th order Fourier-

Legendre approximation of g. Therefore, by Theorem IV.3.2 in Freud (1971), Sn (g;x) con-

verges to g (x) uniformly in [a, b] ⊂ (0, 1).

Lemma 4. The l-th coefficient of the Fourier-Legendre approximation of the function f

is a known linear function of ϕk =
∫ 1

0 x
kf (x) dx for k = 0, 1, ..., l. The partial average

1
n

∑n−1
m=0 sm (f, x) converges uniformly to f (·) over any interval [a, b] ⊂ (0, 1) on which the

function f (·) is continuous.

Proof. The l-th coefficient of the Fourier-Legendre approximation of degree of f is

∫ 1

0
Γl (x) f (x) dx =

∫ 1

0

l∑
k=0

γl,kx
kf (x) dx =

l∑
k=0

γl,k

∫ 1

0
xkf (x) dx =

l∑
k=0

γl,kϕk.

The partial average 1
n

∑n−1
m=0 sm (f, x) converges uniformly to f (·) over any interval [a, b] ⊂

(0, 1) on which the function f (·) is continuous by Lemma 3.

Lemma 5. Let ζk =
∫ 1

0 x
kdF (x) be the k-th moment of F (·) for k = 0, 1, ... If F (·)

is absolutely continuous, (i) the l-th coefficient of the Fourier-Legendre approximation of

F is a linear function of the moments ζ1, ..., ζl+1; (ii) the partial average 1
n

∑n−1
m=0 sm (F, x)

converges uniformly to F (·) over any interval [a, b] ⊂ (0, 1).

Proof. The l-th coefficient of the Fourier-Legendre approximation of F (x) is given by

cl =
∫ 1

0
Γl (x)F (x) dx

=
(∫ 1

0
Γl (x) dx−

∫ 1

0

∫ x

0
Γl (y) dydF (x)

)
,

where the second equality follows from integration by parts, which holds by absolute conti-

nuity of F (·), and the fact that F (1) = 1. For l = 0, Γ0 (y) = 1 and

c0 = 1 −
∫ 1

0
xdF (x) = 1 − ζ1. (C.1)
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For l > 0,

∫ 1
0 Γl (x) dx =

∫ 1
0 Γl (x) Γ0 (x) dx = 0. Therefore,

cl = −
∫ 1

0

∫ x

0
Γl (y) dydF (x) = −

∫ 1

0

l∑
k=0

γl,k
1

k + 1x
k+1dF (x)

= −
l∑

k=0
γl,k

1
k + 1ζk+1. (C.2)

Equations (C.1) and (C.2) imply that all cl for l < n can be written in terms of the moments

ζ1, . . . , ζl+1. This proves part (i). Part (ii) follows from Lemma 3 because [a, b] ⊂ (0, 1) and

F (·) is continuous.

Lemma 6. Suppose (i) F (·) is absolutely continuous with a density f (·) that is continuous

in an interval [a, b] ⊂ (0, 1), (ii) functions g (·) , g̃ (·) are integrable on the unit interval and

continuous in the interval [F (a) , F (b)], and (iii) g (y) ̸= g̃ (y) for some y ∈ (F (a) , F (b)),

then there exists a finite integer k such that
∫ 1

0 g (F (x))xkdF (x) ̸=
∫ 1

0 g̃ (F (x))xkdF (x).

Thus, if f (·) and the scalars
∫ 1

0 g (F (x))xkdF (x) for k = 0, 1, 2, ... are identified, then g (·)

is identified in the interval (F (a) , F (b)).

Proof. Consider a pair of real-valued continuous functions g (·) and g̃ (·) defined on the

closed unit interval such that g (y) ̸= g̃ (y) for some y ∈ (F (a) , F (b)). If F (a) = F (b), the

conclusion is vacuously true. If F (a) < F (b), continuity of g (·) implies that g (ỹ) ̸= g̃ (ỹ) for

all ỹ in an open neighborhood Bδ (y) for some δ > 0. Take y, y ∈ Bδ (y) ∩ (F (a) , F (b)) with

y < y. Since F (·) is absolutely continuous, F−1
(
y

)
< F−1 (y), where F−1 (·) denotes the

quantile function of F (·). By the mean-value theorem, there exist x∗ ∈
(
F−1

(
y

)
, F−1 (y)

)
such that f (x∗) > 0; thus,

∆ ≡ |g (F (x∗)) f (x∗) − g̃ (F (x∗)) f (x∗)| > 0.

