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This online supplementary appendix contains materials to support our main paper.

Appendix C collects some auxiliary results. Appendix D collects the proofs for lemmas in

Section 6 of the main paper. Appendix E provides least favorable directions for other causal

parameters of interest besides the ATE. Appendix F states and proves the BvM theorem for

outcome variables belonging to one-parameter exponential family described in Section 6 of

the main paper. Appendix G describes how to draw the posterior of the conditional mean

function using the Laplace approximation. Appendix H presents additional simulation

evidence.

In this supplement, C ¡ 0 denotes a generic constant, whose value might change line

by line. We introduce additional subscripts when there are multiple constant terms in the

same display. For two numbers a and b, we write a_ b :� maxta, bu.

C Auxiliary Results

The part in the likelihood associated with the component ηm � Ψ�1pmηq is given by

pηmpzq � mηpd, xqyp1�mηpd, xqq1�y,

with the corresponding log-likelihood version ℓmn pηmq �
°n

i�1 log pηmpZiq. In other words,

pηmp�q is the density with respect to the dominating measure

dνpx, d, yq � pπ0pxqqdp1� π0pxqq1�ddϑpd, yqdF0pxq, (C.1)
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where ϑ stands for the counting measure on tt0, 0u, t0, 1u, t1, 0u, t1, 1uu. For two generic

probability densities p and q, the Kullback-Leibler divergence is defined as Kpp, qq �³
p logpq{pqdν, and the Kullback-Leibler variation as V pp, qq � ³

p| logpq{pq|2dν; see

Appendix B in Ghosal and Van der Vaart [2017]. Recall the notation ρmpy, d, xq �
y �mpd, xq used below.

Lemma C.1. Let Assumption 1 be satisfied and mη � Ψpηmq, then we have uniformly for

ηm P Hm
n :

log pηm � log pηmt � t?
n
γ0ρ

mη � t2

2n
γ2
0mηp1�mηq �Rn,

for some function Rn with }Rn}8 À n�3{2.

Proof. The logistic distribution function Ψ satisfies Ψ1 � Ψp1�Ψq and Ψp2q � Ψp1�Ψqp1�
2Ψq. Recall the perturbation of ηm along the least favorable direction in (A.2) given by

ηmt � ηm � tξm0 {
?
n for t P R. Thus, log pηm � log pηmt � gp0q � gp1q, where gpuq � log pηmu

for u P r0, 1s, as introduced at the beginning of Section B. We examine the following Taylor

expansion uniformly for ηm P Hm
n :

gp0q � gp1q � �g1p0q � gp2qp0q{2� θ, (C.2)

for some function θ with |θ| ¤ }gp3q}8.
We express the part of the log-likelihood involving ηm explicitly as follows.

log pηmpzq � dy log
eη

mp1,xq

1� eηmp1,xq � dp1� yq log 1

1� eηmp1,xq

� p1� dqy log eη
mp0,xq

1� eηmp0,xq � p1� dqp1� yq log 1

1� eηmp0,xq

�d �yηmp1, xq � logp1� eη
mp1,xqq�� p1� dq �yηmp0, xq � logp1� eη

mp0,xqq� . (C.3)

Given equation (C.2), it remains to calculate the first three derivatives of the function g.

Its first derivative is given by

g1puq � � t?
n
γ0ρ

Ψpηmu q,

where γ0ρ
Ψpηmu qpy, d, xq � y � Ψpηmu pd, xqq. The second and third derivative of g can be

computed along the same lines:

gp2qpuq � �t2

n
γ2
0Ψ

1pηmu q, gp3qpuq � � t3

n3{2γ
3
0Ψ

p2qpηmu q.
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In the above expression involving the Riesz representor γ0, we have

γ2
0pd, xq �

d

π2
0pxq

� 1� d

p1� π0pxqq2 and γ3
0pd, xq �

d

π3
0pxq

� 1� d

p1� π0pxqq3 ,

again because of dp1 � dq � 0. Evaluating at u � 0, we have Ψpηmu q � Ψpηmq � mη and

consequently,

g1p0q � � t?
n
γ0ρ

m0 � t?
n
γ0pmη �m0q, (C.4)

and

gp2qp0q � �t2

n
γ2
0mηp1�mηq. (C.5)

For the remainder term, we have }gp3q}8 À n�3{2, given the uniform boundedness of Ψp2qp�q.

Lemma C.2. Let Assumptions 1 and 2 be satisfied. Then, we have

?
nPnrppγ � γ0qρm0s � oP0p1q. (C.6)

Proof. Since pγ is based on an auxiliary sample, it is sufficient to consider deterministic

functions γn with the same rates of convergence as pγ. We also write the corresponding

propensity score as πn, which is associated with γn. Using the notation ρm0pZiq � Yi �
m0pDi, Xiq, we evaluate for the conditional expectation that

E0

�� 1?
n

ņ

i�1

pγn � γ0qpDi, Xiqρm0pZiq
	2

| pD1, X1q, . . . , pDn, Xnq
�

� 1

n

¸
i�i1

pγn � γ0qpDi, Xiqpγn � γ0qpDi1 , Xi1qE0 rρm0pZiqρm0pZi1q | pDi, Xiq, pDi1 , Xi1qs

� 1

n

ņ

i�1

pγn � γ0q2pDi, XiqV ar0pYi|Xiq.

We have V ar0pYi|Xiq ¤ 1 since Yi P t0, 1u and thus we obtain for the unconditional squared

expectation that

E0

�� 1?
n

ņ

i�1

pγn � γ0qpDi, Xiqρm0pZiq
	2

�
À }πn � π0}22,F0

� op1q

by Assumption 2, which implies the desired result.
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Each Gaussian process is associated with an intrinsic Hilbert space defined by its

covariance kernel, see Ghosal and Van der Vaart [2017]. This space is critical in analyzing

the rate of contraction for its induced posterior. Consider a Hilbert space H with inner

product x�, �yH and associated norm }�}H. H is an reproducing kernel Hilbert space (RKHS)

if there exists a symmetric, positive definite function k : X � X ÞÑ R, called a kernel, that

satisfies two properties: (i) kp�,xq P H for all x P X and; (ii) fpxq � xf, kp�,xqyH for all

x P X and f P H. It is well-known that every kernel defines a RKHS and every RKHS

admits a unique reproducing kernel.

Let Han
1 be the unit ball of the RKHS for the rescaled squared exponential process and

let Bsm,p
1 be the unit ball of the Hölder class Csmpr0, 1spq in terms of the supremum norm

} � }8. Denote Φp�q as the c.d.f. of a standard normal random variable with Φ�1p�q as

its inverse. We introduce a class of functions Bm
n which is shown to contain the Gaussian

process W which sufficiently large probability, and is given by

Bm
n :� εnBsm,p

1 �MnHan
1 , (C.7)

where an � n1{p2sm�pqplog nq�p1�pq{p2sm�pq, εn � n�sm{p2sm�pqplog nqsmpp�1q{p2sm�pq, and Mn �
�2Φ�1pe�Cnε2nq. For notational simplicity, we suppress the dependence of the rescaled

Gaussian process on the rescaling parameter an in the following proofs.

