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This online supplementary appendix contains materials to support our main paper.
Appendix [C] collects some auxiliary results. Appendix [D] collects the proofs for lemmas in
Section [6] of the main paper. Appendix[E|provides least favorable directions for other causal
parameters of interest besides the ATE. Appendix[F]states and proves the BvM theorem for
outcome variables belonging to one-parameter exponential family described in Section [6] of
the main paper. Appendix [G] describes how to draw the posterior of the conditional mean
function using the Laplace approximation. Appendix [H| presents additional simulation
evidence.

In this supplement, C' > 0 denotes a generic constant, whose value might change line
by line. We introduce additional subscripts when there are multiple constant terms in the

same display. For two numbers a and b, we write a v b := max{a, b}.

C Auxiliary Results

The part in the likelihood associated with the component ™ = U ~*(m,,) is given by
Py (2) = my(d, 2)"(1 = my(d, 2))' 7,

with the corresponding log-likelihood version ¢7(n™) = > | log p,m(Z;). In other words,

pym (+) is the density with respect to the dominating measure

dv(z,d,y) = (mo(x))H(1 — mo(x)) 4dV(d, y)d Fy(x), (C.1)
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where 9 stands for the counting measure on {{0,0}, {0, 1}, {1,0},{1,1}}. For two generic
probability densities p and ¢, the Kullback-Leibler divergence is defined as K(p,q) =
{plog(q/p)dv, and the Kullback-Leibler variation as V(p,q) = {p|log(q/p)|*dv; see
Appendix B in |Ghosal and Van der Vaart| [2017]. Recall the notation p"(y,d,z) =
y —m(d, x) used below.

Lemma C.1. Let Assumption || be satisfied and m, = V(n™), then we have uniformly for
nmeH":
I
log pym — log pyy = o+ o, Yo (1 —my) + Ra,

for some function R, with |R,|le < n=%2.

Proof. The logistic distribution function ¥ satisfies ¥ = W(1—W¥) and ¥® = ¥(1 - W)(1 -
2U). Recall the perturbation of n™ along the least favorable direction in (A.2]) given by

Nt =n" —t&/y/n for t € R. Thus, log pym — log pym = g(0) — g(1), where g(u) = log p,m
for u € [0,1], as introduced at the beginning of Section [B] We examine the following Taylor

expansion uniformly for n™ e H":

9(0) = g(1) = —¢'(0) = g*(0)/2 - 0, (C.2)

for some function @ with 0| < ||g®® | .

We express the part of the log-likelihood involving n™ explicitly as follows.

enm(lvx) 1
el (0,) 1

=d (ynm(l,as) —log(1 + 6’7m(1’x))) + (1 —4d) (ynm((), x) — log(1 + e”m(o’x))) . (C.3)
Given equation (C.2), it remains to calculate the first three derivatives of the function g.

Its first derivative is given by

Eo )

g'(u) = —\/—HVOP )
where yop? ") (y,d, x) = y — ¥(n™(d,z)). The second and third derivative of g can be
computed along the same lines:

t2 m t3 m



In the above expression involving the Riesz representor 7y, we have

3 __d —
and 5(d, z) = m(x) (1 —mo(x))®

d N 1—-d
mi(z) (1 —7o(r))?

7§(d7 ZL’) =

again because of d(1 — d) = 0. Evaluating at u = 0, we have ¥(n") = ¥(n™) = m,, and

consequently,
§(0) = ——=08™ + —=0(my — o) (C4)
\/ﬁ 0 \/ﬁ 0 n 0/ N
and 2
9(2)(0) = _E'ngn(l — my). (C.5)
For the remainder term, we have ||g‘® |, < n~%?, given the uniform boundedness of ¥(?)(.).
O
Lemma C.2. Let Assumptions[]] and[d be satisfied. Then, we have
VnPu[(F —70)p™] = op, (1). (C.6)

Proof. Since 7 is based on an auxiliary sample, it is sufficient to consider deterministic
functions ~, with the same rates of convergence as 4. We also write the corresponding
propensity score as m,, which is associated with ~,. Using the notation p™(Z;) = Y; —

mo(D;, X;), we evaluate for the conditional expectation that
" 2
EO (_ Z(’Yn - 70)(D17 Xl)me(Zl)> | (Dla Xl)a sy (Dn7 Xn)
1
= (v = 70)(Di, X3) (v — %0) (Dir, Xir)Eq [0 (Z:)p™ (Zy) | (Di, Xi), (Dyr, Xir)]
1 n
= Z(’Vn —7)*(Di, Xi)Vare(Y;| X;).

We have Varg(Y;]X;) < 1since Y; € {0, 1} and thus we obtain for the unconditional squared

expectation that

Ey [(%ﬁ >n - %><Di,xi>pm0<zi>)2] < o~ mol3 5, = o(1)

by Assumption [2] which implies the desired result. O



Each Gaussian process is associated with an intrinsic Hilbert space defined by its
covariance kernel, see Ghosal and Van der Vaart| [2017]. This space is critical in analyzing
the rate of contraction for its induced posterior. Consider a Hilbert space H with inner
product (-, -yy and associated norm ||-||g. H is an reproducing kernel Hilbert space (RKHS)
if there exists a symmetric, positive definite function k : X x X — R, called a kernel, that
satisfies two properties: (i) k(-, ) € H for all ® € X and; (ii) f(x) = {(f, k(-,x))g for all
x € X and f € H. It is well-known that every kernel defines a RKHS and every RKHS
admits a unique reproducing kernel.

Let H{" be the unit ball of the RKHS for the rescaled squared exponential process and
let B{™” be the unit ball of the Holder class C*([0,1]?) in terms of the supremum norm
|+ |- Denote ®(-) as the c.d.f. of a standard normal random variable with ®!(-) as
its inverse. We introduce a class of functions B, which is shown to contain the Gaussian

process W which sufficiently large probability, and is given by
B! = ¢e,Bi™" + M,Hj", (C.7)

where a,, = n'/Zsn+P)(log n)~U+P)/Qsmtp) o = p=sm/@sm+p)(Jog n)*mP+1/2sm+p) and M,, =
—2(13*1(6*0”5721). For notational simplicity, we suppress the dependence of the rescaled

Gaussian process on the rescaling parameter a,, in the following proofs.

