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Bounds in auctions with unobserved heterogeneity

Timothy B. Armstrong
Yale University

Many empirical studies of auctions rely on the assumption that the researcher
observes all variables that make auctions differ ex ante. When there is unobserved
heterogeneity, the direction of the bias this causes is known only in a few restric-
tive examples. In this paper, I show that ignoring unobserved heterogeneity in
a first price sealed bid auction with symmetric independent private values gives
bounds on several quantities of economic interest under surprisingly general con-
ditions. The results apply to certain quantities related to expectations of valua-
tions, including bidder profits (which can be used to recover bid preparation costs
in entry models) and the efficiency loss of assigning the object randomly. I then
turn to estimation of these bounds, and show that, when only the winning bid is
available, the rate of convergence can be slower than the square root of the num-
ber of auctions observed and depends on the number of bidders. These results ap-
ply more generally to estimation of functionals of a distribution from repeated ob-
servations of an order statistic and may be of independent interest. I apply these
methods to bound the efficiency loss from replacing a set of procurement auc-
tions for highway construction in Michigan with random assignment.

Keywords. Auctions, unobserved heterogeneity, L-statistics, nonstandard asymp-
totics.

JEL classification. C14, C44.

1. Introduction

Since the seminal work of Guerre, Perrigne, and Vuong (2000), numerous empirical stud-
ies of auctions have used models of optimizing behavior to recover bidders’ values. If the
researcher observes outcomes of many auctions that differ only in observable variables,
many standard auction models provide enough structure to completely recover a bid-
der’s decision problem. The optimal bid as a function of the bidder’s type can then be
inverted to recover the distribution of bidder values from observed bids.

A crucial assumption of this approach is that the researcher is able to observer mul-
tiple auctions in which participants differ ex ante across auctions only in observable
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ways. This amounts to assuming that the only difference between the knowledge of the
econometrician and the auction participants about their environment comes from sam-
pling error. In most cases, a more realistic assumption is that bidders have knowledge
about aspects of the object being auctioned or the preferences of other bidders that vary
across auctions and that the researcher cannot observe. This problem of unobserved
heterogeneity makes estimates that do not take it into account inconsistent.

While methods have been proposed for consistently estimating bidder valuations
under unobserved heterogeneity, these methods require data on multiple bids (typically,
data on all bids are required, since a strict subset of bids can only be used if they are
from the same bidders, rather than, say, the top three bids) or instruments that can be
used to condition on it, as well as additional assumptions on the form of the unobserved
heterogeneity. With only data on the winning bid or a single bidder, it is not clear what
can be learned.

In this paper, I show that, in a symmetric first price sealed bid auction with inde-
pendent private values, several economic primitives of interest in applications can be
bounded using only data on a single bidder or data on the winning bid. The results ap-
ply to certain quantities related to expectations of valuations and include expected bid-
der profits, entry costs, and the long run loss in surplus of replacing the auction with
random or arbitrary allocation. Many of these bounds are simply the naive estimates
that do not take unobserved heterogeneity into account. When only data on a single
bid are available and a model with no unobserved heterogeneity cannot be ruled out,
these bounds are sharp. While the bounds confirm existing intuition about the direc-
tion of bias caused by certain types of unobserved heterogeneity, I show that they hold
with surprising generality. The unobserved heterogeneity can take essentially any form,
as long as the auction falls under the symmetric independent private values framework
after conditioning on it.

I then turn to the estimation of these bounds. The estimation of the efficiency loss
from random allocation requires the estimation of the mean of the bid distribution.
While this is a trivial problem with data from a single bidder, I show that this problem be-
comes much more difficult with repeated observations of the winning bid. In contrast to
the case of data on a single bidder or data on all bids, with only data on the winning bid,
the mean of the bid distribution (or the value distribution) cannot always be estimated
at a rate proportional to the square root of the number of auctions observed. I derive the
rate of convergence, and conditions under which the limiting variable is normal. These
depend on the number of bidders and the shape of the distribution of the winning bid.
While I develop these results for first price auctions, they apply more generally to esti-
mation of the mean or other statistics of a distribution from repeated observations of the
greatest order statistic, and similar ideas will apply to other order statistics, such as re-
peated observations of the second largest value in an ascending auction. I give more de-
tailed intuition in Section 3 and formal proofs in the Appendix, but the basic intuition is
that, unlike estimating a fixed quantile from repeated observations from an order statis-
tic, estimating the mean requires knowledge of the tails, which are observed infrequently
when only an order statistic is observed. The sample analogue requires placing increas-
ing weight on observations at the tail, which can lead to nonstandard rates of conver-
gence and asymptotic distributions. In this sense, this issue is related to the slow rates of
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convergence derived by Khan and Tamer (2007), Khan and Nekipelov (2008), Andrews
and Schafgans (1998), and others for parameters that are “identified at infinity,” and has
also been pointed out recently in the context of ascending auctions by Menzel and Mor-
ganti (2011), who took a different approach (see the discussion below). It is important
to note that while this problem with slower rates of convergence when only observing
the winning bid arises in estimating statistics that must be interpreted as bounds under
unobserved heterogeneity, it is distinct from the problem of unobserved heterogeneity.
Even in the case of no unobserved heterogeneity, where the bounds being estimated are
equal to the actual parameters of interest, rates of convergence can be slower when only
observing the winning bid.

I apply these results to bound the surplus loss from replacing a subset of Michi-
gan highway procurement auctions with a mechanism that leads to random or arbi-
trary assignment. As documented by Decarolis (2010), various forms of “average bid”
auctions, which lead to random allocation in equilibrium, are common in highway pro-
curement auctions, making this a particularly interesting application for this counter-
factual policy change. I also provide estimates that use the methods of Krasnokutskaya
(2009), which require additional data and assumptions, to account for unobserved het-
erogeneity. While the bounds that use only the winning bid are somewhat conservative
compared to the estimates proposed by Krasnokutskaya (2009), they are still informa-
tive. Thus, while other methods are more accurate when the data are available and the
researcher is willing to make additional assumptions, the bounds in this paper are useful
when such data are not available.

While some authors have proposed methods for dealing with unobserved hetero-
geneity in first price auctions using data on multiple bidders or additional data, this
paper is the first, to my knowledge, that provides bounds with only observations of the
winning bid or bids from a single bidder. Krasnokutskaya (2009) and Asker (2008) used
an additive or multiplicative separability assumption on bidder values as a function of
the unobserved heterogeneity, while Athey, Levin, and Seira (2011) used a similar ap-
proach with a fully parametric model. All of these papers require data on multiple bids
and, at least in the nonparametric case of Krasnokutskaya (2009), it is not clear how
to extend these methods so that a strict subset of order statistics can be used, such as
the two highest bids. Haile, Hong, and Shum (2003) provided a method that uses the
assumption that the unobserved heterogeneity can be conditioned out using an addi-
tional variable, such as the number of potential bidders. Starting with the fact that point
identification of all economic primitives is not possible with a completely general model
of unobserved heterogeneity and incomplete bidding data (see Athey and Haile (2002)),
this literature has gone in the direction of using additional structure and data on mul-
tiple bidders to obtain point identification of the entire model, while the present paper
asks which economically relevant quantities can be bounded without additional data or
structure.

For ascending auctions, Aradillas-Lopez, Gandhi, and Quint (2010) proposed bounds
on revenues under counterfactual reserve prices under unobserved heterogeneity using
variation in the number of bidders. In that setting, the second largest value can be ob-
served despite the unobserved heterogeneity, and the challenge is in bounding the joint



380 Timothy B. Armstrong Quantitative Economics 4 (2013)

distribution of the two largest values while allowing for correlation induced by the un-
observed heterogeneity. In contrast, a key difficulty in estimating first price auctions
with unobserved heterogeneity is that none of the values can be recovered from the dis-
tribution of a single bid. While some of the results in the present paper use bounds on
the correlation of the values, bounds on functions of the equilibrium markups play an
important role.

The irregular nature of some estimation problems with repeated observations of a
single bid has also been pointed out recently in the context of second price auctions
by Menzel and Morganti (2011). While those authors focused on second price auctions
and derived upper bounds on the attainable rate of convergence for estimating statis-
tics of the marginal value distribution, the present paper treats first price auctions and
derives rates of convergence and asymptotic distributions for the sample analogues of
these statistics, thereby giving a lower bound on the attainable rate of convergence (by
demonstrating estimators that attain it). In this sense, these papers are complementary.

The results in this paper largely confirm the intuition that unobserved heterogene-
ity tends to make first price auctions look “less competitive” by increasing the variance
of the observed bid distribution. Suppose that, conditional on the unobserved hetero-
geneity, the bid distribution is concentrated near a single value, but this value changes
throughout the sample, spreading out the bid distribution observed to the researcher.
On average, bidders know that other bidders will bid near their values, making it diffi-
cult to get away with large markups. However, the researcher observes many bids that
are much lower than the given valuation and, not taking into account that these bids are
from a different type of auction, calculates that the bidder could get away with a large
markup. This leads the researcher to overestimate markups and bidder profits, and to
overestimate valuations (or underestimate costs in a procurement auction). While the
conclusions of this informal argument have been confirmed in some examples arising
from particular applications (for example, Krasnokutskaya (2009) found this in an appli-
cation to a set of highway procurement auctions similar to those used in this paper), it
has not been clear whether it applies in any generality to the estimation of any economic
primitives of interest in practice. In this paper, I develop bounds on several economic
primitives of interest in applications and show that they hold under surprisingly general
conditions. The results show that the intuition described above holds in a very general
setup when applied to certain quantities that involve expectations of valuations, which
lead to bounds on, among other things, bidder profits and the loss total surplus from
assigning the object randomly.

The plan for the paper is as follows. Section 2 defines the problem being studied
and presents the bounds. Section 3 presents estimators for these bounds and derives
asymptotic results that can be used for inference. Section 4 applies these bounds to a set
of procurement auctions for highway construction projects, Section 5 discusses ways
in which the results could be extended, along with inherent limitations of the methods
used in this paper, and Section 6 concludes. The Appendix contains the proof of the
main result of Section 3, along with additional results not contained in the body of the
paper.
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2. Setup and bounds

In this section, I define the empirical model used throughout the paper and derive pop-
ulation bounds on quantities of economic interest. Most of these bounds use naive es-
timates that estimate the value distribution under the assumption of no unobserved
heterogeneity. While bounds on the entire value distribution require more assumptions,
the naive estimates can be used to bound certain functions of the mean of the value dis-
tribution and its order statistics. I begin by deriving bounds on the mean of the value dis-
tribution and the average value of the highest bidder. Using similar ideas, I then bound
the expected profit from entering an auction and the efficiency loss from replacing the
auction with a lottery. First, I present the general model used throughout the paper and
define some notation.

I treat a general version of the symmetric independent private values (IPV) model
with unobserved heterogeneity. Krasnokutskaya (2009) and Athey and Haile (2002) con-
sidered versions of this model. Conditional on a random variableU observed to bidders
but not the researcher, n bidders draw independent and identically distributed (iid) val-
ues V1� � � � � Vn from a distribution FV (v|U). Here, n is treated as nonrandom, but the re-
sults could also be stated with n random and the assumptions holding conditional on n.
Each bidder observes her value and the number of bidders, and submits a sealed bid.
The object is awarded to the highest bidder for a price equal to the bid submitted by
that bidder. As shown by Milgrom and Weber (1982), this model has a symmetric Nash
equilibrium in which bids are increasing in values. This leads to bids B1� � � � �Bn being iid
conditional on U .

Krasnokutskaya (2009) considered a version of this model with the additional addi-
tive separability assumption that Vi =Ai + U for some independent random variables
Ai that are also independent of U (a multiplicative separability assumption gives the
same result). She showed that the distributions of U and the Ai’s can be recovered if
the bids of at least two bidders are observed, and proposed a consistent method of es-
timating these distributions from observed bids. However, the model is not identified if
only one bid is observed in each auction, and it is not known whether the top two bids,
or even any larger set of order statistics short of the full sample, are enough to recover
any of these distributions. Even if enough bids are observed so that this method can be
used, it may be desirable to have estimates that do not impose additive or multiplicative
separability assumptions on the value distribution.