Lemma C.3. Under the conditions of Proposition 4.1, the posterior distributions of the

conditional mean functions contract at rate εn, i.e.,

Π
�
η : }mηpd, �q �m0pd, �q}2,F0 ¥ Mεn | Zpnq�ÑP0 0

for d P t0, 1u and every sufficiently large M , as n Ñ 8.

Proof. By the assumed stochastic independence between the pair Zpnq and pγ, we can

proceed by studying the ordinary posterior distribution relative to the prior with pγ set

equal to a deterministic function γn and pw, λq following their prior. In other words, it is

sufficient to consider the prior on m given by mpd, xq � Ψ pWmpd, xq � λ γnpd, xqq where
Wmpd, �q is the rescaled squared exponential process independent of λ � Np0, σ2

nq and γn a

sequence of functions }γn}8 � Op1q. It suffices to examine two conditional means mηp1, �q
and mηp0, �q separately. We focus on the treatment arm with d � 1, and leave d off the

notations in Wm or ηm as understood.

We verify the following generic results in Theorem 2.1 of Ghosal et al. [2000] to obtain
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the proper concentration rate for the posterior for the rescaled squared exponential process:

Πppw, λq : K _ V ppηm0 , pw�λγnq ¤ ε2nq ¥ c1 expp�c2nε2nq, (C.8)

ΠpPc
nq ¤ expp�c3nε2nq, (C.9)

logNpεn,Pn, } � }L2pνqq ¤ c4nε
2
n, (C.10)

for positive constant terms c1, � � � , c4 and for the set:

Pn �
 
pw�λγn : w P Bm

n , |λ| ¤ Mσn

?
nεn

(
.

Proof of (C.8). The inequality (C.16) in Lemma C.6 yields

tpw, λq : }w � ηm0 }8 ¤ cεn, |λ| ¤ cεnu �
 pw, λq : K _ V ppηm0 , pw�λγnq ¤ ε2n

(
.

Given that we have independent priors of Wm and λ, the prior probability of the set on

the left of the above display can be lower bounded by Πp}Wm � ηm0 }8 ¤ cεnqΠp|λ| ¤ cεnq.
By Proposition 11.19 of Ghosal and Van der Vaart [2017] regarding the small exponent

function ϕan
0 and together with the upper bound (C.18), we infer

Πp}Wm � ηm0 }8 ¤ cεnq ¥ exp p�ϕan
0 pεn{2qq ¥ exp

��cnε2n� ,
for some positive constant c. The second term is lower bounded by Cεn{σn, which is of

order Opεnq for σn � Op1q. Therefore, we have ensured that the prior assigns enough mass

around a Kullback-Leibler neighborhood of the truth.

Proof of (C.9). Referring to the sieve space for the Gaussian process, we apply Borell’s

inequality from Proposition 11.17 of Ghosal and Van der Vaart [2017]:

ΠpWm R Bm
n q ¤ 1� Φpιn �Mnq,

where Φp�q is the c.d.f. of a standard normal random variable and the sequence ιn is given

by Φpιnq � ΠpW P εnBsm,p
1 q � e�ϕan

0 pεnq. Since our choice of εn leads to ϕan
0 pεnq ¤ nε2n,

we have ιn ¥ �Mn{2 if Mn � �2Φ�1pe�Cnε2nq for some C ¡ 1. In this case, ΠpBmc
n q ¤

1� ΦpMn{2q ¤ e�Cnε2n . Next, we apply the univariate Gaussian tail inequality for λ:

Π
�|λ| ¥ unσn

?
n
� ¤ 2e�u2

nnσ
2
n{2,

which is bounded above by e�Cnε2n for un Ñ 0 sufficiently slowly, given our assumption
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εn � opσnq. Hence, by the union bound, we have ΠpPc
nq À e�Cnε2n .

Proof of (C.10). To bound the entropy number of the functional class Pn, consider the

inequality

}pw�λγ � pw̄�λ̄γn}L2pνq À }w � w̄}2,F0 � |λ� λ̄|}γn}8,

where the dominating measure ν is (C.1). Thus, we have

Npεn,Pn, } � }L2pνqq ¤ Npεn{2,Bm
n , } � }8q �NpCεn, r0, 2Mσn

?
nεns, | � |q À nε2n. (C.11)

Note that the logarithm of the second term grows at the rate of Oplog nq, and it is the

first term that dominates. Because Ψ is monotone and Lipschitz, a set of ϵ-brackets in

L2pF0q for Bm
n translates into a set of ε-brackets in L2pνq for Pn. Thus, Lemma C.7 gives

us logNp3εn,Bm
n , } � }q À nε2n.

By Lemma 15 of Ray and van der Vaart [2020], this delivers the posterior contraction

rate for mηp1, �q in terms of the L2pF0π0q-norm, which is equivalent to the L2pF0q-norm
weighted by the propensity score π0. Analogous arguments lead to the desired result for

the conditional mean mηp0, �q for the control group.

Let Mni � ei{
°n

i�1 ei, where ei’s are independently and identically drawn from

the exponential distribution Expp1q. We also denote Xpnq � pXiqni�1. We adopt the

following notations: F�
nm̄η � °n

i�1Mnim̄ηpXiq, Fnm̄η � n�1
°n

i�1 m̄ηpXiq and F0m̄η �³
m̄ηpxqdF0pxq. Let Xpnq � pXiqni�1.

Lemma C.4. Let the functional class tm̄η : η P Hnu be a P0-Glivenko-Cantelli class. Then

for every t in a sufficiently small neighborhood of 0 we have

sup
m̄η :ηPHn

���E �
et
?
nppF�n�Fnqm̄ηq | Xpnq

�
� et

2F0pm̄η�F0m̄ηq2{2
���ÑP0 0.

Proof. We verify the conditions from Lemma 1 in Ray and van der Vaart [2020]. First, the

Bayesian bootstrap law F�
n is the same as the posterior law for F , when its prior is a Dirichlet

process with its base measure taken to be zero. Second, the assumed P0-Glivenko-Cantelli

class entails

sup
ηPHn

|pFn � F0qm̄η| � oP0p1q.

Last, the required moment condition on the envelope function for the class involving m̄η is

automatically satisfied because of }m̄η}8 ¤ 1.

The following lemma is in the same spirit of Lemma 9 in Ray and van der Vaart [2020]
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with one important difference. That is, we do not restrict the range of the function φ to be

r0, 1s. As we apply this lemma by taking φ � γn � γ0, it can take on negative values. We

apply the more general contraction principle from Theorem 4.12 of Ledoux and Talagrand

[1991] instead of Proposition A.1.10 of van der Vaart and Wellner [1996]. This allows us to

relax the positive range restriction in Ray and van der Vaart [2020].