Lemma C.3. Under the conditions of Proposition the posterior distributions of the

conditional mean functions contract at rate €,, i.e.,
I (1 : my(d, ) = mo(d, ) = Mey | Z07) —p, 0

for d € {0,1} and every sufficiently large M, as n — oo.

Proof. By the assumed stochastic independence between the pair Z( and 7, we can
proceed by studying the ordinary posterior distribution relative to the prior with 7 set
equal to a deterministic function 7, and (w, \) following their prior. In other words, it is
sufficient to consider the prior on m given by m(d,z) = ¥ (W™(d,z) + A y,(d, z)) where
W™(d, ) is the rescaled squared exponential process independent of A\ ~ N(0,02) and 7, a
sequence of functions |y, = O(1). It suffices to examine two conditional means m,(1,-)
and m,(0, -) separately. We focus on the treatment arm with d = 1, and leave d off the
notations in W™ or n™ as understood.

We verify the following generic results in Theorem 2.1 of |Ghosal et al.| [2000] to obtain



the proper concentration rate for the posterior for the rescaled squared exponential process:

(w0, A) 2 K v V(b puen,) < 22) > g exp(—cans?), (C.8)
II(PS) < exp(—csne?), (C.9)
log N (gn, Py || - | 120)) < canel, (C.10)
for positive constant terms ¢y, - , ¢4 and for the set:

P = {Puwtr : W E B, A < Moy/ne, }
Proof of (C.§). The inequality (C.16) in Lemma [C.6] yields
{w,A) + w =050 < cen, [N S cen} = {(w, A) : KV Vi(pgge, Pusa,) S €0}

Given that we have independent priors of W and A, the prior probability of the set on
the left of the above display can be lower bounded by II(|[W™ — 05| < cen)II(JA| < ce,).
By Proposition 11.19 of |Ghosal and Van der Vaart| [2017] regarding the small exponent
function ¢ and together with the upper bound (C.18), we infer

(W™ =110 < cen) = exp (=677 (en/2)) = exp (—cney)

for some positive constant ¢. The second term is lower bounded by Ce,/c,, which is of
order O(g,) for o,, = O(1). Therefore, we have ensured that the prior assigns enough mass
around a Kullback-Leibler neighborhood of the truth.

Proof of . Referring to the sieve space for the Gaussian process, we apply Borell’s
inequality from Proposition 11.17 of (Ghosal and Van der Vaart| [2017]:

(W™ ¢ B™) < 1— ®(¢, + M,),

where ®(-) is the c.d.f. of a standard normal random variable and the sequence ¢, is given
by ®(1,) = II(W € £,B;™") = e %" (). Since our choice of &, leads to ¢§"(e,) < ne?,
we have 1, = —M,/2 if M, = =2~ (e=C"%) for some C' > 1. In this case, II(B") <
1 — ®(M,,/2) < e"“"¢i. Next, we apply the univariate Gaussian tail inequality for \:

(M 2 wa0,/n) < 20740732

which is bounded above by e~C"<% for u, — 0 sufficiently slowly, given our assumption



e, = 0(0,). Hence, by the union bound, we have II(P¢) < e Cnen,

Proof of ((C.10)). To bound the entropy number of the functional class P, consider the

inequality

[Pwry = Passn, 20y < lw = @lam + 1A = Al

where the dominating measure v is (C.1)). Thus, we have
N(€n77)n7 ” ’ ||L2(1/)) < N(&n/Q, B:LnJ H ’ HOO) X N(C&Tn, [07 ZMUH\/Egn]a | ’ |) < néi. (C]'l)

Note that the logarithm of the second term grows at the rate of O(logn), and it is the
first term that dominates. Because ¥ is monotone and Lipschitz, a set of e-brackets in
L*(Fy) for B™ translates into a set of e-brackets in L?(v) for P,. Thus, Lemma gives
us log N(3e,, B™, | - |) < ne?.

By Lemma 15 of Ray and van der Vaart| [2020], this delivers the posterior contraction
rate for m,(1,-) in terms of the L?(Fym)-norm, which is equivalent to the L*(Fp)-norm
weighted by the propensity score my. Analogous arguments lead to the desired result for

the conditional mean m, (0, -) for the control group. O

Let M,; = e;/>, e, where ¢’s are independently and identically drawn from
the exponential distribution Exp(1). We also denote X(™ = (X;)”,. We adopt the
following notations: F*m, = >7" M,m,(X;), F,m, = n=' 3" m,(X;) and Fym, =
§my(2)dFy(z). Let X = (X;)r,.

Lemma C.4. Let the functional class {m, : n € H,} be a Py-Glivenko-Cantelli class. Then

for every t in a sufficiently small neighborhood of 0 we have

sup
myneEHn

E [gﬁ((ﬁ%)m) | X(”)] PRl —Foma)*/2| ()

Proof. We verify the conditions from Lemma 1 in Ray and van der Vaart| [2020]. First, the
Bayesian bootstrap law [} is the same as the posterior law for F', when its prior is a Dirichlet
process with its base measure taken to be zero. Second, the assumed Fy-Glivenko-Cantelli
class entails

sup |(, = Fo)riy| = ony (1),
ﬁEHn

Last, the required moment condition on the envelope function for the class involving m,, is

automatically satisfied because of ||m,[lo < 1. O

The following lemma is in the same spirit of Lemma 9 in Ray and van der Vaart| [2020]



with one important difference. That is, we do not restrict the range of the function ¢ to be
[0,1]. As we apply this lemma by taking ¢ = v, — 7, it can take on negative values. We
apply the more general contraction principle from Theorem 4.12 of Ledoux and Talagrand
[1991] instead of Proposition A.1.10 of jvan der Vaart and Wellner| [1996]. This allows us to

relax the positive range restriction in |[Ray and van der Vaart [2020].