It should be noted that, despite the general form of unobserved heterogeneity con-
sidered in the present paper, unobserved heterogeneity is not the only possible source of
correlation between bids. The IPV assumption conditional on unobserved heterogeneity
means that values are independent conditional on bidders’ information sets. More gen-
erally, bidders may have correlated values even after conditioning on everything they
observe. In such cases, the distribution of valuations is typically modeled as satisfying
the affiliation property (see Milgrom and Weber (1982)), a certain strong notion of posi-
tive dependence, although more general forms of dependence are also possible (see de
Castro (2010)). One possible motivation for a model in which values are correlated is one
in which values are drawn independently conditional on some variable U , but, unlike
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the model considered here, bidders observe only their own valuations and notU (see Li,
Perrigne, and Vuong (2000)). With data on multiple bids in each auction, tests developed
by Jun, Pinkse, and Wan (2010) or de Castro and Paarsch (2010) could be used to deter-
mine whether values in a model with no unobserved heterogeneity satisfy the affiliation
property. However, the bounds in this paper are best suited to situations with data sets
where only a single bid is recorded in each auction, which precludes empirical examina-
tions of the correlation structure of bids. In addition, a completely general model with no
unobserved heterogeneity and correlated values that may not satisfy affiliation cannot
be ruled out empirically with existing results, so such an approach would be useful for
distinguishing unobserved heterogeneity from values that are correlated conditional on
information available to bidders only to the extent that it is believed that the correlation
in the latter case would satisfy the affiliation property. In any case, the researcher may
have reason to believe that unobserved heterogeneity, rather than values that are corre-
lated or affiliated conditional on information available to all bidders, is an appropriate
model for correlation among values and, in such cases, will be comfortable proceeding
under this assumption even if it cannot be tested with the data at hand. See Section 5.4
for some discussion of the limitations of the IPV assumption.

Let GB1(b|U) be the distribution of a given bid conditional on U and let GB1(b) =
E(GB1(b|U)) denote the marginal distribution of a single bid. Let B(1) ≤ · · · ≤ B(n) de-
note order statistics of the bid distribution, and let GB(k)(b|U) and GB(k)(b) denote the
cumulative distribution function (cdf) of the kth order statistic conditional on U and
marginal, respectively. Since the bounds depend on naive estimates of the bid distribu-
tion under the assumption of no unobserved heterogeneity, it is useful to define nota-
tion for the estimated marginal bid distribution under this assumption using data on the
highest order statistic. IfU were observed, the identityGB1(b|U)n =GB(n)(b|U) could be
used to back out the marginal bid distribution from the distribution of the highest bid.
Using this identity and the (possibly false) assumption of no unobserved heterogeneity,
the researcher can estimate G̃(t) ≡ GB(n)(t)

1/n. For all of these distributions, I use the
corresponding lowercase letters to denote the density.

The bounds derived below depend on the support of the bid distribution. Let b(U)=
sup[supp[Bi|U]] and b= sup[supp[Bi]] be the suprema of the support of the conditional
and marginal bid distributions, respectively, and let b(U) and b be defined similarly for
the lower bound of the support. Inequalities stated below that involve b are interpreted
as holding with b= ∞ when the upper support point is infinite and will hold trivially in
these cases with the convention that ∞ ≤ ∞. The same convention holds for inequality
statements with inequalities involving expectations of random variables with infinite
expectations.

If U were observed, values could be estimated from observed bids conditional on

each value ofU using the celebrated formula Vi = Bi + GB1 (Bi|U)
(n−1)gB1 (Bi|U)

of Guerre, Perrigne,

and Vuong (2000). Most of the results in this paper use naive estimates that replace the
bid distribution conditional on variables observed to the bidder, GB1(Bi|U), with the
bid distribution conditional on variables observed to the researcher. If the researcher
observes the same bidder in each auction or observes all bids and ignores their depen-
dence structure, this will mean replacing GB1(Bi|U) with GB1(Bi) (and the same for the
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probability density function (pdf)). If the researcher observes only the highest bid, this
will mean replacingGB1(Bi|U)with G̃(t). Depending on which term is used, the bounds
derived below can be calculated with data on a single bidder or the highest bidder. If
only these data are available, a data generating process with no unobserved heterogene-
ity cannot be ruled out, so the bounds are sharp. I first present bounds on the marginal
value distribution using data on a single bidder.

2.1 Bounds on the mean of the marginal value distribution

The following theorem shows that attempting to recover the value distribution using the
marginal distribution of the bid of a single bidder gives an upper bound for the mean of
the marginal value distribution. The mean of the marginal value distribution gives the
expected surplus of a counterfactual mechanism that allocates the object randomly (see
Section 2.4). It can also be used to obtain the social surplus from a nonrival technology
that is a perfect substitute for the good being auctioned. For example, in an auction for
emissions permits, nE(Vi) would give the expected total surplus to all participants of a
technology that allowed the participants to produce just as efficiently without polluting.

Theorem 1. In the symmetric IPV model with unobserved heterogeneity considered
above,

E(Bi)≤E(Vi)=E(Bi)+E
(

GB1(Bi|U)
(n− 1)gB1(Bi|U)

)
≤E(Bi)+E

(
GB1(Bi)

(n− 1)gB1(Bi)

)
�

If the researcher observes only Bi for a single i ∈ {1� � � � � n} and b �→ b+ GB1 (b)

(n−1)gB1 (b)
is strictly

increasing, these bounds are sharp.

Proof. The mean of the value distribution conditional on U is

E(Vi|U) = E(Bi|U)+E
(

GB1(Bi|U)
(n− 1)gB1(Bi|U)

∣∣∣U
)

= E(Bi|U)+
∫ b(U)

b(U)

1
n− 1

GB1(b|U)db�

Taking expectations over U and changing the order of integration in the second term
gives (letting PU be the probability distribution of U)

E(Vi) = E(Bi)+ 1
n− 1

∫ ∫
I
(
b(u)≤ b≤ b(u))GB1(b|u)dPU(u)db

≤ E(Bi)+ 1
n− 1

∫
I(b≤ b≤ b)

∫
GB1(b|u)dPU(u)db

= E(Bi)+ 1
n− 1

∫
I(b≤ b≤ b)GB1(b)db=E(Bi)+E

(
GB1(Bi)

(n− 1)gB1(Bi)

)
�

Here, the inequality follows because, since GB1(b|u) is nonnegative, increasing the area
of integration in the inner integral from {b(u)≤ b≤ b(u)} to {b≤ b≤ b} can only increase
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the value of the integral. Sharpness follows since the lower bound is achieved when Vi
is degenerate given U and the upper bound is achieved when there is no unobserved
heterogeneity. �

As noted by Athey and Haile (2007), the expression for the mean of the value distri-
bution can be written in terms of the mean of the bid distribution and the upper support
of the bid distribution. This holds for the misspecified estimate considered here:

E(Bi)+E
(

GB1(Bi)

(n− 1)gB1(Bi)

)

=E(Bi)+
∫ b

b

1
n− 1

GB1(b)db=E(Bi)+ 1
n− 1

(
b−E(Bi)

)

= n− 2
n− 1

E(Bi)+ 1
n− 1

b�

Since bidders never bid above valuations in a symmetric Nash equilibrium of this game,
Theorem 1 along with this characterization of the misspecified estimate of the mean
of the value distribution gives [E(Bi)� n−2

n−1E(Bi) + 1
n−1b] as bounds on the mean of the

value distribution. The lower bound is reached if Vi = U for all i and the upper bound
is reached if U is a constant, so, as long as the marginal bid distribution can be ratio-
nalized by a model with no unobserved heterogeneity, this bound is the tightest interval
that can be obtained with data on a single participant’s bids and the number of bidders.
The requirement in the theorem that the estimated bid function be nondecreasing is a
technical condition that ensures that the data can be rationalized by a model with no
unobserved heterogeneity when only one bid is observed. The formulation in the above
display also shows that the upper bound will be obtained even if there is nontrivial unob-
served heterogeneity as long as the unobserved heterogeneity does not shift the upper
support point of the bid distribution. Section A.6 provides an example of a data generat-
ing process where this is the case, as well as some examples that illustrate how the far the
true parameter is from the upper bound for a class of data generating processes where
this does not hold.

If only the winning bid and the number of bidders are observed, the marginal dis-
tribution of bids is not identified, so Theorem 1 cannot be used directly. However, note
that

GB1(t) ≥GB(n)(t)=E(
GB(n)(t|U)

) =E(
GB1(t|U)n

)
(1)

≥ E(
GB1(t|U)

)n =GB1(t)
n

(see, for example, Shaked (1977)), so the marginal bid distribution can be bounded by

GB(n)(t)≤GB1(t)≤GB(n)(t)1/n ≡ G̃(t)� (2)

where G̃(t) is the misspecified marginal bid distribution defined above that uses the as-
sumption of no unobserved heterogeneity. These bounds on the marginal bid distribu-
tions can be combined with Theorem 1 to compute bounds for the mean of the marginal
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value distribution by using G̃(t) to compute the lower bound and GB(n) to compute the
upper bound. However, these bounds are likely to be crude since the lower bound ob-
tains the marginal bid distribution, assuming U is degenerate, and obtains the mean of
the value distribution from this distribution, assuming Vi is degenerate givenU , and the
reverse holds for the upper bound. Thus, these bounds will only be reached when the
value distribution is degenerate.

2.2 Bounds on the expectation of the highest value

When only the winning bid is observed, a similar result holds for the mean of the greatest
order statistic of the joint distribution of values. The mean of the distribution of the
greatest value gives the expected surplus under the first price auction in the symmetric
setting considered here or any other mechanism that leads to efficient allocation, and
can be used to examine how much surplus is lost under alternative mechanisms (as in
Section 2.4) or to weigh the welfare of auction participants against potential externalities
of the good being auctioned (for example, in a policy analysis examining whether certain
forests should be auctioned for timber or preserved for environmental reasons).

As above, let G̃(b)=GB(n)(b)1/n be the estimate of the bid distribution obtained from
the distribution of the highest bid assuming independence and ignoring unobserved
heterogeneity. The mean of the greatest order statistic of the value distribution assuming

U is degenerate can be estimated as E(B(n))+E( G̃(B(n))
(n−1)g̃(B(n))

). When there is unobserved

heterogeneity, this provides an upper bound.

Theorem 2. In the symmetric IPV model with unobserved heterogeneity,

E(B(n))≤E(V(n))≤E(B(n))+E
(

G̃(B(n))

(n− 1)g̃(B(n))

)
�

If the researcher observes onlyB(n) and b �→ b+ G̃(b)
(n−1)g̃(b) is strictly increasing, these bounds

are sharp.

Proof. The pdf of the first order statistic of the bid distribution given U is

gB(n)(t|u)= d

dt
GB1(t|u)n = nGB1(t|u)n−1gB1(t|u)�

Combining this with the bid inversion formula for the affiliated values model gives

E(V(n)) = E(B(n))+E
(

GB1(B(n)|U)
(n− 1)gB1(B(n)|U)

)

= E(B(n))+
∫ ∫ b(u)

b(u)

GB1(b|u)
(n− 1)gB1(b|u)

nGB1(b|u)n−1gB1(b|u)dbdPu(u)

= E(B(n))+
∫ ∫ b(u)

b(u)

n

n− 1
GB1(b|u)n dbdPu(u)
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≤ E(B(n))+
∫ b

b

n

n− 1

∫
GB1(b|u)n dPu(u)db

= E(B(n))+
∫ b

b

n

n− 1

∫
GB(n)(b|u)dPu(u)db

= E(B(n))+ n

n− 1

∫ b

b
GB(n)(b)db�

Noting that g̃(t) = d
dtGB(n)(t)

1/n = 1
nGB(n)(t)

(1−n)/ngB(n)(t) gives the estimated “bid
shade” term under a misspecified assumption of no unobserved heterogeneity as

E

(
G̃(B(n))

(n− 1)g̃(B(n))

)
=

∫ b

b

nGB(n)(b)
1/n

(n− 1)GB(n)(b)(1−n)/ngB(n)(b)
gB(n)(b)db

= n

n− 1

∫ b

b
GB(n)(b)db�

Plugging this into the previous display gives the result. Sharpness follows since the lower
bound is achieved when Vi is degenerate givenU , and the upper bound is achieved when
there is no unobserved heterogeneity. �

Using the expression for the bid shade term from the above proof, the expectation of
the highest value estimated under the assumption of independence and no unobserved
heterogeneity can be written as

E(B(n))+ n

n− 1

∫ b

b
GB(n)(b)db = E(B(n))+ n

n− 1
(
b−E(B(n))

)

= n

n− 1
b− 1

n− 1
E(B(n))�

This gives [E(B(n))� n
n−1b− 1

n−1E(B(n))] as bounds for the expectation of the valuation of
the winning bidder. As with the bounds in Theorem 1, the upper bound will be reached
when there is no unobserved heterogeneity (or nontrivial unobserved heterogeneity
that does not shift the upper support of the bid distribution) and the lower bound will
be reached when the value distribution is degenerate conditional on U , so no smaller
interval can be obtained.

