
Quantitative Economics 6 (2015), 499–529 1759-7331/20150499

Combinatorial approach to inference in partially identified
incomplete structural models

Marc Henry
Penn State

Romuald Méango
IFO Institute

Maurice Queyranne
Sauder School, UBC and CORE

We propose a computationally feasible inference method in finite games of com-

plete information. Galichon and Henry (2011) and Beresteanu, Molchanov, and

Molinari (2011) show that the empirical content in such models is characterized

by a collection of moment inequalities whose number increases exponentially

with the number of discrete outcomes. We propose an equivalent characterization
based on classical combinatorial optimization methods that allows the construc-

tion of confidence regions with an efficient bootstrap procedure that runs in linear

computing time. The method can be applied to the empirical analysis of coopera-

tive and noncooperative games, instrumental variable models of discrete choice,

and revealed preference analysis. We propose an application to the determinants

of long term elderly care choices.

Keywords. Incomplete structural models, multiple equilibria, partial identifica-

tion, sharp bounds, confidence regions, max-flow–min-cut, functional quantile,

bootstrap, elderly care.

JEL classification. C13, C72.

Marc Henry: marc.henry@psu.edu
Romuald Méango: meango@ifo.de
Maurice Queyranne: maurice.queyranne@sauder.ubc.ca
Parts of this paper were written while Henry was visiting the Graduate School of Economics at the Uni-
versity of Tokyo; he gratefully acknowledges the CIRJE for its hospitality and support. Financial support
from SSHRC Grants 410-2010-242 and 435-2013-0292 and NSERC Grant 356491-2013 and from the Leibniz
Association (SAW-2012-ifo-3) is gratefully acknowledged. The authors thank Victor Chernozhukov, Russell
Davidson, Alfred Galichon, Silvia Gonçalves, Hidehiko Ichimura, and Ismael Mourifié for helpful discus-
sions, Rosa Matzkin, Jean-Marc Robin, and six anonymous referees for helpful suggestions, David Straley
for providing the data, and Daniel Stubbs for computing assistance. Comments from seminar audiences in
Cambridge, the Bank of Japan, Harvard–MIT, Hitotsubashi, UBC Sauder School, UCL, U-Kyoto, U-Tokyo,
Rochester, Vanderbilt, and participants at the Inference in Incomplete Models Conference in Montreal, the
First Workshop on New Challenges in Distributed Systems in Valparaiso, and the Second Workshop on Op-
timal Transportation and Applications to Economics in Vancouver are also gratefully acknowledged.

Copyright © 2015 Marc Henry, Romuald Méango, and Maurice Queyranne. Licensed under the Creative
Commons Attribution-NonCommercial License 3.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE377

http://www.qeconomics.org/
mailto:marc.henry@psu.edu
mailto:meango@ifo.de
mailto:maurice.queyranne@sauder.ubc.ca
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE377
http://creativecommons.org/licenses/by-nc/3.0/


500 Henry, Méango, and Queyranne Quantitative Economics 6 (2015)

Introduction

With the conjoined advent of powerful computing capabilities and rich data sets, the
empirical evaluation of complex structural models with equilibrium data is becoming
prevalent, particularly in the analysis of social networks and industrial organization.
However, in such models, multiple equilibria are the norm rather than the exception.
Though multiplicity of equilibria and identifiability of the model’s structural parame-
ters are conceptually distinct, the former often leads to a failure of the latter, thereby
invalidating traditional inference methods. This is generally remedied by imposing addi-
tional assumptions to achieve identification, such as imposing an equilibrium selection
mechanism or a refinement of the equilibrium concept. Manski (1989) and Jovanovic
(1989) were among the first to advocate a new inference approach that dispenses with
identification assumptions and delivers confidence regions for partially identified struc-
tural parameters. A large literature has developed on the general problem of inference
on partially identified parameters defined as minimizers of objective functions or more
specifically as solutions to moment inequality restrictions, following the seminal work
of Chernozhukov, Hong, and Tamer (2007).

In structural estimation using equilibrium conditions, the partial identification ap-
proach was initially applied, as in Haile and Tamer (2003), to achieve simple and robust
inference from implications of the model in the form of a small number of moment
inequalities. This partial identification approach was applied to inference in games by
Andrews, Berry, and Jia (2003), Pakes, Porter, Ho, and Ishii (2015), and Ciliberto and
Tamer (2009), among others. However, the approach of the latter papers to inference in
games brings only part of the empirical content of the model to bear on the estimation,
resulting in unnecessary loss of informativeness. In models with multiple equilibria and
no additional prior information, nothing is known of the equilibrium selection mecha-
nism. If a particular equilibrium selection mechanism is posited, the model likelihood
can be derived and inference can be based on it. Jovanovic (1989) characterizes compat-
ibility of an economic structure with the true data generating process as the existence of
some (unknown) equilibrium selection mechanism, for which the likelihood is equal to
the true data generating mechanism. Berry and Tamer (2006) define the identified set as
the collection of structural parameter values for which the structure is compatible with
the data generating mechanism in the sense of Jovanovic (1989). This definition of the
identified set is not directly conducive to inference, as it involves an infinite dimensional
(nuisance) parameter (the equilibrium selection mechanism). However, in the case of
finite noncooperative games of complete information, Galichon and Henry (2011) and
Beresteanu, Molchanov, and Molinari (2011) show equivalence of the Jovanovic (1989)
definition with a system of inequalities. Hence, they show that the empirical content of
such models is characterized by a finite collection of moment inequalities.