Lemma C.5. Consider a set 'H of measurable functions h : Z — R and a bounded

measurable function ¢. We have

Eosup |G, (ph)| < 4|¢|wEosup |G, (h)| + A/ Pow?sup | Byhl.
heH heH heH

Proof. We start with G,,(¢h) = G, (p(h— Poh))+G,(p)Pyh. The expectation of G, (¢)Foh
is bounded by the second term on the right hand side of the inequality in the stated lemma

as follows:

Eosup |G, (p)Poh| < sup |Poh|Eq
heH heH

1 - 2
\/—ﬁ;(w(Zi)—Eo[w(Z)]) < VP sup|Boh], (C.12)

where the last inequality follows from the elementary bound Egl¢| < 4/Eo[€]? for any
2
random variable ¢ and the fact that E, [\/iﬁ >it(e(Z) — Poap(Zi))] < Pyp?.
We now consider G,,(¢(h — Pyh)) where we may assume that the function h satisfies
Poh = 0. Let €1, ...,€, be i.i.d. Rademacher random variables independent of observations

Z™_ By the symmetrization inequality in Lemma 2.3.6 of van der Vaart and Wellner
[1996],

Eq sup Z(@(Zz)h(zz) — By[eh])| < 2[p]eEo sup Z EiMh(Zi) : (C.13)
heH i heH i ||<PHoo
Because —1 < o(Z;)/||¢)o < Lforalli =1,...,n, the map h — ”@—““"ﬁ x h forms a contraction

mapping. Hence, we apply the contraction principle as in Theorem 4.12 on page 112 of
Ledoux and Talagrand, [1991]:

n

Zeih(Zl-) .

=1

i (C.14)
i=1 ||SD||00

< Egsup
heH

Eq sup
heH

Another application by the symmetrization inequality from Lemma 2.3.6 of van der Vaart



and Wellner [1996] that decouples the Rademacher variables leads to

n

Eq sup
heH ;

S|

i=1

GZh(ZZ) < 2E0 sup

heH

The application of the above inequality requires the process {h : h € H} under consideration

to be centered as Pyh = 0. Combined together with Inequalities (C.12)), (C.13)), and (C.14]),

we have the desired result as stated in the lemma. OJ

The next lemma upper bounds the L? distance and Kullback-Leibler divergence of the
probability density functions by the L? distance of the reparametrized function n™, cf.
Lemma 2.8 of |Ghosal and Van der Vaart| [2017] or Lemma 15 of [Ray and van der Vaart

[2020]. We introduce some simplifying notations by writing
ml() = m(17 ) and mO() = m(07 )

Lemma C.6. For any measurable functions v™, w™ : [0, 1]" — R, we have
m1 ml mO mO
o = pum 20 < W™ ) = W @™ iy v @) = W@ 1,010

< o™ = w™ om v [0 = ™ o, (C.15)
In addition, it holds that
K (pores pur) vV (pums pure) < [0 =™ [y v 0™ = w™ 3 . (C.16)
The small ball exponent function for the associated Gaussian process prior is
¢o(e) := —log (W]l < €);

see equation (11.10) in |Ghosal and Van der Vaart| [2017]. In the above display, | - [|s is
the uniform norm of C([0, 1]?), the Banach space in which the Gaussian process sits. H is
the reproducing kernel Hilbert space (RKHS) of the process with its RKHS norm | - ||g.
To abuse the notation a bit, we denote the small ball exponent of the rescaled process
W (at) by ¢&(¢). Lemma 11.55 in |Ghosal and Van der Vaart [2017] gives this bound for the

(rescaled) squared exponential process:

¢ (c) < a”(log(a/e)) 7.



Lemma C.7. Assume that e, = n o/ZmiP)(logn)sm(4p)/Qsmtr) gqngd M, =
—20~(e=9"<%) for a positive constant C > 1. Also, let a, = n/Zsm+P)(log n)=(1+P)/(2sm+),

Then, for the sieve space Bi" = £,B{™" + M,H{", we have
log N(3c,, B™, || - |o0) < me2. (C.17)

Proof. The argument is similar as in Lemma 11.20 of Ghosal and Van der Vaart| [2017].
We follow the generic argument as in the proof of Theorem 11.20 of |(Ghosal and Van der
Vaart| [2017] to bound the complexity number log N (3¢, B, | - |) given the bound for
the small ball exponent in . We provide the proof for completeness. For some integer
N =1, let hy,...,hy € M,H{" be 2¢,-separated functions in terms of the Banach space

norm. Then, the e,-balls hy + ,B;™7", ... hy + &,B]™" are disjoint. Therefore, we have

N N
12 > (W € hy +,B;"7) = Y e WERII(W € e, B{™7) > Ne Mi/2e 90" (n),
j=1

j=1
where the second inequality follows from Lemma 11.18 of |Ghosal and Van der Vaart, [2017]
and the last inequality makes use of the fact that hq,...,hy € M,H;, as well as the
definition of the small ball exponent function.

For a maximal 2¢,-separated set hq,..., hy, the balls around A, ..., hy of radius 2¢,
cover the set M, H{". Thus, we have log N (2e,, M,H{", | - |o) < log N < M2/2 + ¢5"(e,).
Referring to the inequality (iii) of Lemma K.6 of (Ghosal and Van der Vaart|[2017] for the
quantile function of a standard normal distribution, we have M? < ne? by the choice of

M, stated in the lemma. It is straightforward yet tedious to verify that
6" (en) < mey, (C.18)

for the specified a,, and ¢,. Since any point of B] is within ¢,, of an element of M,H]",

this also serves as a bound on log N (3¢, B, | - ||ls)- O

A key step in showing the validity of the debiasing step is the following:
Pa[m +3p™ — mo] = Pu[v0p™] + op,(n7?),

which is equivalent to the following lemma.