If bounds on the mean of the value of the highest bidder are desired and data are
only available on one bidder, the bounds in equation (1) can be used to bound the dis-
tribution of the highest bid. Then the upper bound in Theorem 2 can be calculated by
integrating over the upper bound for the distribution of the highest bid (that is, the lower
bound for the cdf).

2.3 Entry costs and expected profits

The bounds on the mean of the distribution of the value of the highest bidder lead
to bounds on the expected profits for a given bidder entering the auction. By sym-
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metry, each bidder has probability 1/n of drawing the highest value and winning the
auction. The ex post profit from winning is equal to V(n) − B(n). Thus, the expected
profit Π(n�U) from entering an auction with n total bidders for a given value of U is
Π(n�U) = 1

nE(V(n) − B(n)|U). The bound on E(V(n)) using data on the highest bid de-
rived above leads immediately to a bound on profits averaged over auctions with dif-
ferent realizations of the unobserved heterogeneity U . This is stated in the following
theorem.

Theorem 3. In the symmetric IPV model with unobserved heterogeneity,

0 ≤E(
Π(n�U)

) = 1
n
E(V(n) −B(n))≤ 1

n
E

(
G̃(B(n))

(n− 1)g̃(B(n))

)
�

If the researcher observes onlyB(n) and b �→ b+ G̃(b)
(n−1)g̃(b) is strictly increasing, these bounds

are sharp.

Using the same integration identity as before, this bound can be written as

1
n
E

(
G̃(B(n))

(n− 1)g̃(B(n))

)
= 1
n− 1

(
b−E(B(n))

)
�

which gives [0� 1
n−1(b−E(B(n)))] as bounds for expected bidder profit. As with the other

bounds, the upper bound is achieved under no unobserved heterogeneity (or nontrivial
unobserved heterogeneity that does not shift the upper support of the bid distribution),
and the lower bound is achieved when values are a deterministic function of U , subject
to the caveat, stated in the theorem, that the estimated bid function must be nonde-
creasing. As before, the upper bound will be obtained even with nontrivial unobserved
heterogeneity as long as it does not shift the support of the bid distribution.

The profit Π(n�U) can be interpreted as the expected value of entering an auction
where the unobserved heterogeneity is given by U . The expected profit E(Π(n�U)) can
be interpreted as the long run value of participating in a large number of auctions sim-
ilar to those in the sample. In most entry models, these can be related to the cost of
preparing a bid using zero profit conditions, although the specifics of this will depend
on the information structure of the model and the equilibrium being played (pure or
mixed strategy, etc.). As an example, consider a pure strategy equilibrium in a model in
which np potential entrants first decide whether to pay a cost K to bid in an auction.
In the second stage, each potential entrant i who decided to bid observes the number
of bidders n (which is nonstochastic anyway because of the pure strategy assumption),
the unobserved (to the econometrician) heterogeneity U , and her value Vi. In a pure
strategy equilibrium, the number of entrants nwill be the largest value such that the ex-
pected second stage profit E(Π(n�U)) is greater than the entry cost K. Thus, the upper
bound for E(Π(n�U)) derived above will be an upper bound for K. The upper bound
on E(Π(n�U)) and on K can be used to analyze the effect of counterfactual entry fees
and subsidies. For example, in this setting, assumingK is nonnegative, the upper bound
on E(Π(n�U)) gives an upper bound on the entry fee that could be charged without de-
creasing the number of bidders.
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2.4 Efficiency loss from random assignment

Efficiency comparisons of different auction formats are of interest in many applications.
Often, a researcher has access to data from a series of auctions (in this case, first price
sealed bid auctions) and would like to know how changing the selling mechanism would
affect things like revenue and allocative efficiency. In this section, I derive an upper
bound on the inefficiency from replacing a first price sealed bid auction with a particular
alternative mechanism—random assignment—under unobserved heterogeneity.

Lotteries are a common mechanism for governments that assign contracts and
property rights. If potential buyers have similar values for the good being assigned or
transaction costs for reselling the good are small, the loss in efficiency from random
assignment will be small. In fact, economists are often surprised to find goods that do
not seem to fit this description being assigned randomly as well, even when the same
good is auctioned in other settings. Although highway construction contracts are often
assigned by first price sealed bid auction in the United States, Decarolis (2010) listed
numerous examples of highway construction contracts being assigned though “average
bid” mechanisms that lead to random assignment in equilibrium, (see Decarolis (2010)
for conditions under which such equilibria exist and additional conditions under which
they are unique). In such mechanisms, the contract is awarded to the participant who
has the bid closest to a number obtained by averaging the bids in some way, which, de-
pending on the specifics of the mechanism and equilibrium assumptions, often leads to
all firms making the same bid and the contract being assigned randomly. As Decarolis
pointed out, civil engineers and others in policy debates have proposed replacing many
of the highway procurement auctions that are currently held as first price auctions with
mechanisms that lead to random assignment in equilibrium play. If one has data on a
set of first price sealed bid auctions and a symmetric IPV assumption seems reasonable,
Decarolis’s analysis suggests that an outcome leading to random allocation is likely for
the mechanisms considered in his paper since many of these mechanisms lead to ran-
dom allocation in equilibrium under conditions on the information structure that in-
clude the symmetric IPV model considered here.

It should also be noted that the random assignment considered in this section need
not come from a lottery with a uniform distribution over all bidders. Any arbitrary as-
signment that leads to the long run average value of the object to the winner being E(Vi)
will have the same total surplus, even if the allocation is different. For example, this will
be the case if firms collude by choosing the winner in some arbitrary way that does not
depend on realizations of valuations.

Even in settings where random assignment is not a likely policy outcome, a lottery
is a useful benchmark for other efficiency comparisons. Suppose, for example, that we
find that subsidizing certain bidders would have a small effect on allocative efficiency
relative to the average selling price. One explanation for this is that the subsidy program
does a particularly good job of favoring these bidders only when they are close to having
the highest value anyway. Another explanation is that values do not vary much between
bidders, so that most mechanisms will have similar efficiency properties. Finding that
random assignment has similar efficiency properties to both mechanisms favors the lat-
ter explanation.
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The total surplus in a symmetric first price sealed bid auction (or any mechanism
that assigns the good to the agent with the highest valuation) is V(n). Any mechanism that
leads to random assignment has the same expected total surplus as a mechanism that
fixes some arbitrary bidder i and always awards the object to that bidder, giving ex post
surplus of Vi. Thus, the expected efficiency loss from replacing auctions described by U
with lotteries is E(V(n) − Vi|U). The expected efficiency loss from replacing all auctions
with random assignment is E(V(n) − Vi).

The following theorem shows that estimating the efficiency loss from replacing all
auctions with lotteries using data on the highest bid and ignoring unobserved hetero-
geneity gives an upper bound on E(V(n) − Vi). With data on all bids, a tighter upper
bound can be obtained by using the marginal bid distribution to estimate E(Vi).

Theorem 4. In the symmetric IPV model with unobserved heterogeneity,

0 ≤ E(V(n) − Vi)≤E
[(
B(n) + G̃(B(n))

(n− 1)g̃(B(n))

)
−

(
Bi + GB1(Bi)

(n− 1)gB1(Bi)

)]

≤ E
(
B(n) + G̃(B(n))

(n− 1)g̃(B(n))

)
−

∫ (
b+ G̃(b)

(n− 1)g̃(b)

)
dG̃(b)�

If the researcher observes only B(n) and b �→ b+ G̃(b)
(n−1)g̃(b) is strictly increasing, the bound

on the last line is sharp.

Proof. Using the integration by parts identities mentioned above, we have

E(V(n)|U)−E(Vi|U)

=
(

n

n− 1
b(U)− 1

n− 1
E(B(n)|U)

)
−

(
1

n− 1
b(U)+ n− 2

n− 1
E(Bi|U)

)
(3)

= n− 1
n− 1

b(U)− 1
n− 1

E(B(n)|U)− n− 2
n− 1

E(Bi|U)�

Using the law of iterated expectations and b≥Eb(U) gives

E(V(n))−E(Vi)≤ b− 1
n− 1

E(B(n))− n− 2
n− 1

E(Bi)�

Again using integration by parts, the right hand side of the above display is equal to

E[(B(n) + G̃(B(n))
(n−1)g̃(B(n))

)− (Bi + GB1 (Bi)

(n−1)gB1 (Bi)
)], giving the first inequality.

For the second inequality, note that, by equation (2),GB1(b) first order stochastically
dominates G̃(b), so that

∫
bdG̃(b)≤ ∫

bdGB1(b) and

b− 1
n− 1

E(B(n))− n− 2
n− 1

E(Bi)≤ b− 1
n− 1

E(B(n))− n− 2
n− 1

∫
bdG̃(b)�

Again using integration by parts and cancellation of densities in the denominator,

the right hand side of the above display is equal to E(B(n) + G̃(B(n))
(n−1)g̃(B(n))

) − ∫
(b +

G̃(b)
(n−1)g̃(b) )dG̃(b), giving the second inequality.
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Sharpness follows because the bound on the last line is attained under independent
bids. �

As mentioned in the proof, these bounds can be written using integration by parts
identities as

E(V(n) − Vi) ≤ b− 1
n− 1

E(B(n))− n− 2
n− 1

E(Bi)

(4)

≤ b− 1
n− 1

E(B(n))− n− 2
n− 1

∫
bdG̃(b)�

The last bound is sharp if only data on the winning bid are available, since it is attained
if there is no unobserved heterogeneity. All of the quantities in the final expression of
this display can be estimated using data on the winning bid. For future reference, let
μ≡ ∫

bdG̃(b) and let τ ≡ b− 1
n−1E(B(n))− n−2

n−1μ be the upper bound obtained using data

on the winning bid. While methods for inference on b and E(B(n)) are well established,
estimation of

∫
bdG̃(b) appears to be an unsolved problem. As it turns out, estimation

of this quantity using sample analogues can lead to nonstandard asymptotics and rates
of convergence that are slower than the square root of the number of auctions observed,
depending on the data generating process and the number of bidders. I turn to these
issues in the next section.

3. Estimation

The bounds in the previous section are functions of b, E(B(n)) and
∫
bdG̃(b). Given a

sample B(n)�1� � � � �B(n)�T of winning bids from T auctions, b and E(B(n)) can be esti-
mated using max1≤t≤T B(n)�t and 1/T

∑T
t=1B(n)�t , respectively, and the asymptotic distri-

butions of these estimators are well known. However, estimation of
∫
bdG̃(b) has not

been treated. In this section, I propose estimators for the bounds in the previous sec-
tions, and show that the sample analogue estimator

∫
bdG̃(b) can have a nonstandard

rate of convergence and asymptotic distribution depending on n and the shape of the
distribution of the highest bid.

Let ĜB(n)(b) = 1/T
∑T
t=1 I(B(n)�t ≤ b) be the empirical distribution from the sample

of winning bids. An obvious candidate for an estimator for μ≡ ∫
bdG̃(b)= ∫

bdG
1/n
B(n)
(b)

is the sample analogue μ̂T ≡ ∫
bdĜ

1/n
B(n)
(b). This estimator can be written as anL-statistic

(see Chapter 22 of van der Vaart (2000)). Letting B(n)�(t) be the tth smallest of the sample
of winning bids,

∫
bdĜ

1/n
B(n)
(b)=

T∑
t=1

B(n)�(t)

[(
t

T

)1/n

−
(
t − 1
T

)1/n]
� (5)

The rate of convergence and asymptotic distribution of μ̂T depend on the behavior
ofGB(n) near the lower end of its support b. I make the following assumption.

