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Abstract

I consider an agent who posits a set of probabilistic models for the payoff-relevant out-

comes. The agent has a prior over this set but fears the actual model is omitted and hedges

against this possibility. The concern for misspecification is endogenous: If a model explains

the previous observations well, the concern attenuates. I show that different static preferences

under uncertainty (subjective expected utility, maxmin, robust control) arise in the long run,

depending on how quickly the agent becomes unsatisfied with unexplained evidence. The

misspecification concern’s endogeneity naturally induces behavior cycles, and I characterize

the limit action frequency. I apply the model to monetary policy cycles and choices in the

face of complex tax schedules.
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1 Introduction

Bayesian rationality requires that an agent uncertain about the data-generating process (DGP)

postulates multiple probabilistic descriptions of the environment and uses Bayes rule to adjust their

relative weights. However, even rational agents may fear that they are misspecified and that none of

these descriptions is correct. This concern is remarkably natural in complex and high-dimensional

settings, where uncertainty needs to be simplified to obtain well-behaved optimization and learning

procedures.

For example, none of the model economies a central bank considers perfectly describes the un-

derlying DGP for output and inflation. Similarly, the consumer response models that a firm uses

to set prices and qualities are unlikely to include one that considers all relevant decision factors.

Moreover, the diffusion of machine learning algorithms that are not explicitly described naturally

creates new reasons for misspecification. Indeed, consumers increasingly rely on automated recom-

mendations. Although they may have some conjecture on how the alternative’s features translate

into a score or a “match quality” with their profile, they certainly do not consider the specific

algorithm these recommendation systems use. Misspecification is even more relevant when dealing

with entirely novel issues, such as those faced by a regulatory body that tries to mitigate the

impact of climate change using theoretical models that consider levels of human activity never

experienced in history.

All these situations share the use of structured models expressed in terms of interpretable

parameters, such as the slope of the Phillips curve, demand elasticities, or the descent rate of

raindrops. The best among these parametrized models can be generally learned, but the agent

may be concerned with misspecification, i.e., with all these models being too simple to be correct.

Misspecification has been analyzed from two distinct perspectives. On the one hand, several

papers have studied the long-run implications of subjective expected utility (SEU) maximizers

learning with misspecified beliefs (see, e.g., Esponda and Pouzo, 2016, Fudenberg et al., 2021,

and the references therein). These works assume that the agents have no concern about being

misspecified. Here, I show that the absence of such concern is normatively unappealing, as it can

induce long-run average payoffs lower than a safe guarantee. It also seems descriptively unrealistic,

as the widely documented uncertainty-averse behavior may be seen as a way to hedge against the

incorrect specification of the model. On the other hand, the robust control literature in macroe-

conomics pioneered by Hansen and Sargent (2001), whose decision criterion has been axiomatized
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by Strzalecki (2011), considers agents who fear model misspecification.1 In particular, the first

axiomatization that separates objective risk, uncertainty aversion, and concern for misspecifica-

tion has been proposed in Cerreia-Vioglio et al. (2024). This work reconciles these approaches and

shows how popular decision criteria such as maxmin expected utility, robust control preferences,

and SEU arise as the limit behavior of an agent concerned about misspecification and learning

about the actual DGP.

I consider an agent who repeatedly chooses among actions whose payoffs have an unknown

distribution. This choice is taken by evaluating each action with respect to an average of robust

control assessments, where each assessment takes a different structured model as the benchmark.

I introduce endogeneity in the misspecification concern: the better the structured models explain

the past, the less concerned the agent is.

To characterize the limit behavior under misspecification, a taxonomy of how demanding the

agent is in evaluating the explanatory performance of their model turns out to be crucial. I de-

velop this taxonomy by first establishing a normative benchmark: a “statistically sophisticated”

adjustment of the concern for misspecification that performs a likelihood-ratio evaluation of the

agent’s structured models. More precisely, I show that achieving two desirable properties uniquely

characterizes such behavior: global safety (i.e., guaranteeing the minmax payoff even when mis-

specified) and self-confirming under correct specification (i.e., no loss beyond those caused by the

classical self-confirming learning traps when the agent is correctly specified, cf. Easley and Kiefer,

1988).

I then consider departures from this normative benchmark to obtain descriptive predictions on

the effect of an endogenous misspecification concern. I consider agents that are too demanding in

evaluating the structured models’ performance (this case includes believers in the Law of Small

Numbers, Tversky and Kahneman, 1971, that treat failures in explaining early realizations as a

statistician treats long-run failures). Similarly, I allow the opposite case in which the agent is

too lenient in evaluating their structured models and attributes too much unexplained evidence to

sampling variability.

Specifically, I characterize the long-run behavior of these different types of misspecified agents.

The actions of the lenient type converge to a Berk-Nash equilibrium, i.e., to an SEU best reply to

beliefs supported on the structured models closest to the actual DGP. Instead, overemphasis on

1Strzalecki (2011) can be additionally interpreted as providing an axiomatization of robust prior analysis, see Hansen
and Sargent (2022a).
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the structured models’ failures in explaining the data by the demanding type induces convergence

to a maxmin best reply to the DGPs that are absolutely continuous with respect to the true one.

In contrast, a statistically sophisticated type maintains a nonextreme concern for misspecifica-

tion. If their behavior converges, it converges to a robust control best reply to the structured models

closest to the actual DGP. Moreover, the misspecification concern is endogenously determined by

how well the best structured models fit the evidence generated by the limit action.

Therefore, our learning results provide several novel predictions about the relation between

uncertainty attitudes and other individual traits.2 First, the extent of long-run uncertainty aver-

sion positively correlates with the agent being initially misspecified and their belief in the Law

of Small Numbers. Second, these correlations are causal: repeated failures to explain the data

(misspecification) and demanding evaluation of these failures induce the agent to shift to cautious

behavior. Third, the limit uncertainty attitudes are stochastic, even keeping the misspecification

and understanding of probability rules constant. Initial realizations leading to a limit action with

consequences poorly explained by the agent’s structured models induce a long-run uncertainty

aversion higher than realizations, leading to a limit action whose consequences are well explained.

I then investigate the impact of an endogenous misspecification concern in a class of prob-

lems where a complex, nonlinear function describing the average returns from a costly action is

simplified to a linear one. I show that if the actual average returns are concave, an endogenous

misspecification concern helps. This result covers incorrect beliefs in price taking (Sobel, 1984) and

simplification of complex tax schedules (Esponda and Pouzo, 2016). For the latter application, I

rationalize the labor supply in the face of complex tax schedules documented in Rees-Jones and

Taubinsky (2020). In particular, they show that around 40% of the agents have beliefs correspond-

ing to a heuristic that simplifies the tax schedule to a linear one but that 20% fewer agents act

according to this heuristic. This is predicted by an endogenous concern for misspecification, as

agents with an incorrect structured model are less prone to base their decisions on the conclusions

they reach within the model.

In general, the behavior of a statistically sophisticated type is not guaranteed to converge.

Indeed, it is possible that sophisticated types behavior cycles between phases of different misspec-

ification concerns. Still, I characterize the limit action frequency and concern for misspecification.

I apply this result to revisit the cyclical behavior of monetary policies documented in Sargent

2The empirical study of the correlation between behavioral biases is an active area of recent development. See, e.g.,
Dean and Ortoleva (2019), Snowberg and Yariv (2021), and the references therein.
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(2008). Intuitively, the cycles have the following structure. The agent spends some time playing

an action whose consequences are well explained by one of their structured models (a conservative

monetary policy in the application). Playing this action lowers the concern for misspecification and

eventually leads to a more misspecification-vulnerable action (a more aggressive monetary policy).

Failures to explain the distribution of outcomes observed under this action lead to a return to the

more misspecification robust action.

1.1 Related Literature

Paradigm Change A few papers allow the agents to realize that they are misspecified. In

particular, in Cho and Libgober (2023), Fudenberg and Lanzani (2023), Gagnon-Bartsch et al.

(2023), Ba (2024), and He and Libgober (2024), misspecification can be eliminated by “light bulb

realizations” evolutionary pressure, or the use of a machine-learning-inspired algorithm. The

critical difference with our approach is that in these papers, as well as in the earlier Cho and Kasa

(2015) and Giacomini et al. (2020), where agents switch between models based on a specification

test, the agents act as if they have complete trust in the set of models currently entertained and

are never concerned about being misspecified.

Still, there is a tight connection between the robust control decision criterion and a maxmin

decision criterion where the set of models expands as the penalization term in the robust control

increases (see Hansen and Sargent, 2011 for a textbook treatment). In light of this, compared to the

previous set of papers, our work can additionally be interpreted as providing a smooth framework

for expanding (or restricting) the set of considered models as a function of the evidence.

Decision Theory The static decision criterion considered here is due to Cerreia-Vioglio et al.

(2024). The explicit use of a state space where every state describes both the single-period outcome

realization and the probability distribution over outcomes follows the approach introduced in

Cerreia-Vioglio et al. (2013) as a two-stage “statistical” interpretation and axiomatization of some

of the decision criteria under ambiguity, in particular the smooth ambiguity one.

Although not dealing with misspecification, Epstein and Schneider (2007) also study a learning

problem with nonSEU preferences and where the likelihood ratio between different DGPs plays

an important role. I discuss the difference between the two approaches in Remark 2. Dillenberger

and Rozen (2015) propose a model where risk attitudes are influenced by the performance of the

decision maker’s past actions and show how it induces higher volatility and path dependence in a
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dynamic asset pricing model.

Misspecified Learning There is fast-growing literature on learning under misspecification with

SEU preferences. Arrow and Green (1973) give the first general framework for this problem, and

Nyarko (1991) points out that the combination of misspecification and endogenous data can lead

to cycles. This literature has been revived by the more recent Esponda and Pouzo (2016); see

Bohren and Hauser (2021), Esponda et al. (2021a), Fudenberg et al. (2021), Frick et al. (2023),

and Fudenberg et al. (2024) for analyses of the most closely related settings. The characterization

of the limit beliefs borrows extensively from their insights.

Determining the Concern for Misspecification Hansen and Sargent (2007) consider a time-

varying penalization parameter as a way to maintain dynamic consistency in the robust control

model. Maenhout (2004) also uses a time-varying penalization parameter in a portfolio selection

problem to keep the recursive discounted preferences homothetic at any history. In both cases, the

parameter evolution does not capture the fit of the models to the observed data. Anderson et al.

(2003) and Barillas et al. (2009) pioneer a literature that calibrates the (time-invariant) concern

for misspecification from the acceptable error probability in a likelihood-ratio test between the

unperturbed model and the worst-case model (that does not depend on the action there). See

Hansen and Sargent (2011) for a textbook treatment.

2 Decision Criterion

2.1 Static Decision Criterion

I consider an agent who chooses from a finite number of actions a ∈ A and let Y be a compact

metric space representing the set of possible outcomes. The agent has a continuous utility index

u : A× Y → R over the action-outcome pairs that captures their preference when the uncertainty

is resolved. However, the realized outcome is stochastic and endogenous as each action a ∈ A

induces an objective probability measure p∗a ∈ ∆(Y ) over outcomes.3

3Except for Section 2 of the Supplemental Material, where another topology over probability measures is also
considered, for every subset C of a metric space, I denote as ∆ (C) the Borel probability measures on C, endowed
with the topology of weak convergence of measures.
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The agent correctly believes that the map from actions to probability distributions over out-

comes is fixed and depends only on their current action. Still, they do not know p∗ = (p∗a)a∈A
and deal with this uncertainty in a quasi-Bayesian way. The agent postulates a set Q ⊆ ∆ (Y )A

of structured models, i.e., action-dependent probability measures over outcomes q = (qa)a∈A. The

agent has a prior belief µ ∈ ∆ (Q) with support Q that describes the relative likelihood assigned

to these models.

The interpretation of these structured models is that they are the simplified models that the

DM uses to make predictions and infer from what they observe. In our applications, the agent

may be a central bank that considers a Keynesian Samuelson-Solow model where the monetary

policy affects the unemployment rate or a new classical Lucas-Sargent model without a systematic

effect of inflation on unemployment. Alternatively they may be a taxpayer deciding how much to

work using a simplified and reduced version of the complex tax code they face. More generally,

structured models differ from arbitrary probability distributions over states by being formulated

in terms of parameters that relate actions and outcomes with a concrete economic interpretation.

Often, this makes them expressionable as a finite dimensional set of models, but the regularity

conditions, I assume, do not, in general, impose finite dimensionality.4

Assumption 1. For every a ∈ A: (i) For all q ∈ Q, q̃a : = dqa
dp∗a

exists, is continuous, and is

p∗a-a.s. bounded away from 0, uniformly in Q, (ii) For p∗a-almost every y ∈ Y the map q 7→ q̃a (y)

is continuous.

Condition (i) allows us to compute the relevant expectations while allowing for discrete and

continuous outcome spaces. It guarantees that no subjective model of the agent is ruled out in

finite time.5 Continuity of the map from models to outcome distributions is a standard requirement

for parametric models.

A myopic Bayesian agent with complete trust in their models evaluates action a according to

its SEU: ∫
Q

Eqa [u (a, y)] dµ (q) .