Lemma C.8. Under Assumption[] for the pilot estimators, the following result holds:
P, [9p™ + m] = Py[0p™ + mo] + op,(n?).
Proof. We start with the following identity:

P, [7p™ + m] = Pa[10p™ + o] + Ru1 + Rus.

Ru = = S ((1, X2) = mof1, X0) ( m&» 2 S0, X) _mo(O,Xi))m'

i 7

1-D;

Referring to the first term R,,;, we have

1 1 1 1 1 1
R n%;m() 1 X) (1X))< (Xz)_WO(Xi)>+ ;(Y mO(l X)) (ﬁ(Xz)_TrO(Xz))

1 1 1

anDZ mOOX) (O,Xz)) (1—%(Xi)_1_7TO(Xi))

1 ! :
- Z’; (Y; — mo(0, X))<1_7?(Xi) B 1—7TO(X2')>.

The negligibility of the first and third terms in R,; follows from the Cauchy-Schwarz
inequality and the rate conditions imposed in Assumption 2] The second and fourth terms
can be combined together so that the negligibility can be shown as in Lemma [C.2]
Consider R,3. To bound its first summand, we condition on (Xj,...,X,), as well as
the pilot estimators m and 7, which are computed over the external sample. We use the

fact that (D; — mo(X;)) has a conditional zero mean. Specifically, this leads to

[(\/%ZDZMQ ) ((1, X,) — mo(l,X,-)))Q‘Xl,...,Xn,mﬁ]
S )t DI
nZ( 1, X;) — mo(1, X)) ~2(X.)

=1

using that Vare(D;|X;) = mo(X;)(1 — m(X;)). By the overlapping condition as imposed in
i <

Assumption [1} i.e., T < m(X;) for all 1 < n and the uniform convergence of 7 to m,

10



we obtain
1 « Di—WO(Xi) ~ 21 . ~ 2
Eq [<\/_ﬁ ; W(m(lv Xz) - mo(lv Xl))) ‘m, ﬂ-] < Hm(l, ) - mO(la ')HQ,FO = OPo(l)v

where the last equation is due to the convergence rate for the pilot estimator m in

Assumption 3] The negligibility of the second term in R, is proved in a similar fashion. [J

The following lemma shows the stochastic equicontinuity when the true conditional
mean function belongs to a Holder space, which is Py-Donsker, i.e., s, > p/2. The main
complication is that the sieve space related to the Gaussian process prior is not a fixed
Py-Donsker class, as it changes with sample size n and the envelope function is also slowly
diverging, cf. the comments in the third paragraph on Page 2007 of Ray and van der Vaart
[2020]. More specifically, for the rescaled squared exponential process priors, we rely on
the metric entropy bounds in van der Vaart and van Zanten| [2009]. With this important
modification, the proof is along similar lines with the proof of Lemma 7 of Ray and van der
Vaart| [2020] for the Riemann-Lioville process; also, see Lemma 5 of [Ray and van der Vaart
[2020].

We consider

H" o= A{wg + Myt (wa, A) € Wy}, (C.19)

where

Wy i= {(wa, N) : wa € B)', || £ Mopv/nen} 0 {(wa, N) = | (wal-) + Ayn) — mo(d, -)

|2,Fg < 6\’n,} )

where the sieve space B]" in the first restriction for the Gaussian process Wy is defined in
the equation (C.7) with d € {0, 1}, and ¢, = (n/logn)=sm/(2sm+p),

Lemma C.9. Recall that the sieve space related to the Gaussian process is Bl = £,B]™" +

M,H{". For su, > p/2, we have Egsup,eqm Gy, [my, — mo] = o(1).

Proof. Because the link function W(-) is monotone and Lipschitz continuous, separate sets
of brackets for the two constituents of the set £,B{™" + M, H{", as well as the bracket for

{\ |\ < Mo,+/ney} can be combined into brackets for the sum space.
log N[] (57 anm, LZ(PO)) < log N(€, 5nEi§m’p7 HHOO)+10g N(Ea MTLHCILTL7 H"|OO)+10gN(C€7 [07 2Man\/ﬁ€n]v ||)

The last term is of strictly smaller order than the second one. The bound for the first

component attached to the Holder space can be found in Proposition C.5 of |Ghosal and

11



Van der Vaart| [2017]:
s 877, 5'm/p
log N (e, 2B, | o) < ()

which is bounded if we take € = ¢,,. The entropy bound for the second component is given
in Lemma [C.7} which states that log N(g, M,H{", | - [l) < ne? < 2", with v = p/(2s,,)
modulo some logn term on the right hand of the bound. In this case, the empirical process
bound of [Han|, 2021, p.2644] yields

Eo sup |G,[m, —mo]| < L,n@ /@) = O(L,n'? /7Y = o(1),
neHT

where L,, represents a term that diverges at certain polynomial order of logn. O]

D Proofs of Section

Proof of Lemma[0.1. For the submodel ¢t — n; defined in [6.1], we evaluate

log py, (2) = dlog W(n" + tp)(x) + (1 — d) log(L — ¥(n" + tp))(x)
+loge(y) + ay(n™ + tm)(d, z) — A(g™' (™ + tm))(d, z)
+ tf(z) — log E[e™®)] + log f(z).

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:
B,(p.m,f)(2) = Bjp(Z) + By'm(Z) + Bf(Z), (D.1)
where Byp(Z) = (D — m,(X))p(X). BYf(Z) = (X), and

A'(my (D, X))
¢ (my(D, X))
—a(Y —my(D, X)) m(D, X).

n

B™"m(Z) = [ay - ] m(D, X),

In the last equation, we made use of the relation (explicitly given here for continuous

outcomes):

Al(my(d, z)) = ¢ (my(d,z)) Jayc(y) exp [q(my(d, z))ay — A(my(d, )] dy
= ' (my(d,z))E,[aY|D =d, X = z],

12



which follows from the exponential family assumption.

