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10 Overview

In the Supplemental Appendix, we provide proofs that we omit from the main text as well
as details regarding the model, estimation, data construction and applications to other en-
vironments. In Section 10.1, we describe the model of open-seat elections. In Section
10.2, we show that at the estimated parameter values, the challenger’s value function, vC ,
is not too decreasing in qC : the condition that ensures that the challenger’s entry deci-
sion follows a cutoff strategy. In Section 10.3, we provide a derivation of GqC ,pC (·|s) and
p(s, qC , pC) as a function of q̄C(s, pC) for general N . In Section 10.4, we prove Proposition
1 (Injectivity) and Proposition 2 (Sufficient statistic). In Section 10.5, we discuss how we
forward-simulate the continuation value. We provide details of the estimation procedure
in Section 10.6 and data construction in Section 10.7. In Section 10.8, we show how our
approach can be extended to environments in which qI is time-varying, and one in which
there are few uncontested elections. In Section 10.9, we present histograms of our valence
measures after accounting for sampling error by applying Bayes shrinkage. In Section
10.10, we describe our bootstrap procedure. In Section 10.11, we discuss our model fit for
actions in uncontested elections. In Section 10.12, we discuss the estimation of the policy
functions we use for counterfactual simulation.

10.1 Description of the Model of Open-Seat Elections

In an open-seat election, challengers from both parties decide whether or not to enter. The
value function of candidate i running against candidate j in the general election is as fol-
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lows:

vO(X, qi, qj, pi, pj) = max
w′

i≥0,di≥0
B · Pr(votei > 0.5)− CO(w

′
i + di, qi)

+HO(di) + δ Pr(votei > 0.5)Es′|s[VI(s
′)],

where

votei = βO ln di − βO ln dj + βP (pi − p∗)2 − βP (pj − p∗)2

+Di × (βd + βdndn) + βue(ue×Di ×DP ) + Election cycle FE + qi − qj + ε,

We assume that ε follows a Normal distribution N(0.5, σ2
ε). The problem of open-seat

candidates is similar to that of challengers that run against incumbents. We allow for the
coefficient of campaign spending to be open-seat specific, which we denote by βO. The
functions CO(·) and HO(·) are the cost of fund-raising and the benefit of spending in open-
seat elections.1

Open-seat candidates make simultaneous entry decisions by comparing their expected
returns from entry and the cost of entry, κO. The ex-ante value function can be expressed
as follows:

VO(X, qi, pi) = max

{
pO(X, qi, pi)

∫
vO(X, qi, qj, pi, pj)dGq,p(qj, pj|X)− κO, 0

}
, (i ̸= j),

where pO(X, qi, pi) denotes the ex-ante probability that challenger i is selected as a party
nominee, defined analogously to Expression (6). Because candidates do not know the
valence of the candidate from the opponent party when deciding whether or not to enter,
we take expectations with respect to the distribution of valence and policy position of the
opponent in the general election, which we denote by Gq,p.

10.2 Simulating Derivatives of vC with respect to qC

In our identification and estimation, we rely on the property that a potential challenger’s
entry decision is characterized by a cutoff strategy with threshold q̄C(s, pC). A sufficient
condition for this property to hold is that p(s, qC , pC)vC(s, qC , pC) is increasing in qC . Be-
cause we assume that π(qC,m, pC,m,qC,−m,pC,−m) is increasing in qC,m, p(s, qC , pC) is
increasing in qC by assumption (see Expression (6)). Hence, p(s, qC , pC)vC(s, qC , pC) is

1In our empirical specification, we assume that CO(·) = CC(·) and HO(·) = HC(·).
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increasing in qC as long as vC(s, qC , pC) is not too decreasing in qC . In this section, we sim-
ulate the derivative ∂vC

∂qC
for each challenger (at the realized state) at the estimated parameter

values to show that the condition generally holds.2

Recall that vC is given as follows.

vC(s, qC , pC) = max
dC≥0,w′

C≥0
B · Pr(voteI < 0.5)− CC(w

′
C + dC , qC)

+HC(dC) + δ Pr(voteI < 0.5)Es′|s[(1− λ(s′))VI(s
′)].

(5)

To numerically evaluate ∂vC
∂qC

at a given point {s, qC} in the data, we need to evaluate vC

at state {s, q′C} such that q′C is located sufficiently close to qC . To do so, we compute,
at {s, q′C}, the optimal choice of incumbent spending, dI , challenger spending, dC , fund-
raising, frC , and savings, w′

C by evaluating the policy functions we estimate for the exer-
cise in Section 7 at {s, q′C}.3

Once we compute the optimal actions at {s, q′C}, we evaluate the value of vC at {s, q′C}
by substituting the optimal actions into Expression (5). To evaluate the continuation pay-
offs, we use the same polynomial approximation of Es′|s[(1 − λ(s′))VI(s

′)] that we use
during the estimation procedure. In Figure 14, we report the histogram of ∂vC

∂qC
, evaluated

at {s, qC} for each contested election in the data. We find that ∂vC
∂qC

> 0 for 89.4% of our
sample. Moreover, even when ∂vC

∂qC
is negative, the magnitude is relatively small, which

implies that vC(s, qC) is not too decreasing in qC . Among challengers for whom ∂vC
∂qC

is
negative, the mean value of ∂vC

∂qC
is -0.02, whereas the mean value of ∂vC

∂qC
is 0.18 for those

who are positive.

10.3 Derivation of GqC ,pC(·|s) and p(s, qC , pC) as a Function of q̄C(s, pC)

In this section, we show that GqC ,pC (·|s) and p(s, qC , pC) can be expressed as functions of
q̄C(s, pC) and primitives for general N .

