
Econometrica Supplementary Material

SUPPLEMENT TO “THE POLITICAL ECONOMY OF ZERO-SUM THINKING”

S. NAGEEB ALI
Department of Economics, Pennsylvania State University

MAXIMILIAN MIHM
Division of Social Science, New York University Abu Dhabi

LUCAS SIGA
Department of Economics, University of Essex

The Supplemental Appendix contains all arguments, notation, and proofs for Sections 4 and
5 of Ali, Mihm, and Siga (2024).

1. PROOFS FOR SECTION 4

For a binary collective choice problem C = (N ,Ω, P ), we let Wi = {ω ∈Ω : V d
i (ω)> 0} be

the set of states in which voter i is a winner, and W(ω) = {i ∈N : ω ∈Wi} denote the set of
winners in state ω.

1.1. Proof of Proposition 3

Suppose C is binary collective choice problem in which signals are fully-informative. We first
show that, for any κ ∈ {0, ..., τ},

V G(κ|PW , v) =

n
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For κ ∈ {0, ..., τ}, w ∈ {κ+ 1, ..., n}, and i ∈N ,
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and

P (G= κ|Si = s0,M = κ,W = κ) =
1
n

κ

 .

Therefore, for any κ ∈ {0, ..., τ} and w ∈ {κ, ..., n}, and i ∈N ,

P (W =w|Si = s0,G=M = κ) =


w

κ


PW (w)

n

w′=κ


w′

κ


PW (w′)

.

Equation (2) then follows by observing that

P (Wi|Si = s0,G=M = κ,W =w) =
w− κ

n− κ
.

Parts (a) and (b) follow because V G(κ) is increasing in vW for a fixed vL and PW , and de-
creasing in vL for a fixed vW and PW . Part (c) follows because, for w′ >w, P ′

W (w′)PW (w)≥
P ′

W (w)PW (w′) implies that

w′

κ


P ′

W (w′)

n

w′′=κ


w′′

κ


P ′

W (w′′)


w

κ


PW (w)

n

w′′=κ


w′′

κ


PW (w′′)

≥


w

κ


P ′

W (w)

n

w′′=κ


w′′

κ


P ′

W (w′′)


w′

κ


PW (w′)

n

w′′=κ


w′′

κ


PW (w′′)

,

and so PW LR P ′
W implies PW (.|Si = s0,G = M = κ) LR P ′

W (.|Si = s0,G = M = κ).
Since P (Wi|Si = s0,G = M = κ,W = w) is increasing in w, PW (.|Si = s0,G = M =
κ)LR P ′

W (.|Si = s0,G=M = κ) then implies that V G(κ|PW , vW , vL)≥ V G(κ|P ′
W , vW , vL).

Q.E.D.

1.2. Proof of Proposition 4

For the n-voter collective choice problem, let

Vn(g, b) =


⌈qn⌉ − g

n− g− b


vw −


n− ⌈qn⌉ − b

n− g− b


vl

be the expected payoff difference for an uninformed voter who learns that g other voters re-
ceived good news and b other voters received bad news. Hence, the n-voter collective choice
problem has adverse correlation if there exists g ∈ {0, ..., n−1

2
} such that Vn(g,0)< 0. In par-

ticular, since Vn(g,0) is strictly decreasing in g, there is adverse correlation if and only if
Vn(

n−1
2

,0)< 0, i.e.,

vℓ
vw

>
⌈qn⌉ − n− 1
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The term on the right-hand side is strictly greater than ρ, converging to ρ as n→∞. Hence,
if vℓ/vw ≤ ρ, the n-voter collective choice problem is advantageously correlated for any pop-
ulation size n; if vℓ/vw > ρ, then there exists N(q, vℓ/vw) such that n-voter collective choice
problem has adverse correlation for all n >N(q, vℓ/vw). Q.E.D.

1.3. Proof of Proposition 5

Given λ ∈ (0,1) and a strategy-profile σn of the n-voter collective choice problem, let
Pσn,λ(g, b|piv,Si = s0) be the probability that an uninformed voter i attaches to there being
g informed winners and b informed losers, conditional on that voter being pivotal (as long as
pivotality is a non-null event). If pivotality is a non-null event, the expected payoff difference
conditional on being pivotal is, therefore,

Πi
0(σn,λ) =

n−1
2

g=0

n−⌈qn⌉

b=0

Vn(g, b)Pσn,λ(g, b|piv,Si = s0),

where we can omit the i-superscript if σn is symmetric.
Now suppose vℓ/vw > ρ and fix some ε ∈ (0,1). For the n-voter collective choice problem,

denote by σ∗
n the symmetric weakly undominated strategy profile where uninformed voters

vote for the inferior policy. Then, an uninformed voter is pivotal if and only if g = n−1
2

, which
is a non-null event, and

Pσ∗
n,λ(g, b|piv,Si = s0) =


n−⌈qn⌉

b


λb(1− λ)n−⌈qn⌉−b if g = n−1

2

0 otherwise
.

Therefore,

Π0(σ
∗
n,λ) =

n−⌈qn⌉

b=0

Vn


n− 1

2
, b


n− ⌈qn⌉

b


λb(1− λ)n−⌈qn⌉−b,

which is strictly increasing in λ since Vn


n−1
2

, b


is strictly increasing in b. Moreover, by the
weak law of large numbers and the Portmanteau Theorem,

lim
n→∞

Π0(σ
∗
n,λ) =




q− 1

2
1

2
− λ(1− q)



vw −




(1− q)(1− λ)
1

2
− λ(1− q)



vl,

which is strictly increasing in λ and strictly negative if λ < 1− (vℓ/vw)
−1ρ. Hence, for any

λ< 1− (vℓ/vw)
−1ρ, there exists N∗ such that for all n > N∗, Π0(σ

∗
n,λ)< 0; hence, σ∗

n is a
strict equilibrium. Moreover, under the strategy-profile σ∗

n only informed winners vote for the
optimal policy. The proportion of informed winners is strictly increasing in λ and, by the weak
law of large numbers, converges in probability to λq as n→∞. Since λ∗q < 1

2
, it follows that

there exists Nε such that for all n > Nε, the inferior policy wins with probability greater than
1− ε when voters follow the strategy-profile σ∗

n. Hence, for all n >max{N∗,Nε}, there is a
strict equilibrium in which the inferior policy wins with probability at least 1− ε.

