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NOTES AND COMMENTS

On the surjectivity of the mapping between utilities and choice
probabilities

Andriy Norets
Department of Economics, Princeton University

Satoru Takahashi
Department of Economics, National University of Singapore

This note considers a standard multinomial choice model. It is shown that if the
distribution of additive utility shocks has a density, then the mapping from de-
terministic components of utilities to choice probabilities is surjective. In other
words, any vector of choice probabilities can be obtained by selecting suitable
utilities for alternatives. This result has implications for at least three areas of
interest to econometricians: the Hotz and Miller (1993) estimator for structural
dynamic discrete choice models, nonparametric identification of multinomial
choice models, and consistency of conditional density estimators based on co-
variate dependent mixtures.
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covariate dependent mixtures.
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1. Main result and its implications

Multinomial choice models were introduced in economics by McFadden (1974) and
since then have been extensively used in applications. In the model, the agent chooses
between J+1 possible alternatives denoted by {0�1� � � � � J}. The utility from choosing al-
ternative j is given by uj +εj , where uj is a deterministic component of the utility, which
might depend on agent’s and alternative’s characteristics, and εj is a random shock. Let
us denote the distribution of ε = (ε0� � � � � εJ) by G and assume that it satisfies the fol-
lowing assumption.

Assumption 1. G is absolutely continuous with respect to the Lebesgue measure, that is,
G has a density with respect to the Lebesgue measure.

Multinomial logit and probit models are most commonly used in applications. The
former is obtained when εj ’s are independently identically distributed (i.i.d.) according
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to an extreme value type I distribution; the latter is obtained when εj ’s have a joint nor-
mal distribution.

Conditional on (u0� � � � � uJ), the probability of choosing alternative j is given by

pj = Pr(ε :uj + εj ≥ ui + εi�∀i �= j)� (1)

A location normalization on uj ’s can be introduced without a loss of generality. Thus,
let u0 = 0 and u= (u1� � � � � uJ). Equation (1) defines a mapping φ :RJ → ΔJ , where ΔJ =
{p= (p0�p1� � � � �pJ) :pj ≥ 0�

∑
j pj = 1} is a J-dimensional simplex. (Ties, ui + εi = uj +

εj , i �= j, occur with probability 0 due to Assumption 1.)

Theorem 1. Under Assumption 1, the image of φ, φ(RJ), includes the interior of ΔJ . If
the support ofG is bounded, then φ(RJ)= ΔJ ; if the support is equal to R

J+1, then φ(RJ)
is equal to the interior of ΔJ .

Corollary 1. Suppose G satisfies Assumption 1 and the support of G is connected.1

Then φ−1 is well defined on the interior of ΔJ . If, in addition, the support of G is equal
to R

J+1, then φ is a bijection between R
J and the interior of ΔJ .

Hofbauer and Sandholm (2002) showed the surjectivity of φ in their proof of The-
orem 2.1 along with other results under the assumption that the density of G is strictly
positive andφ is continuously differentiable. In the following section, we present a proof
of Theorem 1 under weaker Assumption 1, which does not require the full support forG
and continuous differentiability of φ. Beyond this technical improvement, the purpose
of this note is to bring the surjectivity result to econometrics literature. Theorem 1 does
not appear to be known in econometrics literature although it has important implica-
tions for at least three areas of interest to econometricians: the Hotz and Miller (1993)
estimator for structural dynamic discrete choice models, nonparametric identification
of multinomial choice models, and consistency of conditional density estimators based
on covariate dependent mixtures. We briefly review these implications below.

A structural dynamic discrete choice model is a dynamic optimization model with
discrete controls. Eckstein and Wolpin (1989), Rust (1994), Miller (1997), Aguirregabiria
and Mira (2010), and Keane, Todd, and Wolpin (2011) surveyed the literature on appli-
cations of these models in empirical work. Rust (1987) introduced a specification of dy-
namic discrete choice model that directly extends (1) so that uj ’s are the deterministic
components of the alternative specific value functions. Hotz and Miller (1993) proposed
a computationally attractive estimation procedure for this specification, which together
with its extensions (Aguirregabiria and Mira (2007b), Pesendorfer and Schmidt-Dengler
(2008), and Bajari, Benkard, and Levin (2007)) is widely applied, especially in empirical
industrial organization. Hotz and Miller (1993) showed in their Proposition 1 that if G
has a positive continuous density on R

J+1, then φ is differentiable and has an inverse,
φ−1, defined on its image, φ(RJ) (they did not show that the image, φ(RJ), covers the