A large literature has developed on inference in moment inequality models since
the seminal contribution of Chernozhukov, Hong, and Tamer (2007). We discuss and re-
view it in Section 3. However, a major challenge in the framework of this paper is that
the number of inequalities characterizing the empirical content of the model grows ex-
ponentially with the number of equilibrium strategy profiles. Hence the combinatorial
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optimization approach that we propose in this paper is, to the best of our knowledge,
the only computationally feasible inference procedure for empirically relevant incom-
plete economic structures. The growing literature on “inference with many moment
inequalities” addresses theoretical issues relating to the case where the number of in-
equalities grows with sample size and does not alleviate the computational burden men-
tioned here. This problem of exponential complexity goes a long way toward explain-
ing the dearth of empirical studies using partial identification in such models. However,
abandoning this partial identification approach would mean abandoning robust infer-
ence not only in noncooperative games of perfect information, but also in large classes
of models that share exactly the same feature and fall into the framework of this pa-
per. They include cooperative games, such as matching games and network formation
games, revealed preference analysis of spacial preferences, and matching markets and
instrumental variable models of discrete choice.

The objective of this paper is to propose a combinatorial solution to this problem,
where the number of inequality restrictions grows exponentially with the number of
strategy profiles or discrete outcomes. Ekeland, Galichon, and Henry (2010) have shown
that generic partial identification problems can be formulated as optimal transportation
problems. Developing ideas in Galichon and Henry (2011), we exploit the special struc-
ture of discrete choice problems and show that correct specification can be formulated
as a problem of maximizing flow through a network, and that the identified set can be
obtained from the max-flow–min-cut theorem. The dual problems of maximizing flow
through a network and finding a minimum capacity cut are classics in combinatorial
optimization and operations research, with applications in many areas such as traffic,
communications, routing, and scheduling; see, for example, Schrijver (2004) for the the-
ory and history, and Ahuja, Magnanti, and Orlin (1993) for numerous applications. To
our knowledge this is the first application of the max-flow–min-cut theorem to statisti-
cal inference for equilibrium models. We apply this powerful combinatorial method to
the problem of constructing confidence regions for structural parameters. We construct
a functional quantile for the bootstrap process using a linear computing time algorithm
and replace the unknown empirical process by this quantile in the system of moment
inequalities to obtain the least relaxation of the moment inequalities, hence maximum
informativeness, while controlling the confidence level of the covering region. Since the
procedure involves bootstrapping the empirical process only, it does not suffer from the
problems of bootstrap validity in partially identified models described in Chernozhukov,
Hong, and Tamer (2007) and Bugni (2010). We illustrate and assess our procedure on a
very simple full information game with two players and three strategies, easily derived
equilibria, and yet a large number of inequalities to characterize its empirical content
(namely 127). We simulate the game under a variety of parameter values and assump-
tions on the data generating process and with explanatory variables. Finally, we illustrate
the approach, the procedure, and the interpretation of results on an application to the
determinants of long term elderly care choices of American families.

In summary, the main contributions of this paper are as follows:

1. We present a new approach to inference in incomplete structural models.
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2. We provide a simplified and insightful new proof for a characterization of the iden-
tified set.

3. We present a computationally efficient, combinatorial procedure that allows feasi-
ble inference in empirically relevant incomplete structural models. We demonstrate its
practical efficiency in extensive simulations of a simple game.

4. We apply this methodology to an empirical example and demonstrate the type of
econometric analysis and insights that it allows.

The paper is organized as follows. The next section introduces the general frame-
work and the object of study. Section 2 derives the characterization of the identified
set with the min-cut–max-flow theorem. Section 3 describes the combinatorial proce-
dure to construct the confidence region efficiently. Section 4 contains the simulation
evidence and Section 5 contains the empirical application. The last section concludes.
Proofs are collected in the Appendix. Relevant definitions and theorems pertaining to
the combinatorial optimization notions, and extended empirical results and discussions
are collected in supplementary files on the journal website, http://qeconomics.org/
supp/377/supplement.pdf and http://qeconomics.org/supp/377/code_and_data.zip.

1. Analytical framework

1.1 Model specification

We consider the model specification

Y ∈G(X�ε;θ)� (1.1)

where Y is an observable outcome variable, which takes values in a finite set Y =
{y1� � � � � yK},X is a vector of exogenous explanatory variables with domain X , ε is a vec-
tor of unobservable heterogeneity variables with domain Ξ ⊂ R

l, and θ ∈ Θ ⊂ R
d is a

vector of unknown parameters. Finally, G :X ×Ξ⇒ Y is a set-valued mapping param-
eterized by θ. The random elements X , Y , and ε are defined on a common probability
space (Ω�F�P). The sample consists of n observational units i = 1� � � � � n, which are in-
dependent and identical in distribution. To each unit i is attached a vector (Yi�Xi�εi),
only the first two elements of which shall be observed. For each potential outcome
y ∈ Y , we denote by P(y|X) the conditional probability P(Y = y|X). If Z is a subset of Y ,
P(Z|X) will denote

∑
y∈Z P(y|X). It is important to emphasize here the fact that P(·|X)

denotes the true outcome data generating process, which is unknown, but can be esti-
mated from the data. It is not a function of the structural parameter vector and cannot
be construed as the likelihood from the model. The vector of unobservable variables ε in
the economic structure has conditional cumulative distribution function F(ε|X;θ) for
some known function F parameterized by θ (the same notation is used for the param-
eters of the model correspondence and for the parameters of the error distribution to
indicate that they may have common components). The economic structure is summa-
rized by the multivalued mapping G. A special case of specification (1.1) arises when G
is a function, in which case model (1.1) is a nonlinear nonseparable single equation dis-
crete choice model as in Chesher (2010). Here, however, we entertain the possibility ofG

http://qeconomics.org/supp/377/supplement.pdf
http://qeconomics.org/supp/377/code_and_data.zip
http://qeconomics.org/supp/377/supplement.pdf
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having multiple values arising from multiple equilibria, data censoring, or endogeneity.
The mapping G is entirely given by the economic structural model, up to an unknown
parameter vector θ.