Let u (x) = g (F (x)) f (x) and ũ (x) = g̃ (F (x)) f (x). The function is u (x) is contin-

uous in [a, b] because it is the product of continuous functions. Lemma 3 implies that
1
n

∑n−1
m=0 sm (u, x) and 1

n

∑n−1
m=0 sm (ũ, x) converge respectively to u (x) and ũ (x) uniformly in

[a, b]. Thus, there exist an n such that for all x ∈ [a, b],
∣∣∣ 1

n

∑n−1
m=0 sm (u, x) − u (x)

∣∣∣ < ∆
3 and∣∣∣ 1

n

∑n−1
m=0 sm (ũ, x) − ũ (x)

∣∣∣ < ∆
3 . By the triangle inequality,

∣∣∣ 1
n

∑n−1
m=0 (sm (ũ, x∗) − sm (u, x∗))

∣∣∣ >
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∆
3 which implies that |sm (ũ, x∗) − sm (u, x∗)| > ∆

3 for some m < n. Thus, the two Fourier-

Legendre approximations sm (ũ, ·) and sm (u, ·) have a different l-th coefficient for some

l ≤ m. Define ϕk =
∫ 1

0 g (F (x))xkdF (x) and ϕ̃k =
∫ 1

0 g̃ (F (x))xkdF (x). By Lemma 4,

ϕk ̸= ϕ̃k for some k ≤ l < n. Thus, the two functions g (·) and g̃ (·) are not observationally

equivalent.

C.2 Proof of Main Results

C.2.1 Proof of Lemma 1

For simplicity of notation, denote qn =
(
qj(i,1), . . . , qj(i,n)

)
and qn−1 =

(
qj(i,1), . . . , qj(i,n−1)

)
,

which are truncated from qi to the first n and n − 1 offers respectively. For any bounded

function ψ (·) ,E
[
ψ

(
Yi,j(i,n)

)∣∣∣Ni = n, qi, z, Ai ≥ ti,j(i,n)
]

is bounded and identified whenever

the conditioning event has positive probability. Therefore, it remains to show that

E
[
ψ (Yi,0)|Ni = n, qi, z, Ai ≥ ti,j(i,n)

]

is identified. Now, re-write

E
[
ψ (Yi,0)|Ni = n, qi, z, Ai ≥ ti,j(i,n)

]
P

(
Ni = n| qi, z, Ai ≥ ti,j(i,n)

)
=E

[
ψ (Yi,0)|Ni > n− 1, qi, z, Ai ≥ ti,j(i,n)

]
P

(
Ni > n− 1| qi, z, Ai ≥ ti,j(i,n)

)
− E

[
ψ (Yi,0)|Ni > n, qi, z, Ai ≥ ti,j(i,n)

]
P

(
Ni > n| qi, z, Ai ≥ ti,j(i,n)

)
=E

[
ψ (Yi,0)|Ni > n− 1, qn−1, z, Ai ≥ ti,j(i,n)

]
P

(
Ni > n− 1| qn−1, z, Ai ≥ ti,j(i,n)

)
− E

[
ψ (Yi,0)|Ni > n, qn, z, Ai ≥ ti,j(i,n)

]
P

(
Ni > n| qn, z, Ai ≥ ti,j(i,n)

)
.

The first equality follows from set inclusion and the last from Assumption 2. These quantities

in the last expression are observed by focussing on the subset of patients that receive the

sequence of offer types qn−1 and qn. By assumption, these sequences of offer types is in the

support of the sequence of offer types induced by Ji. Since P
(
Ni = n| qi, z, Ai ≥ ti,j(i,n)

)
is identified and strictly positive, E

[
ψ (Yi,0)|Ni = n, qn, z, Ai ≥ ti,j(i,n)

]
is identified. The

marginal distributions of Yi,0 and Yi,j(i,n) conditional on Ni = n, qi, z and Ai ≥ ti,j(i,n) are
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identified because the conditional expectations of ψ (Yi,0) and ψ

(
Yi,j(i,n)

)
are identified for

any bounded function ψ.

C.2.2 Proof of Lemma 2

For any k ≤ n, Assumptions 1 and 2 imply that the observed probability that Di,j(i,1) =

Di,j(i,2) = . . . = Di,j(i,k) = 0, i.e., Ni > k, can be re-written as equation (5.1). Observe

that ζk =
∫ 1

0 ε
k
Ddv (εD; qj, z) is identified for k ∈ {1, . . . , n} and that v (·; qj, z) is absolutely

continuous by Assumption 3. Thus, the result follows from parts (i) and (ii) of Lemma 5.

This concludes the proof of Lemma 2. If Assumption 4(i) holds, Lemma 4 implies that the

function v′ (·; qj, z) is identified in (0, 1). This result will be used in the proof of Theorem 1.

C.2.3 Proof of Theorem 1

Identification of E [Yi,0| νi,D = ν]. For a given ν ∈ (0, 1), fix z such that there exists

εD ∈ (0, 1) with v (εD; qj, z) = ν. Assumptions 1, 2 and 3 imply that for each k ≤ n, we can

write equation (5.2). E [Yi,0| νi,D = ν] is continuous and integrable by Assumption 4(ii-iii).

The hypotheses of Lemma 2 and Assumption 3 imply that the continuous function v′ (·; qj, z)

is identified in (0, 1) and so is E [Yi,0| νi,D = ν] by Lemma 6 applied to F (·) = v (·; qj, z).