Lemma C.5. Consider a set H of measurable functions h : Z ÞÑ R and a bounded

measurable function φ. We have

E0 sup
hPH

|Gnpφhq| ¤ 4}φ}8E0 sup
hPH

|Gnphq| �
a
P0φ2 sup

hPH
|P0h|.

Proof. We start with Gnpφhq � Gnpφph�P0hqq�GnpφqP0h. The expectation of GnpφqP0h

is bounded by the second term on the right hand side of the inequality in the stated lemma

as follows:

E0 sup
hPH

|GnpφqP0h| ¤ sup
hPH

|P0h|E0

����� 1?
n

ņ

i�1

pφpZiq � E0rφpZqsq
����� ¤a

P0φ2 sup
hPH

|P0h|, (C.12)

where the last inequality follows from the elementary bound E0|ξ| ¤
a
E0rξs2 for any

random variable ξ and the fact that E0

�
1?
n

°n
i�1pφpZiq � P0φpZiqq

�2
¤ P0φ

2.

We now consider Gnpφph � P0hqq where we may assume that the function h satisfies

P0h � 0. Let ϵ1, . . . , ϵn be i.i.d. Rademacher random variables independent of observations

Zpnq. By the symmetrization inequality in Lemma 2.3.6 of van der Vaart and Wellner

[1996],

E0 sup
hPH

����� ņ

i�1

pφpZiqhpZiq � P0rφhsq
����� ¤ 2}φ}8E0 sup

hPH

����� ņ

i�1

ϵi
φpZiq
}φ}8 hpZiq

����� . (C.13)

Because�1 ¤ φpZiq{}φ}8 ¤ 1 for all i � 1, . . . , n, the map h ÞÑ φ
}φ}8�h forms a contraction

mapping. Hence, we apply the contraction principle as in Theorem 4.12 on page 112 of

Ledoux and Talagrand [1991]:

E0 sup
hPH

����� ņ

i�1

ϵi
φpZiq
}φ}8 hpZiq

����� ¤ E0 sup
hPH

����� ņ

i�1

ϵihpZiq
����� . (C.14)

Another application by the symmetrization inequality from Lemma 2.3.6 of van der Vaart
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and Wellner [1996] that decouples the Rademacher variables leads to

E0 sup
hPH

����� ņ

i�1

ϵihpZiq
����� ¤ 2E0 sup

hPH

����� ņ

i�1

hpZiq
����� .

The application of the above inequality requires the process th : h P Hu under consideration
to be centered as P0h � 0. Combined together with Inequalities (C.12), (C.13), and (C.14),

we have the desired result as stated in the lemma.

The next lemma upper bounds the L2 distance and Kullback-Leibler divergence of the

probability density functions by the L2 distance of the reparametrized function ηm, cf.

Lemma 2.8 of Ghosal and Van der Vaart [2017] or Lemma 15 of Ray and van der Vaart

[2020]. We introduce some simplifying notations by writing

m1p�q � mp1, �q and m0p�q � mp0, �q.

Lemma C.6. For any measurable functions vm, wm : r0, 1sp ÞÑ R, we have

}pvm � pwm}L2pνq ¤ }Ψpvm1q �Ψpwm1q}L2pF0π0q _ }Ψpvm0q �Ψpwm0q}L2pF0p1�π0qq

¤ }vm1 � wm1}2,F0 _ }vm0 � wm0}2,F0 . (C.15)

In addition, it holds that

Kppvm , pwmq _ V ppvm , pwmq ¤ }vm1 � wm1}22,F0
_ }vm0 � wm0}22,F0

. (C.16)

The small ball exponent function for the associated Gaussian process prior is

ϕ0pεq :� � log Πp}W }8   εq;

see equation (11.10) in Ghosal and Van der Vaart [2017]. In the above display, } � }8 is

the uniform norm of Cpr0, 1spq, the Banach space in which the Gaussian process sits. H is

the reproducing kernel Hilbert space (RKHS) of the process with its RKHS norm } � }H.
To abuse the notation a bit, we denote the small ball exponent of the rescaled process

W patq by ϕa
0pεq. Lemma 11.55 in Ghosal and Van der Vaart [2017] gives this bound for the

(rescaled) squared exponential process:

ϕa
0pεq À applogpa{εqq1�p.
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Lemma C.7. Assume that εn � n�sm{p2sm�pqplog nqsmp1�pq{p2sm�pq and Mn �
�2Φ�1pe�Cnε2nq for a positive constant C ¡ 1. Also, let an � n1{p2sm�pqplog nq�p1�pq{p2sm�pq.

Then, for the sieve space Bm
n � εnBsm,p

1 �MnHan
1 , we have

logNp3εn,Bm
n , } � }8q À nε2n. (C.17)

Proof. The argument is similar as in Lemma 11.20 of Ghosal and Van der Vaart [2017].

We follow the generic argument as in the proof of Theorem 11.20 of Ghosal and Van der

Vaart [2017] to bound the complexity number logNp3εn,Bm
n , } � }8q given the bound for

the small ball exponent in (C). We provide the proof for completeness. For some integer

N ¥ 1, let h1, . . . , hN P MnHan
1 be 2εn-separated functions in terms of the Banach space

norm. Then, the εn-balls h1 � εnBsm,p
1 , . . . , hN � εnBsm,p

1 are disjoint. Therefore, we have

1 ¥
Ņ

j�1

ΠpW P hj � εnBsm,p
1 q ¥

Ņ

j�1

e�}hj}2H{2ΠpW P εnBsm,p
1 q ¥ Ne�M2

n{2e�ϕan
0 pεnq,

where the second inequality follows from Lemma 11.18 of Ghosal and Van der Vaart [2017]

and the last inequality makes use of the fact that h1, . . . , hN P MnH1, as well as the

definition of the small ball exponent function.

For a maximal 2εn-separated set h1, . . . , hN , the balls around h1, . . . , hN of radius 2εn

cover the set MnHan
1 . Thus, we have logNp2εn,MnHan

1 , } � }8q ¤ logN ¤ M2
n{2� ϕan

0 pεnq.
Referring to the inequality (iii) of Lemma K.6 of Ghosal and Van der Vaart [2017] for the

quantile function of a standard normal distribution, we have M2
n À nε2n by the choice of

Mn stated in the lemma. It is straightforward yet tedious to verify that

ϕan
0 pεnq À nε2n, (C.18)

for the specified an and εn. Since any point of Bm
n is within εn of an element of MnHan

1 ,

this also serves as a bound on logNp3εn,Bm
n , } � }8q.

A key step in showing the validity of the debiasing step is the following:

Pnr p̄m� pγρ pm � m̄0s � Pnrγ0ρm0s � oP0pn�1{2q,

which is equivalent to the following lemma.
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Lemma C.8. Under Assumption 2 for the pilot estimators, the following result holds:

Pnrpγρ pm � p̄ms � Pnrγ0ρm0 � m̄0s � oP0pn�1{2q.