4The terminology of structured models first appeared in Hansen and Sargent (2022b), where, in their words, they
chose to “call models “structured” because they are parsimoniously parameterized based on a priori considerations.”

5Part (i) also plays a technical role in two proofs. It helps guarantee the existence of the equilibrium concepts I
consider (although it is known it can be relaxed; see Anderson et al., 2022). Moreover, it allows us to use the
techniques developed for establishing convergence with random measures (see, e.g., Kallenberg, 1973). Again, that
literature can deal with weaker but less explicit conditions.
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That is, they compute a two-stage expectation of the utility function: they evaluate the utility of

the action given the candidate model q, Eqa [u (a, y)], and then they average over the models with

weights given by their subjective belief µ.6

However, I am interested in agents concerned with the possibility that none of the structured

models is the exact description of the DGP but only a valid approximation, i.e., that are concerned

that there is no q ∈ Q with q = p∗. Therefore, in the spirit of the robustness criterion advocated

by Hansen and Sargent (2001), they penalize actions that perform poorly under alternative distri-

butions that are close in relative entropy R (·||·) to some of the structured models.

The agent evaluates each action a according to the average robust control criterion:∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

1

λ
R (pa||qa)

)
dµ (q) (1)

where λ > 0 is a parameter that trades off between decision robustness and performance under

the structured models.

The original robust control preference introduced by Hansen and Sargent (2001) is the case in

which µ is a Dirac measure (that in macroeconomics applications is often assumed to satisfy rational

expectations, i.e., to be degenerate on the true DGP p∗). As described in Hansen et al. (2006), this

case corresponds to when “[...] a maximizing player (‘the decision maker’) chooses a best response

to a malevolent player (‘nature’) who can alter the stochastic process within prescribed limits.

The minimizing player’s malevolence is the maximizing player’s tool for analyzing the fragility of

alternative decision rules.” Equation (1) follows Hansen and Sargent (2007) and Cerreia-Vioglio

et al. (2024) in extending this interpretation to a situation in which the agent is still uncertain

about the best-approximating structured model (i.e., µ is nondegenerate), allowing the malevolent

nature to alter each of the candidate structured models.

The representation adopts the distinction between two levels of uncertainty. At the first level,

given a structured model q, the uncertainty about the exact specification of the model is captured

by minimizing the expected utility for probabilities that are not too far away from q. At a higher

level, the agent is also uncertain about the identity of the best structured model and posits a prior

probability µ over them. While the higher level of uncertainty is already present under SEU, the

lower level captures the agent’s concern for misspecification. Observe that by considering a simple

6The myopic assumption allows us to underscore our main points without dealing with issues of dynamic consistency.
See Section 5.1 for a detailed discussion of the extension to forward-looking agents.
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average of robust control evaluations, rather than a concave transformation φ of those values, I

focus on a decision maker who is concerned about misspecification but it is ambiguity neutral (see

also the detailed discussion in Cerreia-Vioglio et al. (2024) and Hansen and Sargent (2022a)).7

Remark 1. [Axiomatization] A full-fledged axiomatization of this decision criterion is obtained

in Section 2 of the Supplemental Material. This remark summarizes the key axioms. In terms of

observability requirements, I allow the analyst to elicit preferences for bets on the DGP, e.g., the

urn composition, and on the actual realization, e.g., the color of the drawn ball.8

The static decision criterion belongs to the variational class of Maccheroni et al. (2006a). More

importantly, within this class, it is identified by a relaxed Sure-Thing Principle: the agent satisfies it

for bets that involve the identity of the model (e.g., bets on the urn composition, see Axiom 2) and

for bets on events given the structured model (e.g., bets on the color after having revealed the urn

composition, see Axiom 3, here the conclusion follows directly from Strzalecki (2011)). However,

failures of the Sure-Thing principle are allowed for acts that involve the realization of the outcome

without conditioning on the model (e.g., bets on the color without knowing the urn composition,

which are the ones involved in the classical Ellsberg’s paradox). The final conceptual axiom

involved in the representation of equation (1) is a notion of uniform conditional misspecification

concern (see Axiom 4). It requires that conditional on being told the identity of their best-fitting

structured model, the agent is equally concerned about it not being exact regardless of which one

it is. I discuss extensively this axiom and modelling decision in Section 5.2. N

2.2 Preference Evolution

The average robust control criterion of equation (1) describes how the agent chooses for a given

belief and level of misspecification concern. However, the behavior responds to the received infor-

mation. Formally, time is discrete, and a history is a finite vector of past actions and outcomes.

In particular, the set of histories of length t ∈ N is Ht = (A× Y )t, and the set of all histories is

H =
⋃∞
t=0Ht. I will denote with at,yt, and ht the random variables corresponding to the action,

outcome, and history at time t, and I use the non-bold version for their realizations.

On the one hand, I stick to the classical treatment of beliefs about the possible DGPs. I let

7See Battigalli et al. (2019) for a thorough analysis of ambiguity aversion in the same repeated problem setting of
this paper. The combined study of ambiguity aversion and concern for misspecification is left for future work.

8This is standard when dealing with multiple sources of uncertainty, see for example Klibanoff et al. (2005), and
Cerreia-Vioglio et al. (2013) for a general framework and results.
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the belief be updated through standard Bayesian updating. That is, for every measurable subset

C of Q, I denote by

µ(C | (at, yt)) =

∫
C

∏t
τ=1 q̃aτ (yτ )dµ(q)∫

Q

∏t
τ=1 q̃aτ (yτ )dµ(q)

(Bayes Rule)

the subjective belief the agent obtains using Bayes rule after history (at, yt) ∈ Ht.
9

On the other hand, I introduce an endogenous and time-evolving concern for misspecification,

i.e., I let λ depend on the realized history through a function Λ : H →R+.

Log-Likelihood Ratio In particular, I want to capture the idea that the concern for misspeci-

fication is a function of how well the structured models explain the current history. In statistics,

a standard measure of fit of a set of distributions Q against a set of unstructured alternatives

N (Q) ⊆ ∆ (Y )A is the log-likelihood ratio:

LLR((at, yt), Q) = − log

(
maxq∈Q

∏t
τ=1 q̃aτ (yτ )

maxp∈N(Q)

∏t
τ=1 p̃aτ (yτ )

)
∀t ∈ N,∀(at, yt) ∈ Ht.

I deliberately take a conservative approach and do not assume a specific set of alternative un-

structured distributions N (Q) used to evaluate the model’s fit. If Y is finite and all outcomes have

positive probability, then there is a natural way to do so, i.e., to consider as the set of alterna-

tives unstructured distributions the entire (action-indexed) simplex ∆ (Y )A. However, considering

a completely unrestricted set of distributions with a continuum of outcomes leads to an utterly

uninformative test of the model, as the (discrete) empirical distribution is an infinitely better

fit to itself than any continuous distribution, i.e., the log-likelihood ratio always returns +∞. To

maintain informativeness, N (Q) must then include only distributions that are mutually absolutely

continuous with respect to the ones in Q. In particular, all our results are invariant to the N (Q)

choice as long as the following assumption is satisfied.

Assumption 2. (i) p∗ ∈ N (Q) ⊇ Q. (ii) For every a ∈ A, the family of densities {p̃a : p ∈ N (Q)}
is a compact set of continuous functions.

I require that the unstructured set is a relaxation sufficiently large to include the actual distri-

bution and a continuity condition that rules out a Q that only contains continuous distributions

9By Assumption 1 (i), the posterior is well-defined except on a set of histories with 0 objective probability. I allow
for arbitrary belief revisions after those histories.
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and an N(Q) that includes discrete distributions.10

An important role is played by the rule

Λ (ht) =
LLR(ht,Q)

ct
∀t ∈ N,∀ht ∈ Ht (2)

where c > 0. Under this rule, the concern for misspecification is proportional to the average log-

likelihood ratio. This average log-likelihood ratio is proposed in statistics to measure the extent

of model misspecification. Therefore, I refer to an agent who uses such a rule as a “statistically

sophisticated type”. Of course, the estimation goal of a statistician can be very different from

that of an agent involved in a repeated decision problem under uncertainty. Theorem 1 below

establishes that this rule is also a rationality benchmark in repeated decision problems.

3 Long-run Payoffs and Actions

This section studies the long-run consequences of using the average robust control decision criterion.

Our primary interest is in what attitudes towards unexplained evidence, i.e., what Λ, induce good

payoff performance across environments and what are the limit actions and preferences under

uncertainty that arise given a specific attitude.

Let BRλ (ν) denote the set of average robust control best replies to belief ν when the concern

for misspecification is λ, i.e.,

BRλ (ν) = argmax
a∈A

∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
dν (q) ∀λ ∈ R++, ∀ν ∈ ∆ (Q) .

Also, let

BRSeu (ν) = argmax
a∈A

∫
Q

Eqa [u (a, y)] dν (q) ∀ν ∈ ∆ (Q)

10Assumption 2 (ii) generally requires that the DM imposes some restrictions on the unstructured models, i.e.,

N (Q) 6= ∆ (Y )
A

while Assumption 2 (i) requires the restriction to be sufficiently permissive to include p∗. This
creates a tension that is especially undesirable for the normative Theorem 1. A reasonable preoccupation is
whether the LLR-based adjustment of the concern for misspecification performs well only because the agent is
assumed to be able to guess a correctly specified set of unstructured alternatives. In the Working Paper version,
I show that the answer turns out to be negative, as Theorem 1 continues to hold when (i) is suitably relaxed.
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denote the actions that maximize the SEU of an agent with belief ν and

BRMeu (C) = argmax
a∈A

inf
p∈C

Epa [u (a, y)]

denote the actions preferred by a maxmin agent a la Gilboa and Schmeidler (1989) with models

C ⊆ ∆(Y )A.

A (pure) policy is a measurable Π : H → A that specifies an action for every history. The

objective action-contingent probability distribution and a policy Π induce a probability measure

PΠ on (A× Y )N. Our interest is in policies derived from maximizing equation (1) for some rule Λ

determining how the concern for misspecification is adjusted.

Definition 1. Policy Π is Λ-optimal if for all ht ∈ H, Π (ht) ∈ BRΛ(ht) (µ (·|ht)) .

3.1 Normative Benchmark

Now, I provide a normative justification for considering the log-likelihood ratio rule (2) the relevant

benchmark of rationality, showing that it satisfies two desirable properties across the possible

decision problems.

Definition 2. Let ε > 0. Λ is ε-safe for the decision problem (u,A, Y ) if for every Λ-optimal

policy Π and DGP p∗ ∈ ∆ (Y )A

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
≥ max

a∈A
min
y∈Y

u (a, y)− ε PΠ-a.s. (3)

This is a very mild condition that only requires the agent to obtain an average payoff at least

ε close to what they can guarantee against every possible outcome. However, when paired with

misspecification, ε-safety has a significant bite: a Bayesian SEU agent fails it in many decision

problems, as illustrated by Example 5 in the Supplemental Material. Indeed, such failures have

been the basis of many critiques of the predictions of learning under misspecification with Bayesian

SEU agents.

The next property requires that, in the face of sufficiently small misspecification, Λ does not

induce any performance loss compared to the possible self-confirming learning traps that are well-

known (Battigalli, 1987, Easley and Kiefer, 1988, and Fudenberg and Levine, 1993) to affect even

correctly specified SEU agents who are not infinitely patient. Formally, for every ε > 0, define the
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ε-self-confirming correspondence as

SCEε (p∗)

=

{
a ∈ A : ∃ν ∈ ∆ ({q ∈ Q : R (p∗a||qa) ≤ ε}) ,

∫
Q

Eqa [u (a, y)] dν (q) + ε ≥ max
a′∈A

∫
Q

Eqa′ [u (a′, y)] dν (q)

}
and the ε-self-confirming guarantee as Gε (p∗) = mina∈SCEε(p∗) Ep∗a [u (a, y)] .

In other words, SCEε (p∗) contains all the ε-best replies to beliefs that come ε-close to be con-

firmed on path, while Gε (p∗) is the minimal objective performance among the actions in SCEε (p∗).

Definition 3. Let ε > 0. Λ is ε-self-confirming under correct specification for the decision problem

(u,A, Y ) if there exists δ > 0 such that for every Λ-optimal policy Π and DGP p∗ ∈ ∆ (Y )

min
q∈Q

max
a∈A

R (p∗a||qa) < δ =⇒ lim inf
t→∞

∑t
i=1 u (ai,yi)

t
≥ Gε (p∗)− ε PΠ-a.s.

ε-self-confirming under correct specification requires that sufficiently low levels of misspecifi-

cation (i.e., the existence of a model q with distance less than δ from the actual data-generating

process) induce arbitrarily small losses beyond those that could be already incurred by a correctly

specified SEU agent (i.e., a limit average payoff more than ε lower than the expected payoff of a

self-confirming equilibrium). Intuitively, if the misspecification is minor, then the agent approxi-

mately identifies the on-path consequences of the true DGP and starts best replying to them in

the long run. In particular, whenever the environment is such that there exists a unique best ex-

plaining model independent of the action, ε-self-confirming under correct specification means that

the DM achieves no regret in the long run, with an average payoff equal to the ex-post optimal

one.11

Theorem 1. 1. For every ε > 0 and decision problem there exists c > 0 such that if

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht,

then Λ is both ε-safe and ε-self-confirming under correct specification.