Identification of E [Yi,j|νi,D = ν, εi,j,D ≥ ε, qj]. Assumptions 1, 2 and 3 imply that for each

k ≤ n, we can re-write the observed quantity E
[
Yi,j × 1 {Ni = k} |qk

j , z
]

as

∫ 1

0
E [Yi,j|νD = v (x; qj, z) , εi,j,D ≥ x, qj]xk−1 (1 − x) dv (x; qj, z)

We will invoke Lemma 6 with F (·) = v (·; qj, z), f (·) = v′ (·; qj, z) and

g (νD) =
∫ 1

v−1(νD;qj ,z)
E [Yi,j| νD, εi,j,D = ε, qj] dε.

These functions are continuous and integrable by Assumption 4. By the conclusion of Lemma

6,
∫ 1

v−1(νD;qj ,z) E [Yi,j| νD, εi,j,D = ε] dε is identified. Thus, E [Yi,j|νi,D = ν, εi,j,D ≥ ε, qj] is

identified for all νD ∈ (0, 1), εD ∈ (0, 1) such that νD = v (εD; qj, z) for some z in the

support of its distribution.
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C.3 Donor Unobserved Heterogeneity

We extend our identification results to allow for scalar donor heterogeneity η that is ob-

served by agents but not by the econometrician. For donor j, patients observe both qj

and ηj, whereas the econometrician only observes the former. We modify equations (3.2)

and (3.3) to depend on η explicitly. The outcome of patient i assigned organ j is Yi,j =

ĝ1 (qj, xi, ηj, νi,1, εi,j,1) and the acceptance rule is ĝD (qj, xi, ηj, zi, νi,D, εi,j,D) ∈ {0, 1}. As in

the main text, we assume that ĝD is non-increasing in vi,D and non-decreasing in εi,j,D. We

also assume that it is non-increasing in ηj and normalize the distribution of η to be uniform

on the unit interval. For simplicity, we fix ti,j = 0 and we omit xi from the notation as it

will be held fixed.

We are going to exploit the fact that, conditional on observables, organs that are offered in

later positions are adversely selected in terms of ηj. We will derive the distribution of ηj

conditional having been rejected by a number of observationally equivalent patients. To be

able to derive this distribution we will require that the priority of patients that determine

the order in which the organ is offered does not depend on donor or patient unobservables.

Let pi,j = Υ (xi, zi, qj, ωi,j) be a score that the assignment mechanism assigns to patient i

for organ j, where ωi,j is a scalar tie-breaker. For example, the mechanism may stipulate

younger donors to be offered first to young patients, provided that donor age is encoded in

the observed type qj and patient age in xi. The rule Υ may also require that the donor

be offered to patients who have already been added to the waitlist if qj and xi include

donor arrival and patient registration timestamps. We require that tie-breakers and donor

unobserved heterogeneity are drawn independently from all other random variables in our

model and from each other:

Assumption 5. (i) The random variable ηj is drawn i.i.d. for all organs j. (ii) Tie-breakers

ωi,j are drawn i.i.d. for all patients i and organs j.

The organ offers are generated in the following way. Donors arrive sequentially according to

their index j, and each donor will donate one or two kidneys. For each organ and patient,

the assignment mechanism generates the score pi,j. The patients are then ranked based on

their score, and the organ is sequentially offered to the highest-ranked patient first, then the
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second highest-ranked, and so on. However, there are two caveats to this process. First, if a

patient has already accepted an organ from a previous donor or departed the waitlist for any

other reason, they will not receive any subsequent offer. Second, if all of the organs from a

given donor have been accepted by patients with higher scores, then there are no more offers

for that donor. This process continues until all organs have been offered or until there are

no more untransplanted patients remaining.

In the main text, we defined Ji to be the ordered set of organs offered to patient i if they

refused all offers made to them and they were registered indefinitely. To determine whether

j ∈ Ji, one can run the allocation algorithm for all donors j′ < j and all patients except

i and verify whether there was a patient with a score lower than pi,j that was offered the

organ. It is clear that the event j ∈ Ji depends on all the other patients observables and

unobservables, but given our assumptions, does not depend on patient i’s unobservables

(νi, εi) given patients observables xi and zi. Thus, Assumptions 1, 2 and 5 are mutually

compatible.

The acceptance and rejection sets, which now depend on ηj are separated by the function

ϵ (νi,D, ηj, qj, z) = sup
{
εD ∈

[
0, 1

]
: ĝD (qj, ηj, z, νi,D, εD) = 0

}
,

where we follow the convention that the supremum of the empty set is 0. This function is

non-decreasing in its first two arguments.

Throughout the argument, condition on observed donor type qj and scarcity z. Given

the unobservable η, consider the conditional probability that the donor will be rejected

by a patient drawn from the (unconditional) population of patients. This probability is

π (η; qj, z) =
∫ 1

0 ϵ (ν, η, qj, z) dν. Since η is a uniformly distributed random variable, π (η; qj, z)

is a random variable with cdf denoted by Fπ (·|qj, z).