Consider first GqC ,pC (tq, tp|s), the probability that the general election challenger has

valence less than tq and policy position less than tp. Suppose that there are N = {1, · · · , N}
potential entrants. The conditional probability that the primary winner has valence less than

2We cannot directly test for ∂p(s,qC ,pC)vC(s,qC ,pC)
∂qC

> 0, because p(s, qC , pC) is not estimated. The frac-

tion of challengers for whom ∂vC
∂qC

< 0 is a lower bound for the fraction for whom ∂p(s,qC ,pC)vC(s,qC ,pC)
∂qC

< 0.
3We discuss the estimation of these policy functions in Appendix 10.12.
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Figure 14: The derivative of vC with respect to qC

tq and policy less than tp is as follows:

GqC ,pC
(tq, tp|s, N) = Pr(Valence of Primary winner ≤ tq ∩ Policy ≤ tp|s, N,At least one entrant)

=
1

Pe(s)
×

EpC

 ∑
S∈2{1,··· ,N}

(
Pr(Set of entrants is S|pC , s, N)

∑
i∈S

Pr(i wins ∩ qC,i ≤ tq ∩ pc,i ≤ tp|pC , s, S)

)
(16)

The joint distribution of challengers’ valence and policy positions is given by the probabil-
ity that a particular subset S among potential challengers enters, and an entrant i among
them becomes the party nominee with valence less than tq and policy less than tp, summed
over all possible combinations of S.

Now fix S ∈ 2{1,··· ,N} and i ∈ S. Pr(Set of entrants is S|pC , s, N) and Pr(i wins ∩
qC,i ≤ tq ∩ pc,i ≤ tp|pC, s, S) can be expressed as follows:

Pr(Set of entrants is S|pC , s, N) =
∏
j∈S

(1− FqC |pC,j
(q̄(s, pC,j)))

∏
k/∈S

FqC |pC,k
(q̄(s, pC,k)),

(17)
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and

Pr(i wins ∩ qC,i ≤ tq ∩ pc,i ≤ tp|s,Set of entrants is S,pC)

=

(∏
j∈S

(1− FqC |pC,j
(q̄(s, pC,j)))

)−1

×

∫ ∞

q̄(s,pC,1)

· · ·
∫ tq

q̄(s,pC,i)

· · ·
∫ ∞

q̄(s,pC,|S|)

π(qC,i, pC,i,qC,−i,pC,−i)dFqC |pC
1{pC,i ≤ tp ∩ q̄(s, pC,i) ≤ tq}.

(18)

Note that Pe(s) can be expressed as a function of {q̄(s, pC,k)} and primitives of the model
as we discussed in Expression (7) in Section 2. Moreover, from Expressions (17) and
(18), we’ve shown that each term inside the sum in Expression (16) is also expressed as a
function of {q̄(s, pC,k)} and primitives of the model.

We now turn to p(s, qC , pC), the probability that an entrant with valence qC and policy

position pC wins the primary. Consider candidate i with valence qC,i and policy position

pC,i. Let Si|N ⊂ 2{1,··· ,N} be the collection of sets that includes i. The probability that i

wins the Primary conditional on entry is given as follows:

p(s, qC,i, pC,i|N)

= EpC,−i

 ∑
S∈Si|N

Pr(Set of entrants is S|s,pC,−i, N) Pr(i wins|s, qC,i, pC,i,pC,−i, S)

 .

(19)

Now fix a set of entrants S ∈ Si|N that includes i and a vector of policy positions
{pC,i,pC,−i}. The term inside the bracket is given by the following expression.

Pr(Set of entrants is S|s,pC,−i, N) Pr(i wins|s, qC,i, pC,i,pC,−i, S)

=
∏
j /∈S

FqC |pC,j
(q̄(s, pC,j))×∫ ∞

q̄(s,pC,1)

· · ·
∫ ∞

q̄(s,pC,i−1)

∫ ∞

q̄(s,pC,i+1)

· · ·
∫ ∞

q̄(s,pC,|S|)

π(qC,i, pC,i,qC,−i,pC,−i)dFqC,−i|pC,−i
.

(20)

From Expression (20), it is clear that the term inside the bracket in Expression (19) can
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be expressed as functions of q̄(s, pC) and model primitives.

10.4 Proof of Proposition 1 and 2

In this Section, we give a proof of Proposition 1 (Injectivity) and Proposition 2 (Sufficient
statistic).

Proposition 1 (Injectivity): Assume that the marginal cost of raising money, ∂
∂x
C̃I(x, qI),

is strictly decreasing with respect to qI . Then, the policy functions of an uncontested in-

cumbent, {dI(s),w′
I(s)}, are one-to-one from qI to (dI , w

′
I), holding other state variables

fixed.

Proof. Consider the problem of an uncontested incumbent. The first-order condition
for dI implies

∂

∂dI
H̃I(dI)︸ ︷︷ ︸

MB of spending

− ∂

∂dI
C̃I(w

′
I + dI − wI , qI)︸ ︷︷ ︸

MC of fund-raising

= 0.

Now suppose to the contrary that the mapping from qI to (dI , w
′
I) is not one-to-one, so

that qI and q̃I (qI > q̃I) both map to (dI , w
′
I). Then,

∂

∂dI
H̃I(dI) =

∂

∂dI
C̃I(w

′
I + dI − wI , qI)

and
∂

∂dI
H̃(dI) =

∂

∂dI
C̃I(w

′
I + dI − wI , q̃I)

However, given that ∂
∂dI

C̃I(·, ·) is strictly decreasing in the second argument,

∂

∂dI
C̃I(w

′
I + dI − wI , qI) <

∂

∂dI
C̃I(w

′
I + dI − wI , q̃I),

which is a contradiction.
Proposition 1 allows us to invert the policy function of uncontested incumbents to ex-

press the unobserved incumbent valence, qI , as a function of the state and incumbent’s
actions in uncontested periods, s̄U (qI(s̄U) : s̄U 7→ qI). In our empirical analysis, we make
use of the following lemma that allows us to simplify the function qI(s̄U).

Lemma 1 Assume that C̃I(y; qI) = c(qI)(ln y)
2, where c(·) is a decreasing function, and

H̃I(y) = γU
√
ln y, as specified in our estimation. Then, the inverse mapping from (dI , w

′
I)
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to qI simplifies to

qI = c−1

(
γU
4

w′
I + dI − wI

(ln dI)1/2dI ln(w′
I + dI − wI)

)
.