The analytical framework, concepts, and procedures proposed throughout the paper
will be illustrated and discussed with the following simple example.

Example 1 (Partnership game). Our example is a simple noncooperative full informa-
tion game of complementarities.

• Strategies. There are two players, who simultaneously decide, whether to invest
strongly (strategyH), weakly (strategy L), or not at all (strategy O) in a partnership.

• Payoffs. Players pay a cost c ≥ 0 (respectively 2c) for a weak (respectively strong) in-
vestment. Benefits that accrue to players depend on the overall level of investment in
the partnership and explanatory variables Ji, i = 1�2, where Ji = 1 if player i is female
and is zero otherwise. The benefits for player i are 3c(1 +βJi) in case both players invest
strongly, 2c(1+βJi) in case one player invests weakly and the other invests strongly, and
c(1+βJi) in case both players invest weakly. Finally player i also experiences an idiosyn-
cratic random participation payoff εi, i = 1�2, with a density with respect to Lebesgue
measure. The payoff matrix for the game is given in Table 1.

• Equilibrium concept. We assume that outcomes are Nash equilibria in pure strate-
gies. Other equilibrium concepts could be entertained, in particular with mixed strate-
gies, as will be discussed in Section 3.1 and illustrated in the empirical application.

The strategies, payoffs, and equilibrium concept together define the economic struc-
ture. Element Y is an observed equilibrium strategy profile; J = (J1� J2) is also observed
by the analyst. The idiosyncratic participation benefit ε= (ε1� ε2) is not observed, but it
is common knowledge to the players. The structural parameter vector is θ= (c�β). The
equilibrium correspondence, i.e., the set of equilibria for each value of ε, J and θ, can
be easily derived and defines the multivalued mapping G in model specification (1.1),
which is represented in the (ε1� ε2) space in Figure 1 for the case β= 0. Since we assume
that ε has absolutely continuous distribution with respect to Lebesgue measure, we do

Table 1. Payoff matrix for the partnership game.

Player 2

Player 1 H L O

H 3c(1 +βJi)− 2c+ ε1 2c(1 +βJi)− 2c+ ε1 −2c+ ε1
3c(1 +βJi)− 2c+ ε2 2c(1 +βJi)− c+ ε2 0

L 2c(1 +βJi)− c+ ε1 c(1 +βJi)− c+ ε1 −c+ ε1
2c(1 +βJi)− 2c+ ε2 c(1 +βJi)− c+ ε2 0

O 0 0 0
−2c + ε2 −c+ ε2 0

Note: In each cell, the top expression is player 1’s payoff and the bottom term is player 2’s payoff.
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Figure 1. Representation of the equilibrium correspondence G(J�ε;θ) in the (ε1� ε2) space,
when β= 0.

not include zero probability predictions, such as {OO�OL} when ε2 = c and ε1 <−c, for
instance.

1.2 Object of inference

Model (1.1) has the fundamental feature that G is multivalued (because of multiple
equilibria in the example above, for instance). For a given value of (X�ε�θ), the model
predicts a set of possible outcomes G(X�ε;θ). Only one of them, namely Y , is actu-
ally realized, but the economic structure is silent about how that particular Y was se-
lected among G(X�ε;θ). In other words, the economic structure holds no information
about the equilibrium selection mechanism. If the true (unknown) equilibrium selec-
tion mechanism is denoted π0(y|ε�X), which is a probability on G(X�ε;θ), then the
likelihood of observation y can be written

L(θ|y�X)=
∫
Ξ
π0(y|ε�X)dF(ε|X;θ)

and the true parameter θ0 satisfies

P(y|X)=
∫
Ξ
π0(y|ε�X)dF(ε|X;θ0)� X-a.s. for all y� (1.2)
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Jovanovic (1989) points out that the incomplete model (incomplete because the equi-
librium selection is not modeled) is compatible with the true data generating process
P(·|X) if and only if there exists a (generally nonunique) equilibrium selection mecha-
nismπ0 such that (1.2) holds. The identified set is then defined as the setΘI of parameter
values θ such that model (1.1) is compatible in the sense of Jovanovic (1989).

Definition 1 (Identified set). The identified set ΘI is the set of parameter values θ ∈Θ
such that there exists a probability kernel π(·|ε�X) with support G(X�ε;θ) for which
(1.2) holds.

The identified set is empty if no value of the parameter can rationalize the data gen-
erating process, in which case the structural model is misspecified. The identified set is
a singleton in case of point identification, which occurs ifG happens to be single valued
under the true parameter values (in case c = β= 0 in Example 1) or in very special cases
under large support assumptions on X , as in Tamer (2003). The identified set is totally
uninformative, i.e., ΘI =Θ, in case the model has no empirical content (if, for instance,
G(X�ε;θ0) contains all selected outcome values for almost all ε at the true value θ0).

1.3 Applications of the framework

Specification (1.1), hence the inference procedure presented in this paper, has a wide
range of applications. Some of the most compelling applications are the empirical anal-
ysis of games, instrumental variable models of discrete choice with endogeneity, and
revealed preference analysis.

• Empirical analysis of games. As illustrated in Example 1, model (1.1) applies to
the empirical analysis of noncooperative games of perfect information (normal form
games). They include the classic entry game of Bresnahan and Reiss (1990) and Berry
(1992) as well as the social interaction game of Soetevent and Kooreman (2007). Non-
cooperative games of private information make for a less compelling application of this
framework as point identification conditions are more easily derived and justified than
in their perfect information counterparts (see, for instance, Aradillas-Lopez (2010) and
Bajari, Hahn, Hong, and Ridder (2011) for a discussion). Finally, some cooperative games
can be analyzed and estimated within the present framework, in particular matching
and social network formation games, where the equilibrium correspondence is charac-
terized by pairwise stability. Uetake and Watanabe (2013) present an empirical analysis
of entry by merger, where the present inference procedure can be applied.