Let Rk denote the event that a randomly drawn donor is consecutively rejected by the first

k patients drawn from the (unselected) population of patients.

P (Rk|qj, z) =
∫
πkdFπ (π|qj, z) . (C.3)
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Under Assumption 5, the probabilities P (Rk|qj, z) are data. We will use this equation to

identify Fπ (·|qj, z).

Organs that are offered in later positions are adversely selected in terms of ηj. One compli-

cation is that both the number and type of patients who have previously rejected the organ

induce selection on the unobserved donor type of the set of rejected organs that are offered

to patients down the list. To simplify the argument, focus attention on offers for organs that

were offered to and rejected by k observationally equivalent patients who have not received

any other offer in the past. Formally, we will define Kij as a random variable that is equal

to minus one if some patient i′ ̸= i that received an offer for organ j before i, either accepted

it—i.e., Di′j = 1—or had received a previous offer—i.e., j ̸= j (i′, 1). Otherwise, Kij is the

number of patients i′ who received an offer for organ j before i. Let the type of an offer be

summarized by the pair {qj, kij}.

Given the unobservable selectivity ν, consider the conditional probability that the patient

rejects a donor drawn from the (unconditional) population of donors with observable char-

acteristic qj and history k. This probability is

ρ (ν; qj, k, z) =
∫ 1

0
ϵ (ν, Fπ (π|qj, z) , qj, z)

πk∫ 1
0 π̃

kdFπ (π̃|qj, z)
dFπ (π|qj, z) (C.4)

with cdf Fρ (·, qj, k, z). When k = 0, donors are not selected based on their unobserved

η, so after the change of variables η = Fπ (π|qj, z), ρ (ν; qj, 0, z) =
∫ 1

0 ϵ (ν, η, qj, z) dη. For

positive k, the distribution of η is selected. Unobservably worse organs, i.e., those with low

π due to low η, become relatively scarce. Because ρ (ν; qj, k, z) depends on the random draw

ν, ρ (ν; qj, k, z) is a random variable. In the absence of donor unobserved heterogeneity,

Fρ (·, qj, k, z) is equal to v (·, qj, z) for all k. Let {qj, k}n be the set of offers consisting of

n consecutive offers of type {qj, k}. We can write an expression analogous to (5.1) for the

probability of a randomly selected patient rejecting l consecutive offers from {qj, k}n as:

P (Ni > l| {qj, k}n , z) =
∫ 1

0
ρldFρ (ρ, qj, k, z) . (C.5)

Because the probabilities P (Ni > l| {qj, k}n , z) are directly identified, this equation will be
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used to show identification of Fρ (ρ, qj, k, z).

We are now ready to derive identification results analogous to those of the main text in a

model with unobserved heterogeneity η.

C.3.1 Identifying Conditional Expected Outcomes

Lemma 1 yields that the marginal distributions of Yi,j(i,n) and Yi,0 conditional on Ni = n, zi =

z, Kij = k and qi are identified for all n ≤ |qi| such that P
(
Ni = n| qi, k, z, Ai,0 ≥ tj(i,n)

)
> 0,

({
qj(i,1), kij(i,1)

}
,
{
qj(i,2), kij(i,2)

}
, ...,

{{
qj(i,n), k

}})

and ({
qj(i,1), kij(i,1)

}
,
{
qj(i,2), kij(i,2)

}
, ...,

{{
qj(i,n−1), kij(i,n−1)

}})
belong to the support of the distribution of offer-types induced by the distribution of Ji.

C.3.2 Identifying the Choice Model

We follow a similar argument to that of lemma 2 to identify Fπ and Fρ as an intermediate

step to show identification of ϵ (·, ·, qj, z) under a stronger version of Assumption 3:

Assumption 6. For each qj and z, (i) ϵ (·, ·, qj, z) has continuous positive derivatives with

respect to its first two arguments in (0, 1)2, (ii) for every (ν, η) ∈ (0, 1)2, there exists

a pair of dominating functions ϵ̄η (·) and ϵ̄ν (·), integrable in the unit interval, such that
∂

∂η
ϵ (·, η′, qj, z) < ϵ̄η (·) on (0, 1) for every η′ in a neighborhood of η and ∂

∂ν
ϵ (ν ′, ·, qj, z) < ϵ̄ν (·)

on (0, 1) for every ν ′ in a neighborhood of ν.

Similar to Assumption 3, Assumption 6 requires that there are no (interior) values of νD

for which the patient either accepts or rejects all organs of type qj, ηj ∈ (0, 1) when faced

with scarcity z. Moreover, it also requires that there are no (interior) values of η for which

patient of unobserved type νD ∈ (0, 1) either accepts or rejects all organs of type qj, η when

faced with scarcity z. Part (ii) allows us to obtain derivatives of π (η; qj, z) and ρ (ν; qj, k, z)

by differentiating under the integral sign.
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Lemma 7. If Assumption 6 holds, then (i) Fπ (·|qj, z) is absolutely continuous on [0, 1],

Fπ (0|qj, z) = 0, Fπ (1|qj, z) = 1. (ii) Fπ (·|qj, z) has a strictly positive and continuous

derivative on (π (0; qj, z) , π (1; qj, z)), (iii) Fρ (·|qj, k, z) is absolutely continuous on [0, 1],

Fρ (0|qj, k, z) = 0, Fρ (1|qj, k, z) = 1 and (iv) Fρ (·|qj, z) has a strictly positive and continuous

derivative on (ρ (0; qj, k, z) , ρ (1; qj, k, z)).