Conversely, suppose vℓ/vw ≤ ρ and fix any population size n and λ ∈ (0,1). Since Vn(g, b)
is strictly decreasing in g and strictly increasing in b, it follows that for any g ∈ {0, ..., n−1

2
}
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and b ∈ {0, ..., n− ⌈qn⌉},

Vn(g, b)≥
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Now, for sake for contradiction, suppose there exists a weakly undominated equilibrium σn

in which the inferior policy wins with strictly positive probability. Let N ∗ = {i ∈ {1, ..., n} :
σn
i < 1} be the set of voters who vote for the inferior policy with strictly positive probability

when they are uninformed, and let n∗ = |N ∗|. Since the inferior policy wins with strictly pos-
itive probability, n − ⌈qn⌉ + n∗ ≥ n+1

2
, while n − ⌈qn⌉ ≤ n−1

2
. Hence, any of the voters in

N ∗ can be pivotal with strictly positive probability when they are uninformed. However, since
Vn(g, b) > 0 for all g ∈ {0, ..., n−1

2
} and b ∈ {0, ..., n− ⌈qn⌉}, it follows that Πi

0(σn,λ) > 0,
which contradicts that σn is an equilibrium in which σn

i < 1. Hence, in any weakly undomi-
nated equilibrium, the optimal policy wins with probability 1. Q.E.D.

1.4. Proof of Proposition 6

Suppose C is a binary collective choice problem in which signals convey only aggregate news.
For any signal profile s ∈ Sn, it follows that

V d
i (s) =

n

w=0

V d
i (s,W =w)P (W =w|S = s) =

n

w=0

V d
i (W =w)P (W =w|S = s),

and therefore, V d
i (s) = V d

j (s) for all i, j ∈N . Now consider a signal profile s such that si ∈ G
and sj ∈M for some voters i ∕= j. Then V d

i (si)> 0 and so V d
i (s)> 0 by Assumption 2(b). It

follows that V d
j (s)> 0, and so V d

j (sj)> 0 by Assumption 2(b). Hence, sj ∈ G. Analogously,
if si ∈ B and sj ∈M, then sj ∈ B.

Let G(κ) = {s ∈ Mn : G(s) ≥ κ}. By Lemma 1 and the preceding argument, for a voter
who is uninformed, and learns that κ ∈ {1, ..., τ} other voters received good news,

P (Wi|Si = s0,M =G= κ) = λκ(1− λ)n−κ


s∈G(κ)

P (Wi|s)P (s|s ∈G(κ))

= λκ(1− λ)n−κ


s∈Gn

P (Wi|s)P (s|s ∈ Gn)

= λκ(1− λ)n−κP (Wi|S ∈ Gn)

and, therefore, V G(κ)> 0. Q.E.D.

1.5. Proof of Proposition 7

We say that binary collective choice problems C = (N ,Ω, P ) and C′ = (N ,Ω′, P ′) are infor-
mationally equivalent if, for any N ′ ⊆N and s ∈ Sn, P (W =N ′, S = s) = P ′(W =N ′, S =
s); that is, the problems differ in terms of the payoff but not the information structure. We
show that, when all news is distributional, for any binary collective choice problem, there is an
informationally equivalent problem that has adverse correlation.
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Suppose C = (N ,Ω, P ) is a binary collective choice problem in which signals convey only
distributional news. Without loss of generality, let P (Wi|Si = sk) ≥ P (Wi|Si = sk+1) for
k = 1, ...,K− 1 (where it does not matter in the following how ties are broken). Let G′ = {k =
1, ...,K : P (Wi|Si = sK)≥ P (Wi)} and B′ =M− G′. Since P (B ≥ 1)> 0, both G′ and B′

are non-empty, and P (Wi|Si = s1)>P (Wi). For a signal profile s ∈ Sn, G′(s) is the number
of voters with a signal in G′.

We first show that, for any voter h ∈N ,

P (Wh)>P (Wh|Sh = s0,G′ =M = 1). (3)

Let w ∈ {0, ..., n} and E be any event such that E ∩W−1(w) is non-null. Then,

n

i=1

P (Wi|E,w) =

n

i=1



ω∈Ω(w)∩E

P (Wi|E,w,ω)P (ω|E,w)

=


ω∈Ω(w)∩E

P (ω|E,w)
n

i=1

P (Wi|E,w,ω)

=w


ω∈Ω(w)∩E

P (ω|E,w) =w

Hence, for any voter i ∕= h and w ∈ {0, ..., n} with P (W =w)> 0, Assumption 1 implies that

n

j=1

P (Wj |Si ∈ G′,M = 1,w) = P (Wi|Si ∈ G′,M = 1,w) +


j ∕=i

P (Wj |Si ∈ G′,M = 1,w)

= P (Wi|Si ∈ G′,M = 1,w) + (n− 1)P (Wh|Si ∈ G′,M = 1,w)

=

n

j=1

P (Wj |w) = P (Wi|w) +


j ∕=i

P (Wj |w)

= P (Wi|w) + (n− 1)P (Wh|w).