Assumption 1. For some γ, b, and h0 > 0, h(b)≡GB(n)(b)/(b−b)γ is differentiable with
a bounded derivative and limb↓b h(b)= h0.
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To allow for greater generality, this assumption places conditions directly on the
marginal distribution of the winning bid. Section A.4 in the Appendix gives sufficient
conditions on the distributions of values and unobserved heterogeneity for this assump-
tion to hold. If there is no unobserved heterogeneity and the value distribution FV be-
haves like (b− b)β near b for some β (for example, β= 1 if V1 is uniform), Assumption 1
will hold with γ = nβ. However, Assumption 1 allows for the more general case where
B(n) is not the greatest order statistic from n independent draws of some distribution.

To see why μ̂T can converge at a slower than
√
T rate, note that the first term in

the sum in (5) is B(n)�(1)T−1/n. By standard results for extreme order statistics, B(n)�(1)
will converge to b at a T 1/γ rate. Thus, the first term will converge at a 1/n + 1/γ rate.
If 1/n + 1/γ > 1/2, this will be faster than the

√
T rate of convergence of the interme-

diate order statistics, so that extreme order statistics will not affect the asymptotic dis-
tribution. However, if 1/n + 1/γ < 1/2, the extreme order statistics will converge more
slowly than the intermediate order statistics, the rate of convergence will be slower than√
T and there will not be a normal limiting distribution. In the intermediate case where

1/n + 1/γ = 1/2, it turns out that the rate of convergence is
√
T/

√
logT and the limit-

ing distribution is normal. Intuitively, the issue is that only observing the winning bid
does not give enough information about the lower parts of the distribution. So as to es-
timate the mean of the bid distribution, the smaller draws of the winning bid have to be
weighted heavily, which can lead to slower than

√
T rates of convergence.

In the next theorem, I describe the asymptotic behavior of μ̂T under the various
types of tail behavior covered by Assumption 1. The proof, given in the Appendix, uses
results for L-statistics in Mason and Shorack (1992). Importantly, that paper allows for
the types of increasing weights at the tails that lead to nonstandard rates of convergence,
as is the case here.

Theorem 5. Under Assumption 1, we have the following situations.
If 1/n+ 1/γ > 1/2, then

√
T(μ̂T −μ) = 1√

T

T∑
t=1

[
K

(
GB(n)(B(n)�t)

) −EK(
GB(n)(B(n)�t)

)] + oP(1)

d→N
(
0�σ2)�

whereK and σ2 are defined in the Appendix. If 1/n+ 1/γ = 1/2, then
√
T√

logT
(μ̂T −μ) d→N

(
0�

[
nγh

1/γ
0 (1 − 1/n− 1/γ)

]−2)
�

If 1/n+ 1/γ < 1/2, then
√
T(μ̂T − BT )/AT will not converge to a nondegenerate normal

distribution for any sequences BT andAT . In this case,

T 1/n+1/γ(μ̂T −μ)= OP(1)�

A useful benchmark case is when the pdf gB1 of Bi converges to a strictly positive
constant at the lower support point b and there is no unobserved heterogeneity. In this
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case,GB1(b) behaves like b−b near b, soGB(n)(b)=GB1(b)
n behaves like (b−b)n near b,

and Assumption 1 holds with γ = n. Thus, applied to this case, Theorem 5 says that the
estimated mean will converge to a normal distribution at a

√
T rate only if 1/n+ 1/n >

1/2 if and only if (iff ) n < 4. If n = 4, the estimate will converge at a
√
T/

√
logT rate to

a normal distribution. If n > 4, the estimation error will be of order T−2/n and the limit
will not be a nondegenerate normal distribution.

Theorem 5 applies to estimating the mean of any distribution with repeated obser-
vations from the greatest order statistic, regardless of whether the order statistics are
bids in a set of first price auctions. Similar methods will also apply to estimating the
mean or other functionals of a distribution from repeated observations of another or-
der statistic, such as the second largest value in an ascending auction, but I leave the
details of this for future research, since observations of the winning bid in the first price
auctions treated in this paper correspond to the largest order statistic.

The asymptotic distributions derived in the first two cases can be used for inference
once the variance is estimated. One possibility that applies immediately and only uses
the fact that these asymptotic distributions are atomless is subsampling. In the second
case, where 1/n + 1/γ = 1/2, inference could also be based on estimating h0 and, if γ
is treated as unknown, testing for 1/n + 1/γ = 1/2 as well. In a recent paper, Hill and
Shneyerov (2010) treated inference on the tail behavior of bid distributions for a dif-
ferent purpose, and some of the results used in their paper would be useful for this as
well. Another possibility would be to use the results for bootstrapping L-statistics from
Shorack (1997) or to use a sample analogue estimator of the asymptotic variance. Some
of these methods require knowledge of γ to determine which case in Theorem 5 applies.
This could be done using the methods for inference on the tail behavior of distributions
in Hill and Shneyerov (2010) and the papers they cite or by directly estimating the rate
of convergence as described in Chapter 8 of Politis, Romano, and Wolf (1999) (although
the latter may run into problems in the intermediate case where 1/n+ 1/γ = 1/2, since
the methods described in that book for inference under unknown rates of convergence
require that the rate be given by a power of the sample size). In Section A.3 of the Ap-
pendix, I perform a small Monte Carlo simulation to examine other methods of estimat-
ing the asymptotic distribution, but leave the rest of these ideas for future research. I use
subsampling with an assumed

√
T rate of convergence in the application in the next sec-

tion. The
√
T rate of convergence corresponds to the case where 1/n+ 1/γ > 1/2, which

seems plausible in the application since I concentrate on a set of auctions with n= 3.
In the last case, where 1/n+ 1/γ < 1/2, the results in Mason and Shorack (1992) only

give the rate of convergence and state that any limiting distribution must be in a certain
class of sums of functionals of Poisson processes and normal random variables. In this
case, Theorem 5 can be used for conservative inference. Another possibility would be to
truncate an increasing number of the smallest winning bids and use results from Mason
and Shorack (1990) for truncated L-statistics. The resulting asymptotic distribution will
be the sum of an asymptotically normal variance term and a bias term that converges
at a slower rate. To do exact, rather than conservative, inference using this strategy, the
bias term would have to be estimated using smoothness assumptions on the tail of the
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bid distribution. This would have the additional advantage of improving the rate of con-
vergence by extrapolating tail behavior.

While estimating or bounding the mean of the marginal bid distribution may be in-
teresting in its own right in some applications, one of the primary motivations for esti-
mating it in this paper is in estimating efficiency losses from a random allocation using
the formula in (4). For the case where 1/n + 1/γ > 1/2, Theorem 5 gives an influence
function representation that can be used to derive the asymptotic distributions of statis-
tics that are functions of μ̂T and other estimators (for the case where 1/n+1/γ = 1/2, the
results of Mason and Shorack (1992) also give an influence function representation, but
I leave this out because the slower rate of convergence means that functions of this and
other statistics will typically have an asymptotic distribution that depends only on the
asymptotic distribution of μ̂T in this case). The next theorem describes the asymptotic
behavior of the sample analogue estimator of the bound τ ≡ b− 1

n−1E(B(n))−μ in (4). It
places an additional assumption on the behavior of the distribution of the winning bid
near its upper support point to deal with the estimator of the upper support point b.

Theorem 6. Suppose that Assumption 1 holds and that (1 − GB(n)(b))/(b − b)2 → ∞
as b → b. Define τ̂T = max0≤t≤T B(n)�(t) − 1

n−1
1
T

∑T
t=1B(n)�(t) − n−2

n−1 μ̂T to be the sample

analogue estimator of τ = b− 1
n−1E(B(n))− n−2

n−1

∫
bdG̃(b).

If 1/n+ 1/γ > 1/2, then

√
T(τ̂T − τ) d→N

(
0�var

(
1

n− 1
B(n) + n− 2

n− 1
K

(
GB(n)(B(n)�t)

)))
�

whereK is defined in the Appendix. If 1/n+ 1/γ = 1/2, then
√
T√

logT
(τ̂T − τ) d→N

(
0�

[
nγh

1/γ
0 (1 − 1/n− 1/γ)

]−2)
�

If 1/n+ 1/γ < 1/2, then
√
T(τ̂T − BT )/AT will not converge to a nondegenerate normal

distribution for any sequences BT andAT . In this case,

T 1/n+1/γ(τ̂T − τ)= OP(1)�

The theorem follows immediately from Theorem 5 and the fact that the estimator of
the upper support point b converges at a faster than

√
T rate under these conditions. If

the upper tail of the distribution of the winning bid is such that max1≤t≤T B(n)�t converges
at a slower rate than μ̂T , the extreme value limit of max1≤t≤T B(n)�t will dominate.

4. Application

To illustrate the estimation of these bounds, I provide an application to bounding the
loss in surplus from replacing a subset of highway procurement auctions in Michigan
with random allocation. Random allocation is a useful benchmark for comparing out-
comes under other counterfactual mechanisms in many applications. If the loss in ef-
ficiency from random allocation is small, we would be more surprised to find large ef-
ficiency effects for, say, a bid subsidy scheme than if it is large. Highway procurement
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auctions provide a particularly interesting application because mechanisms that lead
to random allocation are common in highway procurement, as are proposals to replace
first price auctions with these mechanisms. See Decarolis (2010) for a treatment of some
of these mechanisms and examples of where they have been implemented. Since these
are procurement auctions in which the lowest bid wins, the results stated above will hold
with b replaced by b, B(n) replaced by B(1), and so forth.

The formula in (4) (or the version of it that reverses signs for bids from a procurement
auction) is equal to or bounds the expected difference between the lowest cost and a
randomly chosen bidder under the conditions given above. However, there are some
caveats to interpreting this as the surplus loss from random or arbitrary allocation. If
contracts were allocated randomly and subcontracting were allowed, then, depending
on negotiation costs, subcontracting could lead to a more efficient allocation so that the
bounds in this paper would overstate efficiency losses even more. Another reason that
random allocation might be more efficient—relative to a first price auction—than the
estimates here suggest is if the costs to a firm of taking a contract do not represent the
social costs of the contract. Decarolis (2010) argued that this is the case in the Italian
highway procurement auctions he studied because firms tend to have lower costs when
they are more willing to default on the contract if it turns out to be more expensive than
expected. On the other hand, the estimates of the surplus loss from random allocation
used here might understate these losses if such a mechanism leads less efficient firms to
participate, since these estimates hold the set of participants fixed.

One of the advantages of the bound given in (4) is that it can be estimated using
only repeated observations of the winning bid. In addition to requiring additional as-
sumptions on the form of the unobserved heterogeneity, methods for taking into ac-
count unobserved heterogeneity such as those proposed by Krasnokutskaya (2009) re-
quire repeated observations from at least two bidders. These methods require that these
observations be from the same two bidders or, in the symmetric case, two random bid-
ders, rather than, say, the top two bids. Since data sets with repeated observations from
the same strict subset of bidders are rare, this usually means that all bids must be ob-
served. To compare the bounds in this paper to other methods that require additional
assumptions and data, I use a data set with observations of all bids and calculate the
Krasnokutskaya (2009) estimates for comparison.

The data set is the same as that used by Einav and Esponda (2008) and Somaini
(2011), and contains observations on procurement auctions for highway construction
projects in Michigan run by the Michigan Department of Transportation. Contracts are
awarded through a first price sealed bid auction in which the lowest bidder is awarded
the project, subject to some rules governing eligibility. I focus on a subset of auctions
between 2001 and 2004 that mainly involve maintenance. The data set contains all bids
for each auction along with an engineer’s estimate of the cost of the project. I focus on
the subset of these auctions with exactly three bidders. Table 1 shows summary statistics
for these auctions. Engineer’s estimates are in thousands of dollars.

A word is in order about the extent to which the assumptions used in deriving the
bounds in this paper are likely to hold for this data set. The bounds require that values
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Table 1. Summary statistics for the three bidder sample (215 auctions).

Mean Std. Dev. Min Max

Eng. Est. 906�4 1,318�7 30�6 13,392�2
B(1)

Eng� Est� 0�9351 0�1357 0�6131 1�4713
B(2)−B(1)
Eng� Est� 0�0795 0�0757 0�0007 0�5440

be symmetric and independent conditional on the unobserved heterogeneity, U , ob-
served by all agents. While these assumptions cannot be tested with data on only the
winning bid, with data on multiple bids or additional data on observed variables that
shift values or costs, they have some testable implications. In this data set, bids are pos-
itively correlated within an auction, which is consistent with this model, but also with
models of correlation not caused by unobserved heterogeneity. As for the symmetry as-
sumption, the recent work of Somaini (2011) provides evidence that bids are negatively
correlated with distance from a firm’s location in this data set, suggesting that there is
some asymmetry in the data (although the effect of distance does not appear to be too
large relative to overall variation in bids). Under an exclusion restriction involving the
distance of other firms, Somaini (2011) also found evidence of common values ruled out
by the assumptions of his paper. The results in this section are intended to be illustrative
and, to the extent that these assumptions do not hold for this data set, they should be
interpreted with appropriate caution.