Proof. Assumption 6(i) implies that π (·; qj, z) is strictly increasing. By assumption 6(ii)

and the dominated convergence theorem, π (·; qj, z) has a strictly positive and continuous

derivative on (0, 1). Theorem 2 in Villani (1984) implies that the inverse of π (·; qj, z) exists

and is absolutely continuous. The inverse of π (·; qj, z) equals Fπ (·|qj, z) since η is uniformly

distributed. Because the domain of π (·; qj, z) is [0, 1], the range of Fπ (·|qj, z) is also [0, 1].

Monotonicity and absolute continuity imply Fπ (0|qj, z) = 0 and Fπ (1|qj, z) = 1. The

derivative of Fπ (·|qj, z) at π ∈ (π (0; qj, z) , π (1; qj, z)) is the reciprocal of the derivative

of π (·; qj, z) at Fπ (π|qj, z) ∈ (0, 1); thus, the derivative is positive and continuous. This

concludes the proof of parts (i) and (ii). Parts (iii) and (iv) follow by the exact same

arguments replacing π (·; qj, z) by ρ (·; qj, k, z).

Lemma 8. If Assumptions 1, 2, 5 and 6 are satisfied, and {qj, k}n is in the support

of the distribution of offer-types induced by Ji, then the Fourier-Legendre approximations

sn−1 (Fπ (·|qj, z) , x) and sn (F ′
π (·|qj, z) , x) are identified for each z ∈ (0, 1) and qj. Similarly,

sn−1 (Fρ (·|qj, k, z) , x) and sn

(
F ′

ρ (·|qj, k, z) , x
)

are identified. In particular, if the hypotheses

hold for all n, then Fπ (·|qj, z), F ′
π (·|qj, z), Fρ (·|qj, k, z) and F ′

ρ (·|qj, k, z) are identified.

Proof. Assumptions 1, 2 and 5 imply that the observed probability that the first k offers

made to observationally identical patients who have not received any previous offer can be

written as in (C.3). Note that ak =
∫ 1

0 π
kdFπ (π| qj, zi) is observed for k ∈ {1, . . . , n} and

that Fπ (·|qj, z) is absolutely continuous by Lemma 7 and has derivative F ′
π (·|qj, z). Similarly,

the observed probability that an individual rejects l offers of type {qj, k} can be written as

equation (C.5). Observe that ζl =
∫ 1

0 ρ
ldFρ (ρ| qj, k, zi) is identified for l ∈ {1, . . . , n} and

that Fρ (·|qj, k, z) is absolutely continuous by Lemma 7 and has derivative F ′
ρ (·|qj, k, z).

Thus, the results follow by Lemmas 4 and 5.
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Lemma 9. If Assumptions 1, 2, 5 and 6 are satisfied and {qj, k}n is in the support of the

distribution of offer-types induced by Ji for all integers k = 0, 1, 2, ..., n and n = 1, 2, ..., then

ϵ (·, ·, qj, z) is identified in (0, 1)2 for each z and qj in the support of the data. Therefore,

P (Di,j = 1| νi,D = νD, ηj, qj, z) is identified.

Proof. Consider any closed interval I ⊂ (ρ (0; qj, k, z) , ρ (1; qj, k, z)). Let Sn (Fρ (·|qj, k, z) , x) =
1
n

∑n−1
m=0 sm (Fρ (·|qj, k, z) , x). For each n = 0, 1, 2... define fn as the solution to the prob-

lem ming∈Nn

∥∥∥Sn|I − g
∥∥∥

∞
, where Sn|I is the restriction of Sn to I and Nn is the set of

non-decreasing n−Lipschitz functions I → [0, 1]. The set is compact, so fn exists. Let

f̃n (x) = n−1 ((n− 1) fn (x) + x). The strictly increasing function f̃n (x) is I → [0, 1].

∥∥∥f̃n − Fρ|I

∥∥∥
∞

≤
∥∥∥f̃n − fn

∥∥∥
∞

+
∥∥∥fn − Sn|I

∥∥∥
∞

+
∥∥∥Sn|I − Fρ|I

∥∥∥
∞
,

where Fρ|I is the restriction of Fρ to I. By Lemma 7, F ′
ρ (·|qj, z) is continuous; thus, it

has a finite supremum norm. For all n >
∥∥∥F ′

ρ|I (·|qj, k, z)
∥∥∥

∞
,

∥∥∥fn − Sn|I

∥∥∥
∞

≤
∥∥∥Sn|I − Fρ|I

∥∥∥
∞

because Fρ|I ∈ Nn. Thus,
∥∥∥f̃n − Fρ|I

∥∥∥
∞

≤
∥∥∥f̃n − fn

∥∥∥
∞

+ 2
∥∥∥Sn|I − Fρ|I

∥∥∥
∞

. The first term is

bounded by n−1 and, by lemma 3,
∥∥∥Sn|I − Fρ|I

∥∥∥
∞

→ 0. Thus, f̃n converges uniformly to Fρ|I .