Proof. Suppose that C̃I(y; qI) = c(qI)(ln y)
2, and H̃I(y) = γU

√
ln y. Substituting

these expressions into the first-order condition, we obtain

γU
2
(ln dI)

−1/2(dI)
−1 − 2c(qI)(ln frI)(frI)

−1 = 0 (21)

⇐⇒ c(qI) =
γU
4
(ln dI)

−1/2(dI)
−1(ln frI)

−1frI

⇐⇒ qI = c−1

(
γU
4

frI
(ln dI)1/2dI ln frI

)
,

where frI denotes the amount raised (frI = w′
I + dI − wI). We use the fact that c(·) is

monotone to obtain the last line of the expression.
The fact that we can control for qI just by conditioning on a one-dimensional object,

zU ≡ frI
(ln dI)1/2dI ln frI

, simplifies our estimation immensely. It would be very difficult to
implement our procedure if we had to condition on the full vector of actions and state
variables, s̄U .

We next prove Proposition 2.

Proposition 2 (Sufficient statistic): Let m(s) = {Pe(s), FpC (·|s, χ = 1)}. Then, m(s) is

a sufficient statistic for GqC (·|s).

Proof. We say that h = h(s) is a sufficient statistic for f(s) if h(s′) = h(s′′) implies
f(s′) = f(s′′). We can see that the function q̄C(s, ·) : pC 7→ q̄C(s, qC) is a sufficient
statistic for GqC (·|s) = GqC ,pC (·,∞|s) from expressions (16) through (18). Now, consider
the density of entrant’s policy, fpC (·|s, χ = 1). The density can be written as follows:

fpC (pC |s, χ = 1) =
fpC (pC)× (1− FqC |pC (q̄C(s, pC)))

Pe(s)

This implies that, if we have fpC (pC |s, χ = 1) = fpC (pC |s′, χ = 1), ∀pC and Pe(s) =

Pe(s
′) for s ̸= s′, then q̄C(s, pC) = q̄C(s

′, pC),∀pC . This means that Pe(s) and fpC (·|s, χ =

1) are also sufficient statistics for GqC (·|s).

In our empirical application, we use the sufficient statistics property to control for the
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sample selection of qC .

10.5 Forward-Simulation of the Continuation Value

In this section, we discuss how we forward-simulate the continuation value. As we discuss
in Section 3.2, our idea is based on Hotz, Miller, Sanders, and Smith (1994) and Bajari,
Benkard and Levin (2007). These papers propose a method of simulating the value function
by first estimating the policy function and then using the policy function to generate sample
paths of outcomes and actions, which are averaged to compute the continuation value as
a function of the parameters. Because we do not observe qC in contested periods, we
modify the procedure by estimating the distribution of actions and outcomes conditional
on observed state variables instead of the actual policy functions.

In what follows, s refers to the set of variables (qI(zU), wI , tenI , pI , pt,X). As we
explain in Section 5.1, we specify p∗ to be a function of pt and we express qI as a function
of zU , where zU ≡ frI√

ln dIdI ln frI
. Below, we describe the details of our procedure.

10.5.1 Estimation of the Transition Probability of the States

We first estimate the transition probability of the state variables. We specify an exogenous
AR(1) process for X̃ = {ue, pt, log(dn)}, as X̃t+1 = α0 + α1X̃t + ξt+1, ξt+1 ∼ N(0,Σξ)

and estimate the parameters by OLS.4 For the evolution of DP , we assume that, (i) D′
P =

DP with probability 0.75 when the President ends his first term in the current period; (ii)
D′

P = DP with probability 0.5 when the incumbent President is ending his second term;
and (iii) D′

P = DP with probability one if the election is a Midterm election.

10.5.2 Estimation of Incumbent Policy Position and Retirement

Next, we estimate the reduced-form policy function that determines the incumbent’s policy
position next period, pI(·), and the policy function for retirement, λ(·). We allow the
incumbent to choose a policy position and make a retirement decision after seeing the
evolution of the exogenous state variables. Hence, we let pI(·) and λ(·) be functions of
qI(zU), w

′
I , ten′

I , pt
′, X ′, and her previous policy position, pI .

4In our application, we assume that Σξ is a diagonal matrix. We estimate αue
0 = 0.02, αue

1 = 0.70,
σue
ξ = 0.01, αpt

0 = 0.04, αpt
1 = 0.92, σpt

ξ = 0.16 and αdn
0 = 0.17, αdn

1 = 0.97, σdn
ξ = 0.38.

8



Incumbent Policy Position Our measure of policy positions are discretized into 10 bins.
Instead of estimating a 10-by-10 transition matrix as a function of the state variables, we
take the absolute value of the policy positions of the candidates and estimate the evolution
of |pI |, the extremity of the policy positions. Because we discretize the policy positions
of the candidates so that they take discrete values that are symmetric around zero, we pool
together observations from both parties and estimate one transition matrix for both parties.5

This allows us to reduce the size of the transition matrix that we need to estimate to a 5-by-5
matrix.

Formally, let the positive values of the five discrete bins be p̄ = {p1, p2, ..., p5}, where
p1 < p2 < · · · < p5. We specify the probability that an incumbent chooses policy pk next
period as follows:

Pr(p′I = pk) =
exp(XPI

βk)∑
k exp(XPI

βk)
, k ∈ {1, 2, 3, 4, 5}.

For XPI
, we include dummies 1{pI = pj} ∀j, w′

I , zU , ten′
I , DI ×D′

p×1{Midterm′}, DI ×
D′

p×ue′, DI×pt′, DI×dn′, 1{Midterm′}, 1{First Term′} and 1{First Term′}×1{Midterm′}.
Note that zU is a sufficient statistic for qI . We allow the transition probability, Pr(p′I =

pk|pI = pj) to depend on j by including dummies 1{pI = pj} in XPI
. In addition, we

allow for k-specific coefficients on the state variables. We normalize β5 = 0.
Table 8 presents the results. All variables (except for the j-specific intercept terms)

are standardized by subtracting the mean and dividing by the standard deviation. Elements
without numbers are not estimated due to lack of observations.6 For the coefficient es-
timates of the j-specific dummies, we find that the diagonals are the highest, except for
j = 5, where k = 4 has the highest estimated coefficient. The estimates imply that choos-
ing the same policy position as the previous period is the most likely outcome, except for
candidates with the most extreme policy position who have a high likelihood of moving to
a more central position.