Since P (Wi|w)<P (Wi|Si ∈ G′,M = 1,w), it follows that P (Wh|w)>P (Wh|Si ∈ G′,M =
1,w). Moreover, by Assumption 1,

P (Wh|Sk = s0,G′ =M = 1,w) =


j ∕=h

P (Wh|Sj ∈ G′,M = 1,w)P (Sj ∈ G′|G′ =M = 1,w)

=
1

n− 1



j ∕=h

P (Wh|Sj ∈ G′,M = 1,w)

= P (Wh|Si ∈ G′,M = 1,w),

and, therefore, P (Wh|w)<P (Wh|Sk = s0,G′ =M = 1,w). Since signals convey only distri-
butional information,

P (Wh) =

n

w=0

P (Wh|w)P (w)
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<
n

w=0

P (Wh|Sk = s0,G′ =M = 1,w)P (w)

=
n

w=0

P (Wh|Sk = s0,G′ =M = 1,w)P (w|Sh = s0,G′ =M = 1)

= P (Wh|Sh = s0,G′ =M = 1),

and, therefore, P (Wh)>P (Wh|Sk = s0,G′ =M = 1).
Now let k∗ =min{k = 1, ...,K : sk ∈ B′} and let P ∗ =max{P (Wi|Si = sk

∗
), P (Wh|Sk =

s0,G′ =M = 1)}. From the preceding argument, P (Wh)>P ∗ and so there exists (v′
W , v′

L)>>
0 such that

P (Wh)v
′
W − (1− P (Wh))v

′
L > 0>P ∗v′

W − (1− P ∗)v′
L.

The binary collective choice problem C′ = (N ,Ω, P ′) uniquely defined by letting P ′(W =
N ′, S = s) = P (W =N ′, S = s) for any N ′ ⊆N and s ∈ S is informationally equivalent to
C, and C′ is adversely correlated because the set of good news signals for C′ is exactly G′. As
a result, for any binary collective choice problem C in which signals convey only distributional
information there exists an informationally equivalent collective choice problem with adverse
correlation. Q.E.D.

2. PROOFS FOR SECTION 5

2.1. Symmetric Equilibria (Section 5.1)

Preliminaries: Let σα be the symmetric strategy-profile defined in the proof of Proposi-
tion 1. Recall that, for g ∈ {0, ..., τ} and m ∈ {g, ..., g+ τ},

pi(σ
α|g,m) =






[g = τ ] if α= 0

[m− g = τ ] if α= 1
n−1−m

τ−g


ατ−g(1− α)τ−(m−g) if α ∈ (0,1)

,

and so

Π0(σ
1,λ) =

τ

g=0


n− 1

τ + g


λτ+g(1− λ)τ−gZ(g, τ + g),

Π0(σ
0,λ) =

n−1

m=τ


n− 1

m


λm(1− λ)n−1−mZ(τ,m),

and, for α ∈ (0,1),

Π0(σ
α,λ) =

τ

g=0

τ+g

m=g

M(g,m)λm(1− λ)n−1−mατ−g(1− α)τ+g−mZ(g,m),

= ατ (1− α)τ (1− λ)n−1

τ

g=0


λ(1− α)

α(1− λ)

g τ+g

m=g


λ

(1− α)(1− λ)

m−g

M(g,m)Z(g,m)

where M(g,m) is shorthand for the multinomial coefficient


n−1

τ−g,m,τ+g−m


.
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Proof of Theorem 3

(1) Suppose C is strongly adversely correlated:
τ

κ=0 θ
κ

τ

κ


Z(κ,κ)< 0 for some θ ∈ ++,

and fix some ε ∈ (0,1).
By Case 1 in the proof of Theorem 1, if Z(τ, τ)< 0, then there exists λ̄ ∈ (0,1− (1− ε)

1
n )

such that σ0 is a symmetric equilibrium in which p∗ wins with probability exceeding 1− ε for
all λ ∈ (0, λ̄). Therefore, we can focus on the case Z(τ, τ)> 0. In that case, since

lim
λ→0

n−1

m=τ


n− 1

m


λm−τ (1− λ)n−1−mZ(τ,m) =


n− 1

τ


Z(τ, τ)

it follows that Π0(σ
0,λ)> 0 for λ> 0 sufficiently small.

Let ᾱ≡ 1− (1− ε)
1

2(τ+1) . If α< ᾱ and λ< 1− (1− ε)
1
2n , then p∗ wins in strategy profile

σα with probability exceeding

(1− ᾱ)τ+1(1− λ)n > (1− ε)
τ+1

2(τ+1) (1− ε)
n
2n = 1− ε

Since Π0(σ
0,λ) > 0 for λ sufficiently small, it therefore sufficies to show that there exists

λ̄ ∈ (0,1) such that, for all λ ∈ (0, λ̄), there is a αλ ∈ (0, ᾱ) such that Π0(σ
αλ ,λ)< 0.

For any λ ∈ (0,1), let αλ ≡ λ
(1−λ)θ+λ

; hence, αλ ∈ (0,1), is increasing in λ, and converges
to 0 as λ→ 0. Therefore,

lim
λ→0

τ

g=0


λ(1− αλ)

αλ(1− λ)

g τ+g

m=g


λ

(1− αλ)(1− λ)

m−g

M(g,m)Z(g,m)

=
τ

g=0

θgM(g, g)Z(g, g) =


n− 1

τ


K(θ)< 0.

Hence, there is λ̄ ∈ (0,1) such that Π0(σ
αλ ,λ)< 0 for all λ ∈ (0, λ̄).

(2) Suppose C is weakly advantageously correlated:
τ

κ=0 θ
κ

τ

κ


ZG(κ)> 0 for all θ ∈ ++.

The correlation structure implies that Z(τ, τ)> 0, and so there exists θ̄ such that

τ

κ=0

θκ

τ

κ


Z(κ,κ)>Z(0,0)

for all θ > θ̄. Since limθ→0

τ

κ=0 θ
κ

τ

κ


Z(κ,κ) = Z(0,0), it follows that K attains a

minimum on [0, θ̄], which is strictly positive. As a result, there exists δ > 0 such thatτ

κ=0 θ
κ

τ

κ


(ZG(κ)− δ)> 0 for all θ ∈ ++.