In calculating the bounds in this paper and the Krasnokutskaya (2009) estimates,
I incorporate observed heterogeneity in cost distributions by modeling cost distribu-
tions as fractions of the engineer’s estimate. Specifically, letting Ci be bidder i’s cost and
letting A be the engineer’s estimate, I assume that Ci =A · C̃i, where (C̃i�U) (U being
the unobserved heterogeneity) is independent of A. Under these assumptions, bidder
i’s bid Bi will satisfy Bi = A · B̃i, where B̃i is bidder i’s bid in an auction where A = 1
and bidder i has cost C̃i. Thus, we can divide all bids by the engineer’s estimate and the
bounds will still hold with the average efficiency loss from holding a lottery instead of a
first price auction reinterpreted as the average surplus loss from random allocation as a
proportion of the engineer’s estimate. I also control for observed heterogeneity by focus-
ing on auctions with a fixed number of bidders. The assumptions that describe how cost
distributions relate to engineer’s estimates could be done away with by conditioning on
the engineer’s estimate directly and using auctions with similar engineer’s estimates, but
because of the relatively small size of the data set after conditioning on the number of
bidders as well, I take the approach described above. See Sections 5.1 and 5.2 for dis-
cussions of other ways to incorporate observed heterogeneity, and see Section A.2 in the
Appendix for alternate estimates that incorporate observed heterogeneity in engineer’s
estimates in a more nonparametric way.

Under the assumption that the distribution of the highest bid behaves like the dis-
tribution of the least order statistic from a draw of three random variables with density
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bounded away from zero near the upper support point, Theorem 5 states that the es-
timator will converge at a

√
T rate (n = γ = 3, so 1/n + 1/γ > 1/2). I assume that γ in

Assumption 1 is such that 1/n+ 1/γ > 1/2, so that convergence is at a
√
T rate, and per-

form inference by subsampling at this rate. I use �T 3/4� = �2153/4� = 57 as the subsample
size, and fix the lower endpoint estimate of b in the subsamples, since it converges more
quickly than the other components of τ̂T under these conditions. I use 1,000 subsam-
ple replications. I report confidence regions based on other methods of estimating the
asymptotic distribution in Section A.3 of the Appendix. In cases where the researcher is
uncomfortable making assumptions on the tail of the bid distribution, the methods used
here could be extended to use an estimate of γ or to estimate the rate of convergence di-
rectly, as discussed in Section 3. The upper endpoint of the reported 95% confidence
region inverts a set of one sided level 0.05 subsampling based tests on the estimated up-
per bound of the identified set. Since the lower endpoint of the identified set is known,
any confidence region that takes the form of an interval with zero as the lower endpoint
will contain the entire identified set with probability 0�95 iff it contains any fixed point
in the identified set with probability 0�95. That is, letting τ be the true upper bound for
the efficiency loss from random allocation and letting ĉn be the upper endpoint of a
confidence region, P([0� τ] ⊆ [0� ĉn]) ≥ 0�95 iff P(τ′ ∈ [0� ĉn]) ≥ 0�95 for all τ′ ∈ [0� τ] (see
Imbens and Manski (2004) for a discussion of the distinction between these two crite-
ria for confidence regions for set identified parameters). The subsampling confidence
interval reported here will satisfy these criteria asymptotically under the appropriate as-
sumptions.

It should be noted that the fact that the lower bound is known and only the up-
per bound needs to be estimated also means that the issues brought up by Imbens and
Manski (2004) regarding undercoverage for pointwise confidence regions because two
inequalities are close to binding when the identified set is small will not be an issue
here, although these issues may arise for some of the other parameters considered in
this paper where both the lower and upper bounds need to be estimated. However, the
case where the interval [0� τ] is small corresponds to the case where the data generating
process is close to degenerate at a point, so, to the extent that the confidence regions
in this paper perform poorly under certain types of nearly degenerate data generating
processes, one may worry about undercoverage in these cases.

The cost distribution estimators proposed by Krasnokutskaya (2009) require the ad-
ditional assumption that the unobserved heterogeneity takes a multiplicatively sepa-
rable form. In particular, we require that, for C̃i defined above, C̃i = U · Ki, where Ki
is independent of the unobserved heterogeneity U . As Krasnokutskaya describes, this
allows for the application of deconvolution methods from the measurement error lit-
erature. I report estimates of the efficiency loss from random allocation that use these
estimates of the bid distribution along with the bounds described above. I estimate the
surplus loss from random allocation by using the formula

E(Ci −C(1)|U)= 1
n− 1

E(B(1)|U)+ n− 2
n− 1

E(Bi|U)− b(U)
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Table 2. Estimation results for the three bidder sample (215 auctions).

ECi −EC(1)
Deconvolution method (Krasnokutskaya (2009)) 0�1285
Ignoring heterogeneity 0�4166
95% CI [0�0�4306]

(this is just the procurement version of (3)) and the law of iterated expectations to get

E(Ci −C(1))= 1
n− 1

E(B(1))+ n− 2
n− 1

E(Bi)−E(
b(U)

)
� (6)

The estimates use this formula with E(B(1)) and E(Bi) replaced by their sample ana-
logues, and E(b(U)) replaced by the expectation of b(U) when the joint distribution of
U and B is given by the deconvolution estimates described by Krasnokutskaya. In tak-
ing the Fourier transform of the estimated characteristic functions, I set the truncation
parameter that govern the limits of the integral (T in Krasnokutskaya’s notation) equal
to 15.

Estimation results are shown in Table 2. The deconvolution method of Krasnokuts-
kaya (2009) gives a point estimate of about 12% of the engineer’s estimate as the average
surplus loss from replacing these auctions with random allocation. The point estimate
for the upper bound using only the winning bid is around 42%, with the upper endpoint
of the 95% confidence region of around 43% of the engineer’s estimate. The bounds us-
ing only data on the winning bid are conservative (assuming the Krasnokutskaya (2009)
assumptions hold), but still informative. It should be noted that the deconvolution esti-
mates are point estimates rather than upper endpoints of confidence regions. Since only
rates of convergence and not nondegenerate asymptotic distributions are available for
these estimators, it is not clear how to perform inference other than adding an arbitrary
constant after scaling by something slower than the rate of convergence. Krasnokuts-
kaya and others have used the bootstrap, but it is not clear if it is valid in this setting,
especially since the application in this paper uses the formula in (3), which involves
support points of the estimated distribution. It is well known that the bootstrap fails for
estimating support points even in simpler settings.

The fact that the bounds using winning bid data are somewhat conservative in this
application is not surprising given the large amount of unobserved heterogeneity in this
data set. The correlation of log bids in this data set is about 0�6, so that (with the assump-
tion of independent values conditional on unobserved heterogeneity made throughout
this paper) about 60% of the variation in log bids is due to unobserved heterogeneity.
With only data on the winning bid, it is impossible to rule out bids and values that have
a much smaller correlation, which would mean more efficiency loss from random allo-
cation.

While the bounds in this paper are most useful in situations where only data on
the winning bid or a single bidder are available, it is instructive to see how they change
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when additional information is used. With data on multiple bids, one can obtain tighter
bounds by conditioning on the observed losing bids when estimating E(b(U)) (or
E(b(U)) for the procurement auctions in this section). This is explained in more detail
in Section 5.3 and in Section A.5 of the Appendix. Using these methods with the winning
bid and the second lowest bid gives a point estimate of 0�2230 for the upper bound for
the efficiency loss from random allocation, while using all three bids gives a point esti-
mate of 0�1727 for the efficiency loss from random allocation (see Section A.5 for details
of how these estimates were constructed). While these estimates improve dramatically
on upper bounds obtained using only the winning bid, they are still not as tight as the
Krasnokutskaya (2009) point estimate. This is both because these bounds use less strin-
gent assumptions and because they are not sharp in general with data on multiple bids.
As discussed further in Section 5.3, while the bounds in this paper are sharp with data on
a single bid and can be improved on with data on multiple bids using similar methods,
finding sharp bounds under minimal assumptions with data on multiple bids is a ques-
tion that will likely require different methods than those in this paper (and the existing
literature), and is left for future research.

While this application focuses on efficiency loss from random allocation, it is inter-
esting to compare the bounds and point estimates for the expected profit from entering
an auction, E(B(1) − C(1))/n, as well. Interdependence between the bids in this sample
also leads to the bounds for the expected profit from entering an auction that use only
one bid being somewhat conservative relative to those computed using all bids and the
assumptions of Krasnokutskaya (2009). The point estimate for the upper bound for the
expected profit from entering an auction as a fraction of the engineer’s estimate using
the winning bid is 0�1610, with a 95% confidence interval (CI) of [0�0�1686], while the
Krasnokutskaya (2009) estimate is 0�0404 (neither of these estimates is reported in these
tables).

5. Extensions and limitations

This section discusses some possible extensions of the results in this paper, as well as
some limitations of the approach taken in this paper.

5.1 Incorporating observed heterogeneity

In practice, a researcher will often have access to some, but not all, of the variables that
are common knowledge to auction participants when they prepare bids. In other words,
it is appropriate to model the environment as an IPV auction taking place conditional
on random variables (X�U), whereX is observed to the researcher and the bidders, and
U is observed to bidders only. The observed covariate X may contain engineer’s esti-
mates of the value of the object (as in the application in Section 4) or other observable
measures of quality.

In this case, all of the population bounds derived in Section 2 will hold, with all prob-
ability distributions interpreted as being conditional onX in addition to any other con-
ditioning variables. If X is discrete, the estimation results of Section 3 will also apply
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immediately to estimates of the bounds conditional on each value that X takes. The
methods for estimation and inference introduced in that section can simply be applied
separately to the observations that correspond to each distinct value ofX .

If X is continuously distributed (or takes on a large number of values relative to the
sample size), estimation becomes more difficult. One possibility is to estimate bounds
conditional on X by splitting the sample into discrete bins that correspond to differ-
ent values of X or by computing the estimates in Section 5 with estimates of the mean
and cdf of the winning bid replaced by kernel estimates of these objects conditional on
X taking some value x. Such estimates will likely be consistent for the corresponding
bounds conditional on X if the bandwidth is taken to zero or the number of bins is
taken to infinity, and if the bandwidth decreases quickly enough, the asymptotic distri-
bution will be normal or nonstandard depending on the tail behavior of the conditional
bid distribution. Confirming these conjectures would require extending the results of
Mason and Shorack (1992) to the analogous nonparametric kernel estimates, a topic
that I leave for future research.

One advantage of an approach based on binning the data according to X is that
these estimates still give valid bounds even if the bins do not change with the sample
size. This holds because the bounds in Section 2 apply with variation of X within a bin
interpreted as part of the unobserved heterogeneity U . If we restrict the sample to auc-
tions t with ‖Xt−x‖ ≤ h for some h that does not change with the number of auctions T ,
the bounds in Section 2 will hold for quantities conditional on ‖Xt −x‖ ≤ h, with (X�U)
taking the place ofU . Applying the estimators of Section 3 to auctions with ‖Xt − x‖ ≤ h
will give consistent estimates of upper bounds for E(V(n) − Vi|‖Xt − x‖ ≤ h). These es-
timates can be averaged over nonoverlapping bins to get upper bounds for E(V(n) − Vi)
that are tighter than bounds that ignore X completely. Section A.2 reports estimates for
the application in Section 4 that incorporate observed heterogeneity in engineer’s esti-
mates in this way (the estimates in Section 4 use a stronger separability and indepen-
dence assumption to incorporate the engineer’s estimate).