2. There exist ε > 0 and a decision problem for which there is no ε-safe and ε-self-confirming

11See the Working Paper for the formal statement and proof of this special case.
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under correct specification Λ with either12

lim
t→∞

Λ (ht)

LLR (ht, Q) /t
= 0 ∀ (ht)t∈N ∈ ×t∈NHt,

or

lim
t→∞

LLR (ht, Q) /t

Λ (ht)
= 0 ∀ (ht)t∈N ∈ ×t∈NHt.

The safety and self-confirming conditions single out the LLR-based adjustment of the misspeci-

fication concern as a normatively appealing rule for a statistically sophisticated agent. At the same

time, some less normatively appealing but descriptively relevant phenomena are captured by other

rules. On the one hand, a rule such that limt→∞
Λ(ht)

LLR(ht,Q)/t
= ∞, e.g., Λ (ht) = LLR(ht,Q)√

t
, overly

penalizes minor imperfections of the model, expecting that the frequency quickly converges to its

theoretical value, as in the Law of Small Numbers fallacy. On the other hand, an agent for which

limt→∞
Λ(ht)

LLR(ht,Q)/t
= 0 attributes too much of the unexplained evidence to sampling variability. In

this regard, Theorem 1 tells us that there are decision problems where any way to adjust the con-

cern for misspecification that is globally more demanding or lenient than the average LLR violates

either safety or self-confirming under correct specification. Moreover, SEU maximization is not

safe, while always using a maxmin best reply to Q induces a behavior that is not self-confirming

under correct specification.

3.2 Positive Long-run Predictions

In this section, I show that the limit behavior can be described through fixed point conditions

involving the agent’s action, belief, and concern for misspecification. To this end, let Q (a) =

argminq∈QR (p∗a||qa) be the structured models that best fit the actual DGP when action a is

played.

Definition 4. Action a∗ is a:

1. Berk-Nash equilibrium (B-NE) if there exists ν ∈ ∆ (Q) with

suppν ⊆ Q (a∗) and a∗ ∈ BRSeu (ν) .

12I use the convention that 0
0 = 0.
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2. Maxmin equilibrium if13

a∗ ∈ BRMeu
({
p ∈ ∆ (Y )A : ∃q ∈ Q, ∀a ∈ A, qa � pa

})
.

3. c-robust equilibrium if there exists ν ∈ ∆ (Q) with

suppν ⊆ Q (a∗) , a∗ ∈ BRλ (ν) , and λ = min
q∈Q

R (p∗a∗||qa∗) /c.

B-NE (Esponda and Pouzo, 2016) describes a stable situation where the agent’s action best

replies to a belief that is concentrated on the models that provide the best fit to the outcome

distribution induced by the equilibrium action. Importantly, this fit is not required to be perfect.

In a maxmin equilibrium, the agent evaluates each action under the worst-case scenario that

is minimally consistent with their structured descriptions of the environment (i.e., those scenarios

that do not assign positive probability to events impossible under every structured model).

c-robust equilibrium is similar to B-NE in requiring best reply to the best-fitting models.

However, the best reply is the average robust control, with misspecification concern that decreases

in how well the structured models fit the true DGP at the equilibrium.

Definition 5. Action a is a Λ-limit action if there is a Λ-optimal policy Π with PΠ [sup{t : at 6= a} <∞] >

0.

The following result shows that the taxonomy suggested by Theorem 1 in terms of how quickly

the agent becomes unsatisfied with their model is the critical determinant of the long-run agent’s

behavior.

Theorem 2. Let a∗ be a Λ-limit action with p∗a∗ /∈ {qa∗}q∈Q.

1. If

lim
t→∞

Λ (ht)

LLR (ht, Q) /t
= 0 ∀ (ht)t∈N ∈ ×t∈NHt, (4)

then a∗ is a B-NE.

2. If

lim
t→∞

LLR (ht, Q) /t

Λ (ht)
= 0 ∀ (ht)t∈N ∈ ×t∈NHt, (5)

then a∗ is a maxmin equilibrium.

13For every p, q ∈ ∆ (Y ), p� q means that q is absolutely continuous with respect to p, and p ∼ q means that they
are mutually absolutely continuous.
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3. If

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht,

then a∗ is a c-robust equilibrium.

The theorem characterizes the possible limit actions of all types of agents. At one extreme,

the workhorse equilibrium concept of the literature on misspecified learning, B-NE, is sufficient

to describe the long-run behavior of lenient types. At the other extreme, the repeated failures in

explaining the observed data lead demanding agents to a highly pessimistic behavior and consider

the worst-case scenario among all the DGPs minimally consistent with the structured models.

Finally, if the behavior of the statistically sophisticated type converges, the limit action best

replies reply to beliefs that are supported on the relative entropy minimizers. Here the misspecifi-

cation concern is determined by the relative entropy between the actual DGP and the best-fitting

model.

Remark 2 (Dynamic Axiomatization and Epstein and Schneider (2007)). In Section 2

of the Supplemental Material, I consider a collection of binary relations indexed by the observed

history to characterize the agent’s dynamic preferences. On top of the static axioms discussed in

Remark 1, a Dynamic Consistency over Models axiom (see Axiom 7) guarantees that the probability

distribution over models is updated in a Bayesian fashion.

Finally, I axiomatize the asymptotic speed of adjustment of the misspecification concern. To

do so, I define a quantitative notion of how similar two preference relations are. I use an event

E and two deterministic and strictly ranked outcomes, x and y, as measuring rods. Loosely

speaking, two relations are (x, y, E, ε) similar if their certain equivalents for the binary act that

pays x if E realizes and y otherwise are ε close. With this, an Asymptotic Frequentism axiom

(see Axiom 8) singles out the statistically sophisticated type: for every (x, y, E, ε), the conditional

preferences after sufficiently long sequences of outcomes sharing the same empirical frequency must

be (x, y, E, ε)-similar.

Although not dealing with misspecification, Epstein and Schneider (2007) also study a learning

problem with nonSEU preferences and where the likelihood ratio between different DGPs plays an

important role. In the myopic case, and under the notation of our paper, they consider a maxmin

decision criterion

min
µ∈Ct

min
q∈L

∫
Θ

Eqθ [u (a, y)] dµ (θ|ht)
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where Θ is a set of parameters, Ct ⊆ ∆ (Θ), and L ⊆ ∆(Y )Θ. Here, the set of possible beliefs over

the parameters is recursively given by

Ct =

{
ν(·|ht, q1, ..., qt) : ∀i ∈ {1, ..., t} , qi ∈ L, ν ∈ C0,

∫
Θ

∏t
i=1 q̃

θ
i (yi) dν (θ)

maxµ∈C0,(p1,...,pt)∈Lt
∫

Θ

∏t
i=1 p̃

θ
i (yi) dµ (θ)

≥ β

}
,

where β ∈ (0, 1) and

ν(B|ht, q1, ..., qt) =

∫
B

∏t
i=1 q̃

θ
i (yi)dν(θ)∫

Θ

∏t
i=1 q̃

θ̄
i (yi) dν(θ̄)

for every measurable B. That is, they look at maxmin preferences with a set of posteriors that only

contains the updates from the combination of priors ν ∈ C0 and likelihoods (q1, ..., qt) ∈ Lt that

did not perform excessively worse than the best rationalizing one. Crucially, by always considering

models that are only supported on Θ, Epstein and Schneider (2007) cannot capture the concern

for misspecification that is the core motivation for this paper. It instead captures a gradually

increasing confidence in understanding which priors over Θ are the most accurate. This different

focus is apparent, inter alia, from the fact that no specification of Epstein and Schneider (2007)

satisfies the properties of safety and self-confirming under correct specification.

The papers also have a completely different set of results, as Epstein and Schneider (2007) only

deal with the question of beliefs stabilization. Importantly, they are more general in not restricting

the agent to be myopic and more specific in assuming that the DGP is exogenous and unaffected

by the action chosen by the agent. N

3.3 Equilibrium Illustrations

In this section, I revisit some of the main biases that have been justified due to misspecified

learning. I first give a result on the positive impact of an endogenous misspecification concern

under misspecified linear models. This result is applied to misperceptions of the tax schedule and

the competition environment. I then show that some biases can be enhanced, and that is, in

particular, the case for correlation neglect.

3.3.1 Misspecified Linear Models

Suppose that u (a, y) = Kaa − C (a), for all a ∈ A ⊆ R+, where C is a convex cost function.

Here, the misspecification comes from the fact that the agent believes in a simple linear rewards

16



model with coefficient Ka = θ + ε2,a, while in reality, Ka = F (a) + ε1,a, where F can be a

complicated function, resulting in nonlinear returns from increasing the action. The stochastic

terms ε1,a ∼ N (0, σ2
1) , ε2,a ∼ N (0, σ2

2) measure respectively actual and conjectured uncertain

aspects of the returns to action, and the (ε1,a, ε2,a)a∈A are independent.14

Proposition 1. Suppose that F is a strictly decreasing function. Then, in every Berk-Nash equi-

librium a, the action is higher than the optimal one. In every c-equilibrium a′, the bias is reduced,

i.e., a′ ≤ a.

The agent simplifies the (stochastic) return function to a linear form, neglecting the diminish-

ing returns from effort. The estimated constant return is the average return up to the equilibrium

action, that is lower than the marginal return. Thus, by equating this perceived marginal return

to the marginal cost of effort, the agent ends up playing an excessively higher action. The endoge-

nous misspecification concern reduces the bias because, in the face of unexplained evidence, the

agent wants to reduce their exposure to a stochastic process they realize they do not understand

fully. Since by playing a lower action, the uncertainty in the returns gets multiplied by a smaller

coefficient, this exposure reduction is achieved by decreasing the action.

The assumption of decreasing returns is somewhat abstract. However, I next show how natural

forms of misspecification studied in the literature fall in this class and explain how Proposition 1

translates in those settings. The first example shows how the endogenous misspecification concern

moderates the Berk-Nash equilibrium’s prediction that a more complicated tax schedule induces

a higher labor supply.

Example 1 (Bias Reduction under Misperceived Taxation, Esponda and Pouzo, 2016). An agent

chooses a target gross income a ∈ A at cost C(a). The agent pays taxes at an average tax rate

τ(a) + ε1,a, where τ : R → R is strictly increasing as a consequence of a progressive tax schedule.

Here y = t = (τ(a) + ε1,a) a, and the payoff is u (a, y) = a − t − C (a). The agent believes

in a random coefficient model, t = (θ + ε2,a) a, in which the marginal and average tax rates are

equal. See Liebman and Zeckhauser (2004) and Rees-Jones and Taubinsky (2020) for the empirical

evidence supporting this “schmeduling” bias.

14Formally, ε normally distributed implies that Y is not compact, in contrast with the primary analysis of the paper.
Still, the conclusions below are unaffected by considering ε with a symmetrically truncated normal distribution that
allows remaining in our main framework. The more natural case is the one where σ2

2 > σ2
1, with the interpretation

that the agent acknowledges the simplification of their model by allowing a larger volatility. However, Proposition
1 holds for every combination of parameters, and a positive discrepancy between the conjectured and observed
behavior (and therefore a possibly strict reduction of the bias in Proposition 1) realizes whenever σ2

2 6= σ2
1.
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Here, Q (a) =
{
qτ(a)

}
, i.e., the best-fitting marginal taxation is equal to the (lower) average

taxation. Therefore, in any Berk-Nash equilibrium, the agent exerts higher effort than the optimal.

By Proposition 1, in every c-robust equilibrium, this bias is reduced. To see this, observe that

when the agent is not perfectly able to explain the equilibrium data, i.e., minθ∈ΘR
(
p∗a||qθa

)
> 0,

they maintain a positive level of concern for misspecification. However, higher efforts are perceived

as more exposed to the uncertainty in the marginal rate (as the stochastic tax rate gets multiplied

by a higher a).

Therefore, c-robust equilibrium provides a natural force that reduces the counterintuitive predic-

tion that complicated nonlinear taxation codes induce more effort: failures to rationalize the received

tax bill reduce effort.15 This set of predictions is consistent with Rees-Jones and Taubinsky (2020),

where it is shown that around 40% of the agents have beliefs (elicited in an incentive-compatible

way) corresponding with the schmeduling heuristic but that there are 20% fewer agents who act

according to the heuristic.16

The second example shows how an endogenous concern for misspecification helps firms to better

choose the quantity to produce even if their models fail to capture how prices respond to increased

production.

Example 2 (Belief in Price Taking, Sobel, 1984). A firm chooses a quantity to produce a ∈ A at

cost C(a). The average price the firm charges is P = P(a) + ε1,a, where P : R → R is a strictly

decreasing (inverse) demand function. Here, y = P , and the payoff is u (a, y) = aP − C (a). The

firm believes they are price taker and that the average price they can charge does not depend on

their production, i.e., P = θ + ε2,a.