Now fix some ε ∈ (0,1). Let ᾱ≡ (1− ε)
1

2(τ+1) ∈ (0,1). If α ∈ [ᾱ,1] and λ< 1− (1− ε)
1
2n ,

then p∗ wins with probability exceeding

ατ+1(1− λ)n > (1− ε)
τ+1

2(τ+1) (1− ε)
n
2n = 1− ε

in the strategy profile σα.
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For g ∈ {0, ..., τ}, let φ(g)≡M(g, g)Z(g, g) and, for α,λ ∈ (0,1), let

φ(g,α,λ)≡
τ+g

m=g+1


λ

(1− α)(1− λ)

m−g

M(g,m)Z(g,m)

so that

Π0(σ
α,λ) = ατ (1− α)τ (1− λ)n

τ

g=0


λ(1− α)

α(1− λ)

g 
φ(g) + φ(g,α,λ)



≥ ατ (1− α)τ (1− λ)n
τ

g=0


λ(1− α)

α(1− λ)

g 
φ(g)− |φ(g,α,λ)|



For g ∈ {0, ..., τ} and α ∈ (0, ᾱ), |φ(g,α,λ)|≤ |φ(g, ᾱ,λ)|, and so there exists λ̄ ∈ (0,1) such
that |φ(g, ᾱ,λ)|≤


n−1

τ


δ for all λ ∈ (0, λ̄) and g ∈ {0, ..., τ}. Hence, for all λ ∈ (0, λ̄),

Π0(σ
α,λ)≥ ατ (1− α)τ (1− λ)n

τ

g=0


λ(1− α)

α(1− λ)

g 
φ(g)−


n− 1

τ


δ



= ατ (1− α)τ (1− λ)n

n− 1

τ

 τ

κ=0


λ(1− α)

α(1− λ)

κ
τ

κ


(Z(κ,κ)− δ)> 0,

since λ(1−α)

α(1−λ)
∈ ++. Therefore, for all λ ∈ (0, λ̄), σα is not an equilibrium for any α ∈ (0, ᾱ).

Moreover, if Z(τ, τ)> 0, there exists λ̄0 ∈ (0,1) such that Π0(σ
0,λ)> 0 for all λ ∈ (0, λ̄0).

Hence, for λε =min{1− (1− ε)
1
2n , λ̄, λ̄0}, the preceding arguments show that, for all λ ∈

(0,λε) and any α ∈ [0,1], either p∗ wins with probability exceeding (1 − ε) in the strategy
profile σα or the strategy profile σα is not an equilibrium. Q.E.D.

2.2. Population Uncertainty (Section 5.2)

Preliminaries: We first adapt our main assumptions from Section 2 of Ali, Mihm, and Siga
(2024) to the setting with population uncertainty. As previously, let M = {s1, ..., sK} be the
set of informative signals for any population size. For ω ∈ Ωn, V (ω) and S(ω) are the payoff
and signal profiles in state ω, and V d

i (E,n) is the expected payoff difference between the ex-
ante optimal and inferior policies for a voter i who conditions on the population size n and the
event E ⊆ Ωn. We continue to define V d

i (E,n) ≡ 0 when E is a null-event and assume that
V d
i (E,n) ∕= 0 otherwise.

ASSUMPTION 5: Voters are exchangeable for any population size n ∈Q: if ω,ω′ ∈Ωn and
ω permutes ω′, then Pn(ω) = Pn(ω

′).

Let p∗n be the optimal policy when voters learn only that the population size is n. By As-
sumption 5, voters agree on p∗n. We assume that p∗n does not depend on n.

ASSUMPTION 6: For all n,n′ ∈N , p∗n = p∗n′ .

ASSUMPTION 7: There is an uninformative signal, and other signals are sufficient:
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(a) Uninformative signal: For n ∈Q, ω ∈Ωn with Si(ω) = s0,

Pn(ω) = Pn(V (ω), S−i(ω))(1− λ).

for some λ ∈ (0,1).
(b) Informative signals: For n ∈Q and si ∈M, V d

i (si, n)> 0 if and only if V d
i (s

′, n′)> 0

for all n′ ∈Q, s′ ∈ Sn′
such that s′i = si.

By Assumption 7, we can again classify informative signals as good or bad news. We let
τ0 ≡ τ(n0) and P0 ≡ Pn0

.

ASSUMPTION 8: P0(B ≥ 1)> 0 and P0(G≥ τ0)> 0.

We denote the mean population size by µ and the CDF of Q by F . As observed by Myerson
(1998), being selected to participate in an election, leads a voter to update their beliefs about
the size of the electorate. To perform this updating when Q may be countably infinite, we
follow Myerson (1998) by first assuming N̄ ∈ Q players are pre-selected, each of whom is
equally likely to be recruited as a voter. We then calculate voter i’s beliefs about the size of the
electorate, conditional on the event Ri that i is a voter, and take the limit as N̄ →∞. Hence,

Q(N = n|Ri)≡ lim
N̄→∞

Q(N = n|Ri,N ≤ N̄)

= lim
N̄→∞

Q(Ri|N = n,N ≤ N̄)Q(N = n|N ≤ N̄)
N̄

n′=n0

Q(Ri|N = n′,N ≤ N̄)Q(N = n|N ≤ N̄)

= lim
N̄→∞

n

N̄

[n≤ N̄ ]Q(N = n)

F (N̄)
N̄

n′=n0

n′

N̄

Q(N = n′)

F (N̄)

=
nQ(N = n)

µ

By Assumption 7(b), a voter who receives an informative signal has a unique undominated
action. Given the population uncertainty, we focus on the set of symmetric undominated strat-
egy profiles σα, where voters with good signals vote for p∗, voters with bad signals vote for p∗,
and voters with the signal s0 independently vote for p∗ with probability α for some α ∈ [0,1].
Adapting our previous notation, let Π(α,λ) be the expected payoff difference between a vote
for p∗ and vote for p∗ for a voter who receives signal s0 when P (Si ∈M) = λ and other voters
follow the strategy-profile σα. A subscript n means “conditional on population size n," with a
subscript 0 for the case when n= n0. By Assumption 7(a), signal s0 is not informative about
the population size, payoff-profile or signal-profile of the other voters. Hence, for a voter i and
m ∈ {0, ..., n− 1},

Pn(M =m|Si = s0,N = n) =


n− 1

m


λm(1− λ)n−1−m.