Proof. We start with the following identity:

Pnrpγρ pm � p̄ms � Pnrγ0ρm0 � m̄0s �Rn1 �Rn2.

where

Rn1 � 1

n

¸
Di

pYi � pmp1, Xiqq
�

1pπpXiq �
1

π0pXiq


� 1

n

¸
1�Di

pYi � pmp0, Xiqq
�

1

1� pπpXiq �
1

1� π0pXiq


,

Rn2 � 1

n

¸
i

ppmp1, Xiq �m0p1, Xiqq
�
1� Di

π0pXiq


� 1

n

¸
i

ppmp0, Xiq �m0p0, XiqqDi � π0pXiq
1� π0pXiq .

Referring to the first term Rn1, we have

Rn1 � 1

n

¸
Di

pm0p1, Xiq � pmp1, Xiqq
�

1pπpXiq �
1

π0pXiq


� 1

n

¸
Di

pYi �m0p1, Xiqq
�

1pπpXiq �
1

π0pXiq



� 1

n

¸
1�Di

pm0p0, Xiq � pmp0, Xiqq
�

1

1� pπpXiq �
1

1� π0pXiq



� 1

n

¸
1�Di

pYi �m0p0, Xiqq
�

1

1� pπpXiq �
1

1� π0pXiq


.

The negligibility of the first and third terms in Rn1 follows from the Cauchy-Schwarz

inequality and the rate conditions imposed in Assumption 2. The second and fourth terms

can be combined together so that the negligibility can be shown as in Lemma C.2.

Consider Rn2. To bound its first summand, we condition on pX1, . . . , Xnq, as well as

the pilot estimators pm and pπ, which are computed over the external sample. We use the

fact that pDi � π0pXiqq has a conditional zero mean. Specifically, this leads to

E0

�� 1?
n

ņ

i�1

Di � π0pXiqpπpXiq ppmp1, Xiq �m0p1, Xiqq
	2 ���X1, . . . , Xn, pm, pπ�

� 1

n

ņ

i�1

�pmp1, Xiq �m0p1, Xiq
�2V ar0pDi|Xiqpπ2pXiq

using that V ar0pDi|Xiq � π0pXiqp1� π0pXiqq. By the overlapping condition as imposed in

Assumption 1, i.e., π̄   π0pXiq for all 1 ¤ i ¤ n and the uniform convergence of pπ to π0,
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we obtain

E0

�� 1?
n

ņ

i�1

Di � π0pXiqpπpXiq ppmp1, Xiq �m0p1, Xiqq
	2 ��� pm, pπ� À }pmp1, �q �m0p1, �q}22,F0

� oP0p1q,

where the last equation is due to the convergence rate for the pilot estimator pm in

Assumption 3. The negligibility of the second term in Rn2 is proved in a similar fashion.

The following lemma shows the stochastic equicontinuity when the true conditional

mean function belongs to a Hölder space, which is P0-Donsker, i.e., sm ¡ p{2. The main

complication is that the sieve space related to the Gaussian process prior is not a fixed

P0-Donsker class, as it changes with sample size n and the envelope function is also slowly

diverging, cf. the comments in the third paragraph on Page 2007 of Ray and van der Vaart

[2020]. More specifically, for the rescaled squared exponential process priors, we rely on

the metric entropy bounds in van der Vaart and van Zanten [2009]. With this important

modification, the proof is along similar lines with the proof of Lemma 7 of Ray and van der

Vaart [2020] for the Riemann-Lioville process; also, see Lemma 5 of Ray and van der Vaart

[2020].

We consider

Hm
n :� twd � λγn : pwd, λq P Wnu , (C.19)

where

Wn :�  pwd, λq : wd P Bm
n , |λ| ¤ Mσn

?
nεn

(X tpwd, λq : }Ψpwdp�q � λγnq �m0pd, �q}2,F0 ¤ εnu ,

where the sieve space Bm
n in the first restriction for the Gaussian process Wd is defined in

the equation (C.7) with d P t0, 1u, and εn � pn{ log nq�sm{p2sm�pq.

Lemma C.9. Recall that the sieve space related to the Gaussian process is Bm
n � εnBsm,p

1 �
MnHan

1 . For sm ¡ p{2, we have E0 supηPHm
n
Gn rmη �m0s � op1q.

Proof. Because the link function Ψp�q is monotone and Lipschitz continuous, separate sets

of brackets for the two constituents of the set εnBsm,p
1 �MnHan

1 , as well as the bracket for

tλ : |λ| ¤ Mσn

?
nεnu can be combined into brackets for the sum space.

logNrspε,Hm
n , L2pP0qq ¤ logNpε, εnBsm,p

1 , }�}8q�logNpε,MnHan
1 , }�}8q�logNpcε, r0, 2Mσn

?
nεns, |�|q.

The last term is of strictly smaller order than the second one. The bound for the first

component attached to the Hölder space can be found in Proposition C.5 of Ghosal and

11



Van der Vaart [2017]:

logNpε, εnBsm,p
1 , } � }8q À

�εn
ε

	sm{p
,

which is bounded if we take ε � εn. The entropy bound for the second component is given

in Lemma C.7, which states that logNpε,MnHan
1 , } � }8q À nε2n À ε�2υ

n , with υ � p{p2smq
modulo some log n term on the right hand of the bound. In this case, the empirical process

bound of [Han, 2021, p.2644] yields

E0 sup
ηPHm

n

|Gnrmη �m0s| À Lnn
pυ�1q{p2υq � OpLnn

1{2�sm{pq � op1q,

where Ln represents a term that diverges at certain polynomial order of log n.

D Proofs of Section 6

Proof of Lemma 6.1. For the submodel t Ñ ηt defined in 6.1, we evaluate

log pηtpzq � d log Ψpηπ � tpqpxq � p1� dq logp1�Ψpηπ � tpqqpxq
� log cpyq � aypηm � tmqpd, xq � Apq�1pηm � tmqqpd, xq
� tfpxq � logEretfpXqs � log fpxq.

Taking derivative with respect to t and evaluating at t � 0 gives the score operator:

Bηpp,m, fqpZq � Bπ
η ppZq �Bm

η mpZq �Bf
η fpZq, (D.1)

where Bπ
η ppZq � pD � πηpXqqppXq, Bf

η fpZq � fpXq, and

Bm
η mpZq �

�
aY � A1pmηpD,Xqq

q1pmηpD,Xqq
�
mpD,Xq,

�a pY �mηpD,XqqmpD,Xq.

In the last equation, we made use of the relation (explicitly given here for continuous

outcomes):

A1pmηpd, xqq � q1pmηpd, xqq
»
aycpyq exp rqpmηpd, xqqay � Apmηpd, xqqs dy

� q1pmηpd, xqqEη raY |D � d,X � xs ,

12



which follows from the exponential family assumption.