Retirement Probability We assume that λ(·) takes the following form:

λ =
exp(Xλβλ)

1 + exp(Xλβλ)
,

5We discuss our measure of policy positions in more detail in 10.7.
6For example, when pI = p5, no one moves to p′I = p1 in the following period in the data.
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k = 1 k = 2 k = 3 k = 4

1{j = 1} 17.26 (0.30) 15.31 (0.32) - - - -
1{j = 2} 16.52 (0.53) 18.02 (0.52) 16.20 (0.53) - -
1{j = 3} - - 17.52 (0.34) 18.25 (0.33) 16.37 (0.38)
1{j = 4} - - - - 2.25 (0.36) 3.18 (0.35)
1{j = 5} - - - - - - -0.59 (0.49)
w′

I -0.69 (0.33) -0.68 (0.33) -0.59 (0.31) -0.48 (0.31)
zU 1.26 (0.58) 1.22 (0.58) 1.08 (0.57) 1.03 (0.55)
ten′

I 0.74 (0.39) 0.70 (0.39) 0.70 (0.38) 0.65 (0.37)
DI ×D′

p × 1{Midterm′} 1.57 (0.37) 1.18 (0.35) 0.94 (0.34) 0.73 (0.32)
DI ×D′

p × ue′ -1.30 (0.45) -1.09 (0.44) -0.90 (0.44) -0.66 (0.41)
DI × pt′ -1.08 (0.45) -0.64 (0.44) -0.57 (0.44) -0.41 (0.41)
DI × dn′ 0.39 (0.97) 0.54 (0.96) 0.51 (0.96) -0.40 (0.95)
1{Midterm′} -0.51 (0.42) -0.63 (0.41) -0.78 (0.40) -1.21 (0.37)
1{First Term′} -0.11 (0.37) -0.17 (0.36) -0.50 (0.34) -0.51 (0.32)
1{First Term′} × 1{Midterm′} 0.68 (0.46) 0.58 (0.45) 0.78 (0.44) 0.85 (0.41)

Note: Standard errors are reported in parentheses. All variables (except for the j- specific inter-
cepts) are standardized by subtracting the mean and dividing by the standard deviation.

Table 8: Estimates of pI(·)

where Xλ includes an intercept, w′
I , zU , ten′

I , DI × D′
p × 1{Midterm′}, DI × D′

p × ue′,
DI × pt′, DI × dn′, pI , 1{Midterm′}, 1{First Term′} and 1{First Term′} × 1{Midterm′}.

Table 9 presents the parameter estimates. Our estimate of the intercept is a large nega-
tive value, reflecting the fact that most incumbents do not retire. Consistent with our prior,
we find that retirements are negatively associated with war chest and positively associated
with tenure. We also find that most of the other variables are statistically not significant
and small in magnitude.

10.5.3 Estimation of the Distribution of Actions and Electoral Outcomes Conditional
on Observed State Variables

The third set of objects we estimate is the projection of the actions on observed state vari-
ables. Because the estimation results in this subsection include many parameters that do
not offer much meaningful interpretation on their own, we do not include the results here.
The parameter estimates are available upon request.
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λ(·)

Intercept -1.56 (0.53)
w′

I -0.09 (0.04)
zU 3.09 (2.93)
ten′

I 0.09 (0.02)
DI ×D′

p × 1{Midterm′} -0.03 (0.15)
DI ×D′

p × ue′ 0.47 (1.71)
DI × pt′ 0.50 (0.25)
DI × dn′/10000 -0.27 (0.55)
pI 0.18 (0.18)
1{Midterm′} -0.06 (0.20)
1{First Term′} -0.54 (0.22)
1{First Term′} × 1{Midterm′} 0.17 (0.32)

Table 9: Estimates of λ(·)

Distribution of dI and frI Conditional on s in Contested Periods Recall that the equi-
librium spending and amount raised by the incumbent in contested periods, dI and frI ,
are functions of (s, qC). The projection of the policy function on s is just the conditional
distribution of dI and frI integrated over qC , FdI (·|s) and FfrI (·|s), respectively. We use a
(first-order) Hermite series approximation to estimate the conditional distribution, by non-
parametric maximum likelihood (Gallant and Nychka 1987). To account for the fact that
some of the state variables are discrete, we estimate separate distributions for all combina-
tions of {1{Midterm}, DI ×DP , 1{tenI ≤ 5}}.7

Distribution of w′
I Conditional on s and voteI > 0.5 in Contested Periods We estimate

the distribution of incumbent savings in contested periods in the same way as spending and
fund-raising. However, in order to simulate the value function, we need the distribution
of savings conditional on winning. Hence, we estimate Fw′

I
(·|s, 1{voteI > 0.5}), where

1{voteI > 0.5} corresponds to the event that the vote share of the incumbent is above 50
percent.

7Because each of these variables are binary, we estimate 6 nonparametric densities per action. This
specification is as flexible as we can allow for given our sample size.
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Policy Functions in Uncontested Periods In uncontested periods, we can estimate the
policy function directly because the state variables are all observed. We approximate the
amount of spending and savings in uncontested periods by least squares. The regresors
include a constant, wI , tenI , pI , pt, X and B-spline of zU . We also include quadratic terms
as well as interactions of these variables.

Probability of Winning, Pwin(s), in Contested Periods We estimate the probability that
the incumbent wins in contested periods given s, Pwin(s), using a Probit. The regressors
include lnwI , (lnwI)

2, tenI , DI ×DP × 1{Midterm}, DI ×DP × ue, DI , DI × dn, pI ,
p2I , pI × pt, 1{Midterm}, 1{First Term},1{Midterm} × 1{First Term}, zU and z2U .