We formulate the following property of absolutely convergent series for later reference.

LEMMA 2: Let a : N2 → R such that, for all t,
∞

n=0 a(n, t) is absolutely convergent and,
for all n, a(n, t) converges monotonically to 0. Then, limt→0

∞
n=0 a(n, t) = 0.
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PROOF: For (n, t) ∈ N2, let a+(n, t) = [a(n, t) ≥ 0]a(n, t) and a−(n, t) = [a(n, t) <
0]|a(n, t)|. Since

∞
n=0 a(n, t) is absolutely convergent for any t,

∞

n=0

a(n, t) =
∞

n=0

a+(n, t)−
∞

n=0

a−(n, t)

(where both series on the right-hand side converge, hence converge absolutely). We show that
limt→0

∞
n=0 a

+(n, t) = 0, and analogous argument then applies for the series of negative
terms.

Let ε> 0. First fix some some t∗. Since
∞

n=0 a
+(n, t∗) converges absolutely, there exists n̄

such that
∞

n=n̄+1 a
+(n, t∗)≤ ε

2
. Now fix n̄, since limt→0 a

+(n, t) = 0 for all n ∈ {0, ..., n̄},
there exists t̄≥ t∗ such that

n̄

n=0 a
+(n, t)< ε

2
for all t≥ t̄. Moreover, since a(n, t) is decreas-

ing in t,
∞

n=n̄+1 a
+(n, t)≤

∞
n=n̄+1 a

+(n, t∗) = ε
2

for all t≥ t∗. Hence,
∞

n=0 a
+(n, t)≤ ε

for all t≥ t̄. Q.E.D.

Proof of Theorem 4

For notational convenience, let Rn(g,m)≡Mn(g,m)Zn(g,m)nQ(n)

µ
, where Mn(g,m)≡

n−1

m,τ(n)−g,τ(n)+g−m


, and

Zn(g,m) = P (G= g|M =m,Si = s0,N = n)V d
i (Si = s0,G= g,M =m,N = n),

and let v∗ =max{|vp∗ − vp∗ | : (vp∗ , vp∗) ∈ Vp∗ × Vp∗}.

PROOF: First, suppose K∗(n0)< 0 and fix ε ∈ (0,1). We consider two cases.

Case 1: Suppose V G
0 (τ0) < 0, which implies


n0−1

τ0


Z0(τ0, τ0)

n0Q(n0)

µ
< 0 by Assumption 8.

By Assumption 4, limn→∞ nQ(n) = 0, and so

∞

n=n0+1

n−1

m=τ(n)


n− 1

m


λm−τ0(1− λ)n−1−m−τ0 |Zn(τ(n),m)|nQ(n)

µ
≤ v∗

λτ0(1− λ)τ0
,

hence, the series is absolutely convergent. Moreover, for m≥ τ(n), it follows that λm−τ0(1−
λ)n−1−m−τ0 is strictly increasing in λ ∈ (0,1/2) and converges to 0 as λ → 0. As a result,
there exists λ̄ ∈ (0,1) such that, for all λ ∈ (0, λ̄),

∞

n=n0+1

n−1

m=τ(n)

Rn(τ(n),m)λm−τ0(1− λ)n−1−m−τ0 ≤ 1

2


n0 − 1

τ0


|Z0(τ0, τ0)|

n0Q(n0)

µ

Therefore, for all λ ∈ (0, λ̄),

Π(0,λ) =
∞

n=n0

n−1

m=τ(n)

Rn(τ(n),m)λm(1− λ)n−1−m

≤ 1

2
λτ0(1− λ)τ0


n0 − 1

τ0


Z0(τ0, τ0)

n0Q(n0)

µ
< 0.
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Let λ′
ε be the unique solution to

∞
n=0(1− λ)nQ(n) = 1− ε, and λε =min{λ̄,λ′

ε}. Then, for
all λ ∈ (0,λε), σ0 is an equilibrium in which p∗ wins with probability exceeding 1− ε.

Case 2: Suppose that V G
0 (τ0)> 0 but

τ0
κ=0 θ

κ

τ0
κ


Z0(κ,κ)< 0 for some θ ∈ ++.

For any λ ∈ (0, θ
1−θ

), let αλ ≡ λ
θ(1−λ)

; then, αλ ∈ (0,1), is strictly increasing in λ, and
converges to 0 as λ→ 0.

Since limn→∞ nQ(n) = 0,

∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g

Rn(g,m)λm(1− λ)n−n0−mατ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m ≤ v∗

ατ0
λ (1− αλ)

τ0

and so the series on the left-hand side is absolutely convergent for any λ ∈ (0, θ
1+θ

). Moreover,

λm(1− λ)n−n0−mατ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m

= θ−n+n0+m(λ(1− λ)θ− λ2)τ(n)−τ0


λ

θ(1− λ)− λ

m−g

,

which is strictly increasing in λ ∈ (0, θ
2(1+θ)

) and converges to 0 as λ→ 0. As a result, there
exists λ̄ ∈ (0, θ

2(1+θ)
) such that, for all λ ∈ (0, λ̄),

∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g

|Rn(g,m)|λm(1− λ)n−n0−mατ(n)−τ0−g
λ (1− αλ)