In this case, there is a one-to-one correspondence between the conditional density

function and the conditional mean function of the outcome given covariates. One can

easily verify the differentiability of the ATE parameter in the sense of van der Vaart [1998]

and show that the efficient influence function remains the same as in Hahn [1998] and Ray

and van der Vaart [2020]. Given the particular form of the efficient influence function rτη
in (2.4), the function ξη � pξπη , ξmη , ξfη q defined in (3.4) satisfies Bηξη � rτη, and hence, ξη

defines the least favorable direction.

We emphasize that the least favorable direction calculation in the multinomial outcome

case is not a trivial extension of Hahn [1998] or Ray and van der Vaart [2020], because

there are J nonparametric components involved in the conditional probabilities of the

multinomial outcomes given covariates, and we need to consider the perturbation of all J

components together.

Proof of Lemma 6.2. Consider the log transformation of the joint density of Z �
pY,D,XJqJ given by

log pηpzq � d logpπηpxqq � p1� dq logp1� πηpxqq �
J̧

j�0

1ty�ju log pmj,η pd, xqq � log fpxq

where 1t�u denotes the indicator function. Following the proof of Lemma 3.1, it is sufficient

to consider the perturbations for j � 1, . . . , J :

Ψjpηm1 � tm1, � � � , ηmJ � tmJqpd, xq � expppηmj � tmjqpd, xqq
1�°J

l�1 expppηml � tmlqpd, xqq
or

logΨjpηm1 � tm1, � � � , ηmJ � tmJqpd, xq � pηmj � tmjqpd, xq � log
�
1�

J̧

l�1

expppηml � tmlqpd, xqq
	
.

Taking derivatives

B log Ψjpηm1 � tm1, � � � , ηmJ � tmJqpd, xq
Bt

�����
t�0

� mjpd, xq �
°J

l�1 exppηmlpd, xqqmlpd, xq
1�°J

l�1 exppηmlpd, xqq

� mjpd, xq �
J̧

l�1

mη,lpd, xqmlpd, xq

13



by the definition of mη,l. Likewise, we also obtain

B log Ψ0pηm1 � tm1, � � � , ηmJ � tmJqpd, xq
Bt

�����
t�0

� �
J̧

l�1

mη,lpd, xqmlpd, xq.

We need to verify the differentiability of the ATE parameter in the sense of van der Vaart

[1998]. Due to its technical feature, we leave this to the end of the proof. From there,

we can see that the score operator of the vector of conditional means pm1, . . . ,mJq is as

follows:

Bm
η pm1, . . . ,mJqpzq �

J̧

j�0

1ty�ju
d log Ψjpηm1 � tm1, � � � , ηmJ � tmJqpd, xq

dt

�����
t�0

�
J̧

j�1

1ty�ju

�
mjpd, xq �

J̧

l�1

mη,lpd, xqmlpd, xq
�
� 1ty�0u

�
�

J̧

l�1

mη,lpd, xqmlpd, xq
�
.

Given that 1ty�0u � 1�°J
j�1 1ty�ju, the previous equation simplifies to

Bm
η pm1, . . . ,mJqpzq �

J̧

j�1

�
1ty�ju �mη,jpd, xq

�
mjpd, xq.

Note that the conditional mean of Bm
η pm1, . . . ,mJqpzq is zero for any mjpd, xq, which aligns

with the requirement of the score operator.

From our verification of differentiability, we infer that the influence function is of the

generic form given in Hahn [1998] and Ray and van der Vaart [2020]. Also, it is contained

in the closed linear span of the set of all score functions. Now, if we choose mj � jγη,

1 ¤ j ¤ J , we obtain

Bm
η pγη, 2γη, . . . , Jγηqpzq �

�
J̧

j�1

1ty�jujloooomoooon
�y

�
J̧

j�1

j mη,jpd, xqlooooooomooooooon
�mηpd,xq

�
γηpd, xq � py �mηpd, xqq γηpd, xq,

which shows the results.

Now we check the pathwise differentiability of the ATE. To avoid the long display of

various formulas, we consider the following decomposition

B
Btτηt

∣∣∣
t�0

� B
Bt

»
EηtrY |D � 1, X � xsdFηtpxq �

B
Bt

»
EηtrY |D � 0, X � xsdFηtpxq,
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and we focus on the first derivative involving the treatment group, as the other one can be

handled analogously. We start with

B
BtEηtrEηtrY |D � 1, Xss �

¼
y
B
Btptpy|1, xqftpxq

∣∣∣
t�0

dνpyqdµpxq,

where ptpy|1, xq and ftpxq are the perturbed conditional density of outcome and marginal

density of covariates, respectively. In addition, ν stands for the counting measure and µ is

the Lebesgue measure. By the chain rule, we need to compute the following sum:¼
y
B
Btptpy|1, xq

∣∣∣
t�0

dνpyqfηpxqdµpxq �
¼

ypηpy|1, xqdνpyq BBtftpxq
∣∣∣
t�0

dµpxq. (D.2)

Regarding the first part of the above sum, we follow the outline in Example 2 of Jonathan

[2019] to compute

B
Btptpy|d, xq �

B
Bt

�
J¹

j�0

mt,jpd, xq1ty�ju
�
�

J̧

j�0

1ty�ju
B
Btmt,jpd, xq

¹
k�j

m
1ty�ku
t,k pd, xq.

We thus evaluate for the derivatives of the conditional mean functions

B
Btmt,jpd, xq

∣∣∣
t�0

� mη,jpd, xq
�
mjpd, xq �

J̧

l�1

mη,lpd, xqmlpd, xq
�
, for j � 1, � � � , J,

and

B
Btmt,0pd, xq

∣∣∣
t�0

� mη,0pd, xq
�
�

J̧

l�1

mη,lpd, xqmlpd, xq
�
.

Thereafter, derivative of the conditional density can be written as

B
Btptpy|d, xq

∣∣∣
t�0

�
�

J̧

j�1

1ty�ju

�
mjpd, xq �

J̧

l�1

mη,lpd, xqmlpd, xq
��

J¹
j�0

mη,jpd, xq1ty�ju

� �
Bm

η pm1, . . . ,mJqpzq � EηrBm
η pm1, . . . ,mJqpZq|D � d,X � xs� pηpy|d, xq,

where the last equality follows from the fact that the conditional mean of the score given

pD,Xq is zero. To simplify the notation, we denote this conditional score function by

Sηpzq � Bm
η pm1, . . . ,mJqpzq. Referring to the first term in the summation (D.2), we resort

to the technique in Example 2 of Jonathan [2019] by converting the conditional argument

from d � 1 to d P t0, 1u. Similar to the first two terms in the long display on Page 15 of

15



Jonathan [2019], we obtain¼
y
B
Btptpy|1, xq

∣∣∣
t�0

dνpyqfpxqdµpxq � Eη

�
D

πηpXqpY �mηpD,XqqSηpZq
�
.