5.2 Mapping the bounds to parametric models

Another approach is to model observed heterogeneity parametrically. One way to do this
is to assume some separable form for the observed heterogeneity, such as

Vi�t = exp
(
X ′
tβ

) · Ṽi�t � (7)

where

{Ṽi�t}ni=1 are independent conditional
(8)

onUi andXt is independent of {Ṽi�t}ni=1�

This is essentially the approach taken in the application in Section 4, but with β known
a priori. More generally, β can be estimated up to the constant term from winning bid
data using the regression

logB(n)�t =X ′
tβ+ log B̃(n)�t �
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which follows from separability of the bid function, and the bounds can be estimated

using ˆ̃B(n)�t = B(n)�t/exp(X ′
t β̂). Note that, despite the general nature of the unobserved

heterogeneity in this setup, the separability and independence assumption allows the
regression parameter β to be point identified up to the constant term.

More generally, one may be interested in inference on a regression parameter after
imposing a separability assumption like (7), but with a weaker mean independence as-
sumption on Ṽi�t . After a normalization, this leads to a model of the form

E(Vi�t |Xt)= exp
(
X ′
tβ

)
�

Without the full independence assumption (8), the bid function may not be separable
in X , so that β will no longer be point identified in general. However, sharp bounds on
β can be obtained from data on a single bidder by mapping the bounds of Section 2.1 to
this equation, leading to the restrictions

E(Bi�t |Xt)≤ exp
(
X ′
tβ

) ≤ n− 2
n− 1

E(Bi�t |Xt)+ 1
n− 1

b(Xt)� (9)

where, by some abuse of notation, b(Xt) is the upper support point of Bi�t givenXt . The
inequality restrictions (9) define an interval regression that is a slight extension of one of
the models considered by Manski and Tamer (2002). Inference on β in this setting can
be done using any of several recently proposed methods (see, among others, Andrews
and Shi (2009), Armstrong (2011), Chernozhukov, Lee, and Rosen (2009), Lee, Song, and
Whang (2011)). With data on the winning bid, the results in Section 2.2 could be used
to estimate a similar regression model where the conditional mean of the highest value
E(V(n)�t |Xt) is modeled directly, but this seems less natural.

If the researcher imposes a full parametric model on the distribution of (V �U) given
Xi, the bounds in this paper can still be applied, but they will not lead to sharp bounds
on the parameter. In this case, the additional information given by the parametric model
may even be enough to point identify the parameter.

5.3 Multiple bid observations

Most of the bounds derived in this paper are sharp if only the winning bid (or a single
bidder) is observed. If more than one bid is observed, the bounds can, of course, still
be computed. In fact, the bounds can often be tightened by conditioning on lower bids
when estimating the expectation of the conditional upper support point. Section A.5
describes this in more detail and reports estimates that use additional bids in the appli-
cation. However, these bounds will likely not be sharp, since they do not use the entire
correlation structure of multiple bids in each auction (although some of them will still
be sharp as long as the joint distribution of observed bids can be rationalized by unob-
served heterogeneity that does not shift the upper support point of bids, such as one of
the examples in Section A.6 of the Appendix). With enough data and some additional as-
sumptions, identification results such as those derived by Krasnokutskaya (2009) or Hu,
McAdams, and Shum (2011) can be used. This leaves open the questions of (i) how much
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can be learned with data that satisfy the requirements of one of these papers without
imposing the additional assumptions of these papers and (ii) how much can be learned
with or without these additional assumptions if more than one bid is observed, but the
data requirements of these papers are not met. It seems likely that the answers to these
questions will require methods substantially different from those developed in this pa-
per and elsewhere in the literature.

It should be noted that, while question (i) is important only to the extent that the
conditions of papers such as Krasnokutskaya (2009) and Hu, McAdams, and Shum
(2011) are questionable in applications, there are many cases where one has data on
more than one bidder, but the data requirements of these papers are not met. One
common case is data sets where only the top two bids are reported and the number of
bidders is known. Even if one imposes the separability assumptions of Krasnokutskaya
(2009), the approach in that paper, which requires repeated observations of the same
two bidders, cannot be used. On the other hand, using the bounds in the present paper
on such a data set does not use all of the information about the correlation of bids given
by multiple bid observations. Deriving sharper bounds or identification results for these
situations is an important question for future research.

5.4 Limitations

This paper assumes throughout that, conditional on the unobserved heterogeneity, val-
ues are drawn independently from the same distribution. In addition, this paper derives
bounds on averages of draws from the value distribution, rather than bounding the en-
tire distribution. With only data on the winning bid or a single bidder, it is difficult to
imagine getting informative bounds after replacing symmetry with a weaker condition.
Without some structure on how value distributions are related, little can be done to re-
cover or bound valuations of one bidder with the bids of another. It also appears that
using naive estimates that ignore unobserved heterogeneity to bound the entire value
distribution, rather than the quantities based on averages of order statistics considered
in this paper, is not possible under this level of generality. Section A.6 of the Appendix
provides a counterexample.

Thus, using these or similarly strong symmetry assumptions and giving up on
bounding the entire value distribution appears to be necessary when dealing with data
on a single bid and unobserved heterogeneity of such a general form. It should be recog-
nized that this approach limits the questions that can be asked and answered. Ascending
auctions and first price auctions lead to the same outcomes and average payoffs under
these assumptions, so one cannot use this framework to compare revenue or efficiency
of these auction formats empirically. Allowing asymmetry or affiliation conditional on
the unobserved heterogeneity would make such revenue comparisons interesting, but
this would require more data or additional assumptions. In addition, while sufficient to
bound total surplus under random allocation or bidder profits, the bounds in this pa-
per cannot be used to bound optimal reserve prices. This paper shows that much can
be learned with a relatively small amount of data (only the winning bid or a single bid-
der) even with unobserved heterogeneity of a very general form, but certain questions
require better data or more stringent assumptions.
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6. Conclusion

Unobserved heterogeneity leads to inconsistent estimates of the value distribution in
empirical studies of auctions if it is not taken into account. Recently, several authors
proposed methods for dealing with unobserved heterogeneity in auctions, but these
require additional data and assumptions. This paper provides bounds for several eco-
nomic primitives of interest in auction studies using only data on the winning bid or
bids from a single bidder. These bounds also give the direction of bias when unobserved
heterogeneity is not taken into account. This shows for which economic primitives in-
tuition about the bias from ignoring unobserved heterogeneity holds in general.

This paper also shows how to estimate and perform inference on these bounds. De-
pending on the number of bidders and the shape of the bid distribution, statistics that
depend on the mean of the bid distribution, such as the expected surplus loss from re-
placing a first price auction with a lottery, can in some cases only be estimated at a
slower rate when only data on the winning bid are available than with data on a sin-
gle bidder or all bids. I provide conditions that determine when these estimates are still
asymptotically normal and converge at a rate proportional to the number of auctions
observed, and in which cases the rate of convergence and asymptotic distribution are
different. These results are likely to be of independent interest, since they apply more
broadly to estimation of statistics of a distribution from repeated observations of a sin-
gle order statistic.

An application to bounding the long run surplus loss from replacing a subset of high-
way procurement auctions in Michigan with random or arbitrary allocation illustrates
the results. While the bounds are conservative compared to point estimates that use the
methods of Krasnokutskaya (2009), they are still informative, while requiring less data
and fewer assumptions.

Appendix

A.1 Proof of Theorem 5

In this section of the appendix, I prove Theorem 5, which treats the estimation of∫
bdG̃(b), the mean of the bid distribution using repeated observations of the largest

bid B(n). The results in this section do not require that B(n) be the largest order statistic
of n independent observations and apply to estimation of

∫
bd(GB(n)(b))

1/n with sam-
ples from the distribution GB(n) for any cdf GB(n) . I state some of these results using an
influence function representation of the estimated mean of the bid distribution so that
they can be used in Theorem 6 along with the other terms in equation (4) to estimate
the loss in surplus from replacing a first price auction with a lottery. Throughout this
section, I assume that Assumption 1 holds for some γ.

The statistic of interest can be written in L-statistic form as

μ ≡
∫
bd

(
GB(n)(b)

)1/n =
∫ 1

0
G−1
B(n)

(
un

)
du

=
∫ 1

0
G−1
B(n)
(u)d

(
u1/n) =

∫ 1

0
G−1
B(n)
(u)

1
n
u1/n−1 du�
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Similarly, for the sample analogue,

μ̂T ≡
∫
bd

(
ĜB(n)(b)

)1/n =
∫ 1

0
Ĝ−1
B(n)
(u)

1
n
u1/n−1 du

=
T∑
t=1

B(n)�(t)

∫ t/T

(t−1)/T

1
n
u1/n−1 du

=
T∑
t=1

B(n)�(t)

[(
t

T

)1/n

−
(
t − 1
T

)1/n]
�

This is an L-statistic with, in the notation of Mason and Shorack (1992), J(t) = 1
n t

1/n−1

and g(t)=G−1
B(n)
(t). I derive the asymptotic distribution of this statistic by verifying the

conditions of that paper.
The following lemma, which gives the tail behavior of d

dtG
−1
B(n)
(t), will be useful.

Lemma 1. The function k(t)≡ [ ddtG−1
B(n)
(t)]/t1/γ−1 satisfies limt↓0 k(t)= h−1/γ

0 /γ.

Proof. By the inverse function theorem,

d

dt
G−1
B(n)
(t) =

[
d

du
GB(n)(u)

]−1∣∣∣∣
u=G−1

B(n)
(t)

= [
γ(u− b)γ−1h(u)+ (u− b)γh′(u)

]−1∣∣
u=G−1

B(n)
(t)

= {
γ(u− b)γ−1[h(u)+ (u− b)h′(u)/γ

]}−1∣∣
u=G−1

B(n)
(t)
�

Under Assumption 1, we will have G−1
B(n)
(t) = b+ t1/γr(t), where r(t)→ h

−1/γ
0 as t → 0.

Plugging this into the above display, we get

{
γ
(
t1/γr(t)

)γ−1[
h
(
b+ t1/γr(t)) + t1/γr(t)h′(b+ t1/γr(t))/γ]}−1

�

Dividing by t1/γ−1 gives

{
γ
(
r(t)

)γ−1[
h
(
b+ t1/γr(t)) + t1/γr(t)h′(b+ t1/γr(t))/γ]}−1

�

which converges to (γh−(γ−1)/γ
0 · ho)−1 = h−1/γ

0 /γ. �

In the notation of Mason and Shorack (1992),K(t) is given by

K(t)=
∫ t

c
J(u)dg(u)=

∫ t

c

1
n
u1/n−1 dG−1

B(n)
(u)=

∫ t

c

1
n
u1/n+1/γ−2k(u)du�

Here, c is any fixed constant greater than zero and
∫ t
c is defined to be − ∫ c

t if t < c. The
next lemma describes the tail behavior of K(t).
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Lemma 2. If 1/n + 1/γ < 1, then, defining q(t) = K(t)/t1/n+1/γ−1, q(t) → q0 ≡
−[nγh1/γ

0 (1 − 1/n− 1/γ)]−1 as t → 0.

Proof. For any ε > 0,K(t) is sandwiched between

∫ t

c

1
n

(
h

−1/γ
0
γ

− ε
)
u1/n+1/γ−2 du

= 1
n

(
h

−1/γ
0
γ

− ε
)
(1/n+ 1/γ− 1)−1(t1/n+1/γ−1 − c1/n+1/γ−1)

and the corresponding expression with ε added rather than subtracted for small
enough t. Since t1/n+1/γ−1 increases without bound as t → 0, for small enough t, we
can get rid of the power of c at the cost of another ε to get

1
n

(
h

−1/γ
0
γ

+ 2ε
)
(1/n+ 1/γ− 1)−1t1/n+1/γ−1

≤K(t)≤ 1
n

(
h

−1/γ
0
γ

− 2ε
)
(1/n+ 1/γ− 1)−1t1/n+1/γ−1�

The result follows since ε can be arbitrarily small. �

Again following the notation of Mason and Shorack (1992), let Kab(t) be defined for
any a�b ∈ (0�1) asK(a),K(t), orK(b) for t ≤ a, a < t < b, and b≤ t, respectively. Define

σ2[a�b)=
∫ 1

0
K2
ab(t)dt −

(∫ 1

0
Kab(t)dt

)2

and

μ(a�b)=
∫ b

a
J(t)g(t)dt =

∫ b

a
G−1
B(n)
(t)

1
n
t1/n−1 dt =

∫ b

a

(
b+ t1/γr(t)) 1

n
t1/n−1 dt�

Define σ2(a)= σ2[a�1 − a) and μ(a)= μ[a�1 − a). The limiting behavior of μ̂T depends
on a variance term and a bias term. For the variance term, we need to study the limiting
behavior of σ2[a�1) as a→ 0. For the bias term, we need to study the limiting behavior
of μ(a�1)−μ(0� a) as a→ 0. I treat these issues in the following lemmas.