By Theorem 2 in Barvinek et al. (1991), f̃−1
n converges locally uniformly to ρ (·; qj, k, z), the

inverse of Fρ|I (·, qj, k, z), in the interior of the image of Fρ|I (·|qj, k, z). f̃−1
n is identified from

1
n

∑n−1
m=0 sm (Fρ (·|qj, k, z) , x) which is identified by Lemma 8. Thus, ρ (ν; qj, k, z) is identified

for all ν ∈ (0, 1).

Rearranging equation (C.4),

P (Rk| qj, z) ρ (ν; qj, k, z) =
∫
ϵ (ν, Fπ (π|qj, z) , qj, z) πkFπ (dπ|qj, z) . (C.6)

We will apply lemma 6 with ϕk = P (Rk| qj, z) ρ (ν; qj, k, z) for varying values of k, g (·) =

ϵ (ν, ·, qj, z), and F (·) = Fπ (·|qj, z). Lemma 8 states that F ′
π (·|qj, z) is identified. Therefore,

for every ν ∈ (0, 1), ϵ (ν, ·, qj, z) is identified in the open unit interval.
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C.3.3 Identifying Selection on Unobservables

To obtain an identification result for expected outcomes analogous to Theorem 1, we need

to strengthen Assumption 4:

Assumption 7. For each qj, the function E [Yi,j| νD, η, εi,j,D ≥ εD, qj] is continuous in νD,

η and εD for (νD, η, εD) ∈ (0, 1)3.

Theorem 2. Suppose that Assumptions 4, 7 and the hypotheses for Lemma 9 hold. Then,

the quantities E [Yi,0| νi,D = νD] and E [Yi,j| νi,D = νD, η, εi,j,D ≥ εD, qj] are identified for all

εD ∈ (0, 1), η ∈ (0, 1) and νD ∈ (0, 1) such that there exists z in the support of its distribution

with ϵ (νD, η, qj, z) = εD.

Proof. Identification of E [Yi,0| νi,D = νD] follows from Theorem 1 for a sequence of offers

{qj, 0}n for any z. Now, consider the sequence of offers {qj, k}n for k ≥ 0. The expression

for the expected survival conditional on a transplant can be rearranged to yield:

E [Yi,j × 1 {Ni = n} | {qj, k}n , z]

=
∫ 1

0
E [Yij| νi,D = Fρ (ρ; qj, k, z) , {qj, k} , z] ρn−1 (1 − ρ) dFρ (ρ; qj, k, z) .

As discussed in subsection C.3.1, the left-hand side of this equation is identified by Lemma

1. Let g (ν) = E [Yij| νi,D = ν, {qj, k} , z]. This function is continuous and integrable over

ν by Assumptions 4(iii) and 7 and it is therefore identified by Lemma 6 with F (x) =

Fρ (x; qj, k, z). By the law of iterated expectations:

E [Yij| νi,D = νD, {qj, k} , z]P (Rk| qj, z)

=
∫
E [Yi,j|νi,D = νD, η = Fπ (π|qj, z) , εi,j,D ≥ ϵ (νD, Fπ (π|qj, z) , qj, z) , qj] πkdFπ (π|qj, z) ,

where ϵ (·, ·, qj, z) is identified by Lemma 9. Let

g (η) = E [Yi,j|νi,D = νD, η, εi,j,D ≥ ϵ (νD, η, qj, z) , qj]

This function is continuous by Assumption 7, integrable over η by Assumption 6. Thus, it
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is identified by Lemma 6 with F (x) = Fπ (x|qj, z). Therefore, the conditional expectation

E [Yi,j| νi,D = νD, η, εi,j,D ≥ εD, qj] is identified for all εD ∈ (0, 1), η ∈ (0, 1) and νD ∈ (0, 1)

such that there exists z in the support of its distribution with ϵ (νD, η, qj, z) = εD.

This result also implies identification of the analogous quantities for any bounded transfor-

mation ψ (·) of Yi,0 and Yi,j.

C.4 Dynamic Selection

The results in this subsection extend the results of Theorem 2 for the selected set of patients

who remain in the list until time t. This group of patients is selected in terms of their

potential outcomes and unobserved selectivity νD. To be on the list at time t, a patient has

to have survived to time t, i.e., Ai > t, and rejected all previous offers.

Our main result requires an additional mild restriction on the conditional distribution of Ai:

Assumption 8. For any t > 0, logP (Ai ≥ t| νD) is a continuous function of νD on the

closed unit interval.