In this case, there is a one-to-one correspondence between the conditional density
function and the conditional mean function of the outcome given covariates. One can
easily verify the differentiability of the ATE parameter in the sense of van der Vaart| [1998§]
and show that the efficient influence function remains the same as in [Hahn| [1998] and [Ray
and van der Vaart| [2020]. Given the particular form of the efficient influence function 7,
in (2.4), the function &, = (¢7,&7",&0) defined in satisfies B,&, = 7,, and hence, &,
defines the least favorable direction. O

We emphasize that the least favorable direction calculation in the multinomial outcome
case is not a trivial extension of |Hahn| [1998] or Ray and van der Vaart| [2020], because
there are J nonparametric components involved in the conditional probabilities of the
multinomial outcomes given covariates, and we need to consider the perturbation of all J

components together.

Proof of Lemma[6.4 Consider the log transformation of the joint density of Z =
(Y,D,XT)" given by

log p, (2) = dlog(m,(2)) + (1 = d) log(1 — my(2)) + Y Ly log (my, (d, 2)) + log f(x)

J=0

where 1, denotes the indicator function. Following the proof of Lemma 3.1, it is sufficient

to consider the perturbations for j =1,..., J:

exp((n™ + tm;)(d, x))

U™ 4+ tmy, - 0™ +tmy)(d, z) =
! 1+ exp((n™ + tmy)(d, )

or

J

log W; (5™ + tmy, -~ , 5™ + tm,)(d, ) = (™ + tm;)(d, z) — log (1 + 3 exp((n™ + tmy) (d, x))).
=1

Taking derivatives

ologW,;(n™ +tmy, -+, ™ +tmy)(d, x)
ot

= m;(d,z) — Sy exp(n™(d, x))m(d, x)
- L+ 3, exp(nmi(d, )

= m;(d, z) = Y my(d, 2)my(d, z)

=1

13



by the definition of m, ;. Likewise, we also obtain

dlog Wo(n™ +tmy,--- ™ +1tm,)(d,z ;
g Wo(n lat n J)(d, z) :_me(d,x)ml(d,x).

t=0 =1

We need to verify the differentiability of the ATE parameter in the sense of van der Vaart
[1998]. Due to its technical feature, we leave this to the end of the proof. From there,
we can see that the score operator of the vector of conditional means (mq,...,my) is as

follows:

4 dlog U,;(n™ +tmy,--- ,n™ +tmy)(d, x)
Z Liy—y

B;n(mlw"am«])(z): dt

Jj=0 t=0

Z ty=i} (m] (d, z) Z o(d, z)my(d, x)) + Tgy—oy (-me(d, z)my(d, x)) .

= = =1

Given that 1g_gy =1 — ijl L¢y—j3, the previous equation simplifies to

B(my,...,my)(2) = Z (Lgy—jy — m;(d, x)) mj(d, z).

Note that the conditional mean of B*(my, ..., m;)(2) is zero for any m;(d, ), which aligns
with the requirement of the score operator.

From our verification of differentiability, we infer that the influence function is of the
generic form given in Hahn| [1998] and Ray and van der Vaart| [2020]. Also, it is contained
in the closed linear span of the set of all score functions. Now, if we choose m; = jv,,
1 <7< J, we obtain

B%"(%y 295+ S (2 <Z Liy=57 — Z jma,;(d, ) ) To(d, ) = (y — my(d, ) vy (d, z),

J

g n'g

=y =my(d,z)

which shows the results.
Now we check the pathwise differentiability of the ATE. To avoid the long display of

various formulas, we consider the following decomposition

0
o

_9
t—0 Ot

J]Em[Y|D LX = 2|dF, (1) — o f W IY|D =0, X = z]dF,, (z),

14



and we focus on the first derivative involving the treatment group, as the other one can be

handled analogously. We start with

S, 11D = 1) = [ yZnl o) fi)]| dvp)dute)

where p;(y|1, ) and fi(x) are the perturbed conditional density of outcome and marginal
density of covariates, respectively. In addition, v stands for the counting measure and p is

the Lebesgue measure. By the chain rule, we need to compute the following sum:

[[s2ntinn]| won@iane + [[wonowm S iw)| we. o2

Regarding the first part of the above sum, we follow the outline in Example 2 of |Jonathan

2019 to compute
[2019] p
0 6 ll{y J} {y=k}
apt(y|dx Hmt]d$ Z]l{y ]}amt]d:c Hm dx
k#j

We thus evaluate for the derivatives of the conditional mean functions

) 4 .
Emt,j(dy m)‘t:O =m,, ;(d, z) (mj(d, x) — ;mnyl(d, x)my(d, x)) , for j=1,---,J,

and

%mw(d, z) L:O = myo(d, ) (- 3 (d, ) (d, x)) .

=1

Thereafter, derivative of the conditional density can be written as

J J
Z Ly=j) (mj (d,z) Zmnl (d, x)my(d, x >] Hmn’j(d, )=}

=1 7=0

0
20, -

= (B;"(ml, coomy)(z) =B Bl (my, ..., my)(2)|D = d, X = z]) py(yld, x),

where the last equality follows from the fact that the conditional mean of the score given
(D, X) is zero. To simplify the notation, we denote this conditional score function by
Sy(z) = By'(my, ..., my)(2). Referring to the first term in the summation (D.2), we resort
to the technique in Example 2 of Jonathan [2019] by converting the conditional argument

from d =1 to d € {0,1}. Similar to the first two terms in the long display on Page 15 of

15



Jonathan| [2019], we obtain

[[sgmton.o),_ s = 8, | 2500 = m0.x05,2)]

Referring to the second part of (D.2), we immediately obtain

t=0

0
[ it o)) G 2@, dnte) =By (1, )~ B, (1, X)) 5,(2)
Similarly for the control arm, we derive

%JEW V|D = 0,X = 2]dF,, (x)

t=0

—E, [(mn(o, X) — E,[m(0, X)] + %ﬁ)@(y — my(D, X))) Sn(Z)] .