10.5.4 Computation of the Continuation Value

Once we obtain estimates of the distribution of actions and outcomes conditional on ob-
served states, it is possible to simulate the continuation value for each profile of parame-
ters. The key to our approach is that the incumbent’s utility does not depend directly on
qC , which is unobserved. Instead, it depends on qC only indirectly through the incumbent’s
own equilibrium actions such as dI , frI , etc, and whether or not the incumbent wins. We
compute the continuation value, E[VI(s

′)] starting from a given state s as follows:

1. Randomly draw pt′ and X ′, given pt and X using the estimated transition matrix.
Multiply the saving w′

I by 1.1 to account for interest accumulation, and add 1 to
tenure. Given {qI(zU), 1.1w′

I , ten′
I , pI , pt′, X ′}, simulate the incumbent’s retirement

decision. Draw a random variable URET from a uniform U(0, 1). If URET is less than
λ({qI(zU), 1.1w′

I , ten′
I , pI , pt′, X ′}), then the incumbent retires and we terminate

the process. If the incumbent runs for reelection, draw p′I according to pI({qI(zU),
1.1w′

I , ten′
I , pI , pt′, X ′}). We now have a new state vector s′ = {qI(zU), 1.1w′

I ,
ten′

I , p′I , pt′, X ′} for the subsequent election.

2. Draw a random variable UENT from a uniform U(0, 1). If UENT is less than the
probability of entry, i.e., UENT ≤ Pe(s

′), then there is entry (We estimate Pe as a
sufficient statistic. See the next section for details). If UENT > Pe(s

′), then there is
no entry.

3. Depending on whether or not there is challenger entry in the previous step, draw dI

and frI using the conditional distributions FdI (·|s′) and FfrI (·|s′), (if there is entry)
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or the estimated policy functions (if there is no entry). In case of entry, further draw
a random variable UWIN from a uniform U(0, 1).

4. The period utility function is computed as ũI = B − C̃I(frI , qI) + H̃I(dI) in the
case of no entry. If there is entry, the period utility is either uI = B − CI(frI , qI)

+ HI(dI) or uI = −CI(frI , qI) + HI(dI), depending on whether UWIN is smaller
or larger than Pwin(s

′). A draw of UWIN smaller than Pwin(s
′) is interpreted as a

victory for the incumbent, and a larger value is a loss for the incumbent.

5. Terminate the process if the incumbent loses to the entrant. Otherwise, draw w′
I from

Fw′
I
(·|s′, {vI > 0.5}). This determines the amount of savings.

6. Go back to step 1 and repeat until termination. Take the discounted sum of uI .

7. Repeat steps 1 through 6 and take the average.

Note that for the computation of the continuation value, knowledge of the marginal
distributions of the actions is sufficient. We do not need to estimate the joint distribution.
This follows from the additive separability of uI and it greatly simplifies the computation.

10.5.5 Computation of the Derivatives of Continuation Value and Challengers’ Con-
tinuation Value

In evaluating the right-hand side of expression (13), we need to compute the derivative of
the value function with respect to wI . To do so, we approximate the value function with
polynomials of the state variables and use its derivative with respect to wI .8 We also use
this polynomial to evaluate challengers’ continuation payoffs. This is possible because the
challenger becomes the incumbent conditional on winning.

10.6 Details on the Estimation

We now discuss the details of the estimation procedure that we omit from the main text.
The estimation proceeds according to the following steps.

8The alternative approach is to use numerical differentiation, but we found the numerical derivative to
be less stable, depending heavily on the step size. This may be because the value function is obtained by
simulation, and the simulation errors make the function not very smooth.
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Estimation of Pe(s) and FpC (·|s, χ = 1) We estimate Pe(s) with a Probit. We specify
Pe(s) as a function of a party-specific constant, lnwI , (lnwI)

2, ten, DI×DP×1{Midterm},
DI × DP × ue, p2I , DI × pt, DI × dn, 1{Midterm}, 1{First Term} and 1{Midterm} ×
1{First Term}. We also include B-spline bases of zU . We take 7 knots, corresponding to
(1/8,...,7/8) quantiles of zU .

For estimation of FpC (pC |s, χ = 1), we take the absolute value of pC and estimate
the distribution of |pC | conditional on s and challenger entry, pooling all candidates across
parties.

Specifically, we assume that |pC | follows a discretized Normal distribution with mass
points at five bins.9 We specify the mean and the standard deviation as linear functions of
a party-specific constant and state variables, i.e., |pC | ∼ DN(Xpγ

µ
p , (Xpγ

σ
p )

2).
The likelihood function takes the following form:

L(|pC ||s, χ = 1) =
∏

pk∈{0.179,0.552,0.738,0.920,1.242}

∆Φ(pk)
1{|pC |=pk} ,

where ∆Φ(pk) = Φ

(
pk +∆+

k −Xpγ
µ
p

|Xpγσ
p |

)
− Φ

(
pk −∆−

k −Xpγ
µ
p

|Xpγσ
p |

)
.

The term ∆+
k is chosen such that pk + ∆+

k is one decile higher than pk. Similarly, ∆−
k is

defined such that pk −∆−
k is one decile below pk.

As regressors we include a party-specific constant, lnwI , (lnwI)
2, ten, DI × DP ×

1{Midterm}, DI × DP × ue, |pI |, p2I , DI × pt, DI × dn, 1{Midterm}, 1{First Term},
1{Midterm} × 1{First Term} and B-spline bases of zU .10 Columns 2 and 3 in Table 3
present the estimates of γµ

p and γσ
p .

Estimation of the Vote Share Equation We estimate the vote share equation of the fol-
lowing form (from Section 3.1):

voteI =βIE[ln dI |s] + βCE[ln dC |s] + βP (p
2
I − E[p2C |s])− 2βPβID(pI − E[pC |s])X

+ βtentenI + βXX + qI(zU)− g(m(s)) + ϵ,

9The points are {0.179, 0.552, 0.738, 0.920, 1.242}. These points correspond to the 10th, 30th, · · · , 90th-
percentile of the nondiscretized distribution. We discuss the way we discretize the data in detail in Appendix
10.7.