τ(n)−τ0+g−m

≤ 1

4


n0 − 1

τ0


n0Q(n0)

µ

τ0

κ=0

θκ

τ0
κ


|Z0(κ,κ)|

Moreover,

τ0

g=0

g+τ0

m=g+1

|R0(g,m)|λm(1− λ)−mα−g
λ (1− αλ)

g−m

=

τ0

g=0

g+τ0

m=g+1

|R0(g,m)|θm


λ

θ(1− λ)− λ

m−g

,

which converges to 0 as λ→ 0. Therefore, there exists λ̄′ ∈ (0, λ̄) such that

τ0

g=0

g+τ0

m=g+1

|R0(g,m)|λm(1− λ)−mα−g
λ (1− αλ)

g−m

≤ 1

4


n0 − 1

τ0


n0Q(n0)

µ

τ0

κ=0

θκ

τ0
κ


|Z0(κ,κ)|

for all λ ∈ (0, λ̄′). Therefore, for all λ ∈ (0, λ̄′),

Π(αλ,λ) =
∞

n=n0

τ(n)

g=0

g+τ(n)

m=g

|Rn(g,m)|λm(1− λ)n−1−mατ(n)−g
λ (1− αλ)

τ(n)+g−m
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≤ 1

2
ατ0

λ (1− αλ)
τ0(1− λ)n0−1


n0 − 1

τ0


n0Q(n0)

µ

τ0

κ=0

θκ

τ0
κ


Z0(κ,κ)< 0.

Finally, analogous to the argument in Case 1, V G
0 (τ0)> 0 implies that there exists λ̄′′ ∈ (0, λ̄′)

such that Π(0,λ) > 0 for all λ ∈ (0, λ̄′′). As a result, for any λ ∈ (0, λ̄′′) there exists α′
λ ∈

(0,αλ) such that Π(α′
λ,λ) = 0; hence an equilibrium.

Now let λ′
ε be the unique solution to

∞
n=n0


θ(1−λ)−λ

θ

n

Q(n) = 1−ε when ε≤ θ−1 and 1

otherwise, and let λε =min{λ̄′′,λ′
ε}. Then, for all λ ∈ (0,λε), σα′

λ is an equilibrium in which
p∗ wins with probability exceeding 1− ε.

Now, suppose K∗(n0) > 0 and fix ε ∈ (0,1). The advantageous correlation condition implies
that Z0(τ0, τ0),Z0(0,0)> 0, and therefore there exists δ > 0 such that

τ0
κ=0 θ

κ

τ0
κ


Z0(κ,κ)>

δ for all θ ∈ ++.
Let νε be the unique solution in (0,1) to

∞
n=n0

νnQ(n) = 1− ε, and let λ̄= 1−√
νε and

ᾱ=
√
νε. Then, for any α ∈ (ᾱ,1] and λ ∈ (0, λ̄), p∗ wins with probability exceeding

∞

n=n0

ᾱn(1− λ̄)nQ(n) =

∞

n=n0

νn
ε Q(n) = 1− ε

in the strategy profile σα. It therefore suffices to show that there exists λε ∈ (0, λ̄) such that,
for all λ ∈ (0,λε) and α ∈ [0, ᾱ], σα is not an equilibrium. We do this by first showing that
there exists λ̄0 ∈ (0,1) such that σ0 is not an equilibrium for all λ ∈ (0, λ̄0) (step 1), and then
showing that there exists λ∗ ∈ (0,1) such that, for all λ ∈ (0,λ∗), σα is not an equilibrium for
any α ∈ (0, ᾱ) (step 2).

Step 1: Since limn→∞ nQ(n) = 0,

∞

n=n0+1

n−1

m=τ(n)

|Rn(τ(n),m)|

n− 1

m


λm−τ0(1− λ)n−1−m−τ0 ≤ v∗

λτ0(1− λ)τ0

and so the series is absolutely convergent. Moreover, for m ≥ τ(n) > τ0, λm−τ0(1 −
λ)n−1−m−τ0 is strictly increasing in λ ∈ (0,1/2) and converges to 0 as λ → 0. As a result,
there exists λ0 ∈ (0,1) such that

∞

n=n0+1

n−1

m=τ(n)

|Rn(τ(n),m)|λm−τ0(1− λ)n−1−m−τ0 ≤ 1

4


n0 − 1

τ0


Z0(τ0, τ0)

n0Q(n0)

µ

Moreover, since λm−τ0(1− λ)τ0−m is increasing in λ ∈ (0,1) and converges to 0 as λ→ 0,
there exists λ′

0 ∈ (0,1) such that

n0−1

m=τ0+1


n0 − 1

m


λm−τ0(1− λ)τ0−m|Z0(τ0,m)|≤ 1

4


n0 − 1

τ0


Z0(τ0, τ0)

Let λ̄0 =min{λ0,λ
′
0}; then for all λ ∈ (0, λ̄0),

Π(0,λ) =


n=n0



m=τ(n)

Rn(τ(n),m)


n− 1

m


λm(1− λ)n−1−m
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≥ 1

2


n0 − 1

τ0


λτ0(1− λ)τ0Z0(τ0, τ0)

n0Q(n0)

µ
> 0,

and so σ0 is not an equilibrium.

Step 2: It remains to show that there exists λ∗ ∈ (0,1) such that, for all λ ∈ (0,λ∗), σα is not an
equilibrium for any α ∈ (0, ᾱ). We show this by establishing a contradiction. Suppose that, for
any λ∗ ∈ (0,1), there exists λ ∈ (0,λ∗) and αλ ∈ (0, ᾱ) such that Π(αλ,λ) = 0; hence, there
exists a sequence (λt,αt)

∞
t=1 such that λt → 0 and, for all t≥ 1, αt ∈ (0, ᾱ), and Π(αt,λt) = 0,

where

Π(αt,λt) =
∞

n=n0

τ(n)

g=0

g+τ(n)

m=g

Rn(g,m)λm
t (1− λt)

n−1−mατ(n)−g
t (1− αt)

τ(n)+g−m. (4)

We consider three collectively exhaustive cases: (i) there is a subsequence such that
αt(1−λt)

λt
→ 0, (ii) there is a subsequence such that αt → 0 but αt(1−λt)

λt
≥ γ for some γ > 0,

and (iii) there is a subsequence such that αt ≥ γ for some γ > 0.