The remaining part boils down to the existence of a vector-valued function 7p, such that

)| = Eq (DB (my,....mp)(2)]

(a0 (g5 -]

Consequently, we can take the solution as 7,(z) = m,(z) — 7, +7,(d, ) (y —m,(d, z)), which

concludes the proof. O

E Least Favorable Directions for Other Causal

Parameters

In this part, we provide details on the least favorable directions for the first two examples
in Section [6.3, We properly address the binary outcome Y and the reparameterization
through the logistic type link function W(-).

E.1 Average Policy Effects

The joint density of Z; = (V;, X;) can be written as

Ping(2) = m(@)!(1 = m(2))" ) f(x). (E.1)

16



The observed data Z; can be described by (m, f). It proves to be more convenient to

consider the reparametrization of (m, f) given by n = (n™,n7), where
" =0 (m), n’ =logf. (E.2)
Consider the one-dimensional submodel ¢ — 7, defined by the path
mi(x) = U™ +tm)(z), fulx) = f(x)e"/E[TO],
for the given direction (m,f) with E[f(X)] = 0. For this submodel, we further evaluate

log py, (2) = ylog W(n™ + tm)(x) + (1 — y) log(1 — ¥(n™ + tm))(x)
+ tf(z) — log E[e™)] + log f(z).

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:

By(m,f)(Z) = Bym(Z) + BJ§(Z), (E.3)

n

where B'm(Z) = (Y — m,(X))m(X) and B/§(Z) = §(X).
The efficient influence function for estimation of the policy effect parameter Tf is given
by

7y (2) =7 (@) (y — my(2))

where 7} (z) = %. Now the score operator B, given in (E.3)) applied to £ (z) =

(vF(2),0), yields B,&l' = 7. Thus, & defines the least favorable direction for this policy

effect parameter.

E.2 Average Derivative
The joint density of Z; = (Y;, D;, X;) can be written as

Pm,f(2) = m(d, z)"(1 —m(d, :L’))(lfy)f(d, x). (E.4)

The observed data Z; can be described by (m, f). It proves to be more convenient to

consider the reparametrization of (m, f) given by n = (n™,n’), where

™ =9 (m), n'=1logf. (E.5)

17



Consider the one-dimensional submodel ¢ +— 1n; defined by the path
m(d,x) = W™ +tm)(d,2), fi(d,x) = f(d @)D /B[],

for the given direction (m,f) with E[f(D, X)] = 0. For this submodel defined in (E.5)), we

further evaluate

log py, (2) = ylog (™ + tm)(d, ) + (1 — y)log(1 — W(n™ + tm))(d, )
+ t§(d, x) — log E[e"PX)] + log f(d, ).

Taking derivative with respect to ¢ and evaluating at ¢ = 0 gives the score operator:

By(m,f)(Z) = Bym(Z) + B}§(Z), (E.6)

n

where B'm(Z) = (Y —m,(D, X))m(D, X) and BIf(Z) = f(D, X). The efficient influence

function for estimation of the AD parameter 7;'” = E [64m, (D, X)] is given by

77 (2) = Qamy(d, ) — E[Qgmiy(d, 2)] + 7,7 (d, 2)(y — my(d, x))

n

where 1P (d, z) = dqmy(d, ) /m,(d, z). Now the score operator B, given in (E.6) applied to

AP(d, z) = ('y;;‘D(d, ), Qamy(d, ) — E[ogm, (D, X)]),

n

yields B, = 74P, Thus, &P defines the least favorable direction for the AD.

F Theory for One-parameter Exponential Family

We take a = 1 in the exponential family for simplicity, that is,

fripx(y | d,x) = c(y) exp [¢(m(d, x))y — A(m(d, z))], (F.1)

for some known functions ¢(+), q(-), and A(-). We consider the reparametrization ™ (d, z) =

q(m(d, x)) using the link function ¢ and we define the mapping T := Aoq™!

, used below.
Because the generalization of the binary outcome case to the above exponantial family
involves some change of the likelihood function related to the conditional mean, we outline

the necessary modifications.

18



Proposition F.1. Consider the one-parameter exponential family for the conditional
distribution specified by (F.1). Let Assumption [1] hold. Assume the function Y is
three time differentiable with |Y®)|, < oo for £ = 2,3. The estimator 3 satisfies
Fle = Or(1) and |3 — vlle = Op,((n/logn) ==/=P)) for some s, > 0. Suppose
mo(d,-) € C*([0,1]?) for d € {0,1} and some s, > 0 with \/szs, > p/2. Also,
Im(d, ) — mo(d,")|l,r, = Op,((n/logn)=sm/Gsn*p))  Consider the propensity score-
dependent prior on m given by m(d,z) = ¢ ' (W™ (d,z) + A\y(d, z)), where W™(d, z) is
the rescaled squared exponential process for d € {0, 1}, with its rescaling parameter a,, of the
order in ([£.1), (n/log n) ") <y o for some deterministic sequence u, — 0, and

on < 1. Then, the posterior distribution satisfies Theorem [3.1].

Proof. A close inspection shows that there are mainly three parts in which we need to
adapt the argument due to the change of p,~ in the likelihood function. The first one
is about the Kullback-Leibler (KL) divergence and related metrics to show the posterior
contraction rate. The second one concerns the local asymptotic normality (LAN) expansion
used in the conditional Laplace transform, where we show the connection of its second-order
term to part of the variance of the influence function. Finally, we make use of the imposed
smoothness assumption on Y to show the negligibility of third order terms, which is needed
for verifying the prior stability. We proceed in three steps.