Lemma 3. If 1/n + 1/γ > 1/2, then σ2[0�1) is finite. If 1/n + 1/γ < 1/2, then σ2[a�1)/
a2(1/n+1/γ−1/2) → q2

0(1 + 1
1−2/n−2/γ ) as a→ 0. If 1/n+ 1/γ = 1/2, then σ2[a�1)/(− loga)→

q2
0.

Proof. In all cases, (
∫ 1

0 Ka1(t)dt)
2 is bounded independently of a, so the claims will

hold for σ2[a�1) iff they hold with σ2[a�1) replaced by the first term
∫ 1

0 K
2
a1(t)dt. For any

ε > 0, there is a b such that |q(t)2 − q2
0| ≤ ε on t ≤ b, so that

∫ 1
0 K

2
a1(t)dt is bounded from
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above by

a · (q2
0 + ε)a2/n+2/γ−2 + (

q2
0 + ε)

∫ b

a
t2/n+2/γ−2 dt

(10)

+
∫ 1

b
t2/n+2/γ−2[q(t)]2

dt

and from below by the same expression with ε subtracted rather than added. The last
term is finite and does not depend on a. If 1/n+ 1/γ < 1/2, the first two terms add up to

(
q2

0 + ε)a2/n+2/γ−1 + (
q2

0 + ε) 1
2/n+ 2/γ− 1

(
b2/n+2/γ−1 − a2/n+2/γ−1)

= (
q2

0 + ε)a2/n+2/γ−1
(

1 + 1
1 − 2/n− 2/γ

)
+ (
q2

0 + ε) 1
2/n+ 2/γ− 1

b2/n+2/γ−1�

The last term in this display is finite and does not depend on a, so, for small enough a,

∫ 1

0
K2
a1(t)dt ≤

(
q2

0 + 2ε
)
a2/n+2/γ−1

(
1 + 1

1 − 2/n− 2/γ

)
�

A similar argument gives the corresponding lower bound, so, since ε is arbitrary,

lim
a→0

∫ 1

0
K2
a1(t)dt/a

2/n+2/γ−1 = q2
0

(
1 + 1

1 − 2/n− 2/γ

)
�

If 1/n+ 1/γ = 1/2, the last term in (10) is still finite and does not depend on a, while
the first two terms are

(
q2

0 + ε) + (
q2

0 + ε)(logb− loga)�

For small enough a, this is bounded from above by −(q2
0 + 2ε) loga. This and the corre-

sponding lower bound give the final claim. �

Lemma 4. As a→ 0, (μ−μ(a))= ba1/n + O(a1/n+1/γ + a).

Proof. We have

μ−μ(a) =
∫ a

0

(
b+ t1/γr(t)) 1

n
t1/n−1 dt +

∫ 1

1−a
(
b+ t1/γr(t)) 1

n
t1/n−1 dt

= ba1/n +
∫ a

0

1
n
t1/n+1/γ−1r(t)dt +

∫ 1

1−a
(
b+ t1/γr(t)) 1

n
t1/n−1 dt�

The second term is O(a1/n+1/γ) and the last term is O(a). �

Define μT = μ(1/T) and σ2
T = σ2(1/T). Also define the trimmed L-statistic μ̃T =∑T−1

t=2 B(n)�(t)[( tT )1/n − ( t−1
T )

1/n]. The results in Mason and Shorack (1992) (with k=m=
1) apply to

√
T(μ̃T −μT )/σT �
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so we need to show that

√
T

(
μ̂T − μ̃T − (μ−μT )

)
/σT

converges to zero or, in the case where 1/n+ 1/γ < 1/2, is OP(1).
We have

μ̂T − μ̃T = B(n)�(1)
(

1
T

)1/n

+B(n)�(T)
[

1 −
(
T − 1
T

)1/n]
�

The first term is bT−1/n + OP(T
−1/γ−1/n) by standard arguments and the last term con-

verges to zero at a 1/T rate, so that μ̂T − μ̃T = bT−1/n+ OP(T
−1/γ−1/n+T−1). By the last

lemma, μ−μT = bT−1/n + O(T−1/γ−1/n + T−1). Thus, the b terms cancel and

√
T

(
μ̂T − μ̃T − (μ−μT )

)
/σT = OP

(
T 1/2−1/n−1/γ/σT + T−1/2/σT

)
�

If 1/n+ 1/γ > 1/2, σT is bounded away from zero, and T 1/2−1/n−1/γ and T−1/2 go to zero
so that this is oP(1). If 1/n+ 1/γ = 1/2, σT goes to infinity, T 1/2−1/n−1/γ is constant, and
the last term goes to zero, so that this display is oP(1). If 1/n+ 1/γ < 1/2, σT increases
like T 1/2−1/n−1/γ so that the above display is OP(1).

Thus, μ̂T − μ is approximated closely enough by μ̃T − μT so that we just need to
verify the claims of the theorem with μ̂T − μ replaced by μ̃T − μT . The first statement
of the theorem, where 1/n + 1/γ > 1/2, follows by part (i) of Theorem 1 in Mason and
Shorack (1992) since σ2 <∞ in this case. For the second case, where 1/n+ 1/γ = 1/2, we
have

√
T(μ̃T −μT )/

√
logT = √

T(μ̃T −μT )/σT · (σT /
√

logT)�

By Lemma 3, σT /
√

logT → |q0|. The term
√
T(μ̃T − μT )/σT will converge to a N(0�1)

distribution by part (ii) of Theorem 1 in Mason and Shorack (1992) as long as condition
(1.24) from that paper holds. This is equivalent to having σ(λu)/σ(u)→ 1 as u→ 0 for
all 0< λ≤ 1 (condition (1.27) from that paper). To see that this holds, note that

σ2(λu)/σ(u)= σ2(λu)/ log(λu)
σ2(u)/ logu

log(λu)
logu

�

Here, σ(λu)/ log(λu) and σ(u)/ log(u) both converge to q0 by Lemma 3, and log(λu)/
logu = 1 + (logλ)/(logu) → 1, so the above display converges to 1 as u → 0. Thus,√
T(μ̃T −μT )/

√
logT →N(0� q0)=N(0� [nγh1/γ

0 (1 − 1/n− 1/γ)]−2) as claimed.
For the last case, where 1/n + 1/γ < 1/2, I verify the conditions of Theorem 2.1 in

Mason and Shorack (1992). We have

T 1/n+1/γ(μ̃T −μT )= √
T(μ̃T −μT )/σT · (σT /T 1/2−1/n−1/γ)�

By Lemma 3, σT /T 1/2−1/n−1/γ converges to a constant as T → ∞. As for the other term,√
T(μ̃T − μT )/σT will be OP(1) as long as lim sup |ΦiT (c)| <∞ for all c > 0 for all c > 0

and i= 0�1 (condition (2.2) in Mason and Shorack (1992)), where ΦiT is defined in (2.1)
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in that paper. The term Φ1T (c) goes to zero since K(t) is bounded for t near 1. As for
Φ0T (c), we have, for large enough T , Φ0T (c) = K(c/T)/(

√
TσT ). By Lemma 2, K(c/T)

increases like (c/T)1/n+1/γ−1 and, by Lemma 3, σT increases like T 1/2−1/n−1/γ , so the
denominator increases like T 1−1/n−1/γ . Thus,Φ0T (c) is bounded as T increases. The last
claim of the theorem now follows by Theorem 2.1 in Mason and Shorack (1992).

A.2 Other methods of incorporating observed heterogeneity in the application

The bounds computed in the application in Section 4 incorporate observed heterogene-
ity in the form of variation in engineer’s estimates using somewhat strong independence
and separability assumptions. This section reports estimates that control for this ob-
served heterogeneity in a more nonparametric way by averaging over estimates with ob-
servations binned by engineer’s estimate. The results illustrate how the bounds tighten
as one incorporates more of the observed heterogeneity in a data set into the estimates.

The estimates are computed as follows. I order the bids by engineer’s estimate and
divide the observations into m bins with approximately equal observations (the kth
bin contains observations for which the engineer’s estimate is strictly greater than its
(k− 1)/m quantile and less than or equal to its k/m quantile). I then compute the es-
timate of the upper bound for the efficiency loss from a lottery as the average of the
estimates for each bin. These estimates are then divided by the average of the engineer’s
estimate over all samples, so that they can be interpreted relative to the average scale
of the auctions. As discussed in Section 5.1, this gives a valid upper bound on the effi-
ciency loss from a lottery for any fixedm (where heterogeneity in the engineer’s estimate
within a bin is treated as unobserved) and the bound will be tighter for larger m. I com-
pute 95% confidence regions by bootstrapping, with the upper endpoint held fixed in
each bootstrap replication. I use the bootstrap rather than subsampling because of the
small number of observations per bin in some of the estimates.

The results are reported in Table 3. As expected, the upper bounds shrink as more
of the observed heterogeneity is controlled for by using a larger number of bins. The es-
timate that uses only one bin (thereby ignoring all observed heterogeneity and treating
it as unobserved) is over twice the average engineer’s estimate, which is barely informa-
tive at all. With 20 bins, which corresponds to 10 or 11 observations per bin, the upper
bound is almost as tight as that obtained under stronger independence and separability
assumptions in Section 4.

A.3 Other methods of computing standard errors

In addition to the subsampling based standard errors used in the application in Sec-
tion 4, standard errors for the case where a normal distribution is obtained at a root-n
rate can be estimated directly using sample analogues. Some calculation shows that the
variance of the limiting normal distribution in Theorem 6 can be written as

∫ ∫ [
1

n− 1
+ n− 2
n(n− 1)

GB(n)(u)
1/n−1

][
1

n− 1
+ n− 2
n(n− 1)

GB(n)(v)
1/n−1

]

· [GB(n)(u∧ v)−GB(n)(u)GB(n)(v)
]
dudv�
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Table 3. Estimation results for binned estimates (three bidder sample).

Number of Bins Estimate 95% CI

1 2�5762 [0� 2�7551]
2 1�6711 [0� 1�7901]
5 0�9666 [0� 1�0310]

10 0�6327 [0� 0�6764]
15 0�4862 [0� 0�5253]
20 0�4229 [0� 0�4539]

ReplacingGB(n) with its sample analogue gives

∫ ∫ [
1

n− 1
+ n− 2
n(n− 1)

ĜB(n)(u)
1/n−1

][
1

n− 1
+ n− 2
n(n− 1)

ĜB(n)(v)
1/n−1

]

· [ĜB(n)(u∧ v)− ĜB(n)(u)ĜB(n)(v)
]
dudv

(11)

=
T−1∑
s=1

T−1∑
t=1

[
1

n− 1
+ n− 2
n(n− 1)

(s/T)1/n−1
][

1
n− 1

+ n− 2
n(n− 1)

(t/T)1/n−1
]

· [(s ∧ t)/T − (s/T)(t/T)](B(n)�(s+1) −B(n)�(s))(B(n)�(t+1) −B(n)�(t))�
Since the asymptotic variance involves an integral of a function of ĜB(n) that goes to in-

finity as ĜB(n) goes to zero, consistency of this estimator does not follow immediately

from uniform consistency of ĜB(n) . Since the consistency of the subsample standard er-
rors reported in the paper follows easily from existing general results, I leave the asymp-
totic properties of the sample analogue estimator for future research and report Monte
Carlo results for both estimators in this section.

I simulate the winning bids from an auction with n = 3 bidders from the distribu-
tion GB(n)(t) = (3t/2)3. This corresponds to an auction with FV (v|U) = v and no unob-
served heterogeneity, but is consistent with other value functions in the presence of un-
observed heterogeneity. The upper bound for E(V(n) − Vi) is 1/4. I compute 1,000 Monte
Carlo draws of this data generating process with T = 215 observations (the same num-
ber as in the application), and compute one sided nominal 95% confidence intervals for
the upper bound using the sample analogue estimate (11), subsampling with subsample
size 57 (as in the application), and the bootstrap, with the subsample and bootstrap es-
timates holding the upper endpoint estimate constant in each computation. The Monte
Carlo coverage probabilities are, respectively, 0�8330, 0�7230, and 0�8160. All of these cov-
erage probabilities are somewhat below the nominal coverage probability, perhaps be-
cause of downward finite sample bias in the estimates.