• Discrete choice models with endogeneity. Chesher, Rosen, and Smolinski (2013)
study instrumental variable (IV) models of discrete choice, such as the IV extension of
McFadden’s conditional logit model with endogeneity, considered in their Example 1.
When the endogenous and exogenous regressors have discrete support, that model falls
within the framework of (1.1). Our paper provides a computationally attractive inference
procedure in such settings.
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• Revealed preference analysis. Henry and Mourifié (2013) apply the inference proce-
dure proposed here to analyze voting behavior from a revealed preference standpoint.
The same approach can be applied to revealed preference testing in matching markets
as in Echenique, Lee, Shum, and Yenmez (2013) or the revealed preference approach to
games taken in Pakes et al. (2015).

2. Operational characterization of the identified set

As noted in Berry and Tamer (2006), Definition 1 is not an operational definition of
the identified set, as it includes the equilibrium selection mechanism as an infinite di-
mensional parameter. Galichon and Henry (2006, 2011) and Beresteanu, Molchanov,
and Molinari (2011) show a characterization of the identified set with a finite collection
of moment inequalities. In this section, we give an equivalent characterization of the
identified set, whose proof is much simpler and relies on the min-cut–max-flow theo-
rem, which brings classical efficient combinatorial optimization methods to bear on the
problem. This will prove crucial for the feasibility of the inference procedure in realistic
and relevant empirical examples.

First, we set out the main heuristic for the operational characterization of the iden-
tified set. Model specification (1.1) is a discrete choice model, hence the set Y of out-
comes is finite and the correspondence G takes only a finite number of values, which
we label U = {u1� � � � � uJ}. Each u is a set (possibly singleton) of outcomes in Y . Because
the model is incomplete, it does not predict the probabilities of individual outcomes in
Y , but it predicts the probability of each combination of equilibria listed in U . We denote
these probabilitiesQ(u|X;θ) as they depend on the structural parameter value.

Definition 2 (Predicted probabilities). For each u ∈ U , we define Q(u|X;θ) :=
P(G(X�ε;θ)= u|X�θ). If V is a subset of U , we writeQ(V |X;θ)= ∑

u∈V Q(u|X;θ).

In most applications, it will be difficult to obtain closed forms for Q(u|X;θ). How-
ever, ε can be randomly generated. Given a sample (εr)r=1�����R of simulated values,
Q(u|X;θ) can be approximated by

∑R
r=1 1{u = G(X�εr;θ)}/R. Bajari, Hong, and Ryan

(2010) propose an importance sampling procedure that greatly reduces the computa-
tional burden of this stage of the inference. The simulation procedure is now standard
and cannot be avoided if one wishes, as we do here, to exhaust the empirical content of
the structural model.

Example 1 (Continued). In the partnership example with β = 0, the model predicts
the following values for the equilibrium correspondence: U = {{OL}� {LH�OL�HH}�
{HH�LH�OO}� {OO}� {HH�OO}� {HH�LL�HL�LH}� {HH�LL�OO�HL�LH}� {HH�
OO�HL}� {HH�HL�LO}� {LO}}. The set Y of equilibrium strategy profiles (that may be
observed) is {HH, HL, LH, LL, LO, OL, OO} with 7 elements, while the set of pre-
dicted collections of equilibria (possible values of the equilibrium correspondence) U
has 10 elements. The predicted probabilities can be computed in the following way. For
instance, Q({OL}|c) = P(ε1 ≤ −c and ε2 ≥ c) and Q({HH�LH�OL}|c) = P(−c ≤ ε1 ≤ 0
and ε2 ≥ c), and the remaining 8 probabilities are determined similarly from Figure 1.
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The model structure imposes a set of restrictions on the relation between the pre-

dicted probabilities of equilibrium combinations and the true probabilities of outcomes.

For instance, the predicted probability Q({HH�LH�OL}|X;θ) in the above example

cannot be larger than the sum P(HH) + P(LH) + P(OL) of probabilities of occur-

rence of each individual equilibrium in u, since Y is either HH, LH, or OL, when

u= {HH�LH�OL} is predicted. More generally, since P and Q are the marginals of the

joint distribution of (Y�U) givenX , we must have for all u ∈ U ,

Q(u|X;θ) =
∑
y∈u

P(Y = y andU = u|X;θ)
(2.1)

≤
∑
y∈u

P(Y = y|X;θ)=
∑
y∈u

P(y|X)�

Note thatQ(u|X;θ)may be strictly smaller than
∑
y∈u P(y|X)when some outcome y ∈ u

also belongs to other combinations u′ that may arise under different values of ε, as its

(marginal) probability P(y|X) must then be split between Q(u|X;θ) and the probabil-

ities Q(u′|X;θ) of such other combinations u′ ∈ U containing y. However, inequalities

(2.1) do not exhaust the information in the structure. They may all be satisfied and yet

the structure may be incompatible with the data generating process as the following ex-

ample shows. Hence more inequalities will be needed as derived below.

Example 1 (Continued). In the partnership example with β= 0, suppose that the true

equilibrium selection mechanism is such thatQ({OL}|θ)= P(OL) > 0 andQ({HH�LH�
OL}|θ) = P(HH) + P(LH) + P(OL). Then Q({OL} ∪ {HH�LH�OL}|θ) = Q({OL}|θ) +
Q({HH�LH�OL}|θ) > P(HH)+ P(LH)+ P(OL) so that θ /∈ΘI .