Step 1. First, in deriving the posterior contraction rate or determining the proper

localized set H™

n

we need proper upper bounds for the Hellinger distance and Kullback-
Leibler (KL) divergence between two probability density functions (p,m,p,m) by the
L? distance of the reparametrized functions (n™,v™). Recall that pym(y,d,z) =
c(y)exp [¢(m(d, x))ay — A(m(d,z))]. To abuse the notation a bit, we denote the
corresponding probability densities by p,» and p,m. From the proof of Lemma we

observe

(A0 q ) (n™(d, x))
(¢" o g~ ") (n"(d, )

E,[Y|D=d X =] =

1

Now the operator under consideration is T = A o ¢~ and its derivative is given by T/ =

(A"oq Y /(¢ o ¢'). For the exponential family under consideration, the first and second

order cumulants (conditional on covariates) are:
E,[Y|D=d, X =] =Y (n"(d,z)), Var,(Y|D=d X =2z)="n"(d,z)).

The conditional variance formula also shows the convexity of Y(-); see [Brown, [1986].
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Considering the KL divergence K (pym,pym) = {1og (pym(2)/pum (2)) pym(2)dz, we first

compute

1g§—8 = (" (d, ) — o (d, )y — [T (" (d, 2)) — T(w"(d, 2))].

Integrating over the conditional density for any given (d,x) and utilizing the fact that the

conditional mean is m,,(d, x) = Y'(n;*(d, z)), we proceed for some intermediate value 77"
K (pym, pom) = J (Y (™ (d, 2)) ("™ (d, &) —v"™(d, z)) = [T (" (d, x)) = T (0™ (d, 2))])
x m(z)(1 — 7(x))"*dI(d)dF,(x)

= f YO0 (d,2) (0" (d, w) = v™(d, 2))*n (@) (1 = 7 (x)) '~ A0 (d)d F, ()

1 1 0 0
<lo™ =™ 3 v IV = 0™ 13,5,

where the last inequality follows from the condition | Y|, < co. Recall that

V(pym, pom) = f [log izz 8 - K (pnmva)rpnm(Z)dz < J [log i::Ei;]anm(z)dz' (F.2)

Therefore, we continue with the right hand side inequality of and calculate
V(pym, pom)
< f {(1™(d, 2) — o™ (d,2))y — [T (1™ (d, 2)) = L™ (d, 2))]} pyn (2)d2
= J(nm(d, z) = o™(d, 2))* [T (™ (d. ) + (Y'(n" (d, 2)))*]n(2) (1 = m(2))'dd(d)dF ()
—2 J(T(nm(d, z)) = T(v"™(d, x))) (0" (d, x) — "™ (d, 2))Y' (" (d, z))m(2) (1 = m(x))' =AY (d)d F ()
+ J(T(nm(ct z)) = T(v™(d, x)))*n(x)(1 - 7(x))' " dV(d)dF (x)
= JT@) (™ (d, 2)) (™ (d, @) — v™(d, 2))°7(2) (1 = 7 (2)) '~ dI(d)d Fy ()
+ f {1 (d, ) = o™ (d, 2) Y ("™ (d, 2)) = [T (™ (d, ) = T™(d, 2)]}* 7(2) (1 = 7(2))' A0 (d)dF ()
S A e o

where in the first equality we have made use of the fact that E,[Y?D = d, X = z] =
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T (nm(d, z)) + (Y'(n™(d, x)))% In sum, we have
mt mt 2 m0 m0 2
K(pym,pom) v V(pym, pom) < 0™ =™ |55 v 0™ = 0™ |5 F, -

In addition, the squared Hellinger distance can be upper bounded by the KL divergence

from Lemma B.1 in |Ghosal and Van der Vaart| [2017], so we have

IvPom = /Pyl 20y < [0 = 0" |lo,r, v [0 =0 |2, F, - (F.3)

Because the posterior contraction holds in terms of the Hellinger distance under general
conditions, the above upper bound allows us to translate this contraction to the
corresponding Lo distance for the n™ function.

Step 2. We examine the changes to the LAN expansion in Lemma as follows.
For this purpose, we use the notation g(u) = logp,m for u € [0,1], as introduced at the

beginning of Section |Bl Specifically, in the one-parameter exponential family case, we have

log pyp(2) = yn,' (d, ©) — T(n;'(d, x)) + log c(y).

By the definition of Y(-), we know that it is a convex function, given that Y (y™(d, z)) =
Var,(Y|D = d, X = x). Thereafter, we can obtain the first to third order derivatives of g

as

t 4 m t
IO - T(’I] )= _ mn’
9'(0) \/ﬁ%[) \/ﬁ%P
@y = Lo2r@my (@) = L@ m
97(0) = 3 T20™),  g(@) =~ T ),

where @ is some intermediate value between 0 and 1.
Following the lines of the proof of Lemma , the second moment Pyg®(0) must
be derived for the exponential family case. Based on the previous calculations and the

posterior convergence of ™, it can be expressed as

nPyg? (0) =t"Eo[75(D, X)L (5" (D, X))] + o, (1) = t*Eo[75 (D, X)Varg(Y | D, X)] + op, (1)
=t"Eo[75 (D, X)(Y —mo(D, X))] + o, (1) = t* Po(Bg (&))" + o, (1),

where the score operator By* = B is given in the proof of Lemma
Step 3. Finally, we need to establish the following expansion in a key step to show the
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prior stability condition:

sup |0 ("™ — tyn/N/n) = 67 (0" = tyo/v/n)| = op, (1), (F.4)

nmeHT

where 7", = ™ — tv,//n and 9" = ™ — ty5/y/n. Consider the following decomposition
of the log-likelihood:

G () = G On") = 6 () = G3' (™) + 62 (™) = 6 (")
= nP,[log pym, —log pym] + nPy [log pym — log pyp].