One implication of this assumption is that if P (Ai ≥ t) > 0 implies P (Ai ≥ t| νD) > 0 for

all νD ∈ [0, 1]. With this assumption, we show identification in the presence of dynamic

selection:

Theorem 3. Suppose that Assumption 8 and the hypothesis of Theorem 2 hold, allowing

for ti,j > 0. Then, the probability P (Dij = 1| νi,D = νD, η, Ai ≥ ti,j) and the expectation

E [ψ (Yij)| νi,D = νD, η, εij,D ≥ εD, Ai ≥ ti,j] are identified for any bounded function ψ (·), and

all εD ∈ (0, 1), η ∈ (0, 1) and νD ∈ (0, 1) such that there exist z in the support of its

distribution with ϵ (νD, η, qj, z) = εD and P (Ai ≥ ti,j).

The argument is developed in two steps. In the first step, we identify the conditional distri-

bution of νD for agents that remain on the list until time t (Lemma 11). The second step

takes this conditional distribution and combines it with the arguments that parallel those in

Theorem 2.

Let ht (v) be the cdf of νD conditional on remaining on the list until t: ht (v) =
∫ v

0
P ( A≥t|νD)

P (Ai≥t) dνD.
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Lemma 10. If Assumption 8 holds, then for every t such that P (Ai ≥ t) > 0, ht (·) is a

strictly increasing function with a strictly positive and continuous derivative that maps the

closed unit interval to itself.

Proof. Note that ht (0) = 0 and ht (1) = 1. Moreover, Assumption 8 implies that h′
t (v) =

P ( Ai≥t|v)
P (Ai≥t) is strictly positive and continuous.

Lemma 11. Suppose that the hypothesis of Theorem 2 hold. The function ht (v) is identified

for every t such that P (Ai ≥ t) > 0.

Proof. Let {qj, k} be a donor-type that arrives at the same time as patient i. Because

the image of Fρ(·, qj, k, z) is the unit interval (Lemma 7), for any νD ∈ (0, 1) and z, there

exists εD ∈ (0, 1) such that νD = Fρ (εD; qj, k, z). Theorem 2 implies that for every t ≥ 0,

P (Ai ≥ t|νD) = E [1 {Ai ≥ t}| νD] is identified. Thus, for all t such that P (Ai ≥ t) > 0, the

function ht (v) is identified.

Proof of Theorem 3:

Proof. Take any εD ∈ (0, 1) , η ∈ (0, 1) and νD ∈ (0, 1) satisfying the stated hypotheses. Con-

ditional on Ai ≥ t, the random variable hi,D,t = ht (νi,D) is uniformly distributed and, by the

properties of h (·) stated in Lemma 10, the function κt (hi,D,t, ηj, qj, z) = ϵ
(
h−1

t (hi,D,t) , ηj, qj, z
)

inherits the same properties of ϵ (·, ·, qj, z). If ϵ (·, ·, qj, z) satisfies Assumption 6, then

κt (·, ·, qj, z) has continuous and positive derivatives with respect of its first two arguments,

ϵ̄η (·) ∥h′
t (·)∥∞ is a dominating function for ∂

∂η
κt (·, η′, qj, z) for η′ in a neighborhood of ηj, and

ϵν (·) is a dominating function for ∂
∂h
κt (h′, ·, qj, z) for h′ in a neigborhood of hi,D,t. Lemma

9 implies that, P (Di,j = 1|hi,D,t = hD,t, ηj, qj, z, Ai ≥ t) is identified and Theorem 2 implies

that E [ψ (Yi,j)|hi,D,t = hD,t, η, εi,j,D ≥ εD, qj, Ai ≥ t] is identified. The conclusion follows

because ht (·) is invertible (Lemma 10) and identified (Lemma 11).
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D Additional Figures and Tables

Table D.1: Top 10 offers: Balance

Age Diabetes Female Weight Height
(1) (2) (3) (4) (5)

log(1 + # Top 10 Offers in 2 Years)
KDPI <= 50% -0.0235 -0.00363 0.00291 -0.217* -0.0586

(0.0707) (0.00287) (0.00281) (0.106) (0.0730)
KDPI > 50% or Missing 0.0776 0.00357 -0.00557* 0.242* 0.208*

(0.0722) (0.00295) (0.00281) (0.110) (0.0841)

DSA FE, Year FE, and Blood Type FE x x x x x
Control for Pediatric at Listing x x x x x
CPRA Category Controls x x x x x

F-test p-Value
Number of Observations 128753 127244 128753 127221 126477
R-Squared 0.027 0.024 0.074 0.039 0.035

Distribution of # Top 10 Offers in 2 Years
Mean
Std. Dev.