Referring to the second part of (D.2), we immediately obtain¼
yptpy|1, xqdνpyq BBtftpxq

∣∣∣
t�0

dµpxq � Eη rpmηp1, Xq � Eηrmηp1, XqsqSηpZqs

Similarly for the control arm, we derive

B
Bt

»
EηtrY |D � 0, X � xsdFηtpxq

∣∣∣
t�0

�Eη

��
mηp0, Xq � Eηrmp0, Xqs � 1�D

1� πηpXqpY �mηpD,Xqq


SηpZq

�
.

The remaining part boils down to the existence of a vector-valued function τ̃Pη such that

B
Btτpηtq

∣∣∣
t�0

� Eη

�
τ̃ηpZqBm

η pm1, . . . ,mJqpZq
�

� Eη

��
pm̄ηpXq � τηq �

�
D

πηpXq �
1�D

1� πηpXq


pY �mηpD,Xqq



SηpZq

�
.

Consequently, we can take the solution as τ̃ηpzq � m̄ηpxq�τη�γηpd, xqpy�mηpd, xqq, which
concludes the proof.

E Least Favorable Directions for Other Causal

Parameters

In this part, we provide details on the least favorable directions for the first two examples

in Section 6.3. We properly address the binary outcome Y and the reparameterization

through the logistic type link function Ψp�q.

E.1 Average Policy Effects

The joint density of Zi � pYi, Xiq can be written as

pm,f pzq � mpxqyp1�mpxqqp1�yqfpxq. (E.1)
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The observed data Zi can be described by pm, fq. It proves to be more convenient to

consider the reparametrization of pm, fq given by η � pηm, ηf q, where

ηm � Ψ�1pmq, ηf � log f. (E.2)

Consider the one-dimensional submodel t ÞÑ ηt defined by the path

mtpxq � Ψpηm � tmqpxq, ftpxq � fpxqetfpxq{EretfpXqs,

for the given direction pm, fq with ErfpXqs � 0. For this submodel, we further evaluate

log pηtpzq � y log Ψpηm � tmqpxq � p1� yq logp1�Ψpηm � tmqqpxq
� tfpxq � logEretfpXqs � log fpxq.

Taking derivative with respect to t and evaluating at t � 0 gives the score operator:

Bηpm, fqpZq � Bm
η mpZq �Bf

η fpZq, (E.3)

where Bm
η mpZq � pY �mηpXqqmpXq and Bf

η fpZq � fpXq.
The efficient influence function for estimation of the policy effect parameter τPη is given

by rτPη pzq � γP
η pxqpy �mηpxqq

where γP
η pxq � g1pxq�g0pxq

fpxq . Now the score operator Bη given in (E.3) applied to ξPη pxq ��
γP
η pxq, 0

�
, yields Bηξ

P
η � rτPη . Thus, ξPη defines the least favorable direction for this policy

effect parameter.

E.2 Average Derivative

The joint density of Zi � pYi, Di, Xiq can be written as

pm,f pzq � mpd, xqyp1�mpd, xqqp1�yqfpd, xq. (E.4)

The observed data Zi can be described by pm, fq. It proves to be more convenient to

consider the reparametrization of pm, fq given by η � pηm, ηf q, where

ηm � Ψ�1pmq, ηf � log f. (E.5)
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Consider the one-dimensional submodel t ÞÑ ηt defined by the path

mtpd, xq � Ψpηm � tmqpd, xq, ftpd, xq � fpd, xqetfpd,xq{EretfpD,Xqs,

for the given direction pm, fq with ErfpD,Xqs � 0. For this submodel defined in (E.5), we

further evaluate

log pηtpzq � y log Ψpηm � tmqpd, xq � p1� yq logp1�Ψpηm � tmqqpd, xq
� tfpd, xq � logEretfpD,Xqs � log fpd, xq.

Taking derivative with respect to t and evaluating at t � 0 gives the score operator:

Bηpm, fqpZq � Bm
η mpZq �Bf

η fpZq, (E.6)

where Bm
η mpZq � pY �mηpD,XqqmpD,Xq and Bf

η fpZq � fpD,Xq. The efficient influence

function for estimation of the AD parameter τAD
η � E rBdmηpD,Xqs is given by

rτAD
η pzq � Bdmηpd, xq � ErBdmηpd, xqs � γAD

η pd, xqpy �mηpd, xqq

where γAD
η pd, xq � Bdπηpd, xq{πηpd, xq. Now the score operator Bη given in (E.6) applied to

ξAD
η pd, xq � �

γAD
η pd, xq, Bdmηpd, xq � ErBdmηpD,Xqs� ,

yields Bηξ
AD
η � rτAD

η . Thus, ξAD
η defines the least favorable direction for the AD.

F Theory for One-parameter Exponential Family

We take a � 1 in the exponential family for simplicity, that is,

fY |D,Xpy | d, xq � cpyq exp rqpmpd, xqqy � Apmpd, xqqs , (F.1)

for some known functions cp�q, qp�q, and Ap�q. We consider the reparametrization ηmpd, xq �
qpmpd, xqq using the link function q and we define the mapping Υ :� A � q�1, used below.

Because the generalization of the binary outcome case to the above exponantial family

involves some change of the likelihood function related to the conditional mean, we outline

the necessary modifications.
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Proposition F.1. Consider the one-parameter exponential family for the conditional

distribution specified by (F.1). Let Assumption 1 hold. Assume the function Υ is

three time differentiable with }Υpℓq}8   8 for ℓ � 2, 3. The estimator pγ satisfies

}pγ}8 � OP0p1q and }pγ � γ0}8 � OP0

�pn{ log nq�sπ{p2sπ�pq� for some sπ ¡ 0. Suppose

m0pd, �q P Csmpr0, 1spq for d P t0, 1u and some sm ¡ 0 with
?
sπ sm ¡ p{2. Also,

}pmpd, �q � m0pd, �q}2,F0 � OP0

�pn{ log nq�sm{p2sm�pq�. Consider the propensity score-

dependent prior on m given by mpd, xq � q�1 pWmpd, xq � λ pγpd, xqq, where Wmpd, xq is

the rescaled squared exponential process for d P t0, 1u, with its rescaling parameter an of the

order in (4.1), pn{ log nq�sm{p2sm�pq À unσn for some deterministic sequence un Ñ 0, and

σn À 1. Then, the posterior distribution satisfies Theorem 3.1.

Proof. A close inspection shows that there are mainly three parts in which we need to

adapt the argument due to the change of pηm in the likelihood function. The first one

is about the Kullback-Leibler (KL) divergence and related metrics to show the posterior

contraction rate. The second one concerns the local asymptotic normality (LAN) expansion

used in the conditional Laplace transform, where we show the connection of its second-order

term to part of the variance of the influence function. Finally, we make use of the imposed

smoothness assumption on Υ to show the negligibility of third order terms, which is needed

for verifying the prior stability. We proceed in three steps.