Here, Q (a) =
{
qP(a)

}
, i.e., the firm estimates that the price they could charge for the a+ 1-th

quantity equals the (higher) average price charged for the first a units. Therefore, by Proposition

1, in any B-NE, the firm produces more than the optimum, and in every c-robust equilibrium, this

15To see this in action concretely, consider the following specific values, A = {1, 2}, τ(1) = 1/4, τ(2) = 1/2,
C(1) = 0, C(2) = 2/5, c = 10, σ2

1 = 1, σ2
2 = 2. In this case, the expected utility of action 1 and 2 are respectively

3/4 and 3/5, so low effort is the optimal best action. However, high effort is a Berk-Nash equilibrium because
while playing 2 the incorrect model of the agent leads them to estimate a performance of 1/2 for the low effort
action (and being correct on the average performance of 2). The relative entropy between the true and best-fitting
distribution is 0.1, see equation (11). Therefore, a = 2 is not a c-robust equilibrium because the average robust
control evaluations for low and high effort at the belief induced by 2 are respectively −0.5 and −1.4.

16In this discussion I followed Rees-Jones and Taubinsky (2020) preferred interpretation in terms of an heterogeneous
population. They observe that their data are also compatible with all the agents having beliefs induced by the
schmeduling heuristic but under-responding to this biased estimation of the marginal tax rate. This explanation
is consistent with a c-robust equilibrium and inconsistent with a Berk-Nash equilibrium, too.
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bias is reduced. When the firm is not perfectly able to explain the equilibrium data, they maintain

a positive level of concern for misspecification, and they reduce their exposure to the uncertainty

in the price they will be able to charge by lowering the produced quantity.

3.3.2 Bias Increase under Correlation Neglect, Esponda (2008)

The following example shows that an endogenous concern for misspecification can enhance some bi-

ases. In particular, this is the case for Correlation Neglect, a bias that is indeed widely documented

(see Enke and Zimmermann, 2019 and the references therein).

Example 3. A buyer with valuation v ∈ V and a seller submit a (bid) price a ∈ A, and an ask

price s ∈ S ⊆ R+, respectively. They play a double auction with price at the buyer’s bid, so the

seller sets their ask s equal to their value, and a sale occurs if the buyer’s bid a is at least s. Here,

y = (v, s), and the payoff for the buyer is

u (a, v, s) =

{
v − a a ≥ s

0 otherwise.

The buyer mistakenly believes that the ask price and valuation are independent: Q = ∆ (V )×∆ (S).

Easy computations show that for every a∗ ∈ A,17

Q (a∗) = {q ∈ Q : ∀a ∈ A,∀s ∈ S, qa (s) = p∗a (s) , qa (v) = p∗a (v)} .

Therefore, in the Berk-Nash equilibrium, the agent makes a bid a∗ lower than the optimal one, not

realizing that higher successful bids are, on average, associated with higher-quality goods. In this

case, the extreme consequences of this bias are reinforced in a c-robust equilibrium. If, for some

primitives, a complete unraveling of the market where the buyer bids 0 is obtained in a Berk-Nash

equilibrium, it is obtained in a c-robust equilibrium. The agent still observes some correlation

between valuations and ask prices, and this results in a positive minq∈QR (p∗a∗ ||qa∗) > 0 and makes

the agent less confident in their model. Since offering 0 gives a certain payoff, it is less sensitive to

the misspecification concern, and, therefore, this positive concern makes market participation less

desirable.

17See Appendix B.3.1 for the computations supporting the claims of this example.
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4 Cycles

Part 3 of Theorem 2 provides a necessary condition for the limit actions of the statistically sophis-

ticated type. However, as momentarily illustrated by the monetary policy application of Section

4.1, there is no guarantee that such an action exists. In these cases, by Theorem 2, the agent

behavior cannot stabilize. I now propose a generalization of c-robust equilibrium, show that it

always exists, and prove that it characterizes a weaker form of behavior convergence. Formally,

for every α ∈ ∆ (A), let

Q (α) = argminq∈Q
∑
a∈A

α (a)R (p∗a||qa)

be the set of models with the lowest average relative entropy from the actual DGP, where the

average is computed using α.

Definition 6. A mixed action α∗ ∈ ∆ (A) is a mixed c-robust equilibrium if there exists ν ∈ ∆ (Q)

with

suppν ⊆ Q (α∗) , α∗ ∈ ∆
(
BRλ (ν)

)
, and λ = min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) /c.

A mixed robust equilibrium allows multiple actions to be played but requires that the probabil-

ity assigned to each action determines the beliefs and the concern for misspecification. Intuitively,

suppose actions for which the models in Q do not satisfactorily explain the consequences are played

more often. In that case, the mixed action α∗ must best reply to a more significant misspecification

concern.

Proposition 2. For every c > 0 there exists a mixed c-robust equilibrium.

When the action process almost surely does not converge, obtaining a weaker form of behavior

stabilization is still possible, i.e., the convergence of the empirical action frequency, which allows

for persistent changes in actions. Let αt (ht) ∈ ∆ (A) be the empirical action frequency in history

ht, defined as

αt (ht) (a) =

∑t
τ=1 I{a} (aτ )

t
∀a ∈ A,∀t ∈ N,∀ht ∈ Ht.

Definition 7. A mixed action α ∈ ∆ (A) is a Λ-limit frequency if there is a Λ-optimal policy Π

such that PΠ [limt→∞ αt (ht) = α] > 0.

The following result shows that mixed robust equilibrium is the relevant equilibrium concept

to capture the long-run stabilization of the average time spent playing each action.
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Theorem 3. If

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht

and α∗ is a Λ-limit frequency, then α∗ is a mixed c-robust equilibrium.

To interpret Theorem 3, consider the case where α∗ is supported over two actions a, a′ such

that Q explains very well the consequences of a, —i.e., minq∈QR (p∗a||qa) is low— but it explains

poorly the consequences of a′ —i.e., minq∈QR (p∗a′||qa′) is high. Suppose also that a is a best reply

to a high misspecification concern, while a′ best replies to a low misspecification concern. Then,

the agent oscillates between periods with great concern for misspecification, when they play a, and

phases in which the excellent data fit leads them to experiment with action a′.

4.1 Application: Monetary Policy Cycles

Here I consider a monetary policy model taken from Cogley and Sargent (2005) and Sargent (2008)

and, in particular, its adaptation in Battigalli et al. (2022).18 A central bank tries to control a

two-dimensional consequence, Y ⊆ R2, where the yU component is unemployment and the yπ

component is inflation. The policy is aggressive a = 1 or conservative a = 0. The central bank

assigns a positive probability to models parametrized by the vector θ ∈ Θ ⊆ R5, with the following

specification:

yU = θ0 + θ1πyπ + θ1aa+ θ2εU

yπ = a+ θ3επ

where εU , επ are independent, zero-mean random shocks normalized to have the same support

[−1, 1] . Here θ0 > 0 is the natural unemployment level, θ1π < 0 is the impact of the actual inflation

on unemployment, and θ1a > 0 is the impact of the planned inflation on unemployment, a reduced

form of the fact that the market participants (partially) incorporate the central bank’s actions in

their inflation expectations. In particular, if θ1π = −θ1a, this is a Lucas-Sargent model with no

(structural) exploitable employment-inflation trade-off. If θ1π < −θ1a, this is a Samuelson-Solow

model with a structural exploitable employment-inflation trade-off.

The central bank’s model is misspecified in that it misses the fact that an aggressive monetary

18Spiegler (2020) also considers the effect of a misspecified model in the context of Phillips curve estimation, with
the main difference being that the misspecification is on the side of the market.
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policy, beyond raising its baseline level, also increases the inflation variability:

yU = θ∗0 + θ∗1πyπ + θ∗1aa+ θ∗2εU

yπ = a+ θ∗3fa (επ)

where θ∗2 > 0, θ∗3 > 0, f0 is the identity function, while f1 : [−1, 1] → [−1, 1] is a continuous,

strictly increasing, and odd function with f1 (1) = 1 that is strictly concave on [0, 1], i.e., that

amplifies the inflation-specific shocks.

The central bank is endowed with standard quadratic preferences:

u(a, (yU , yπ)) = −y2
U − y2

π.

Assumption 3. i) (θ∗1π + θ∗1a + θ∗0)2 + 1 < (θ∗0)2. ii) essinfp∗1 u (1, y) < essinfp∗0 u (0, y). iii) θ∗ ∈ Θ

and for all θ ∈ Θ, (θ1a, θ2, θ3) = (θ∗1a, θ
∗
2, θ
∗
3), θ0 > 0, θ1π < 0, θ0 + θ1π + θ1a > 0.

Condition (i) requires that some trade-off is present. Observe that the exploitable trade-off

may be so small that the reduced inflation variability under a conservative policy makes the latter

optimal. Condition (ii) requires that the additional inflation induced by the aggressive policy is

enough to have the worst tail payoffs. Condition (iii) allows us to focus on the cycles induced by

the oscillation in the concern for misspecification. Without that, one would get the same insights

with additional oscillations of beliefs that push even more toward cycles.

Corollary 1. There is c̄ > 0 such that for all c ≤ c̄

1. There is no c-robust equilibrium.

2. There exists a mixed c-robust equilibrium.

3. The maximal and minimal equilibria are such that α∗ (0) is increasing in θ∗1π + θ∗1a.

Playing the conservative policy is the best reply to a high misspecification concern and θ∗ but

induces a low concern as its consequences are well explained. In contrast, the aggressive policy

best replies to a low misspecification concern and θ∗ but induces a severe concern. Therefore, the

behavior cannot stabilize consistently with the cyclical behavior of monetary policies documented

in Sargent (2008). There is also some natural comparative statics in the extremal robust equilibria,

as a larger exploitable trade-off between inflation and unemployment induces more time spent using

an aggressive monetary policy.
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5 Discussion

5.1 Forward-looking Agents

One key generalization to our model would be to allow for forward-looking agents. As for many

nonSEU decision criteria, the main complication is that the most immediate extension of the

criterion to forward-looking agents would induce dynamic inconsistencies under some information

structures (see Example 4 in the Supplemental Material for a simple explicit example). One

approach would be to directly impose a recursive formulation for the preferences, as in Maccheroni

et al. (2006b) and Klibanoff et al. (2009). Since the decision criterion belongs to the variational

class, it is known from Maccheroni et al. (2006b) that a recursive formulation can be obtained, and

Cerreia-Vioglio et al. (2024) indeed characterize its recursive formulation in the high patience limit.

A complementary approach does not impose recursivity and allows for dynamic inconsistency.

However, analyzing an uncommitted, forward-looking, and sophisticated agent playing an intra-

personal equilibrium with their future selves would require combining the insights of this paper

with the approach developed in Battigalli et al. (2019). See also Cerreia-Vioglio et al. (2024) for

weaker notions of dynamic consistency compatible with an evolving concern for misspecification.

5.2 Model Dependent Concern

Throughout the paper, a single number, λ, summarizes the agent’s concern for misspecification. An

alternative is to have a collection (λq (ht))q∈Q of misspecification concerns, each of them adapted

to the fit of the specific q to the observed data, i.e., with λq (ht) = LLR(ht,{q})
c

. In the axiomatic

foundation of Section 2 of the Supplemental Material, I explicitly note that having a homogeneous

λ is a consequence of the axiom “Uniform Misspecification Concern”.

Still, it seems more realistic that confidence in a model acts at the level of its defining as-

sumption, not at the level of a particular estimate. To be concrete, I interpret the concern for

misspecification as a concern for the linearity hypothesis on the tax schedule or for omitting a po-

tentially relevant variable (e.g., monetary policy in another country) from the economy description

employed by the central bank. Not as a collection (λx)x∈[0,1] of concerns for “x% being the exact tax

rate”. Therefore, the agent computes the fit of the best explanation under linearity or irrelevance

of the foreign monetary policy, using a unique LLR (at, yt, Q) rather than (LLR (at, yt, {q}))q∈Q.

Moreover, having λq (ht) = LLR(ht,{q})
c

would induce a “double counting of evidence”. Indeed,
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if q explains the data ht better than q′, i.e., LLR(ht,{q})
LLR(ht,{q′}) < 1 this will already impact the future

evaluations by making µ(q|ht)
µ(q′|ht) >

µ(q)
µ(q′)

. Having also λq(ht)

λq′ (ht)
= LLR(ht,{q})

LLR(ht,{q′}) < 1 would duplicate the

penalization already present in Bayesian updating. In this regard, our approach maintains a sep-

aration between the confidence 1
λ

in the overall specification and the relative belief in two specific

data-generating processes µ(q)
µ(q′)

within the specification.

Nevertheless, the results of the paper hold even letting λq (ht) = LLR(ht,{q})
c

. That is a conse-

quence of the double-counting issue highlighted above. For example, consider Theorem 3. The

proof of the theorem shows that if the empirical action distribution converges to α ∈ ∆ (A), beliefs

concentrate around Q (α). But asymptotically, all the structured models in Q (α) fit equally well

p∗: limt→∞ LLR (ht, {q}) = limt→∞ LLR (ht, Q) for all q ∈ Q (α). Evidence forces the models that

are still relevant in the long run to share the same λq even if, in principle, they were allowed to

be structured-model specific. Of course, this does not mean the two criteria are equivalent in the

short run.