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is non-pediatric patients who registered between 2000 and 2008. Dependent variables are as
indicated in the column headers. All regressions control for DSA fixed effect, registration year fixed effect, blood type fixed
effect, time on dialysis, and indicators for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration.
Standard errors, clustered by DSA, registration year, and blood type, are in parentheses. F-test tests against the null hypothesis
that the coefficients on the instruments are zero.
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Table D.2: Scarcity Instruments: Balance
all KDPI Balance

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

Log(1 + No. Donors)

Patients Waited 0-1 years -0.303 0.00190 0.00920 -0.0573 -0.398

(0.331) (0.0125) (0.0114) (0.512) (0.325)

Patients Waited 1-2 years 0.147 -0.0130 0.00229 0.341 0.0570

(0.299) (0.0117) (0.0111) (0.461) (0.313)

Patients Waited 2-3 years -0.243 0.000383 0.0119 -0.325 -0.00656

(0.271) (0.0104) (0.00918) (0.400) (0.271)

Patients Waited 3-4 years 0.263 0.0153 -0.0270** 0.164 0.126

(0.223) (0.00906) (0.00819) (0.347) (0.226)

Patients Waited 4-5 years -0.0120 -0.0114 0.0139* -0.444* -0.247

(0.153) (0.00601) (0.00550) (0.219) (0.153)

Log(1 + No. Offers)

Patients Waited 0-1 years 0.370 0.0165* -0.00680 0.382 0.384

(0.195) (0.00822) (0.00744) (0.318) (0.217)

Patients Waited 1-2 years -0.0250 0.0000367 0.000268 -0.293 -0.198

(0.215) (0.00846) (0.00780) (0.330) (0.231)

Patients Waited 2-3 years 0.0945 0.000665 -0.00727 0.361 0.0513

(0.213) (0.00819) (0.00713) (0.318) (0.223)

Patients Waited 3-4 years -0.112 -0.0123 0.0212** -0.178 -0.145

(0.195) (0.00766) (0.00692) (0.299) (0.199)

Patients Waited 4-5 years 0.0654 0.0125* -0.0159** 0.312 0.167

(0.132) (0.00526) (0.00494) (0.197) (0.134)

Year FE, DSA FE, and blood type FE x x x x x

F-test p-Value

Number of Observations 87303 87299 87303 86175 85598

R-Squared 0.023 0.020 0.003 0.025 0.017

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is adult patients who registered on the waitlist between 1999Q4 and 2005Q4. Each regression is on
patient level, where the dependent variable is the patient characteristics in the column header at registration. Each regression
has five regressors indexed by k = 0, 1, 2, 3, 4, where the kth regressor for patient i is computed as the number of unique donors
(offers) such that: the offer is made to patients who are in the same DSA as i, have the same blood type as i, and have waited
the same number of years as i; the offer is made between 4k + 1 and 4k + 4 quarters, inclusive, from the quarter when i registers
(e.g. if i registers in 2002Q1, then the offer must be made between 2003Q2 and 2004Q1 for k = 1. All regressions control for
DSA fixed effect, registration year fixed effect, blood type fixed effect, an indicator for pediatric at registration, and indicators
for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration. Robust standard errors, clustered by
DSA, registration year, and blood type, are in parentheses. F-test tests against the null hypothesis that the coefficients on the
five regressors are zero.
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Table D.4: Characteristics of Transplanted Patients (Observational Model)

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Age < 18 3.1% 3.1% 14.54 6.3% 15.74 5.7% 15.33 5.9% 16.52

Age 18 - 35 11.6% 12.2% 11.40 12.0% 12.62 13.1% 12.83 18.3% 13.06

Age 36 - 59 54.8% 55.5% 7.61 52.6% 8.49 54.3% 8.70 59.1% 9.63

Age >= 60 30.4% 29.2% 4.29 29.1% 4.93 26.9% 4.73 16.8% 5.50

White 42.0% 42.5% 6.96 47.8% 8.11 46.4% 8.21 39.1% 9.82

Black 32.7% 31.8% 7.30 30.0% 8.30 30.7% 8.53 33.0% 9.63

Hispanic 16.7% 16.7% 8.05 15.2% 9.46 14.8% 9.51 18.4% 10.80

Other 8.6% 9.0% 7.69 7.1% 8.66 8.2% 8.85 9.5% 10.16

Diabetic 41.4% 40.0% 5.10 37.0% 5.64 33.3% 5.63 27.7% 6.66

On Dialysis at Registration 83.0% 82.4% 7.10 81.8% 8.10 80.1% 8.27 79.6% 9.68

0 HLA Mismatches - 0.1% 9.20 16.6% 8.33 12.9% 8.37 7.4% 12.01

0 DR Mismatches - 4.0% 7.51 36.1% 8.42 22.3% 8.60 12.2% 11.11

HLA Mismatches - 4.77 - 3.60 - 3.90 - 3.81 -

Untransplanted Survival 6.90 6.95 - 6.97 - 7.11 - 7.61 -

Optimal Assignment

All Patients

Random Assignment No Choice Realized Assignment

Notes: Optimal assignment is computed using the observational model with no patient or kidney unobservables and no scarcity

instrument. LYFT reported in this table is computed using the baseline specification.
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