10In other words, we use the same set of variables that we used to estimate Pe(s), with |pI | added as an
extra regressor.
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We approximate g(m(s)) with a third-order polynomial of Pe(s) and a linear function of
the probability mass function of FpC (pC |s, χ = 1), i.e., {∆Φ(pk)}k. We also approximate
qI(zU) with a second-order polynomial in zU . We then project the residual of the vote share
equation on a set of basis functions consisting of pre-determined variables. The set of pre-
determined variables includes (i) the set of variables in the vote share equation, excluding
those that are endogenous, i.e., ln dI , ln dC , pC and p2C , as well as (ii) other pre-determined
variables, lnwI , (lnwI)

2, p2I × pt, p2I × zU , p2I × wI , p2I × tenI , ue, ue2, ue2 ×DI ×DP ,
DI ×DP , ten2

I , ln(tenI), g(m(s)) and B-spline bases of zU . We then minimize the squared
sum.

Estimation of Components of Candidates’ Payoffs and σ2
ε We estimate the compo-

nents of the candidates’ payoff function and σ2
ε using moments constructed from the first-

order conditions and orthogonality conditions implied by the model. For each parameter
value, we first simulate the continuation value of the incumbents, Es′|s[VI(s

′)], and com-
pute its derivative, ∂

∂w′
I
Es′|s[VI(s

′)], as we describe in Appendix 10.5. We then invert the
incumbent’s first-order condition with respect to savings (expression (13)) to back out the
value of K, and use expression (14) to obtain the value of qC . Finally, we substitute out K
and qC in expressions (12) and the two first-order conditions of the challengers. The three
first-order conditions are then only functions of observed actions, observed states (note
that qI has been estimated in the previous step), and model parameters. We then stack these
first-order conditions, the first-order conditions of incumbents in uncontested periods, and
two extra moment conditions. One of the extra moment conditions is that the residual of
the vote share equation, ε, is mean zero.11 The other extra moment restriction is that the
variance of the residual, ε, is equal to σ2

ε . The former constrains the location of average
challenger valence in the data. The latter provides a direct restriction on σ2

ε . Although σ2
ε

can be identified solely from the first-order conditions, using the residual of the vote share
equation as a moment provides a more stable estimate of the parameter. We use the identity
matrix to equally weight the first-order conditions.12

For some of the observations, we encounter trouble inverting Φ(·) in expression (13),

11Note that once we obtain values of qC , we can also recover the value of ε at each election.
12In order to make sure that our estimation procedure is well-behaved, we also impose penalties for obser-

vations in which the continuation payoff, or its derivative with respect to savings, are negative. The penalty is

proportional to the squared sum of the negative values. We also impose a penalty when ∂CI

∂w′
I
/δ

∂EX′|X [VI(s
′)]

∂w′
I

exceeds one. The first-order condition (Expression (13)) implies that this term is equal to Φ(K), the relation-
ship we use to invert for K. If the term is larger than 1, we cannot invert Φ(·).

15



because the argument inside Φ−1 exceeds 1. This corresponds to cases in which the implied
winning probability of the incumbent exceeds 1. When this is the case, we replace the value
of Φ−1(·) with 1 − 10−6. At the estimated parameters, the argument inside Φ−1 is larger
than 1 in 553 elections out of 1,040 total elections. We acknowledge that this is not ideal.
However, note that even at the true parameter values, the argument of Φ−1 can exceed 1
when the other parameters (such as the distribution of outcomes and actions) are estimated
with noise. Given that there are many elections in which the incumbent is almost sure to
win, even small estimation errors can make the term inside Φ−1 exceed 1 for a large fraction
of elections in the sample.

Estimation of Parameters in Open-seat Elections We estimate βO and qO using the
first-order conditions for spending as moments (the open-seat counterpart of Expression
(12) in Section 3.2).13 Because we do not estimate the vote share equation for open-seat
elections directly, the coefficient of spending, βO, is also identified from the first-order
conditions.14 The value functions are computed using the polynomial approximation of the
incumbents’ value function obtained above.

Note that by restricting the estimation sample to candidates whose valence measure is
known, we are selecting the sample partly based on the realization of ε, the error term in
the vote share equation.15 However, given that the candidates choose actions so as to satisfy
the first-order conditions before ε is realized, the selection on ε does not bias our estimates.

Estimation of Candidate Valence in All Elections Once all of the model parameters
are estimated, we recover qI , qC and qO for all of the candidates in our sample. We run
a GMM similar to the one we use to estimate payoff parameters, but now the unknowns
are the valence measures of the candidates (for whom the valence term is not recovered
from the control function). We use as moment conditions the first-order conditions of both
candidates from each contested and open-seat elections as well as the first-order conditions
from each uncontested election.

When we recover the valence terms using the first-order conditions, there is some de-
gree of freedom as to which first-order conditions we use. This is because there are more

13We do not use the first-order conditions for savings, because the vast majority of open-seat candidates
do not save money.

14Consider an analog of Expression (12) in an open-seat election. Note that βO appears inside K as well
as in a term outside of K that multiplies ϕ(K) in the first-order condition.

15If the valence measure of one of the candidates is known, it means that the candidate won the open-seat
election. Hence, those candidates must have received a favorable value of ε in the election.
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equations than unknowns per election, and because we restrict the valence measure of each
candidate to be constant across elections. In practice, we minimize the sum of squared
differences of all of the first-order conditions with the constraint that the valence measure
of a given candidate is invariant across elections. We also impose the constraint that the
valence measures estimated in this stage satisfy the vote share equation estimated in the
previous stage. The latter condition can be interpreted as a particular weighting scheme for
the first-order conditions.