A similar consideration applies to a reasonable alternative rule for adjusting the misspeci-

fication concern, the posterior Bayes factor (Aitkin, 1991). This would require to put a prior

ν ∈ ∆ (N (Q)) also on the alternative set of models and have the concern for misspecification

λB (ht) = − log

( ∫
Q

∏t
τ=1 q̃aτ (yτ )dµ(q|ht)∫

N(Q)

∏t
τ=1 p̃aτ (yτ )dν(q|ht)

)
. However, along every sequence of histories (ht)t∈N,

limt→∞
(
λB (ht)− λ (ht)

)
= 0, and with this all the results of the paper extend verbatim.

A Appendix

By Assumption 1, there exists K ∈ R++ such that for all a ∈ A

− ln q̃a ≤ K ∀q ∈ Q

holds p∗a-a.s. Throughout the Appendix, the symbol K will denote such a strictly positive real

number. For every t ∈ N and history ht = (at, yt) ∈ H let pht ∈ ∆ (Y )A be the action contingent

(finite support) probability measure over outcomes corresponding to the empirical frequency: for

all a ∈ A such that
∑t

τ=1 I{a} (aτ ) > 0, phta (C) =
∑t
τ=1 I{(a,y):y∈C}(aτ ,yτ )∑t

τ=1 I{a}(aτ )
for all C ∈ B (Y ) and phta = δȳ

for some arbitrary fixed ȳ ∈ Y if
∑t

τ=1 I{a} (aτ ) = 0. For all b ∈ A let Πb the policy that prescribes
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b at every period. Let

Mε (α) =

{
ν ∈ ∆ (Q) :

∫
Q

∑
a∈A

α (a)R (p∗a||qa) dν (q) ≤ ε+ min
q∈Q

∑
a∈A

α (a)R (p∗a||qa)

}

and Qε(α) : = {q ∈ Q : ∃q′ ∈ Q(α) ∩ Bε (q)}. Together, the next three lemmas show that

an average robust control evaluation converges to a subjective expected utility evaluation (resp.

maxmin evaluation) as λ tends to 0 (resp. to +∞), generalizing previous results in the decision-

theoretic literature in three dimensions (i) The function evaluated is not a finite range one (ii)

There is a possibly infinite set of robust control models over which the average is taken (iii) The

weights in the average are also allowed to change as λ changes.

Lemma 1. For every a ∈ A,

lim
k→∞

sup
q∈Q

min
pa∈∆(Y )

∫
Y

u (a, y) dpa (y) +
R (pa||qa)

k
= min

y∈∪q∈Qsuppqa
u (a, y) .

Proof. By Assumption 1 (i), suppqa = suppp∗a for every q ∈ Q. Let ŷ ∈ argminy∈suppp∗a
u (a, y). If

maxy∈Y u(a, y) = u(a, ŷ) the statement is trivially true, so suppose maxy∈Y u(a, y) > u(a, ŷ). Fix

ε̄ ∈
(

0,
maxy∈Y u(a,y)−u(a,ŷ)

2

)
. Since u (a, ·) is continuous, there exists ε such that y ∈ Bε (ŷ) implies

u (a, y) ≤ u (a, ŷ) + ε̄. Then, by Proposition 1.4.2 in Dupuis and Ellis (2011), for all q ∈ Q

u (a, ŷ) ≤ min
pa∈∆(Y )

∫
Y

u (a, y) dpa+
R (pa||qa)

k
≤ − log

(
exp (−k (u (a, ŷ) + ε̄)) inf q̂∈Q q̂a (Bε (ŷ))

+ (1− inf q̂∈Q q̂a (Bε (ŷ))) e−kmaxy∈Y u(a,y)

)
/k.

Moreover, the last term converges to u (a, ŷ) + ε̄ as k goes to infinity by a simple application of

L’Hôpital’s rule. Since ε̄ <
maxy∈Y u(a,y)−u(a,ŷ)

2
was arbitrarily chosen, and the last term does not

depend on q this proves the desired uniformity of the convergence. �

Lemma 2. For every a ∈ A, q ∈ Q, and (qn, λn)n∈N ∈ (Q× R++)N with limn→∞ (qn, λn) = (q, 0),

limn→∞minpa∈∆(Y )

(
Epa [u (a, y)] + R(pa||qa,n)

λn

)
= Eqa [u (a, y)].

Lemma 3. 1. For every a ∈ A, the function G : ∆ (Q)× R+ → R defined by

G (ν, λ) : =

∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
dν (q) ∀ν ∈ ∆ (Q) , ∀λ ∈ R++
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and G (ν, 0) : =
∫
Q
Eqa [u (a, y)]dν (q) for all ν ∈ ∆ (Q) is continuous. Moreover, the set of

functions {G(ν, ·)}ν∈∆(Q) is equicontinuous at 0.

2. The correspondence BR(·) (·) : R+×∆ (Q)⇒ A where BR0 (ν) : = BRSeu (ν) for all ν ∈ ∆ (Q)

is upper hemicontinuous.

Proof. (1) Fix a ∈ A. For every q ∈ Q, let F (q, 0) := Eqa [u (a, y)] and observe that for each

λ ∈ R++, by Proposition 1.4.2 in Dupuis and Ellis (2011),

F (q, λ) : = min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
=
− log

(∫
Y

exp (−λu (a, y)) dqa (y)
)

λ
.

Since Y is compact and u is continuous, for all λ ∈ R++ and q ∈ Q, the RHS belongs to

[miny∈Y u (a, y) ,maxy∈Y u (a, y)]. For every λ ∈ R++, exp (−λu (a, ·)) is a continuous and bounded

function that is bounded away from 0. Therefore, q 7→
∫
Y

exp (−λu (a, y))dqa (y) is continuous by

definition of the weak convergence of measures, and F is continuous by Lemma 2 (at λ = 0) and

Theorem 15.7.3 in Kallenberg (1973) (at λ 6= 0).

Let (νn, λn)n∈N ∈ ∆ (Q) × R++ be a convergent sequence with limit (ν, λ). Suppose first

that λ > 0. Then limn→∞
∫
Q

log(
∫
Y exp(−λnu(a,y))dqa(y))

−λn dνn (q) =
∫
Q

log(
∫
Y exp(−λu(a,y))dqa(y))

−λ dν (q) by

Theorem 15.7.3 in Kallenberg (1973) and the joint continuity of F established above. Next, suppose

that λ = 0. Then limn→∞
∫
Q

log(Eqa [exp(−λnu(a,y))])

−λn dνn (q) =
∫
Q
Eqa [u (a, y)]dν (q) again by Theorem

15.7.3 in Kallenberg (1973) and the joint continuity of F established above.

Next, suppose that {G(ν, ·)}ν∈∆(Q) is not equicontinuous at 0. Then, there exists ε and (νn)n∈N

such that |G(νn, 1/n) − G(νn, 0)| > ε for all n ∈ N. Since Q is compact, νn can be taken

to be convergent to some ν ′. But from the first part of the statement, it would follow that

limn→∞G(νn, 1/n) = G(ν ′, 0) = limn→∞G(νn, 0), a contradiction.

(2) Follows by (1) and the Maximum Theorem. �

Lemma 4. For all Π ∈ AH, PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∀ (t, q) ∈ N×Q, ln 1

q̃at (yt)
≤ K

})
= 1.

Proof of Lemma 4. By Assumption 1 for all a ∈ A, for every t ∈ N,

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∃q ∈ Q,− ln q̃at (yt) > K

})
= 0.

Since PΠ is a measure, it is countably subadditive and so

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∀t ∈ N,∀q ∈ Q,− ln q̃at (yt) ≤ K

})
≥ 1,
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proving the statement. �

Lemma 5. For every a ∈ A, if (qn, p
n
a)n∈N ∈ (Q×∆ (Y ))N is such that limn→∞ (qn, p

n
a)n∈N =

(q′, p̄a) and supppna ⊆ {y ∈ Y : maxq∈Q− ln q̃a (y) ≤ K} then limn→∞−
∫
Y

log (q̃a,n (y)) dpna (y) =

−
∫
Y

log (q̃′a (y)) dp̄a (y) .

Lemma 6. Let α∗ ∈ ∆(A), (tn)n∈N be a subsequence of N, and (at, yt)t∈N ∈ (A× Y )N be such that

supq∈Q,t∈N− ln q̃at (yt) ≤ K. For every n ∈ N, set htn = (atn , ytn), and let q (htn) and r (htn) be

two arbitrary elements of argmaxq∈Q
∏tn

τ=1 q̃aτ (yτ ) and argmaxp∈N(Q)

∏tn
τ=1 p̃aτ (yτ ), respectively. If

lim
n→∞

(
αtn (htn) ,

(
phtna

)
a∈suppα∗

)
=
(
α∗, (p∗a)a∈suppα∗

)
then

lim
n→∞

LLR (htn , Q)

tn
= lim

n→∞

∑
a∈A

∑tn
τ=1 I{a} (aτ )

∫
Y

log
(
r̃a(htn )(y)
q̃a(htn )(y)

)
dp

htn
a (y)

tn
= min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) .

Proof. By assumption of the lemma, for all n ∈ N,

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

log

(
r̃a (htn) (y)

q̃a (htn) (y)

)
dphtna (y) /tn

=

(∑
a∈A

tn∑
τ=1

I{a} (aτ )

(∫
Y

log (r̃a (htn) (y)) dphtna (y)−
∫
Y

log (q̃a (htn) (y)) dphtna (y)

))
/tn.

By Assumption 2 (i),

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

− log (r̃a (htn) (y)) dphtna (y) /tn ≤ 0 ∀n ∈ N.

By Assumption 2 (ii) and the Arzela-Ascoli Theorem, there exists K ′ ∈ R++ such that for all

a ∈ A,

− log (r̃a (htn) (y)) ≥ −K ′, (6)

p∗a-almost surely. Therefore, for all n ∈ N,
∑

a∈A
∑tn

τ=1 I{a} (aτ )
∫
Y
− log (r̃a (htn) (y)) dp

htn
a (y) /tn ⊆

[−K ′, 0]. I now show that every convergent subsequence converges to 0. Indeed, take any such

subsequence of periods (tni)i∈N and, possibly restricting to a further subsequence, suppose r̃a
(
htni
)
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converges to some r̃a for every a ∈ suppα∗ (this can be done by Assumption 2 (ii)). Then

0 ≤
∑
a∈A

α∗ (a)

∫
Y

− log (r̃a (y)) dp∗a (y) ≤
∑
a∈A

α∗ (a) lim inf
n→∞

∫
Y

− log
(
r̃a
(
htni
)

(y)
)

dp
htni
a (y)

= lim inf
i→∞

∑
a∈A

tni∑
τ=1

I{a} (aτ )

∫
Y

− log
(
r̃a
(
htni
)

(y)
)

dp
htni
a (y) /tni

where the first inequality follows from Gibbs inequality and the second since by equation (6) I can

apply Lemma 3.2 in Serfozo (1982). Therefore,

lim
i→∞

∑
a∈A

tni∑
τ=1

I{a} (aτ )

∫
Y

− log
(
r̃a
(
htni
)

(y)
)

dp
htni
a (y) /tni = 0.

Since this holds for every converging subsequence, it holds for the original sequence. So

lim
n→∞

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

log

(
r̃a (htn) (y)

q̃a (htn) (y)

)
dphtna (y) /tn

= − lim
n→∞

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

log (q̃a (htn) (y)) dphtna (y) /tn

= − lim
n→∞

min
q∈Q

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

log (q̃a (y)) dphtna (y) /tn.

Therefore the result follows from Lemma 5 and Theorem 17.31 in Aliprantis and Border (2013).�

Lemma 7. For every t ∈ N, Π ∈ AH and for PΠ almost every ht = (at, yt) ∈ Ht, if q′ ∈
argmaxq∈Q

∏t
τ=1 q̃aτ (yτ ), and p ∈ argmaxr∈N(Q)

∏t
τ=1 r̃aτ (yτ ) then

LLR (ht, Q) =
∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log

(
dpa (y)

dq′a (y)

)
dphta (y) .

Proof of Theorem 1. I start observing that by Lemma 4, maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠa∗ -a.s.

This will allow us to invoke Lemma 6 repeatedly.

Proof of Part 1. Let (u,A, Y ) be a decision problem and ε ∈ R++. Let P̂ ⊆ ∆ (Y )A be the

set of p∗ that satisfy Assumption 1 jointly with Q. I start by showing that there exists c ∈ R++
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such that the rule of equation (2) is ε-safe and ε-self-confirming under correct specification. This

is done by first deriving a c ∈ R++ such that ε-safety is satisfied, and then showing that there

exists a δ that delivers ε-self-confirming under correct specification.