Step 1. First, in deriving the posterior contraction rate or determining the proper

localized set Hm
n , we need proper upper bounds for the Hellinger distance and Kullback-

Leibler (KL) divergence between two probability density functions ppηm , pvmq by the

L2 distance of the reparametrized functions pηm, vmq. Recall that pηmpy, d, xq �
cpyq exp rqpmpd, xqqay � Apmpd, xqqs. To abuse the notation a bit, we denote the

corresponding probability densities by pηm and pvm . From the proof of Lemma 6.1 we

observe

EηrY |D � d,X � xs � pA1 � q�1qpηmpd, xqq
pq1 � q�1qpηmpd, xqq .

Now the operator under consideration is Υ � A � q�1 and its derivative is given by Υ1 �
pA1 � q�1q{pq1 � q�1q. For the exponential family under consideration, the first and second

order cumulants (conditional on covariates) are:

EηrY |D � d,X � xs � Υ1pηmpd, xqq, V arηpY |D � d,X � xq � Υp2qpηmpd, xqq.

The conditional variance formula also shows the convexity of Υp�q; see Brown [1986].
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Considering the KL divergence Kppηm , pvmq �
³
log ppηmpzq{pvmpzqq pηmpzqdz, we first

compute

log
pηmpzq
pvmpzq � pηmpd, xq � vmpd, xqqy � rΥpηmpd, xqq �Υpvmpd, xqqs.

Integrating over the conditional density for any given pd, xq and utilizing the fact that the

conditional mean is mηpd, xq � Υ1pηmη pd, xqq, we proceed for some intermediate value η̃m:

Kppηm , pvmq �
»
pΥ1pηmpd, xqqpηmpd, xq � vmpd, xqq � rΥpηmpd, xqq �Υpvmpd, xqqsq

� πdpxqp1� πpxqq1�ddϑpdqdFηpxq
�
»
Υp2qpη̃mpd, xqqpηmpd, xq � vmpd, xqq2πdpxqp1� πpxqq1�ddϑpdqdFηpxq

À}vm1 � ηm
1}22,Fη

_ }vm0 � ηm
0}22,Fη

,

where the last inequality follows from the condition }Υp2q}8   8. Recall that

V ppηm , pvmq �
» �

log
pηmpzq
pvmpzq �Kppηm , pvmq

�2
pηmpzqdz ¤

» �
log

pηmpzq
pvmpzq

�2
pηmpzqdz. (F.2)

Therefore, we continue with the right hand side inequality of (F.2) and calculate

V ppηm , pvmq

¤
»
tpηmpd, xq � vmpd, xqqy � rΥpηmpd, xqq �Υpvmpd, xqqsu2 pηmpzqdz

�
»
pηmpd, xq � vmpd, xqq2rΥp2qpηmpd, xqq � pΥ1pηmpd, xqqq2sπdpxqp1� πpxqq1�ddϑpdqdFηpxq

�2

»
pΥpηmpd, xqq �Υpvmpd, xqqqpηmpd, xq � vmpd, xqqΥ1pηmpd, xqqπdpxqp1� πpxqq1�ddϑpdqdFηpxq

�
»
pΥpηmpd, xqq �Υpvmpd, xqqq2πdpxqp1� πpxqq1�ddϑpdqdFηpxq

�
»
Υp2qpηmpd, xqqpηmpd, xq � vmpd, xqq2πdpxqp1� πpxqq1�ddϑpdqdFηpxq

�
»  pηmpd, xq � vmpd, xqqΥ1pηmpd, xqq � rΥpηmpd, xqq �Υpvmpd, xqqs(2 πdpxqp1� πpxqq1�ddϑpdqdFηpxq

À}vm1 � ηm
1}22,Fη

_ }vm0 � ηm
0}22,Fη

,

where in the first equality we have made use of the fact that EηrY 2|D � d,X � xs �
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Υp2qpηmpd, xqq � pΥ1pηmpd, xqqq2. In sum, we have

Kppηm , pvmq _ V ppηm , pvmq ¤ }vm1 � ηm
1}22,Fη

_ }vm0 � ηm
0}22,Fη

.

In addition, the squared Hellinger distance can be upper bounded by the KL divergence

from Lemma B.1 in Ghosal and Van der Vaart [2017], so we have

}?pvm �?
pηm}L2pνq ¤ }vm1 � ηm

1}2,Fη _ }vm0 � ηm
0}2,Fη . (F.3)

Because the posterior contraction holds in terms of the Hellinger distance under general

conditions, the above upper bound allows us to translate this contraction to the

corresponding L2 distance for the ηm function.

Step 2. We examine the changes to the LAN expansion in Lemma B.1 as follows.

For this purpose, we use the notation gpuq � log pηmu for u P r0, 1s, as introduced at the

beginning of Section B. Specifically, in the one-parameter exponential family case, we have

log pηmu pzq � yηmu pd, xq �Υpηmu pd, xqq � log cpyq.

By the definition of Υp�q, we know that it is a convex function, given that Υp2qpηmpd, xqq �
V arηpY |D � d,X � xq. Thereafter, we can obtain the first to third order derivatives of g

as

g1p0q � t?
n
γ0ρ

Υ1pηmq � t?
n
γ0ρ

mη ,

gp2qp0q � t2

n
γ2
0Υ

p2qpηmq, gp3qpũq � t3

n3{2γ
3
0Υ

p3qpηmũ q,

where ũ is some intermediate value between 0 and 1.

Following the lines of the proof of Lemma B.1, the second moment P0g
p2qp0q must

be derived for the exponential family case. Based on the previous calculations and the

posterior convergence of ηm, it can be expressed as

nP0g
p2qp0q �t2E0rγ2

0pD,XqΥp2qpηm0 pD,Xqqs � oP0p1q � t2E0rγ2
0pD,XqV ar0pY |D,Xqs � oP0p1q

�t2E0rγ2
0pD,XqpY �m0pD,Xqqs � oP0p1q � t2P0pBm

0 pξm0 qq2 � oP0p1q,

where the score operator Bm
0 � Bm

η0
is given in the proof of Lemma 6.1.

Step 3. Finally, we need to establish the following expansion in a key step to show the
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prior stability condition:

sup
ηmPHm

n

��ℓmn pηm � tγn{
?
nq � ℓmn pηm � tγ0{

?
nq�� � oP0p1q, (F.4)

where ηmn,t � ηm � tγn{
?
n and ηmt � ηm � tγ0{

?
n. Consider the following decomposition

of the log-likelihood:

ℓmn pηmn,tq � ℓmn pηmt q � ℓmn pηmn,tq � ℓmn pηmq � ℓmn pηmq � ℓmn pηmt q
� nPnrlog pηmn,t

� log pηms � nPnrlog pηm � log pηmt s.