1The support of G is the set of ε ∈ R
J+1 such that G[O]> 0 for any open neighborhood O of ε. Equiva-

lently, the support ofG is the smallest closed set with probability 1.
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interior of the simplex; see line 7 in their proof of Proposition 1 for a precise statement of
their result). Based on this result, Hotz and Miller (1993) proposed a two stage estimator.
In the first stage of the procedure, the choice probabilities are estimated nonparamet-
rically as functions of covariates (observed state variables). Let us denote this estimator
by p̂. In the second stage, φ is inverted to obtain û= φ−1(p̂), which is then used to es-
timate structural parameters without ever solving the structural dynamic optimization
model (solution of the optimization problem is very computationally intensive). Hotz
and Miller’s (1993) procedure is usually used with the assumption that εj ’s are extreme
value i.i.d. In this case,φ andφ−1 have known analytical expressions (multinomial logit;
see Domencich and McFadden (1975) for derivations) and φ is clearly surjective (its im-
age is equal to the interior of ΔJ ). Suppose an econometrician is not willing to use an
extreme value distribution for G and uses another distribution instead, for example, a
normal distribution. If the implied φ were not surjective, then it could have happened
that φ−1 were not defined at p̂ and Hotz and Miller’s (1993) procedure would be prob-
lematic. Theorem 1 shows that this does not happen under Hotz and Miller’s (1993) as-
sumptions.

Next, let us consider implications of the theorem for identification of multinomial
choice models. Sufficient conditions for semi- and nonparametric identification of u
and G can be found in Matzkin (1991, 1993). Theorem 1 shows that without additional
restrictions on u as functions of covariates, the knowledge ofp (p can be estimated from
data on individual choices) does not imply any restrictions on G, at least in the class of
distributions satisfying Assumption 1. Thus, even partial (or set) identification of G is
not possible without additional restrictions on u.

Finally, let us consider implications of Theorem 1 for models based on covariate de-
pendent mixture models. Covariate dependent mixtures, also known as mixtures of ex-
perts in statistics, were considered by Jacobs, Jordan, Nowlan, and Hinton (1991), Jordan
and Xu (1995), Peng, Jacobs, and Tanner (1996), Wood, Jiang, and Tanner (2002), Geweke
and Keane (2007), and Villani, Kohn, and Giordani (2009), among others. Consider the
finite location–scale mixture model for a conditional density of y given covariates x,

p(y|x�μ�σ)=
J∑
j=0

πj(x)f

(
y −μj
σ

)
� (2)

where f is a density and (π0(x)� � � � �πJ(x)) are mixing probabilities. Norets (2010) and
Norets and Pelenis (2011) showed that if the mixing probabilities are flexible functions
of covariates x, then the model in (2) can approximate and consistently estimate large
nonparametric classes of conditional densities. As shown in Geweke and Keane (2007), a
computationally convenient way to implement (2) is to use a multinomial choice model
for (π0(x)� � � � �πJ(x)) combined with polynomials for u(x) = (u1(x)� � � � �uJ(x)). Alter-
native flexible specifications for u(x) include splines and series expansions. If u(x) are
modeled flexibly, then the Hotz and Miller (1993) results on the existence of the inverse
of φ and Theorem 1 imply that the resulting mixing probabilities are flexible functions
of covariates. Corollary 3.1 of Norets (2010) gives a rigorous proof of an approximation
result for (2) used with a multinomial logit model for (π0(x)� � � � �πJ(x)). Theorem 1 im-
plies that the result holds for anyG satisfying the assumptions of Hotz and Miller (1993).
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2. Proof of Theorem 1

First, let us redefine the mapping from utilities to choice probabilities so that it has the
domain equal to a J-dimensional simplex. This is achieved by using log(xj) instead of
uj inside the mapping from utilities to choice probabilities. Since uj ’s can have a loca-
tion normalization, it is without loss of generality to restrict xj ’s to the simplex. More
formally, for any finite uj , j = 0�1� � � � � J, let xj = exp(uj − log[∑J

i=0 exp(ui)]). Then it is
easy to see that (i) using log(xj), j = 0� � � � � J, as utilities results in the same choice prob-
abilities as uj ’s, (ii) xj > 0, and (iii)

∑J
j=0 xj = 1. Let intΔJ = {x = (x0�x1� � � � � xJ) :xj >

0�
∑
j xj = 1} denote the interior of ΔJ and let bdΔJ = ΔJ \ (intΔJ) denote the boundary

of ΔJ . For each x= (x0�x1� � � � � xJ) ∈ ΔJ , define ψ :ΔJ → ΔJ by

ψj(x)=
{

Pr(ε : lnxj + εj ≥ lnxi + εi�∀i �= j)� if xj > 0�
0� if xj = 0�

It follows from this definition that φ(RJ) = ψ(intΔJ). Also, for any x ∈ bdΔJ , we have
ψ(x) ∈ bdΔJ . Thus, to prove Theorem 1, it is enough to show ψ(ΔJ)= ΔJ .

Note that by Assumption 1, ψ is continuous.2 Also note that the restriction of ψ to
bdΔJ does not map antipodal points to the same point. More precisely, for any x ∈ bdΔJ ,
denote by x∗ the point in bdΔJ that is hit by the ray from x to (1/(J + 1)� � � � �1/(J + 1)).
Then, for any x ∈ bdΔJ , we have ψ(x) �= ψ(x∗) because ψj(x) = 0 < ψj(x∗) whenever
xj = 0. This property turns out to be sufficient to show ψ(ΔJ) = ΔJ . The proof is a
standard application of the Borsuk–Ulam theorem in algebraic topology. For a text-
book treatment of the theorem and related definitions and results, see, for example,
Fulton (1995). Also, Kojima and Takahashi (2008) used a similar proof technique in their
Lemma 1(d) to show the surjectivity ofφwhen ε is independently distributed according
to an exponential distribution.