The 95% confidence region for the efficiency loss from a lottery using the sample
analogue estimator (11) of the asymptotic variance for the auctions in the application
is [0�0�4304]. Compared to the subsampling based confidence region of [0�0�4306] re-
ported in Table 2 (last row), the sample analogue estimator of the asymptotic variance
actually gives a slightly smaller confidence region than the subsampling estimator for
this data set, despite having greater coverage in the Monte Carlo simulations.
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A.4 Primitive conditions for Assumption 1

Assumption 1 places conditions directly on the distribution of the winning bid GB(n) .
While this allows for greater generality than primitive conditions on the distribution of
values and unobserved heterogeneity, it is more difficult to interpret. This section gives
simple sufficient conditions for Assumption 1. If the value distribution FV (v|U) satisfies
Assumption 1 for some γ and U shifts the lower support so that the lower support has a
cdf that behaves like (u−u)ψ, Assumption 1 will hold forGB(n)(b)with γ given by γn+ψ.

Theorem 7. Suppose that FV (v|U) satisfies Assumption 1. If there is no unobserved het-
erogeneity, GB(n)(b) will satisfy Assumption 1 with γ given by γn. If unobserved hetero-
geneity takes the form FV (v|U) = h(v;u)(v − u)γ , where U has pdf r(u)(u − u)ψ−1 with
lower support point u, and h(v;u) and r(u) are bounded with bounded first derivatives
and are bounded away from zero near v= u and near u= u, then Assumption 1 holds for
GB(n)(b) with γ given by γn+ψ.

Proof. The distributionGB1(b|U) is given by FV (β−1(b)|U), where β(v;U) is the equi-
librium bid function given by

β(v;U)= v−

∫ v

v
FV (ṽ|U)n−1 dv

FV (v|U)n−1 �

Suppose that the value distribution satisfies Assumption 1 conditional on U = u for
some h(v;u). Then

GB1(b|U = u) = FV
(
β−1(b)|U = u) = h(

β−1(b;u);u)(β−1(b;u)− b)

= h
(
β−1(b;u);u)β−1(b;u)− b

b− b (b− b)�

Let

h̃(b;u)= h(
β−1(b;u);u)β−1(b;u)− b

b− b �

Under these conditions, the bid function can be written as

β(v)− v =

∫ v

v
h(ṽ;u)n−1(ṽ− v)n−1 dv

h(v;u)n−1(v− v)n−1

=
[h(ṽ;u)n−1(ṽ− v)n/n]vv −

∫ v

v
h(ṽ;u)n−2h′(ṽ;u)(ṽ− v)n(n− 1)/ndv

h(v;u)n−1(v− v)n−1

= (v− v)/n−

∫ v

v
h(ṽ;u)n−2h′(ṽ;u)(ṽ− v)n(n− 1)/ndv

h(v;u)n−1(v− v)n−1

= (v− v)/n+ k(v;u)(v− v)2
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for some function k(v;u) such that k and its derivative with respect to v are bounded
by a constant that depends only on the bound on h and its derivatives. It follows that
β′(v;u)→ (n− 1)/n, so that d

dbβ
−1(b)= (β′(β−1(b))−1 → n/(n− 1) as v→ v= b, where

the limit is uniform in u if there is unobserved heterogeneity that satisfies the conditions
of the theorem (in which case v= u). Thus, uniformly in u,

β−1(b)− b
b− b =

d

db
β−1(b∗)(b− b)

b− b → n

n− 1

as b → b, where b∗ is between b and b. It follows from this and taking derivatives of
h̃(b;u) that Assumption 1 holds forGB1(b|U = u)with h0 given by h0n/(n− 1). It follows
from this that GB(n)(b|U = u) satisfies this assumption with γ given by nγ and h0 given
by [h0n/(n− 1)]n.

Now suppose that U has pdf r(u)(u− u)ψ−1 for some ψ and shifts the lower support
point of v so that

FV (v|U = u)= h(v;u)(v− u)γ�

Then

GB(n)(b) =
∫
GB(n)(b|U = u)du=

∫ b

u
h̃(b;u)n|b− u|nγ+ r(u)(u− u)ψ−1 du

=
∫ 1

ũ=0
h
(
b; ũ(b− u)+ u)|(1 − ũ)(b− u)|nγ+

× r(ũ(b− u)+ u)[ũ(b− u)]ψ−1
(b− u)dũ

= (b− u)nγ+ψ
∫ 1

ũ=0
h
(
b; ũ(b− u)+ u)|1 − ũ|nγ+ r

(
ũ(b− u)+ u)ũψ−1 dũ�

where second line uses the change of variables ũ= (u−u)/(b−u). It can be verified that
this satisfies Assumption 1 with γ given by nγ+ψ by taking limits and derivatives under
the integral. �

A.5 Using data on multiple bids

While the bounds in this paper are generally best suited for the case where only a sin-
gle bid is observed, the bounds can be tightened with data on multiple bids. Suppose
that the highest bid B(n) is observed and that some other subset of order statistics is ob-
served. For some set I ⊆ {1� � � � � n− 1}, suppose that, in addition to B(n), B(k) is observed
for all k ∈ I .

This additional information can be used to obtain a better upper bound onE(b(U)),
which can then be used to improve on the bounds in this paper. (For example, b
can be replaced with any upper bound for E(b(U)) in (4) to obtain tighter bounds
on the efficiency loss from random allocation, and the inequalities will still hold.) Let
b(U� {B(k)}k∈I ; I) be the upper support point of B(n) conditional on U and on all B(k)
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for k ∈ I , and let b({B(k)}k∈I ; I) be the upper support point of B(n) conditional on all
B(k) for k ∈ I (but not on U). Note that b(U� {B(k)}k∈I ; I) = b(U) by the assumption of
independence conditional on U . Then, for all U ,

b
({B(k)}k∈I ; I

) ≥ b(U� {B(k)}k∈I ; I
) = b(U)�

so, taking expectations, we get

E
[
b
({B(k)}k∈I ; I

)] ≥E[
b(U)

]
�

This can be plugged into the formulas for the bounds derived in this paper to get
tighter bounds with data on multiple bids. For the application, I apply (the procure-
ment versions of) these formulas using the two lowest bids and using all three bids. To
estimate E[b(B(2)|; {2})], I first form a k-nearest-neighbor estimate b̂(b; {2}) of b(b; {2})
for each b by taking the minimum of B(1)�t over the k auctions with B(2)�t closest to b.
I then take the sample mean 1

T

∑T
t=1 b̂(B(2)�t; {2}) as the estimate of E[b(B(2)|; {2})]. For

E[b(B(2)|�B(3); {2�3})], I use a k-nearest-neighbor estimate b̂(b2� b3; {2�3}) of b(b2� b3;
{2�3}) for each (b2� b3) by taking the minimum of B(1)�t over the k auctions with
(B(2)�t �B(3)�t) closest to b, and take the sample mean 1

T

∑T
t=1 b̂(B(2)�t �B(3)�t; {2�3}) as the

estimate of E[b(B(2)|�B(3); {2�3})]. In both cases, k (the number of neighboring observa-
tions) is set to 20. It should be noted that, while I use the same value of k in both cases
for comparison, a choice of k based on optimality considerations such as mean squared
error would likely be smaller when conditioning on all bids. While the asymptotic the-
ory of these estimators is left for future research, it should be noted that these estimates
of the average of the lower endpoint will be upwardly biased and that a bias correction
term may be advisable in practice.

With data on the two lowest bids, I use the formula (6) with 1
T

∑T
t=1 b̂(B(2)�t; {2})

plugged in as an estimate of the lower bound for E(b(U)), the sample analogue plugged
in for E(B(1)), and the estimate (or estimate of the bound) for E(Bi) computed using the
winning bid B(1) as described in Section 3. This yields the point estimate for the bound
of 0�2230, as reported in Section 4. With data on all three bids, I use formula (6) with
1
T

∑T
t=1 b̂(B(2)�t �B(3)�t; {2�3}) plugged in as an estimate of the lower bound for E(b(U)),

1
T

∑T
t=1B(1)�t plugged in for E(B(1)), and the estimate 1

3T
∑T
t=1

∑3
i=1Bi�t plugged in for

E(Bi). This gives a point estimate for this bound of 0�1727, as reported in Section 3.
While these bounds improve dramatically on the best possible bounds that can be

obtained with data on only the winning bid and are much closer to the estimates that
use the methods of Krasnokutskaya (2009), the upward bias in the estimate of the lower
support point of the conditional bid distribution leads to a downward bias in these es-
timates. Thus, some of the apparent improvement over the bounds based on only the
winning bid may be due to downward bias in the estimates.

A.6 Examples with specific data generating processes

This section provides a counterexample to show two points made in the main text, as
well as an additional example that shows how the bounds compare to the true data gen-
erating process in certain cases. The counterexample proves two points. First, estimates
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that ignore unobserved heterogeneity do not, in general, provide bounds for the entire
bid distribution. In this example, the value distribution estimated ignoring unobserved
heterogeneity does not satisfy any first order stochastic dominance ordering with the
true marginal value distribution. Second, the upper bound on bidder profits can be at-
tained even if there is nontrivial unobserved heterogeneity. Thus, there are data gener-
ating processes for which this bound is sharp even if all of the bids are observed. In the
example below, the bound is attained because the upper endpoint of the support of the
bid distribution does not change with U .

For the counterexample, let V be uniform on (1 −U�1 +U) conditional on U with
two bidders and let U be distributed on (0�1) with pdf fU(u) = 3u2. Some calculation
shows that bids are uniform on (u− 1�1) conditional on U = u, so the cdf of the highest
bid conditional on U = u is GB(2) (b|U = u) = (b−(1−u)

u )2I(1 − u < b < 1) and the pdf is

gB(2) (b|U = u)= 2b−(1−u)
u2 I(1 − u < b< 1). Thus,

gB(2) (b) =
∫ 1

u=0
2
b− (1 − u)

u2 I(1 − u < b< 1)fU(u)du

=
∫ 1

u=0
2
b− (1 − u)

u2 I(1 − b < u< 1 − b+ u)3u2 du

= 6
∫ 1

u=1−b
(u+ b− 1)du

= 6
∫ b

t=0
t du= 3b2

and

GB(2) (b)=
∫ b

0
3t2 dt = b3�

This leads to G̃(b)= b3/2 and g̃(b)= 3
2b

1/2, so that the estimated bid shade using data
on the winning bid is

G̃(b)

(2 − 1)g̃(b)
= b3/2

3
2
b1/2

= 2
3
b�

Thus, ignoring unobserved heterogeneity leads to the conclusion that bidders with value
less than v are exactly those with b + 2b/3 < v, which is equivalent to b < (3/5)v. This
leads to estimating the cdf of the greatest valuation as

F̃V(2) (v)=GB(2)
(
(3/5)v

) = (3/5)3v3

for v ≤ 5/3. Since the estimated distribution of the greatest valuation has no support
above 5/3, but the true distribution of the greatest valuation takes values in [5/3�2] with
positive probability, the estimated distribution of the greatest valuation cannot first or-
der stochastically dominate the true marginal distribution of the greatest valuation.
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I now turn to a case where the upper bound is not attained. For this example, we con-
sider different values of n. Let the value distribution be uniform on (0�U) conditional
on U (the marginal distribution of U will be specified later). Then some calculation
shows that, conditional on U , the bid distribution will be uniform on (0� (n − 1)U/n).
Thus, the upper support point of the bid distribution conditional on U will be given by
b(U)= (n−1)U/n. Using the formula for the expectation of the valuation of the winning
bidder from Section 2.2, the difference between the upper bound for the expectation of
the valuation of the highest bidder (computed using data on the winning bid) and the
true expectation of the highest bidder for this data generating process is

n

n− 1
{
b−E[

b(U)
]} = n

n− 1

{
n− 1
n

u−E
[
n− 1
n

U

]}
= u−E(U)�

where u is the upper support point of the distribution of U . For example, if U is dis-
tributed uniformly on the interval [a�b], the upper bound will be greater than the true
expectation by (a− b)/2. Thus, in this case, the bound on the mean of the highest valu-
ation will be more slack when the distribution of the unobserved heterogeneity is more
spread out (although the bound is still sharp with data on the winning bid in the sense
that, with only this information, the possibility that the bound is equal to the true ex-
pectation of the highest value cannot be ruled out).
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