Then, we apply third-order Taylor expansions for the one-parameter exponential family

separately to the two terms in the brackets of the above display:

nP[log pyy, —log py] = —ty/nPy [ap™ ] = B [12 TP (0™)] ~ b (V3@ ()],

12 13
nPuflog pyr = log pyp] = tv/nPy [r0p™ ] + P [ T@ (™)) + —=Pu [T (2]

NG

for some intermediate points u*, u** € (0, 1), cf. the equation (B.1]). The rest of the proof
follows similar lines to our proof of Proposition [4.1] O

G Posterior Computation in Algorithm

We describe the Laplace approximation method used in Algorithm (Posterior
computation, Step (a)) for drawing the posterior of n™ and thus m,; see Rassmusen and
Williams [2006, Chapters 3.3 to 3.5] for more details on the Laplace approximation. Let
W = [D, X] € R™®*D be the matrix of (D, X) in the data, W* € R?"*(P*1) the evaluation

points (1, X) and (0, X):
. 1, X
W+ = )

and n* a 2n-vector that gives the latent function n™ evaluated at W*:
n* =™ X0), ™1, X)), ™0, X)), ™ (0, X))

Let n = [™(Dy, X1),...,n"™(Dy, X,))]" denote the n-vector of the latent function at W.
For matrices W* and W, we define K. (W* W) as a 2n x n matrix whose (i, j)-th
element is K (W;*, W;), where W}* is the i-th row of W* and W; is the j-th row of W.

(2
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Analogously, K.(W,W) is an n x n matrix with the (i, j)-th element being K.(W;, W),

and K.(W*, W*) is a 2n x 2n matrix with the (7, j)-th element being K (W, W).
Given the mean zero GP prior with its covariance kernel K., the posterior of n* is

approximated by a Gaussian distribution with mean n* and covariance V(n*) using the

Laplace approximation. To be specific, let

f’* = KC(W*,W)Kgl(W,W)ﬁ,
V') = K(W*W*) — K(W* W) (KW, W)+V ) KJ(W*W),

where 7 = argmax,p(n|W,Y) maximizes the posterior p(n|W,Y) on the latent n

and V = —% is a n x n diagonal matrix with the i-th diagonal entry being
—%. We use the Matlab toolbox GPML for the implementation In sum, we get the

posterior draws of the vectors [7(1, X1),...,7™(1, X,)]" and [7™(0, X1),...,7"(0, X,.)]"
from the above approximating Gaussian distribution with the mean ©* and covariance
V(n*). We then obtain the posterior draws of the ATE by equation through
m(d, X;) = U(n™(d, X;)) for d € {0, 1}.

H Additional Simulation Results

Appendix[H| presents additional simulation results for adjusted Bayesian inference methods.
The design is the same as that in Section 5.1} Table evaluates the sensitivity of
the finite sample performance with respect to the variance o,, which determines the
influence strength of the prior correction term. We set o, = ¢, x logn/(yv/nT,) with
cr € {1/5,1/2,1,2,5}. Note that ¢, = 1 corresponds to the simulation results reported in
the main text. The performance of DR Bayes appears stable with respect to the choice of
¢,. The performance of PA Bayes, on the other hand, deteriorates when o, takes relatively

small or large values, such as the cases with ¢, = 1/5, t = 0.10 and ¢, = 5, t = 0.01.

!The GPML toolbox can be downloaded from http://gaussianprocess.org/gpml/code/matlab/doc/.
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Table Al: The effect of ¢, on adjusted Bayesian inference methods: trimming based on the
estimated propensity score within [¢,1 — t], 7 = the average sample size after trimming. CP =
coverage probability, CIL = average length of the 95% credible/confidence interval.

Co Methods Bias CP CIL Bias CP CIL Bias CP CIL
t = 0.10(n = 240) t = 0.05(n = 363) t =0.01(n = 664)

1/5 PA Bayes -0.036  0.794 0.169 -0.003 0.937 0.176 0.009 0.992 0.220
DR Bayes -0.038 0.919 0.193 -0.006 0.961 0.190 0.001 0.989 0.214

1/2  PA Bayes -0.024 0.962 0.215 0.016 0.968 0.222 0.032 0.968 0.289
DR Bayes -0.031 0.976 0.207 0.005 0.971 0.207 0.014 0.985 0.248

1 PA Bayes -0.008 0.981 0.260 0.033 0.949 0.254 0.047 0.897 0.308

DR Bayes -0.024 0.983 0.223 0.014 0.970 0.221 0.023 0.952 0.258

2 PA Bayes 0.005 0.979 0.294 0.043 0.933 0.270 0.055 0.848 0.312

DR Bayes -0.018 0.980 0.236 0.019 0.961 0.229 0.028 0.922 0.260

5  PA Bayes 0.013 0971 0.311 0.047 0.928 0.276 0.058 0.836 0.313

DR Bayes -0.015 0.980 0.242 0.022 0.958 0.232 0.030 0.907 0.261

Table reports the finite sample performance of PA and DR Bayes using sample
splitting and compares it to the results in Table 1 that use the full sample twice. Sample
splitting uses one half of the sample (92 treated and 1245 control observations) to estimate
the prior and posterior adjustments, and then draw the posterior of the conditional mean
m(d, z) using the other half of the sample (93 treated and 1245 control observations). The
effective sample size n corresponds to the after-trimming size of the subsample used for
drawing posteriors. As Table shows, DR Bayes using sample splitting yields similar
coverage probabilities to its counterpart in Table 1 that uses the full sample twice. The

credible interval length increases as a result of halving the sample size.

Table A2: Adjusted Bayesian inference methods using sample splitting: trimming based on the
estimated propensity score within [¢,1 — ¢], n = the average sample size after trimming. CP =
coverage probability, CIL = average length of the 95% credible interval.

Bias CPp CIL Bias CPp CIL Bias CPp CIL
Sample splitting t =0.10(n = 124) t = 0.05(n = 185) t =0.01(n = 339)
PA Bayes -0.024 0.986 0.339 0.009 0.977 0.342 0.017 0.950 0.410
DR Bayes -0.013 0.968 0.321 0.017 0.962 0.317 0.016 0.934 0.385
Full sample t = 0.10(7 = 240) t = 0.05(7n = 363) t=0.01(7 = 664)
PA Bayes -0.008 0.981 0.260 0.033 0.949 0.254 0.047 0.897 0.308
DR Bayes -0.024 0.983 0.223 0.014 0.970 0.221 0.023 0.952 0.258
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