Safety is trivially satisfied by every policy if maxa∈A miny∈Y u (a, y) = mina∈A,y∈Y u (a, y), so in

that case pick an arbitrary c ∈ R++. Suppose maxa∈A miny∈Y u (a, y) > mina∈A,y∈Y u (a, y). Define

A (p∗) : =
{
a′ ∈ A : maxa∈A miny∈Y u (a, y) > Ep∗

a′
[u (a′, y)] + ε

2

}
for all p∗ ∈ P̂ .

Claim 1. There exists ϕ∗ > 0 such that for every Π ∈ AH and p∗ ∈ P̂ ,

PΠ

( {
lim inft→∞

∑t
i=1 u(ai,yi)

t
−maxa∈A miny∈Y u (a, y)− ε < 0

}
∩{lim supt→∞ αt (ht) (a′) < ϕ∗,∀a′ ∈ A (p∗)}

)
= 0.

That is, almost surely the payoff is at most ε-lower than the safe guarantee if the actions whose

objective expected performance is lower than the guarantee are played sufficiently rarely (i.e., each

of them has a frequency lower than ϕ∗).

Proof. Consider the stochastic process defined by Xt = u (Π (ht−1) ,yt)−Ep∗
Π(ht−1)

[u (Π (ht−1) , y)] ,

for all t ∈ N with the sequence of sigma-algebras (Ft)t∈N generated by the stochastic process of

histories (ht)t∈N. The stochastic process is a martingale difference sequence, as u is continuous in

y on the compact Y , so E [|Xt|] <∞ and E [Xt|Ft−1] = 0. By the SLLN for martingale difference

sequences, limn→∞

∑n
t=1 Xt

n
= 0,PΠ-a.s. so that

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
= lim inf

t→∞

t∑
i=1

Xi + Ep∗at [u (at, ·)]
t

≥

1−
∑

a∈A(p∗)

lim sup
t→∞

αt (ht) (a)

max
ā∈A

min
y∈Y

u (ā, y)− ε

2
+

∑
a∈A(p∗)

lim sup
t→∞

αt (ht) (a) min
a∈A,y∈Y

u (a, y)

≥
(

1− |A| max
a∈A(p∗)

lim sup
t→∞

αt (ht) (a)

)
max
ā∈A

min
y∈Y

u (ā, y)− ε

2

+|A| max
a∈A(p∗)

lim sup
t→∞

αt (ht) (a) min
a∈A,y∈Y

u (a, y)

and the claim follows from setting ε

2(maxā∈A miny∈Y u(ā,y)−mina∈A,y∈Y u(a,y))|A|
= ϕ∗. �

Claim 2. There exists λ̄ ∈ R++ such that if λ ≥ λ̄ then for every p∗ ∈ P̂ , a′ ∈ A (p∗), ν ∈ ∆ (Q),

a′ /∈ BRλ (ν).
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That is, if the agent is sufficiently misspecification concerned, they do not play actions that

can perform worse than the safe guarantee.

Proof. Observe that if a′ ∈ A (p∗), then by Assumption 1 (i) for all q ∈ Q, there is y ∈ supp qa′

with u (a′, y) ≤ maxā∈A miny∈Y u (ā, y)− ε
2
. But then the claim follows from Lemma 1. �

Claim 3. There exists J ∈ (0, 1) such that for every p∗ ∈ P̂ , a′ ∈ A (p∗), µ ∈ ∆ (Q), and λ ∈ R+,

µ ({q ∈ Q : R (p∗a′ ||qa′ ) > J}) ≤ J =⇒ a′ /∈ BRλ (µ) . (7)

That is, if the beliefs are sufficiently concentrated on the parameters that are close to the true

DGP, and under the true DGP a′ performs worse than the safe guarantee, a′ cannot be chosen

regardless of the level of misspecification concern.

Proof. Observe that given Claim 2, the statement immediately holds for λ > λ̄ for any J ∈ (0, 1).

Suppose by contradiction that equation (7) does not hold. This means that there exist a convergent

(p∗n, µn, λn)n∈N ∈ P̂ × ∆ (Q) ×
[
0, λ̄
]

and a′ ∈ A with µn
({
q ∈ Q : R

(
p∗a′,n||qa′

)
> 1

n

})
≤ 1

n
, a′ ∈

A (p∗n), and a′ ∈ BRλn (µn). By the lower semicontinuity of R and the fact that R (pa′ ||qa′) = 0 if

and only if pa′ = qa′ , (see, e.g., Lemma 1.4.3 in Dupuis and Ellis (2011)), as well as Lemma 3 this

in turn implies that there exists q ∈ Q with a′ ∈ A (q) and Eqa′ [u (a′, y)] ≥ maxā∈A miny∈Y u (ā, y),

a contradiction. �

Let c = Jϕ∗

4λ̄
, and take an arbitrary p∗ ∈ P̂ . If for all a′ ∈ A (p∗), lim supt→∞ αt (ht) (a′) < ϕ∗,

PΠ-a.s., ε-safety follows by Claim 1. Suppose by contradiction that there is an action a′ ∈ A (p∗)

with lim supt→∞ αt (ht) (a′) ≥ ϕ∗ on a set E with PΠ strictly positive probability. Therefore,

on all the infinite histories in E there must be a subsequence of periods (tn)n∈N in which both

αt (htn) (a′) ≥ ϕ∗/2 and atn+1 = a′ for all n ∈ N. By the compactness of ∆(A), I can take this

subsequence to be also such that limn→∞ αtn = ᾱ. By Claim 3, it must be the case that

µ ({q ∈ Q : R (p∗a′ ||qa′ ) > J}|htn) ≥ J ∀n ∈ N.

But then,

lim
n→∞

(Λ (htn))n∈N = lim
n→∞

LLR (htn , Q)

ctn
= min

q∈Q

∑
a∈A

ᾱ (a)R (p∗a||qa) /c ≥
ϕ∗J

4c
≥ 2λ̄ PΠ-a.s.

where the second equality follows by Lemma 6, whose assumptions are in turn satisfied by Theorem
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11.4.1 in Dudley (2018).19 But, by Claim 2, for sufficiently large n this leads to the contradiction

with atn+1 = a′.

I now move to prove ε-self-confirming under correct specification. I start with a few consider-

ations for a fixed DGP p∗ ∈ P̂ . The next claim parallels Claim 1.

Claim 4. Let Π ∈ AH and p∗ ∈ P̂ ,

PΠ


{

lim inft→∞
∑t
i=1 u(ai,yi)

t
≤ Gε (p∗)− ε

}
∩
{

lim supt→∞ αt (ht) (a′) < ε

2|A|(maxa∈A,y∈Y u(a,y)−mina∈A,y∈Y u(a,y))
,∀a′ /∈ SCEε (p∗)

}  = 0.

Proof. Consider the stochastic process defined by Xt = u (Π (ht−1) ,yt)−Ep∗
Π(ht−1)

[u (Π (ht−1) , y)] ,

for all t ∈ N with the sequence of sigma-algebras (Ft)t∈N generated by the stochastic process of

histories (ht)t∈N. The stochastic process is a martingale difference sequence, as u is continuous in

y on the compact Y , so E [|Xt|] <∞ and E [Xt|Ft−1] = 0. By the SLLN for martingale difference

sequences, limn→∞

∑n
t=1 Xt

n
= 0,PΠ-a.s. so that

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
= lim inf

t→∞

t∑
i=1

Xi + Ep∗at [u (at, ·)]
t

≥

1−
∑

a/∈SCEε(p∗)

lim sup
t→∞

αt (ht) (a)

Gε (p∗) +
∑

a/∈SCEε(p∗)

lim sup
t→∞

αt (ht) (a) min
a∈A,y∈Y

u (a, y)

≥
(

1− |A| max
a/∈SCEε(p∗)

lim sup
t→∞

αt (ht) (a)

)
Gε (p∗) + |A| max

a/∈SCEε(p∗)
lim sup
t→∞

αt (ht) (a) min
a∈A,y∈Y

u (a, y)

≥
(

1− |A| max
a/∈SCEε(p∗)

lim sup
t→∞

αt (ht) (a)

)
Gε (p∗)

+|A| max
a/∈SCEε(p∗)

lim sup
t→∞

αt (ht) (a) [Gε (p∗)− max
a∈A,y∈Y

u (a, y) + min
a∈A,y∈Y

u (a, y)].

�

Also observe that lim supt→∞ αt (ht) (a) > ϕ∗∗ : = ε

2|A|(maxa∈A,y∈Y u(a,y)−mina∈A,y∈Y u(a,y))
means

that infinitely many times

αt (ht) (a) > ϕ∗∗/2 and a ∈ BRΛ(ht) (µ (·|ht)) . (8)

19See Remark 3 in the Supplemental Material for a subtlety in the use of Theorem 11.4.1 in Dudley (2018).
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I now show that there exists a δ > 0 such that this cannot happen with positive probability under

any p∗ ∈ P̂ for any a /∈ SCEε (p∗) if minq∈Q maxa∈AR (p∗a||qa) < δ.

By Lemma 3, there exists δ ∈ (0, εϕ∗∗/4) such that for all p∗ ∈ P̂ , a′, a′′ ∈ A and α ∈ ∆ (A)

with α (a′) ≥ ϕ∗∗/2,

min
q∈Q

max
a∈A

R (p∗a||qa) < δ (9)

implies that for ν ∈ ∆
(
Mεϕ∗∗/4 (α)

)
and λ ∈ [0, 2δ/c] (where recall that c has been set to Jϕ∗

4λ̄
),20

∫
Q

min
p∈∆(Y )

(
Ep [u (a′, y)] +

R (pa′||qa′)
λ

)
dν (q)−

∫
Q

min
p∈∆(Y )

(
Ep [u (a′′, y)] +

R (pa′′ ||qa′′)
λ

)
dν (q)

≤ max
ν′∈∆({q∈Q:R(p∗a′ ||qa′)≤ε})

{∫
Q

Eqa′ [u (a′, y)] dν ′ (q)−
∫
Q

Eqa′′ [u (a′′, y)] dν ′ (q)

}
+
ε

4
. (10)

In words, given that action a′ is played with sufficiently high probability (i.e., α (a′) ≥ ϕ∗∗/2),

the choice of a sufficiently small δ can make one of the models sufficiently close to the true DGP

(i.e., equation (9)) and λ sufficiently small (i.e., λ ≤ 2δ) such that the (average robust control)

evaluation with respect to the εϕ∗∗/4 best models (i.e., ν ∈ ∆
(
Mεϕ∗∗/4 (α)

)
) of action a′ with

respect to a′′ cannot be more than ε
4

more optimistic than the (SEU) evaluation under the models

that come ε close to explain the consequence of action a′.

Observe that if a′ /∈ SCEε (p∗), independently of the p∗, the RHS of equation (10) is smaller than

−3ε
4

for some a′′ ∈ A. But then, by Claim 4, Λ is ε-self-confirming with this δ equation (8), since

by Theorem 1 in Esponda et al. (2021a) beliefs concentrate PΠ almost surely on Mεϕ∗∗/4 (α(ht)),

and by Lemma 6, λ ≤ 2δ/c at histories where α (a′) (ht) ≥ ϕ∗∗/2.21

Proof of Part 2. I show that there is a decision problem (u,A, Y ) such that if the con-

cern for misspecification of the agent is such that Λ (ht) = o
(
LLR(ht,Q)

t

)
,PΠ-a.s. or o (Λ (ht)) =

LLR(ht,Q)
t

,PΠ-a.s. then the decision rule cannot be both 1
20

-safe and 1
20

-self-confirming. Suppose that

A = {1,−1, 0} and Y = {−1, 1}. The utility function is u (a, y) = ay. Each model q considered by

the agent is described by qa (1) for some arbitrary a ∈ A. Let Q = {0.9, 0.4}, µ (0.9) = 1
2

= µ (0.4),

20To see this, observe that

R (p∗a′ ||qa′) > ε =⇒
∑
a∈A

α (a)R (p∗a||qa) > εϕ∗∗/2 =⇒ q /∈Mεϕ∗∗/2−δ (α) =⇒ q /∈Mεϕ∗∗/4 (α) .

21Once again, the assumptions of Lemma 6 are satisfied by Theorem 11.4.1 in Dudley (2018). See also the discussion
in Remark 3.
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and Let N (Q) = [0, 1], i.e., the unstructured models include all the action-independent DGPs.

I first show that if Λ (ht) = o
(
LLR(ht,Q)

t

)
, PΠ-a.s. then the decision rule is not 1

20
-safe. Let

p∗a (1) = 0.6. So, maxā∈A miny∈Y u (ā, y) = miny∈Y u (0, y) = 0. However, by the Strong Law of

Large Numbers it follows that PΠ-a.s. limt→∞
(∑t

τ=1 I{1} (yτ )
)
/t = 0.6. Therefore, by Lemma 6,

lim
t→∞

LLR (ht, Q)

t
= R (0.6||0.4) PΠ-a.s.

and so limt→∞ Λ (ht) = 0,PΠ-a.s. Moreover, for the constant function φ (ε) = 1
2

for all ε ∈ R++

the prior is φ-positive on Q in the sense of Fudenberg et al. (2023), and by their Lemma 1,

µ (0.4|ht)→ 1, PΠ-a.s. But then by the upper hemicontinuity of BR(·) (·) established in Lemma 3

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
= −0.2 < 0 = max

ā∈A
min
y∈Y

u (ā, y) PΠ-a.s.

proving the desired result.