Case (i). In this case, there is a subsequence such that λt,αt,
αt(1−λt)

λt
,λt(1 − λt)(1 −

αt),
λt

(1−λt)(1−αt)
are all decreasing, and converge to 0. From Π(αt,λt) = 0, it follows that

(for all t, with the subscript suppressed for convenience),

−

n0 − 1

τ0


λτ0(1− λ)τ0(1− α)τ0Z0(τ0, τ0)

n0Q(n0)

µ

=

τ0−1

g=0

R0(g, g)λ
g(1− λ)n0−1−gατ0−g(1− α)τ0

+

τ0

g=0

g+τ0

m=g+1

R0(g,m)λm(1− λ)n0−1−mατ0−g(1− α)τ0+g−m

+
∞

n=n0+1

Rn(τ(n), τ(n))λ
τ(n)(1− λ)τ(n)(1− α)τ(n)

+

∞

n=n0+1

τ(n)−1

g=0

Rn(g, g)λ
g(1− λ)n−1−gατ(n)−g(1− α)τ(n)

+
∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m

Therefore (dividing both sides by [λ(1− λ)(1− α)]τ0 ),

−

n0 − 1

τ0


Z0(τ0, τ0)

n0Q(n0)

µ

=

τ0−1

g=0

R0(g, g)


α(1− λ)

λ

τ0−g
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+

τ0

g=0

g+τ0

m=g+1

R0(g,m)


α(1− λ)

λ

τ0−g 
λ

(1− λ)(1− α)

m−g

+
∞

n=n0+1

Rn(τ(n), τ(n))[λ(1− α)(1− λ)]τ(n)−τ0

+
∞

n=n0+1

τ(n)−1

g=0

Rn(g, g)


α(1− λ)

λ

τ(n)−g

[λ(1− α)(1− λ)]τ(n)−τ0

+
∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m)


α(1− λ)

λ

τ(n)−g 
λ

(1− λ)(1− α)

m−g

[λ(1− α)(1− λ)]τ(n)−τ0 .

By Lemma 2, the left-hand side converges to 0 but the right-hand side is constant and bounded
away from 0.

Case (ii). In this case, there is a subsequence such that λt,αt,
αt

1−αt
,αt(1−λt)

2(1−αt) are all
decreasing and converge to 0. From Π(αt,λt) = 0 it follows that (t subscript suppressed)

−
τ0

g=0


n0 − 1

g


n0 − 1− g

τ0 − g


λg(1− λ)n0−1−gατ0−g(1− α)τ0Z0(g, g)

n0Q(n0)

µ

=

τ0

g=0

τ0

m=g+1

R0(g,m)λm(1− λ)n0−1−mατ0−g(1− α)τ0+g−m

+
∞

n=n0+1

τ(n)

g=0

Rn(g, g)λ
g(1− λ)n−1−gατ(n)−g(1− α)τ(n)

+

∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m

Therefore (dividing both sides by ατ0(1− α)τ0(1− λ)n0−1),

−

n0 − 1

τ0


n0Q(n0)

µ

τ0

g=0


τ0
g


λ

α(1− λ)

g

Z0(g, g)

=

τ0

g=0

τ0

m=g+1

R0(g,m)


λ

α(1− λ)

m
α

1− α

m−g

+
∞

n=n0+1

τ(n)

g=0

Rn(g, g)


λ

α(1− λ)

g

[α(1− α)(1− λ)2]τ(n)−τ0

+

∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m)


λ

α(1− λ)

m
α

1− α

m−g

[α(1− α)(1− λ)2]τ(n)−τ0

≡Π̃(α,λ)
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If there exists a further subsequence such that λt

αt(1−λt)
is decreasing, then the left-hand side

converges to 0 by Lemma 2 while the right-hand side is constant. Otherwise, there exists a
subsequence such that λt

αt(1−λt)
converges up to some θ∗ > 0. For each t in that subsequence,

let α∗
t =

λt

θ∗(1−λt)
. Eventually, α∗

t ∈ (0,1), and so

τ0

g=0

τ0

m=g+1

R0(g,m) (θ∗)m


α∗

1− α∗

m−g

+
∞

n=n0+1

τ(n)

g=0

Rn(g, g) (θ
∗)g [α∗(1− α∗)(1− λ)2]τ(n)−τ0

+
∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m) (θ∗)m


α∗

1− α∗

m−g

[α∗(1− α∗)(1− λ)2]τ(n)−τ0

is absolutely convergent. Since, for each t there exists t′ ≥ t such that αt′
1−αt′

≤ αt

1−αt
and

αt′(1− αt′)(1− λt′)
2 ≤ α∗

t (1− α∗
t )(1− λt)

2, it follows that

τ0

g=0

τ0

m=g+1

R0(g,m) (θ∗)m


α

1− α

m−g

+
∞

n=n0+1

τ(n)

g=0

Rn(g, g) (θ
∗)g [α(1− α)(1− λ)2]τ(n)−τ0

+
∞

n=n0+1

τ(n)

g=0

g+τ(n)

m=g+1

Rn(g,m) (θ∗)m


α

1− α

m−g

[α(1− α)(1− λ)2]τ(n)−τ0

is eventually absolutely convergent, and then converges 0 by Lemma 2.