Extending this observation, consider a subset V ⊆ U and define

V ∪ := {y ∈ Y :y ∈ u for some u ∈ V } =
⋃
u∈V

u�

Then we must have

Q(V |X;θ) =
∑
u∈V

∑
y∈u

P(Y = y andU = u|X;θ)

=
∑
y∈V ∪

∑
u∈V : y∈u

P(Y = y andU = u|X;θ)

≤
∑
y∈V ∪

∑
u∈U

P(Y = y andU = u|X;θ)

=
∑
y∈V ∪

P(y|X)�
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where the inequality is again due to the fact that some y ∈ V ∪ may also belong to some
u′ /∈ V . Since this inequality holds for every V ⊆ U , we must have

max
V ⊆U

(∑
u∈V

Q(u|X;θ)−
∑
y∈V ∪

P(y|X)
)

≤ 0�

This inequality must also hold for every realization x of X in the domain X of the ex-
planatory variables, implying that every θ in the identified setΘI must satisfy

sup
x⊆X

max
V ⊆U

(∑
u∈V

Q(u|x;θ)−
∑
y∈V ∪

P(y|x)
)

≤ 0�

So far, we have shown implications of the model. It is far more difficult to show that
these implication actually exhaust all the empirical content of the model, i.e., that they
involve no loss of information and constitute sharp bounds. In Theorem 1 below, we
will show this with an appeal to the classical max-flow–min-cut theorem of combinato-
rial optimization, providing our characterization (2.2) of the identified set. We thereby
provide, for the case of a finite set of possible outcomes, a new and simpler proof of
the characterization of the identified set with a finite collection of inequalities, without
the complicated apparatus of the theory of random sets. This allows us to emphasize
the combinatorial optimization formulation of our inference problem, which is key to
its tractable solution in empirically relevant instances. Theorem 1 below also provides
an alternative characterization (2.3) of the identified set from the “dual” perspective of
outcome subsets Z ⊆ Y , in addition to the preceding characterization (2.2) based on
combination subsets V ⊆ U , with the notation

Z∩ := {u ∈ U :u⊆Z} and Z−1 := {u ∈ U :u∩Z 
= ∅}�
This alternative characterization may be useful in situations where the number of possi-
ble outcomes is much smaller than the number of possible combinations (as is the case
in Example 1, where the number of equilibrium outcomes (cardinality of Y) is 7, so the
corresponding number of inequalities to be checked is 27 − 1 = 127, whereas the num-
ber of predicted equilibrium combinations (cardinality of U ) is 10, so the corresponding
number of inequalities to check would be 210 − 1 = 1023).

Theorem 1. The identified set is

ΘI =
{
θ ∈Θ : sup

x∈X
max
V ⊆U

(
Q(V |x;θ)− P(

V ∪|x)) ≤ 0
}

(2.2)

=
{
θ ∈Θ : sup

x∈X
max
Z⊆Y

(
Q

(
Z∩|x;θ) − P(Z|x;θ)) ≤ 0

}
� (2.3)

Theorem 1 gives two characterizations of the identified set ΘI , sometimes called
sharp identified region in the literature. The set ΘI contains all the values of the pa-
rameter such that (1.1) holds and only such values. Moreover, all elements of ΘI are
observationally equivalent. Hence no value of the parameter vector θ contained in ΘI
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can be rejected on the basis of the information available to the analyst. Thus, ΘI com-
pletely characterizes the empirical content of the model. A by-product of the proof is
the equivalence with the characterization of the identified set derived in Galichon and
Henry (2006), which we give in (2.4) in our notation.

Corollary 1. The identified set is

ΘI =
{
θ ∈Θ : sup

x∈X
max
Z⊆Y

(
P(Z|x;θ)−Q(

Z−1|x;θ)) ≤ 0
}
� (2.4)

Example 1 (Continued). To illustrate the computation of the identified set, consider the
case where it is known that β= 0. Assume that the true parameter value is c0 = 1/4 and
the idiosyncratic shocks are independent and uniformly distributed over [−1/2�1/2].
Suppose further that the true data generating process is equal to the distribution im-
plied by a uniform equilibrium selection rule, whereby all equilibrium strategy profiles
within the equilibrium correspondence are selected with equal probability. For example,
when ε1 ≥ c0 = 1/4 and −1/4 = −c0 ≤ ε2 ≤ 0, each strategy profile within the equilibrium
correspondence {HH�HL�LO} is equally likely. The probability distribution of the true
data generating process in this case is defined by P(HH) = 167/960, P(OO) = 191/480,
P(OL)= P(LO)= 1/12, P(LL)= 19/320, and P(HL)= P(LH)= 97/960. The identified
set is derived as the set of values of c such that the 27 − 1 = 127 inequalities of the form
P(Z) ≥ Q(Z∩|c), all Z ⊆ {HH�HL�LH�LL�LO�OL�OO}, are satisfied. For instance,
one of those inequalities is 59/320 = P(LO orHL) ≥ Q({LO}|c) = (1/2 − c)2 if c ≤ 1/2
and is zero otherwise. The identified set can be computed using a min-cut–max-flow
algorithm, which yields [1/2 − 1/

√
12�1/3] 
 [0�2113�0�3333], where the lower bound of

the interval happens to be the smallest value of c > 0 for which the inequality in (2.3)
with Z = {LO�OL} is satisfied, and the upper bound happens to be the largest value for
which that with Z = {HH�HL�LH�LL�OO} is satisfied.

As illustrated in Example 1, even in simple examples where the equilibria are very
easy to compute, the exponential size of the characterization of the identified set is a
severe computational burden that is best approached with combinatorial optimization
techniques, as developed in the next section.