10.7 Data Construction

We construct the sample we use for estimation as follows: We first drop all House elections
in Louisiana.16 We also drop elections in Texas in 1996 which were deemed unconstitu-
tional by the Supreme Court.17 We also drop special elections held outside of the regular
election cycle, elections that occur right after special elections, instances in which two in-
cumbents run against each other, and elections in which a major scandal broke out.18 Some
observations were also dropped because of missing data.19 We also drop elections in which
either candidate spends and saves less than $5, 000, or raises less than $5, 000 because both
of the first-order conditions of the candidate may not hold with equality. Lastly, we drop
elections in which the incumbent saves more than $1.2 million since very large savings are
invariably for running for higher offices. We are left with a base sample of 3,065 contested
elections, 787 uncontested elections and 445 open-seat elections.

Creation of Partisanship Measure One of the variables that we include in the vote share
equation is the Republican partisanship measure of the district, pt. In order to construct
this variable, we follow Levendusky et. al. (2008) and regress the log difference in the
district-level vote shares of the Republicans and the Democrats in the Presidential election
between 1952 and 2008 on the following variables; the fraction of those 65 or above, the

16Louisiana has a run-off election unlike any other U.S. state.
17The Congressional Elections that were affected by the Supreme Court ruling are TX03, TX05, TX06,

TX07, TX08, TX09, TX18, TX22, TX24, TX25, TX26, TX29 and TX30 in 1996.
18Elections with two incumbents usually occur due to redistricting. Elections that were dropped because

of a scandal are CA17 (1990), MA04 (1990), MN06 (1992), NY15 (1992) and NY15 (2000). These events
were identified by going through the biography of candidates in the CQ press Congressional Collection.

19Some of the entries in the FEC data set are clearly incorrect. Some candidates are listed as having run in
a wrong State, for example. Most of these missing data are easily identifiable because the vote shares do not
add up to one or there are multiple candidates from the same party. Where the accuracy of the data is suspect,
Open Secrets (http://www.opensecrets.org/) was used as a cross-check in order to correct the mistakes.
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fraction of blue-collar workers, the fraction of foreign-born residents, the median income,
the population density, and the unemployment rate. We include these regressors in logs. In
addition, we include the fraction of Blacks and Hispanics (in logs) and their interactions
with an indicator variable for Southern states. We also include an indicator variable for
whether or not the candidate is local, and year and state fixed effects. The partisanship
measure is obtained as the fitted value of the regression for the concurrent or the most
recent presidential election.

Creation of a Measure of Candidate Policy Positions We take the measure constructed
by Bonica (2023) as our measure of candidate policy positions. His measure is constructed
using information on the source of campaign contributions received by each candidate. The
measures are normalized so that negative values correspond to liberal policy positions and
positive values correspond to conservative policy positions. We then discretize the mea-
sures into 10 bins around zero based on quantiles of the data. In doing so, we impose the
restriction that the policy position of a Republican candidate must always be positive and
that of a Democrat candidate must always be negative.20 We assign negative observations
to the positive bin closest to zero if the candidate is a Republican, and vice versa, if the
observation is a Democrat. Specifically, we implement the discretization as follows:

1. Multiply the policy positions of the Democrats by -1.

2. Pool the policy positions from step 1 and the policy positions of the Republicans.
Compute the 20%, 40%, 60% and 80% quantiles of the distribution.

3. For all candidates whose position falls within the first quintile, assign their policy
position to the 10 percentile of the distribution. For those in the second quintile,
assign their policy position to the 30 percentile of the distribution, and so on. We end
up with 5 discretized points.

4. Multiply the Democratic candidates’ policy positions with -1.

After the discretization, the set of policy positions for Democratic candidates is {-0.179, -
0.552, -0.738, -0.920, -1.242}, and that for Republicans is {0.179, 0.552, 0.738, 0.920, 1.242}.

20In the original (non-discretized) data, about 11.5% of Democratic candidates have a policy position that
is positive, while 5.9% of Republican candidates have a policy position that is negative.
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10.8 Extensions

Time-Varying qI It is possible to extend our approach to settings in which qI varies over
time. Suppose, for instance, that (i) qI,t evolves as a random walk as qI,t = qI,t−1 + ξt;
(ii) ξt is revealed after the challengers make their entry decisions but before the candidates
decide how much to spend, raise and save. This would be the case if the challengers make
entry decisions based on what they know from the previous election and learn ξt only after
entry. Under this timing assumption, Pe and FpC (·|s, χ = 1) are functions of qI,t−1, wI,t,
tenI,t and Xt.

Consider estimating the vote share equation using the subset of the sample in which the
incumbent is contested in period t and the incumbent is uncontested in period t− 1. Using
s̄U from one period before to substitute out qI,t, the vote share equation can be expressed
as follows:

voteI,t = βI ln dI,t + βC ln dC,t + βP (pI,t − p∗t )
2 − βP (pC,t − p∗t )

2 + βtentenI,t

+ βXX + qI(s̄U,t−1)− g(Pe, FpC ) + ξt + (qC,t − g(Pe, FpC )) + εt.

The econometric error term is ξt + (qC,t − g(Pe, FpC )) + εt, where ξt = (qI,t − qI(s̄U,t−1)).
Given that the expectation of the error term conditional on st ≡ {s̄U,t−1, wI,t, tenI,t, pI,t, p

∗
t , Xt}

is 0, we can proceed as in the main text by regressing E[voteI,t|st] on regressors projected
on st.21 In our estimation, we assume time-invariant qI due to data limitations.

Extensions to Settings without Uncontested Races We give a sketch of how our ap-
proach can be modified to settings with few uncontested elections, such as Senate races.
Our original approach does not directly apply, because we cannot construct a control func-
tion based on actions in uncontested periods.

For this application, we assume that the researcher has access to auxiliary data such as
polling data that directly identify the expected vote share, Eε[voteI ] up to the error term
in the vote share equation, εt. An implication of this assumption is that we identify the
exact realization of ε for each election as the difference between the realized vote and the
expected vote share. Moreover, since Expression (14) implies that K = 1

σε
Eε(voteI), the

variable K is identified in every election.