Finally, I show that if the concern for misspecification of the agent is such that o (Λ (ht)) =
LLR(ht,Q)

t
,PΠ-a.s. then the decision rule is not 1

20
-self-confirming. Let Π be a Λ-optimal policy,

δ ∈
(
0, 1

20

)
, and p∗a (1) = 0.9 + δ for all a ∈ A, so that SCE1/20 (p∗) = {1}, and G1/20 (p∗) = 0.2.

Let λ̄ be such that {0} = BRλ (µ) for all λ ≥ λ̄ and µ ∈ ∆ (Q). Such a λ̄ exists by Lemma

1. By Lemma 6 limt→∞ LLR (ht, Q) /t ≥ R (0.9 + δ||0.9) /2, Pπ almost surely so that Λ (ht) is

diverging to +∞ and the result follows. �

Proof of Theorem 2. I start observing that by Lemma 4, maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠa∗ -a.s.

This will allow us to invoke Lemma 6 in all the various cases.

1) Suppose by contradiction that a∗ is a Λ-limit action but is not a B-NE. Thus, since for every

policy Π ∈ AH

PΠ [sup{t : at 6= a∗} <∞] ≤
∞∑
t=0

∑
ht∈Ht

PΠ [a∗ = Π (hτ ) ,∀τ ≥ t|ht]PΠ[ht],

there are a Λ-optimal policy Π̃ ∈ AH, t ∈ N0, and ht ∈ Ht with PΠ̃[ht] > 0 such that with positive

probability Π̃ prescribes a∗ after ht in every future period. Define ν = µ(·|ht), and notice that by

Assumption 1 (i) supp ν = suppµ = Q. As the evolution of beliefs and misspecification concern

under Πa∗ , i.e., the policy that plays a∗ in every period, is the same as under Π̃ for every history

33



where the agent continues to play a∗,

PΠ̃[a∗ = Π̃(hτ ),∀τ > t|ht] > 0 =⇒ PΠa∗ [a
∗ ∈ BRΛ(ht,hτ ) (ν (·|hτ )) ,∀τ > t] > 0.

I now show that the latter equals zero, which establishes that a∗ cannot be a Λ-limit action.

Since Y is a compact metric space, it is separable, and thus, by Varadarajan Theorem limτ→∞ p
hτ
a∗

=

p∗
a∗

, PΠa∗ -a.s. Then, by Lemma 6 and equation (4), limτ→∞ Λ (ht,hτ ) = 0, PΠa∗ -a.s. By As-

sumption 1 (ii), the assumptions of Berk (1966), page 54, are satisfied, and for every ε ∈ R++,

ν (Qε (a∗) |hτ ) → 1, PΠa∗ -a.s. Therefore, since Q is compact, (Λ (ht,hτ ) , ν (·|hτ ))τ∈N admits PΠa∗

a.s. a subsequence convergent to (0, ν∗) for some ν∗ ∈ ∆ (Q (a∗)). With this, the result follows

from Lemma 3.

2) Suppose by contradiction that a∗ /∈ BRMeu
({
p ∈ ∆ (Y )A : ∃q ∈ Q, ∀a ∈ A, qa � pa

})
and

that a∗ is a Λ-limit action. Thus, since for every policy Π ∈ AH

PΠ [sup{t : at 6= a∗} <∞] ≤
∞∑
t=0

∑
ht∈Ht

PΠ [a∗ = Π (hτ ) , ∀τ ≥ t|ht]PΠ[ht],

there are a Λ-optimal policy Π̃ ∈ AH, t ∈ N0, and ht ∈ Ht with PΠ̃[ht] > 0 such that with positive

probability Π̃ prescribes a∗ after ht in every future period. Define ν = µ(·|ht), and notice that by

Assumption 1 (i) supp ν = suppµ = Q. As the evolution of beliefs and misspecification concern

under Πa∗ , i.e., the policy that plays a∗ in every period, is the same as under Π̃ for every history

where the agent continues to play a∗,

PΠ̃[a∗ = Π̃(hτ ),∀τ > t|ht] > 0 =⇒ PΠa∗ [a
∗ ∈ BRΛ(ht,hτ ) (ν (·|hτ )) ,∀τ > t] > 0.

I now show that the latter equals zero, which establishes that a∗ cannot be a Λ-limit action.

Since Y is a compact metric space, it is separable, and thus, by Varadarajan Theorem limτ→∞ p
hτ
a∗

=

p∗
a∗

, PΠa∗ -a.s. Then, by Lemmas 7 and 6, and equation (5),

lim
τ→∞

Λ (ht,hτ ) =∞ PΠa∗ -a.s.

By Assumption 1 (i) for all q, q′ ∈ Q and a ∈ A, qa ∼ q′a. So I obtain{
p ∈ ∆ (Y )A : ∃q ∈ Q,∀a ∈ A, qa � pa

}
=
{
p ∈ ∆ (Y )A : ∀q ∈ Q, ∀a ∈ A, qa � pa

}
.
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Therefore, by Lemma 1 for all a ∈ A, PΠa∗ -a.s. limτ→∞ supq∈Q minpa∈∆(Y )

∫
Y
u (a, y) dpa+

R(pa||qa)
Λ(ht,hτ )

=

miny∈∪q∈Qsuppqa u (a, y) .

But since by Assumption 1 (i) for all τ ∈ N, µ (·|hτ ) ⊆ Q, PΠa∗ -a.s.,

lim
τ→∞

Eµ(·|hτ )

[
min

pa∈∆(Y )

∫
Y

u (a, y) dpa +
R (pa||qa)
Λ (ht,hτ )

]
= min

y∈∪q∈Qsuppqa
u (a, y) PΠa∗ -a.s.

With this, the result follows from the finiteness of the action space.

3) It follows from the more general Theorem 3. �

Proof of Proposition 1. Observe that

R
(
p∗a||qθa

)
= ln

(
σ2

σ1

)
+
σ2

1 + (F (a)− τ(a))2

2σ2
2

− 1

2
, (11)

and so Q (a) =
{
qF (a)

}
, showing that there exists at most one Berk-Nash equilibrium. The

condition for not switching from an action a to an action a′ with a ≥ a′ in a Berk-Nash equilibrium

in which the belief is concentrated on θ is

(a− a′) θ = Eε2,a [a (θ + ε2,a)]− Eε2,a′ [a
′ (θ + ε2,a′)] ≥ C (a)− C (a′) .

By Proposition 1.4.2 in Dupuis and Ellis (2011), the condition for not switching from an action
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a to an action a′ with a ≥ a′ in a c-robust equilibrium in which the belief is concentrated on θ is

(a− a′) θ +

−c logEε2,a
[
exp

(
R(p∗a||qθa)aε2,a

−c

)]
R (p∗a||qθa)

+

c logEε2,a′
[
exp

(
R(p∗a||qθa)a′ε2,a′

−c

)]
R (p∗a||qθa)

=
−c

R (p∗a||qθa)
logEε2,a

[
exp

(
−
R
(
p∗a||qθa

)
aθ

c

)]
+

−c
R (p∗a||qθa)

logEε2,a

[
exp

(
−
R
(
p∗a||qθa

)
aε2,a

c

)]

+
c

R (p∗a||qθa)
logEε2,a′

[
exp

(
−
R
(
p∗a||qθa

)
a′θ

c

)]
+

c

R (p∗a||qθa)
logEε2,a′

[
exp

(
−
R
(
p∗a||qθa

)
a′ε2,a′

c

)]

=
−c

R (p∗a||qθa)
logEε2,a

[
exp

(
−
R
(
p∗a||qθa

)
aθ

c

)
exp

(
−
R
(
p∗a||qθa

)
aε2,a

c

)]

+
c

R (p∗a||qθa)
logEε2,a′

[
exp

(
−
R
(
p∗a||qθa

)
a′θ

c

)
exp

(
−
R
(
p∗a||qθa

)
a′ε2,a′

c

)]

=

−c logEε2,a
[
exp

(
R(p∗a||qθa)a(θ+ε2,a)

−c

)]
R (p∗a||qθa)

+

c logEε2,a′
[
exp

(
−R(p∗a||qθa)a′(θ+ε2,a′)

c

)]
R (p∗a||qθa)

≥ C (a)− C (a′) .

By the usual CARA-Gaussian formula, a ≥ a′ implies that the LHS is lower in the second case,

and I obtain the desired conclusion. �

Lemma 8. For every c ∈ R++ the function α 7→ minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c is continuous and

the correspondence Q (·) : ∆ (A)→ 2Q is upper hemicontinuous.

Proof of Proposition 2. Consider the following three-player game. The action sets are A1 =

∆ (A), A2 = ∆ (Q), A3 = R+ with arbitrary elements denoted as α, ν, λ. The utility functions are

U1 (α, ν, λ) =

{ ∑
a∈A α (a)

∫
Q

minpa∈∆(Y )

(
Epa [u (a, y)] + R(pa||qa)

λ

)
dν (q) λ 6= 0∑

a∈A α (a)
∫
Q
Eqa [u (a, y)] dν (q) λ = 0,

U2 (α, ν, λ) = −
∫
Q

∑
a∈A α (a)R (p∗a||qa)dν (q), and U3 (α, ν, λ) = −

(
λ−minq∈Q

∑
a∈A α (a)R (p∗a||qa) /c

)2
.

Observe that for the purpose of finding the equilibria of this game, it is without loss of generality

to limit the actions of player 3 to
[
0, λ̄
]

with

λ̄ : =
maxα∈∆(A) minq∈Q

∑
a∈A α (a)R (p∗a||qa)

c
<∞,
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where the inequality holds by Assumption 1 (i). Therefore, since ∆ (Q) is compact by the com-

pactness of Q all the action sets are compact. Moreover, they are clearly convex.

The utility function U1 is jointly continuous in its second and third argument by Lemma 3.

Moreover, U2 is trivially continuous in its first and third argument, and U3 is continuous in its first

and second argument by Lemma 8. Therefore, the game is better-reply secure (see Reny, 1999,

page 1033). Moreover, U1 and U2 are respectively linear in A1 and A2 while U3 is concave in A3.

Therefore, by Theorem 3.1 and Footnote 8 in Reny (1999) this game admits a pure-strategy

equilibrium (α∗, ν∗, λ∗). But observe that

λ∗ ∈ argmaxλ∈R+
−

(
λ−min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) /c

)2

=⇒ λ∗ =
minq∈Q

∑
a∈A α

∗ (a)R (p∗a||qa)
c

,

α∗ ∈ argmaxα∈∆(A) U1 (α, ν∗, λ∗) =⇒ α∗ ∈ ∆
(
BRλ∗ (ν∗)

)
,

and

ν∗ ∈ argmaxν∈∆(Q)−
∫
Q

∑
a∈A

α∗ (a)R (p∗a||qa) dν (q) =⇒ ν∗ ∈ ∆ (Q (α∗)) .

Therefore, α∗ is a mixed c-robust equilibrium sustained by ν∗ and λ∗. �

Proof of Theorem 3. I start observing that by Lemma 4, maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠ-a.s.

This will allow us to invoke Lemma 6.

Let Υ = {α− α′ : α, α′ ∈ ∆ (A)} and for all ε ∈ R+ and α′ ∈ ∆ (A),

Mε (α′) =

{
ν ∈ ∆ (Q) :

∫
Q

∑
a∈A

α′ (a)R (p∗a||qa) dν (q) ≤ ε+ min
q∈Q

∑
a∈A

α′ (a)R (p∗a||qa)

}
.

By Esponda et al., 2021a, Part 1a of the proof of Theorem 2,22 M(·) (·) is upper hemicontinuous.

I define F : R+ ×∆ (A)⇒ Υ by

F (ε, α) =

{
ι :
∃α̂, ᾱ ∈ Bε (α) , λ ∈ Bε

(
minq∈Q

∑
a∈A α̂ (a)R (p∗a||qa) /c

)
, ν ∈ ∆ (Mε (ᾱ)) ,

ι ∈ ∆
(
BRλ (ν)

)
− α

}
22Observe that Assumption 1 (i-ii) implies their Assumption 2 (ii-iii), except for the fact that I do not require finite

dimensionality of Y and Q. It is readily checked that since they are still assumed to be compact this does not
create any issues in the proof of their Theorem 2.
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and χα = F (0, α) + α.

Claim 5. F and χα are upper hemicontinuous and compact-valued.

Proof of the Claim. I show that F has a closed graph to conclude that it is upper hemicontinuous

and compact-valued. Since Υ is compact, this is enough by, e.g., Proposition E.3 in Ok (2011).