3. Confidence region

3.1 Objective

We now turn to the problem of inference on ΘI based on a sample of observations
((Y1�X1)� � � � � (Yn�Xn)). We seek coverage of the identified set with prescribed probabil-
ity 1−α for some α ∈ (0�1). It would be tempting to appeal to the large literature on infer-
ence in moment inequality models. This includes several proposals for the construction
of confidence regions covering each point in the identified set, which are generally pre-
ferred due to the fact that they may be more informative (although this may sometimes
be misleading as pointed out in Henry and Onatski (2012)). Such proposals include Sec-
tion 5 of Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Rosen
(2008), Galichon and Henry (2009), and Andrews and Soares (2010), among others. All
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of the papers above propose to construct confidence regions by inverting specification
tests. Hence, the confidence region is constructed through a search in the parameter
space, with a computationally demanding testing procedure at each parameter value
visited in the search. This becomes computationally infeasible for realistic parameter
vector dimensions. With a reasonably precise grid search and five parameters (for ex-
ample), the number of points to be visited is in the tens of billions. If the identified set is
known to be convex, the search can be conducted from a central point with a dichotomy
in polar coordinates, yet it remains computationally impractical to conduct a statistical
procedure for each point in the search.

Hence, each parameter value in the search must be accepted or rejected based on
a deterministic criterion. This means the significance of the confidence region must
be controlled independently of the parameter value. This will automatically produce a
confidence region that covers the identified set. Proposals for the construction of con-
fidence regions covering the identified set include Chernozhukov, Hong, and Tamer
(2007), Romano and Shaikh (2010), Galichon and Henry (2013), and Bugni (2010),
among others. These can be applied to realistic models defined by a small number of
moment inequality restrictions. However, a major challenge in the framework of this
paper is that the number of inequalities characterizing the empirical content of the
model in Theorem 1 grows exponentially with the cardinality of Y , which in the case
of games is the number of equilibrium strategy profiles (in the very simple partnership
game of Example 1, the number of inequalities is 127). Hence the combinatorial opti-
mization approach that we propose in this paper is, to the best of our knowledge, the
only computationally feasible inference procedure for empirically relevant economic
structures defined by finite games and other models of discrete choice with endogene-
ity.

Definition 3 (Confidence region). A confidence region of asymptotic level 1−α for the
identified set ΘI is defined as a sequence of regions Θn, n ∈ N, satisfying lim infn P(ΘI ⊆
Θn)≥ 1 − α.

We seek coverage of the set of values of the parameter θ such that Q(V |x�θ) ≤
P(V ∪|x) for all values of x and all subsets V of U ; Q is determined from the model, but
P is unknown. However, if we can construct random functions Pn(A|x) that dominate
the probabilities P(A|x) for all values of x and all subsets A of Y with high probability,
then, in particular, Pn(V ∪|x) ≥ P(V ∪|x) for each x and each subset V of U . Hence any
θ satisfying Q(V |x�θ) ≤ P(V ∪|x) for all values of x and all subsets V of U also satisfies
Q(V |x�θ)≤ Pn(V ∪|x) for all values of x and all subsets V of U . There remains to control
the level of confidence of the covering region, which is achieved by requiring that Pn
dominate P with probability asymptotically no less than the desired confidence level.
Equivalently, when working from characterization (2.4), we impose the same require-
ment for dominated functions Pn. Hence the following assumption.

Assumption 1. Let the random functionsA �→ Pn(A|x),A⊆ Y , satisfy

lim inf
n

P

(
sup
x∈X

max
A⊆Y

[
P(A|x)− Pn(A|x)] ≤ 0

)
≥ 1 − α� (3.1)
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Suppose now a value θ0 of the parameter vector belongs to the identified set ΘI .
Then, by Theorem 1, for all x and V ⊆ U , Q(V |x;θ0)≤ P(V ∪|x), so that with probability
tending to no less than 1 − α,Q(V |x;θ0)≤ Pn(V ∪|x), hence Theorem 2.

Theorem 2 (Confidence region). Under Assumption 1, the sets

ΘI(Pn)=
{
θ ∈Θ : sup

x∈X
max
V ⊆U

(
Q(V |x;θ)− Pn

(
V ∪|x)) ≤ 0

}
(3.2)

define a confidence region of asymptotic level 1 − α forΘI (according to Definition 3).

Theorem 2 has the fundamental feature that it dissociates search in the parame-
ter space (or even possibly search over a class of models) from the statistical proce-
dure necessary to control the confidence level. The upper probabilities Pn can be de-
termined independently of θ in a procedure that is performed once and for all using
only sample information, i.e., fully nonparametrically. Once the upper probabilities are
determined, probabilitiesQ over predicted sets of outcomes are computed for particular
chosen specifications of the structure and values of the parameter, and such specifica-
tions and values are tested with inequalities defining Θn(Pn). This dissociation of the
statistical procedure to control confidence level from the search in the parameter space
is crucial to the computational feasibility of the proposed inference procedure in realis-
tic examples (i.e., sample sizes in the thousands, two-digit dimension of the parameter
space, and two-digit cardinality of the set of observed outcomes, as in the application to
teen behavior in Soetevent and Kooreman (2007), or to entry into the airline market in
Ciliberto and Tamer (2009)). The latter consider only equilibria in pure strategies, as we
have until now. If equilibria in mixed strategies are also considered, as in Bajari, Hong,
and Ryan (2010) and in the family bargaining application below, we can appeal to re-
sults in Beresteanu, Molchanov, and Molinari (2011) and Galichon and Henry (2011). In
particular, Galichon and Henry (2011) show that if the game has a Shapley regular core
(which is the case in the family bargaining application, by Lemma 2 of Galichon and
Henry (2011)), then the identified set is characterized by (2.3) of Theorem 1 with the
caveat that the set function Z �→Q(Z∩|x;θ) is replaced by

L(Z|x;θ)=
∫

min
σ∈G(ε|X;θ)

σ(Z)dν(ε)� (3.3)

where G(ε|X;θ) is now a set of mixed strategies, i.e., a set of probabilities on the set of
outcomes, as opposed to a subset of the set of outcomes. Hence the methodology can
be easily adapted, as in the application of Section 5.