Suppose, on the contrary, that there exists x0 ∈ ΔJ such that x0 /∈ψ(ΔJ). For each x ∈
ΔJ , define g(x) by the point in bdΔJ that is hit by the ray from x0 to ψ(x). Then g :ΔJ →
bdΔJ is a continuous function that coincides with ψ on bdΔJ . Thus the restriction of ψ
to bdΔJ has degree 0.

Let F be a homeomorphism from bdΔJ to a (J − 1)-dimensional sphere SJ−1 = {y ∈
R
J : |y| = 1} that preserves antipodal points, that is, F(x∗)= −F(x) for each x ∈ bdSJ . For

example,

F(x)= (x1� � � � � xJ)− (1/(J + 1)� � � � �1/(J + 1))
|(x1� � � � � xJ)− (1/(J + 1)� � � � �1/(J + 1))| �

Then h0 = F ◦ ψ ◦ F−1 :SJ−1 → SJ−1 is continuous, has degree 0, and satisfies h0(y) �=
h0(−y) for any y ∈ SJ−1.

Define a homotopyH :SJ−1 × [0�1] → SJ−1:

H(y� t)= h0(y)− th0(−y)
|h0(y)− th0(−y)| �

2Assumption 1 is only used to obtain continuity ofψ and zero probability of ui +εi = uj +εj , i �= j. These
properties can be obtained even under weaker assumptions, for example, εj are independent and have a
Cantor distribution. Thus, absolute continuity ofG is not required for the results.
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Note that H is well defined and continuous since h0(y) �= h0(−y). We have h0 =H(·�0).
Since h1 :=H(·�1) satisfies h1(y)= −h1(−y) for all x ∈ SJ−1, it follows from the Borsuk–
Ulam theorem that h1 has an odd degree. This contradicts that h0 and h1 are homotopic.

3. Proof of Corollary 1

Mapping φ was originally defined on R
J under the location normalization for utilities.

We define φ̃(u)=φ((u1 −u0� � � � � uJ −u0)) for u ∈ R
J+1. Suppose for u�u′ ∈ R

J+1, φ̃(u)=
φ̃(u′)= p ∈ intΔJ . To prove the claim of the corollary, it suffices to show that uj − u0 =
u′
j − u′

0 for any j.
Let J∗ = arg maxj=0�����J[uj − u′

j]. If J∗ = {0�1� � � � � J}, then uj − u0 = u′
j − u′

0 for any j
and the corollary is proved. To obtain a contradiction, we assume {0� � � � � J} \ J∗ �= ∅.

Let O = {ε ∈ R
J+1 : arg maxj[uj + εj] ⊂ J∗}. Similarly, let O′ = {ε ∈ R

J+1 : arg maxj[u′
j +

εj] ∩ J∗ = ∅}. Let us establish the following three properties of O and O′.

(i) O and O′ are open in R
J+1. For any ε ∈ O, any j ∈ J∗, and any k /∈ J∗, uj + εj >

uk+εk, and if we change ε by a sufficiently small amount, the resulting optimal choice(s)
conditional on u will still be in J∗. Thus, O is open. Similarly, O′ is open.

(ii) BothO andO′ have nonempty intersections with the support ofG, denoted by S.
If O ∩ S = ∅, then pj = 0 for any j ∈ J∗, which contradicts p ∈ intΔJ . If O′ ∩ S = ∅, then
pj = 0 for any j /∈ J∗, which contradicts p ∈ intΔJ .

(iii) O ∪O′ = R
J+1. Suppose ε /∈O. Then some k /∈ J∗ is an optimal choice conditional

on u and for any i ∈ {0� � � � � J}, uk − ui ≥ εi − εk. By definition of J∗, uk − uj < u
′
k − u′

j

for any j ∈ J∗. Thus, for any j ∈ J∗, u′
k − u′

j > εj − εk and j cannot be an optimal choice

conditional on u′. Thus, ε ∈O′ and O ∪O′ = R
J+1.

By the definition of connectedness, there is no pair of sets O, O′ such that (i) O, O′
are both open in R

J+1, (ii) O ∩ S and O′ ∩ S are both nonempty, (iii) O ∪ O′ ⊇ S, and
(iv) O ∩O′ ∩ S is empty. Since (i)–(iii) are true, (iv) must be false.

As O ∩ O′ ∩ S �= ∅, by the definition of the support, we have G[O ∩ O′] > 0. Thus,∑
j∈J∗ φ̃j(u) =G(O) > G(RJ+1 \ O′) = ∑

j∈J∗ φ̃j(u′), which is a contradiction to φ̃(u) =
φ̃(u′).
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