Then, we apply third-order Taylor expansions for the one-parameter exponential family

separately to the two terms in the brackets of the above display:

nPnrlog pηmn,t
� log pηms � �t?nPn rγnρmη s � t2

2
Pn

�
γ2
nΥ

p2qpηmq�� t3?
n
Pn

�
γ3
nΥ

p3qpηmu�q
�
,

nPnrlog pηm � log pηmt s � t
?
nPn rγ0ρmη s � t2

2
Pn

�
γ2
0Υ

p2qpηmq�� t3?
n
Pn

�
γ3
0Υ

p3qpηmu��q
�
,

for some intermediate points u�, u�� P p0, 1q, cf. the equation (B.1). The rest of the proof

follows similar lines to our proof of Proposition 4.1.

G Posterior Computation in Algorithm 1

We describe the Laplace approximation method used in Algorithm 1 (Posterior

computation, Step (a)) for drawing the posterior of ηm and thus mη; see Rassmusen and

Williams [2006, Chapters 3.3 to 3.5] for more details on the Laplace approximation. Let

W � rD,Xs P Rn�pp�1q be the matrix of pD,Xq in the data,W � P R2n�pp�1q the evaluation

points p1, Xq and p0, Xq:
W � �

�
1n, X

0n, X

�
,

and η� a 2n-vector that gives the latent function ηm evaluated at W �:

η� � rηmp1, X1q, . . . , ηmp1, Xnq, ηmp0, X1q, . . . , ηmp0, XnqsJ .

Let η � rηmpD1, X1q, . . . , ηmpDn, XnqsJ denote the n-vector of the latent function at W .

For matrices W � and W , we define KcpW �,W q as a 2n � n matrix whose pi, jq-th
element is KcpW �

i ,Wjq, where W �
i is the i-th row of W � and Wj is the j-th row of W .
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Analogously, KcpW ,W q is an n � n matrix with the pi, jq-th element being KcpWi,Wjq,
and KcpW �,W �q is a 2n� 2n matrix with the pi, jq-th element being KcpW �

i ,W
�
j q.

Given the mean zero GP prior with its covariance kernel Kc, the posterior of η� is

approximated by a Gaussian distribution with mean η̄� and covariance Vpη�q using the

Laplace approximation. To be specific, let

η̄� � KcpW �,W qK�1
c pW ,W q pη,

Vpη�q � KcpW �,W �q �KcpW �,W q �KcpW ,W q �∇�1
��1

KJ
c pW �,W q,

where pη � argmaxηppη|W ,Y q maximizes the posterior ppη|W ,Y q on the latent η

and ∇ � �B2 log ppY |ηq
BηBηJ is a n � n diagonal matrix with the i-th diagonal entry being

�B2 log ppY |ηq
Bη2

i
. We use the Matlab toolbox GPML for the implementation.1 In sum, we get the

posterior draws of the vectors rηmp1, X1q, . . . , ηmp1, XnqsJ and rηmp0, X1q, . . . , ηmp0, XnqsJ
from the above approximating Gaussian distribution with the mean η̄� and covariance

Vpη�q. We then obtain the posterior draws of the ATE by equation (2.8) through

mpd,Xiq � Ψpηmpd,Xiqq for d P t0, 1u.

H Additional Simulation Results

Appendix H presents additional simulation results for adjusted Bayesian inference methods.

The design is the same as that in Section 5.1. Table A1 evaluates the sensitivity of

the finite sample performance with respect to the variance σn, which determines the

influence strength of the prior correction term. We set σn � cσ � log n{p?nΓnq with

cσ P t1{5, 1{2, 1, 2, 5u. Note that cσ � 1 corresponds to the simulation results reported in

the main text. The performance of DR Bayes appears stable with respect to the choice of

cσ. The performance of PA Bayes, on the other hand, deteriorates when σn takes relatively

small or large values, such as the cases with cσ � 1{5, t � 0.10 and cσ � 5, t � 0.01.

1The GPML toolbox can be downloaded from http://gaussianprocess.org/gpml/code/matlab/doc/.
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Table A1: The effect of cσ on adjusted Bayesian inference methods: trimming based on the
estimated propensity score within rt, 1 � ts, n̄ � the average sample size after trimming. CP =
coverage probability, CIL = average length of the 95% credible/confidence interval.

cσ Methods Bias CP CIL Bias CP CIL Bias CP CIL

t � 0.10pn̄ � 240q t � 0.05pn̄ � 363q t � 0.01pn̄ � 664q

1{5 PA Bayes -0.036 0.794 0.169 -0.003 0.937 0.176 0.009 0.992 0.220

DR Bayes -0.038 0.919 0.193 -0.006 0.961 0.190 0.001 0.989 0.214

1{2 PA Bayes -0.024 0.962 0.215 0.016 0.968 0.222 0.032 0.968 0.289

DR Bayes -0.031 0.976 0.207 0.005 0.971 0.207 0.014 0.985 0.248

1 PA Bayes -0.008 0.981 0.260 0.033 0.949 0.254 0.047 0.897 0.308

DR Bayes -0.024 0.983 0.223 0.014 0.970 0.221 0.023 0.952 0.258

2 PA Bayes 0.005 0.979 0.294 0.043 0.933 0.270 0.055 0.848 0.312

DR Bayes -0.018 0.980 0.236 0.019 0.961 0.229 0.028 0.922 0.260

5 PA Bayes 0.013 0.971 0.311 0.047 0.928 0.276 0.058 0.836 0.313

DR Bayes -0.015 0.980 0.242 0.022 0.958 0.232 0.030 0.907 0.261

Table A2 reports the finite sample performance of PA and DR Bayes using sample

splitting and compares it to the results in Table 1 that use the full sample twice. Sample

splitting uses one half of the sample (92 treated and 1245 control observations) to estimate

the prior and posterior adjustments, and then draw the posterior of the conditional mean

mpd, xq using the other half of the sample (93 treated and 1245 control observations). The

effective sample size n̄ corresponds to the after-trimming size of the subsample used for

drawing posteriors. As Table A2 shows, DR Bayes using sample splitting yields similar

coverage probabilities to its counterpart in Table 1 that uses the full sample twice. The

credible interval length increases as a result of halving the sample size.

Table A2: Adjusted Bayesian inference methods using sample splitting: trimming based on the
estimated propensity score within rt, 1 � ts, n̄ � the average sample size after trimming. CP =
coverage probability, CIL = average length of the 95% credible interval.

Bias CP CIL Bias CP CIL Bias CP CIL

Sample splitting t � 0.10pn̄ � 124q t � 0.05pn̄ � 185q t � 0.01pn̄ � 339q

PA Bayes -0.024 0.986 0.339 0.009 0.977 0.342 0.017 0.950 0.410

DR Bayes -0.013 0.968 0.321 0.017 0.962 0.317 0.016 0.934 0.385

Full sample t � 0.10pn̄ � 240q t � 0.05pn̄ � 363q t � 0.01pn̄ � 664q

PA Bayes -0.008 0.981 0.260 0.033 0.949 0.254 0.047 0.897 0.308

DR Bayes -0.024 0.983 0.223 0.014 0.970 0.221 0.023 0.952 0.258
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