3.2 Control of confidence level

We now turn to the determination of random functions satisfying Assumption 1. First,
for each y ∈ Y , let P̂n(y|x) be the empirical analog (or, more generally, a nonparamet-
ric estimator) of P(y|x) and P̂n(A|x) = ∑

y∈A P̂n(y|x) for each A ⊆ Y . A simple way to
achieve (3.1) is by considering the random variable

Mn := sup
x∈X

max
A⊆Y

[
P(A|x)− P̂n(A|x)]�
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Denoting by cαn the (1−α) quantile of the distribution ofMn, we have P(Mn ≤ cαn )= 1−α
by construction, hence

P

(
sup
x∈X

max
A⊆Y

[
P(A|x)− P̂n(A|x)− cαn

] ≤ 0
)

≥ 1 − α� (3.4)

and the desired result with P(A|x)= P̂n(A|x)+ cαn . However, by construction, cαn is inde-
pendent ofA and x, so that the region obtained by plugging P(A|x)= P̂n(A|x)+ cαn into
(3.2) of Theorem 2 will be unnecessarily conservative. We propose, instead, to replace
cαn by a function βn(A|x) of A and x, which we interpret as a functional quantile of the
distribution of the random function P(A|x)− P̂n(A|x). Analogously to (3.4), we require
it to satisfy

P

(
sup
x∈X

max
A⊆Y

[
P(A|x)− P̂n(A|x)−βn(A|x)] ≤ 0

)
≥ 1 − α� (3.5)

We first give a heuristic description of our proposed functional quantile before precisely
spelling out the bootstrap procedure involved in approximating it. If X is finite, the ran-
dom matrix P(A|x) − P̂n(A|x) with A ⊆ Y and x ∈ X has a finite population of pos-
sible realizations, at most one for each possible sample draw. These realizations can
be ordered according to the maximum entry in the matrix maxx∈X maxA⊆Y [P(A|x) −
P̂n(A|x)]. Now take all realizations that never exceed the (1 − α) quantile cαn of
maxx∈X maxA⊆Y [P(A|x) − P̂n(A|x)] and define Pn(A|x) = P̂n(A|x) + βn(A|x), where
βn(A|x) is the pointwise maximum over all realizations that never exceed cαn . This
guarantees that the resulting confidence region obtained in (3.2) of Theorem 2 with
Pn(A|x)= P̂n(A|x)+βn(A|x) will be valid and will be contained in the region obtained
with Pn(A|x)= P̂n(A|x)+ cαn (hence more informative than the latter). In case the con-
ditioning variables are finitely supported, it is well known (see Singh (1981) and Bickel
and Freedman (1981)) that the nonparametric bootstrap version of cαn is a valid approx-
imation, which, in turn, guarantees the validity of the bootstrap procedure described
below.1 In case X has continuous components, Chernozhukov, Lee, and Rosen (2013)
derive the asymptotic distribution of the supremum (over X ) of the conditional empiri-
cal process, but nothing is known of its nonparametric bootstrap approximation.

Definition 4 (Nonparametric bootstrap). Let P∗
n denote probability statements rela-

tive to the bootstrap distribution and conditional on the original sample ((Y1�X1)� � � � �

(Yn�Xn)). A bootstrap sample takes the form ((Y ∗
1 �X1)� � � � � (Y

∗
n �Xn)), where the ex-

planatory variable is not resampled and for each i, Y ∗
i is drawn from distribution

P̂n(·|Xi). Let ((Yb1 �X1)� � � � � (Y
b
n �Xn)), b = 1� � � � �B, be a sequence of B bootstrapped

samples. Denote by P̂∗
n(·|·) the bootstrap version (i.e., constructed identically from a

bootstrap sample) of P̂n(·|·) and let P̂bn , b = 1� � � � �B, be its values taken on the B re-
alized bootstrap samples. Finally, for each A ⊆ Y and 1 ≤ j ≤ n, denote ζ∗

n(A|Xj) =∑
y∈A[P̂n(y|Xj)− P̂∗

n(y|Xj)] and define ζbn(A|Xj) analogously.

1To dispell the common misconception that the use of the bootstrap is always suspect in partially iden-
tified environments, we provide a short heuristic discussion in Section S2 of the Supplement.
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In the bootstrap version of the problem, we are seeking functions βn satisfying

P
∗
n

(
max

1≤j≤n
max
A⊆Y

[
P̂n(A|Xj)− P̂∗

n(A|Xj)−βn(A|Xj)
] ≤ 0

)
≥ 1 − α ∗-a.s. (3.6)

If there was a total order on the space of realizations of ζ∗
n , we could choose βn as

the quantile of level 1 − α of the distribution of ζ∗
n . However, the ζ∗

n(·�Xj)’s are random
functions defined on 2Y × {X1� � � � �Xn}; hence there is no such total order. We propose
to determineβn from a subset of �B(1−α)� bootstrap realizations determined as follows
(where �x� is the largest integer below x).

Bootstrap functional quantile algorithm.

Step 1. Draw bootstrap samples ((Yb1 �X1)� � � � � (Y
b
n �Xn)) for b= 1� � � � �B.

Step 2. For each b≤ B, j ≤ n, andA⊆ Y , compute ζbn(A|Xj)= P̂n(A|Xj)− P̂bn(A|Xj).
Step 3. Discard at most a proportion α of the bootstrap indices, and compute

βn(A|Xj) as the maximum over the remaining bootstrap realizations ζbn(A|Xj).