Let

(ιn, εn, αn)n∈N ∈ (Υ× R+ × R+ ×∆ (A))N

be such that ιn ∈ F (εn, αn) for all n ∈ N and convergent to (ι, ε, α). Since A is finite, it is

without loss of generality (possibly truncating some initial elements of the sequence) to take

ιn (a) > −αn (a) for all n ∈ N and for all a for which ι (a) > −α (a). Then for all â such

that ι (â) > −α (â), there is a sequence
(
α̂n, ᾱn, ν

â
n, λ

â
n

)
n∈N ∈

(
∆ (A)2 ×∆ (Q)× [0, 2K/c]

)N
such that ∃α̂n, ᾱn ∈ Bεn (αn), ν ân ∈ Mεn (ᾱn), λân ∈ Bε

(
minq∈Q

∑
a∈A α̂n (a)R (p∗a||qa) /c

)
, and

â ∈ BRλân
(
ν ân
)
. Since ∆ (Q) and [0, 2K/c] and ∆ (A) are compact (by Theorem 15.11 in Alipran-

tis and Border, 2013) by restricting to a subsequence I can take
(
α̂n, ᾱn, ν

â
n, λ

â
n

)
n∈N to be conver-

gent to some
(
α̂, ᾱ, ν â, λâ

)
∈ ∆ (A)2 × ∆ (Q) × [0, 2K/c]. Since M(·) (·) is upper hemicontinuous

ν â ∈ Mε (ᾱ). Since by Lemmas 8 and 3 α 7→ minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c is continuous and

BR(·) (·) is upper hemicontinuous,

λâ ∈ min
q∈Q

∑
a∈A

α̂ (a)R (p∗a||qa) /c

and

â ∈ BRλâ
(
ν â
)
⊆

{
BRλ̂ (ν̂) : ν̂ ∈Mε (Bε (α)) , λ̂ ∈

{
Bε

(
min
q∈Q

∑
a∈A

α̂n (a)R (p∗a||qa) /c

)
: α̂ ∈ Bε (α)

}}

showing that (ι, ε, α) belongs to the graph of the correspondence. �

Observe that (αt)t∈N satisfies the following differential inclusion: for all a ∈ A, t ∈ N, ht ∈ Ht,

and ht+1 ∈ Ht+1 such that ht+1 � ht

αt+1(ht+1)(a) ∈
{
αt(ht)(a) +

1

t+ 1

(
I{a′}(a)− αt(ht)(a)

)
: a′ ∈ BRΛ(ht)(µ (·|ht))

}
.

Set τ 0 = 0 and τ t =
∑t

i=1
1
i

for all t ∈ N. The continuous-time interpolation of αt is the
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function w : R+ → ∆(A)

w(τ t + l) =

{
αt + lαt+1−αt

τ t+1−τ t , ∀t ∈ N,∀l ∈
[
0, 1

t+1

]
α1 t = 0,∀l ∈ [0, 1].

(12)

I use the theory of stochastic approximation for differential inclusions (Benaim et al., 2005 and

Esponda et al., 2021a) to show that (12) can be approximated by a solution to

α̇t ∈ χαt − αt. (13)

A solution over [0, T ], T ∈ R++, to the differential inclusion (13) with initial point α̂ ∈ ∆(A)

is a mapping α(·) : [0, T ] → ∆(A) that is absolutely continuous over compact intervals such that

α0 = α̂ and (13) is satisfied for almost every t. Let STα̂ be the set of the solutions to (13) over [0, T ],

T ∈ R++, with initial conditions α̂ ∈ ∆(A). A solution to (13) exists by Claim 5 and Theorem

2.1.4 in Aubin and Cellina (2012), i.e., STα̂ is nonempty for every T ∈ R++ and α̂ ∈ ∆(A). Let

ST = ∪α̂∈∆(A)S
T
α̂ .

Observe that w is Lipschitz continuous of order 1 as for all (ht)t∈N ∈ ×t∈NHt,

ht+1 � ht ∀t ∈ N =⇒ ||αt+1 (ht+1)− αt (ht) ||∞
τ t+1 − τ t

≤ 1/(t+ 1)

1/(t+ 1)
= 1 ∀t ∈ N. (14)

Therefore w is absolutely continuous, as for all n ∈ N and
(
li, l̃i

)n
i=1

,
∑n

i=1 ||w (li) − w
(
l̃i

)
||∞ ≤∑n

i=1 |li − l̃i|. Moreover, αt is uniformly bounded because it takes values in ∆(A).

By Claim 5, χα satisfies Hypothesis 1.1 in Benaim et al. (2005). Moreover, by Theorem 1 in

Esponda et al. (2021a) and Lemma 6, PΠ-almost surely, eventually µ (·|ht) ∈Mε (αt (ht)) and

Λ (ht) ∈ Bε

(
min
q∈Q

∑
a∈A

αt (ht) (a)R (p∗a||qa) /c

)

for all ε ∈ R2
++. Thus, there is a sequence (ε̂t (ht))t∈N ∈ RN

++ converging to 0 with χαt(ht)−αt (ht) ∈
F (ε̂t (ht) , αt (ht)).

Fix T ∈ N and define the flow operator G : C (R,∆ (A))× R→C (R,∆ (A)) as

Gt (f) (s) = f (s+ t) ∀f ∈ C (R,∆ (A)) ,∀s ∈ R,∀t ∈ R.
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Claim 6. Every limit point of the restrictions of (Gt (w))t∈N on [0, T ] is in ST .

This argument borrows extensively from the proofs Theorem 4.2 in Benaim et al. (2005) and

Theorem 2 in Esponda et al. (2021a). However they cannot be directly applied, because the

interpolated process w I consider is not a perturbed solution in the sense of Benaim et al. (2005).

Indeed, it may not be possible to find an α that jointly justifies at as a best reply to beliefs in

Q (α) and the concern for misspecification minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c, as perturbations of the

empirical frequency αt−1 in different directions may be needed for the concern and the belief.

Nevertheless, the core of their arguments can be adapted by leveraging the upper hemicontinuity

of F established above.

Proof of the Claim. Since w is uniformly continuous by equation (14), the family (Gt (w))t∈N
is equicontinuous, and thus it is relatively compact in the topology of uniform convergence over

compact sets by the Arzela-Ascoli theorem (see Willard, 2012 Theorem 43.15 for the version with a

noncompact domain). The topology of uniform convergence over compact sets is metrizable since

∆ (A) is metrizable and R is open (see Theorem 1.14b in Simon, 2020), and so there exists a limit

point z = limtn G
tn (w). Define

m (t) = max {k ∈ N : τ k ≤ t}

and for all s ∈ R, v (s) = w′ (s+) = αm(s)+1 − αm(s) ∈ F
(
εm(s), αm(s)

)
, and vn (s) = v (tn + s) so

z (T )− z (0) = lim
tn

(
Gtn (w) (T )−Gtn (w) (0)

)
= lim

tn
(w (T + tn)− w (tn)) = lim

n→∞

∫ T

0

vn (s) ds.

Since (vn)n∈N is uniformly bounded, it is bounded in L2
(
[0, T ] ,RA, Leb

)
. By the Banach-Alaoglu

theorem (see Theorem 6.21 in Aliprantis and Border, 2013), (by restricting to a subsequence) I

can take (vn)n∈N to be a weakly-convergent subsequence with limit v∗ ∈ L2
(
[0, T ] ,RA, Leb

)
. By

Mazur’s lemma (see Corollary V.3.14 in Dunford and Schwartz (1988)), there exist a function

N : N → N and a sequence of positive weights
(
ρn (n) , ..., ρN(n) (n)

)
n∈N with

∑N(n)
i=n ρi (n) = 1 for

all n ∈ N such that if I define

v̄n =

N(n)∑
i=n

ρi (n) vi,
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then v̄n converges with respect to the L2
(
[0, T ] ,RA, Leb

)
norm, and thus almost surely, to v∗.

Let τ ∈ [0, T ] be such that limn→∞ v̄n (τ) = v∗ (τ). For every t ∈ [0, T ] and n ∈ N, define

γn (t) = ε̂m(tn+t) + ||w (tn + t)− αm(tn+t)||∞

and

wn (t) = w (tn + t) .

Observe that by definition of w, (ε̂t)t∈N, and z,

lim
n→∞

γn (t) = 0 and lim
n→∞

wn (t) = z (t) .

But then, by the upper hemicontinuity of F , for every ε ∈ R++ there exists Nε such that for

n ≥ Nε, F (γn (t) , wn (t)) ⊆ Bε (F (0, z (t))), where the latter set is closed and convex. But since

vn (t) ∈ Bε (F (0, z (t))), for all n ≥ Nε also v̄n (t) ∈ Bε (F (0, z (t))). Therefore, v∗ ∈ F (0, z (τ)).

Since the fact that vn is weakly convergent to v∗ implies by definition that limn→∞
∫ T

0
vn (s)ds =∫ T

0
v∗ (s)ds, z ∈ ST . �

Therefore, by (ii) =⇒ (i) of Theorem 4.1 in Benaim et al. (2005) (see Esponda et al., 2021b for

the slightly corrected version used here)

lim
t→∞

inf
α∈ST

sup
0≤s≤T

||w(t+ s)− αs|| = 0 PΠ-a.s. for all T ∈ N. (15)

With this, I can rule out convergence to nonequilibria. If α∗ ∈ ∆(A) is not a mixed c-

robust equilibrium, there is a ∈ A with α∗(a) > 0 and δa /∈ χα∗ . Since χ(·) has a closed

graph and maps into the compact ∆(A), there exists D ∈ R++ such that for all α′ ∈ BD(α∗),

α′(a) − maxα̂∈χα′ α̂(a) > α∗(a)/2. Therefore, for every initial condition ᾱ ∈ BD(α∗) and every

solution of (13), α(a) decreases at rate at least α∗(a)/4 until it leaves BD(α∗). So for every ini-

tial condition ᾱ ∈ BD(α∗) and every solution, the differential inclusion leaves BD(α∗) before time

T ∗ : = 4 (D + α∗ (a)) /α∗(a).

Next, I prove that (αt (ht))t∈N does not converge to α∗ on a sample path on which the conver-

gence of equation (15) happens. Since the set of such sample paths has probability 1 under policy

Π, this fact concludes the proof. Suppose by contradiction that on one of such paths (αt (ht))t∈N
converges to α∗. Therefore, I can choose T̂ ∈ N such that on that sample path αt (ht) ∈ BD/2(α∗)
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for all t ≥ T̂ and

inf
α∈ST∗

sup
0≤s≤T ∗

||w(T̂ + s)− αs|| ≤ D/4. (16)

Take any α ∈ ST ∗ with sup0≤s≤T ∗ ||w(T̂ + s)− αs|| ≤ D/2. Since w
(
T̂
)
∈ BD/2(α∗), α ∈ ST ∗ᾱ for

some initial condition ᾱ ∈ BD(α∗). But then by definition of T ∗ the differential inclusion leaves

BD(α∗) by time T ∗ + T̂ , and by (16), (αt (ht))t∈N does not stay in BD/2(α∗), a contradiction. �

Proof of Corollary 1. Note that
∑

a∈A α (a)R
(
p∗a||qθa

)
=
∑

a∈A α (a)
∫ ∫

log q̃θa (yU) dp∗a (yU |yπ) dp∗a (yπ) .

By Assumption 3 (iii) for all a ∈ A, θ∗ ∈ ∩yπ∈suppp∗a minθ∈Θ

∫
log q̃θa (yU) dp∗a (yU |yπ) and for every

θ ∈ Θ \ {θ∗} there is a set B ∈ B (R) and an ε > 0 with p∗a ({y ∈ Y : yπ ∈ B}) > 0 such that∫
log q̃θa (yU) dp∗a (yU |yπ) > minθ∈Θ

∫
log q̃θa (yU) dp∗a (yU |yπ) for all yπ ∈ B. Therefore for every

α ∈ ∆ (A),

Q (α) =
{
q(θ∗0,θ

∗
1π ,θ

∗
1a,θ

∗
2,θ
∗
3)
}

. (17)

Moreover, since θ∗ perfectly predicts the consequences under policy 0, minθ∈ΘR
(
p∗0||qθ0

)
= 0. By

Assumption 3 (i) and Lemma 3 in Battigalli et al. (2022), BRSeu (∆ (Q (0))) = {1}, and therefore

0 is not a c-robust equilibrium for any c ∈ R++. Since f1 is strictly concave on R++, by equation

(17) it follows that minθ∈ΘR
(
p∗1||qθ1

)
= R

(
p∗1||qθ

∗

1

)
> 0. By Assumption 3 (ii) and Lemma 1

there exists a sufficiently small c̄ such that for all c ≤ c̄, BR
minθ∈Θ R(p∗1||qθ1)

c (δθ∗) = {0} proving that

there is no c-robust equilibrium if c ≤ c̄. That a mixed c-robust equilibrium exists follows from

Proposition 2.

In particular, the maximal (resp. the minimal) equilibrium is defined as the α such that∑
a∈A α (a)R

(
p∗a||qθ

∗

a

)
/c is equal to the maximal (resp. minimal) misspecification concern λ such

that 1 ∈ BRλ (δθ∗) (resp. 0 ∈ BRλ (δθ∗)). Since, by Assumption 3 (iii), a larger θ∗1π + θ∗1a makes

action 0 more favorable, the comparative statics follows. �
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