Case (iii). In this case, there is a subsequence such that λt is decreasing and, since α ∈ (0, ᾱ),
there exists some γ ∈ (0,1/2) such that αt ∈ [γ, (1−γ)] for all t. From Π(αt,λt) = 0 it follows
that (t subscript suppressed)

−
∞

n=n0


n− 1

τ(n)


(1− λ)n−1ατ(n)(1− α)τ(n)Zn(0,0)

nQ(n)

µ

=
∞

n=n0

τ(n)

m=1

Rn(0,m)λm(1− λ)n−1−mατ(n)(1− α)τ(n)−m

+
∞

n=n0

τ(n)

g=1

g+τ(n)

m=g

Rn(g,m)λm(1− λ)n−1−mατ(n)−g(1− α)τ(n)+g−m
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Since α ∈ [δ,1− δ] it follow that ατ(n)(1−α)τ(n) ≥ γτ(n), and so the left-hand side is greater∞
n=n0


n−1

τ(n)


(1− λ)n−1δτ(n)Zn(0,0)

nQ(n)

µ
, which converges to

∞

n=n0


n− 1

τ(n)


δτ(n)Zn(0,0)Q(n)> 0,

while the right-hand side converges to 0 by Lemma 2. Q.E.D.

2.3. The Role of Elites (Section 5.3)

Preliminaries: For any state ω, we denote by GE(ω) the number of elites who receive good
news, ME(ω) the number of elites who receive informative signals, GN(ω) =G(ω)−GE(ω)
and MN(ω) =M(ω)−ME(ω), with typical realizations of these random variables denoted,
respectively, by gE , mE , gN , and mN .

For gE ∈ {0, ..., |E|}, gN ∈ {0, ..., |NE|}, mE ∈ {ge, ..., |E|}, and mN ∈ {ge, ..., |NE|},

Zi(gE, gN ,mE,mN)≡ P (gE, gN |Si = s0,mE,mN)Vi(Si = s0, gE, gN ,mE,mN).

Proof of Proposition 8

Fix ε ∈ (0,1) and let σ∗ ∈Σ∗ with σ∗
i (s

0) = [i ∈ E ]. Since |E|≤ τ , p∗ wins for the strategy
profile σ∗ in the event {S = s0}, and therefore wins with probability exceeding 1 − ε for
all λ ∈ (0,1 − (1 − ε)

1
n ). Hence, it is sufficient to show that σ∗ is a strict equilibrium for λ

sufficiently small.
If i ∈ E receives signal s0, then

Πi(σ
∗,λ) = λτ−|E|+1

|E|−1

gE=0

|E|−1

mE=gE

|NE|

mN=ĝ(mE ,mN )


|E|− 1

mE


|NE|
mN



λmE+mN−τ+|E|−1(1− λ)n−1−mE−mNZi(gE, ĝ(mE,mN),mE,mN),

where ĝ(mE,mN) = τ − (|E|− 1− (me − ge)). Since

lim
λ→0

Πi(σ
∗,λ)λ−τ+|E|−1 =


|NE|

τ − |E|+ 1


Zi(0, τ − |E|+ 1,0, τ − |E|+ 1),

which is strictly positive by elite-adverse correlation, there exists λ̄E ∈ (0,1) such that
Πi(σ

∗,λ)> 0 for all elites who receive the signal s0 for all λ ∈ (0, λ̄E).
If i ∈NE receives signal s0, then

Πi(σ
∗,λ) = λτ−|E|

|E|

gE=0

|E|

mE=gE

|NE|−1

mN=ĝ(mE ,mN )−1


|E|
mE


|NE|− 1

mN



λmE+mN−τ+|E|(1− λ)n−1−mE−mNZi(gE, ĝ(mE,mN)− 1,mE,mN).

Since

lim
λ→0

Πi(σ
∗,λ)λ−τ+|E| =


|NE|
τ − |E|


Zi(0, τ − |E|,0, τ − |E|),
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which is strictly negative by elite-adverse correlation, there exists λ̄NE ∈ (0,1) such that
Πi(σ

∗,λ)< 0 for all non-elites who receive the signal s0 for all λ ∈ (0, λ̄NE).
As a result, σ∗ is an equilibrium for all λ ∈ (0,min{λ̄E, λ̄NE}). Q.E.D.

Proof of Proposition 9

For some (PW , vW , vL, e), let i ∈NE and w ∈ {τ + 1, ..., n}. Then,

P (GN = τ − e|Si = s0,M =MN = τ − e,W =w)

=


w− e

n− e



w− e− 1

τ − e


n− 1− e− (w− e− 1)

0




n− 1− e

τ − e



+


n−w

n− e



w− e

τ − e


n− 1− e− (w− e)

0




n− e− 1

τ − e



=


w− e

τ − e




n− e

τ − e



So, P (GN = τ−e|Si = s0,M =MN = τ−e,W = τ) =
(τ−e
τ−e)
(n−e
τ−e)

. Hence, for any w ∈ {τ, ..., n},

P (W =w|E0(e)) =


w− e

τ − e


PW (w)

n

w′=τ


w′ − e

τ − e


PW (w′)

.

where E0(e) = {Si = s0,G=M =MN = τ − e} for i ∈NE . Since

P (Wi|E0(e),W =w) =
w− e− (τ − e)

n− e− (τ − e)
=

w− τ

n− τ
,

it follows that

Vi(E0(e)) =
n

w=τ


w− τ

n− τ


vW −


n−w

n− τ


vL



w− e

τ − e


PW (w)

n

w′=τ


w′ − e

τ − e


PW (w′)

.

For 0≤ e < e′ ≤ τ and τ ≤w <w′ ≤ n,

w′ − e′

τ − e′


w− e

τ − e


<


w− e′

τ − e′


w′ − e

τ − e
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and so PW (.|E0(e)) LR PW (.|E0(e
′)). Since P (Wi|E0(e),W = w) is strictly increasing in

w for i ∈NE , it follows that Vi(E0(e))≥ Vi(E0(e
′)). Q.E.D.
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