21Note that ln dI,t, ln dC,t, etc. are correlated with ξt, but E[ln dI,t|st], E[ln dC,t|st], etc. are not.
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We first show that, under the assumption that the continuation value VI is increasing
in own quality, the policy functions are invertible with respect to qI and K. To see this,
suppose, counterfactually, that incumbents with qI and q′I (qI > q′I) spend and save the
exact same amount conditional on (wI , tenI , pI , p

∗, X,K). Now consider the first-order
condition (12) which equates the marginal cost of fund-raising to the marginal benefit of
spending. The marginal cost of fund-raising is higher for q′I than for qI given our assump-
tion of CI(·). On the other hand, the marginal benefit of spending must be higher for qI
than for q′I under the assumption that the continuation value is higher for qI (note that K
is fixed). This implies that the first-order condition cannot hold with equality at the same
levels of spending and savings for both qI and q′I . It is easy to see that qI can be inverted
from the policy function. As long as the policy functions are invertible, we can use actions
of the incumbent, states and K from any past contested elections to replace out qI .

In order to control for qC , we focus on elections in which a challenger defeats an in-
cumbent. As the challenger who defeats an incumbent becomes an incumbent, we observe
that candidate’s actions in the next election as an incumbent. This implies that we can use
the actions, states and K from future contested elections to replace out qC . We can then
identify the vote share equation and the values of qI and qC for a subset of the candidates.
Once the vote share equation has been identified, it is straightforward to use the first-order
conditions to identify the marginal cost of raising money and the marginal benefit of spend-
ing. Once these primitives are identified, the first-order conditions can be used to recover
the valence measure of all candidates.

10.9 Distribution of Candidate Valence after Applying Bayes Shrink-
age

Figure 15 plots the histogram of candidate valence after applying Bayes shrinkage with a
Normal prior. Specifically, for each candidate i’s valence term qi, we apply the following
formula:

q̃i = Biqi + (1−Bi)q,

where Bi =
σ2
qi

σ2
qi
+ σ2

q

.

We denote by σqi the standard error of our estimate of qi (within-candidate, obtained by
bootstrap). We denote by q and σq the mean and standard deviation of the estimated qi’s
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across candidates. We compute q and σq separately for incumbents, challengers, and open-
seat candidates.

Even with shrinkage, our discussion in Section 5.3 of the main text remains qualita-
tively the same. We find that incumbents have higher valence than challengers that run
against them, by about 3.6 percentage points. The difference between incumbents and
open-seat challengers is 4.3 percentage points. We also find that the distribution of incum-
bent valence has lower dispersion than that for challengers and for open-seat challengers.
We find that the upper tail of the distribution of the open-seat challengers resembles that of
the incumbents, but there is also a substantial mass of low valence open-seat challengers.

10.10 Bootstrapping Standard Errors

The standard errors in Table 3, the first column of 4, Table 5 and the standard error of the
distribution of valence are obtained based on 500 bootstrap estimates. For each iteration
of the bootstrap, we randomly draw congressional districts with replacement.22 For each
bootstrap sample, we estimate the vote share equation and candidate utility terms follow-
ing the procedure described in Section 3. Once all bootstrap estimates for the vote share
equation and utility terms are obtained, we next bootstrap the standard error of the distribu-
tion of valence using all candidates in the data. In each bootstrap iteration, we use the full
data, but evaluate the first-order conditions of those candidates at the bootstrap parameter
values.23

10.11 Model Fit for Actions in Uncontested Elections

Figure 16 reports the histograms of the predicted (white bars) and the realized (gray bars)
candidate actions in uncontested elections. Panel (A) of the figure corresponds to spend-
ing and Panel (B) corresponds to savings. We underestimate spending for the majority of
candidates and, because unspent money is saved, overestimate savings. This is partly due
to our small estimate of H(·) we present in Figure 3B. Although H(·) should in princi-
ple capture candidates’ spending incentives in sure-to-win elections such as uncontested
elections, estimating H(·) from the first-order conditions also requires the levels of H(·) to

22The bootstrap is hence a block bootstrap rather than a bootstrap at the observation level. Because of this,
the sample size may vary across bootstrap iterations.

23We also impose a lower- and upper-bound for possible value of valence at -0.2 and 0.1, respectively. We
find that bootstrapped valence terms obtained without the bound tend to include a small subset of extremely
large values.
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Figure 15: Distribution of Candidate Valence (Shrinkage Applied)
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be low.24 As a result, our estimate of H(·) is lower than what would fully rationalize the
spending incentives in uncontested elections.

(A) Spending (B) Saving

Figure 16: Model Fit - Actions in Uncontested Elections
Note: Histogram of observed actions (gray bars) and predicted actions (white bars). Predicted
actions are obtained by solving the estimated first-order conditions.

10.12 Policy Estimation for Counterfactual Evaluation

Evaluating the impact of a shift in challenger valence (Section 7) and simulating the deriva-
tive of vC with respect to qC (Appendix 10.2) both require us to predict candidate actions
at realizations of qC not observed in the data. We approximate the policy functions of the
candidates regarding spending, saving and fund-raising as a flexible function of {s, qC , pC}
and evaluate these functions at various values of qC to compute the optimal actions.25

Specifically, using the set of contested elections, we regress dI , dC , frC and w′
C on a set

of state variables and their interactions. We include as regressors a constant, qC , exp(qC),
qI , exp(qI), pI , pI × pt, p2I , pC , pC × pt, p2C , pt, tenI , ten2

I , 1{Midterm} × DI × DP ,
as well as the complete set of interaction terms between {ue × DI × DP , dn × DI} and
{1{Midterm}, 1{First Term}}.

24This is because H(·) also shows up in the continuation payoff. A large value of H(·) inflates the contin-
uation values and results in overestimation of candidates’ spending incentives in contested elections.

25Note that we cannot solve the dynamic game to compute the policy function because we do not estimate
some of the model primitives regarding the Primary, e.g., π(·), κ, FN (·|s), etc. See e.g., Barwick and Pathak
(2015) for a similar approach. They use a polynomial to approximate the vale function of a dynamic model.
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