Discarding at most Bα among the bootstrap realizations guarantees the control of
the level of confidence, and we wish to choose the setD⊆ {1� � � � �B} of discarded indices
so as to make βn as small as possible, to maximize informativeness of the resulting con-
fidence region. Again, if there was a total order, we would be similarly discarding the Bα
largest realizations of ζbn , effectively choosing βn as the quantile of the distribution of ζbn ,
b= 1� � � � �B. Instead, we discard all realizations of the matrix ζbn(A|Xj) that have at least
one entry that strictly exceeds the (1 − α) quantile of wb = max1≤j≤nmaxA⊆Y ζbn(A|Xj).
Hence, we chooseD solving the optimization problem

min
{

max
b/∈D

wb :D⊆ {1� � � � �B}� |D| ≤ Bα
}
� (3.7)

The procedure is explained graphically in Figure 2.
Problem (3.7) can be solved as follows.

Bootstrap realization selection (BRS) algorithm.

BRS Step 1. For each b≤ B, set w′
b = max1≤j≤n

∑
y∈Y max{0� P̂n(y|Xj)− P̂bn(y|Xj)}.

BRS Step 2. LetD be the set of indices b of the �Bα� largest w′
b.

Proposition 1. The BRS algorithm determines an optimal solution to problem (3.7) in
O(nB|Y|) time.

Remark 1. Problem (3.6) may have alternate optimum solutions. As observed by a ref-
eree, this may arise when the sample size n is small, since P̂n(y|Xj) and P̂bn(y|Xj) are
multiples of 1/n and thus distinct wb’s are more likely to have the same value when
the sample size n is small. In case of ties, any optimum solution D to Problem (3.6)
may be used to discard bootstrap realizations and determine functions βn. If one de-
sires a specific tie-breaking rule, e.g., for robustness or reproducibility, then we suggest



514 Henry, Méango, and Queyranne Quantitative Economics 6 (2015)

Figure 2. Stylized representation of the determination of the functional quantile βn in a case
without explanatory variables. The subsets A of Y are represented on the horizontal axis, rang-
ing from ∅ to Y . ζdn is one of two discarded realizations of the empirical process (dotted lines),
whereas ζkn is one of three realizations that are not discarded (solid lines). βn is the pointwise
maximum over the realizations that were not discarded (thick line).

the following lexicographic selection rule as a refinement to BRS Step 2: Let wb be the
vector with components wbj = ∑

y∈Y max{0� P̂n(y|Xj) − P̂bn(y|Xj)} for j = 1� � � � � n, and

let [w]b be the vector wb with its components sorted in nonincreasing order, i.e., with
[w]b1 = wb ≥ [w]b2 ≥ · · · ≥ [w]bn = minj wbj ; then discard the �Bα� bootstrap realizations b

with the lexicographically largest vector [w]b. In other words, we refine problem (3.6) as
lexmin{lexmaxb/∈D[w]b :D ⊆ {1� � � � �B}� |D| ≤ Bα}, where lexmin and lexmax denote the
minimum and maximum relative to the lexicographic total order of vectors with n com-
ponents. This rule aims at simultaneously minimizing all the values β(A|Xj) without
going through extensive additional computations.

In problem (3.7), we chose to minimize the maximum, over all j ∈ {1� � � � � n} and
A⊆ Y , of the nondiscarded bootstrap realizations ζbn(A|Xj). Other objectives are pos-
sible, for example, the L

1 objective
∑
b/∈Dwb. The main justification for the L

∞ norm
objective maxd/∈Dwb in (3.7) is that it leads to a problem solvable in linear time. In con-
trast, the problem with an L

1 objective is computationally difficult, namely NP-hard in
the strong sense, as shown in the next result.

Proposition 2. Minimization of {∑b/∈Dwb : |D| ≤ �Bα��D ⊆ {1� � � � �B}} is NP-hard in
the strong sense.

This result implies that unless P = NP , there exists no algorithm for this problem
that runs in polynomial time. This is a severe computational drawback relative to the
linear-time algorithm achieved with BRS.

3.3 Search in the parameter space

Once the functional quantile has been computed, there remains to search in the param-
eter space for the values of θ that satisfy (3.2). As shown in the Lemma 1, the function to
be optimized in characterization (2.2) of the identified set is supermodular.
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Definition 5 (Supermodular function). A set function ρ :A �→ ρ(A) ∈R is called super-
modular (resp. submodular) if for all pairs of sets (A�B), ρ(A∪B)+ρ(A∩B)≥ (resp. ≤)
ρ(A)+ ρ(B).

Lemma 1. The function V �→ P(V ∪|x) is submodular for all x ∈ X .

In the computation of Θn(Pn), it may be desirable to require Pn(V ∪|x) to also be
submodular as a function of V ⊆ U , so that the function to be maximized in (3.2) can be
maximized using submodular optimization techniques. This can be achieved by adding
the following additional linear constraints (see Schrijver (2004)): ∀u 
= v ∈ U�∀V ⊆ U \
{u�v}� j = 1� � � � � n,

Pn
([
V ∪ {u} ∪ {v}]∪|Xj

) − Pn
([
V ∪ {u}]∪|Xj

)
(3.8)

− Pn
([
V ∪ {v}]∪|Xj

) + Pn
([V ]∪|Xj

) ≤ 0�

The problem of checking whether θ is in the confidence regions can then be solved in
polynomial time. Moreover, since submodular optimization has far ranging applications
in all areas of operations research, many extremely efficient algorithms and implemen-
tations are readily available.

3.4 Summary of results relevant to set inference

Derive function βn : 2Y ×X → [0�1] with the bootstrap functional quantile algorithm of
Section 3.2. Define Pn for each A ⊆ Y and x ∈ X as Pn(A|x) = P̂n(A|x) + βn(A|x) and
construct confidence region Θn(Pn) according to (3.2). The results of Section 3 can be
summarized in the following result.

Theorem 3. If X is finite, ΘI(Pn) is a valid 1 − α confidence region for the identified
setΘI .

Theorem 3 readily follows from the combined facts that βn satisfies (3.6) by con-
struction, and the bootstrap empirical process

√
n[P̂∗

n(A|x)− P̂n(A|x)] finitely indexed
by A ⊆ Y and x ∈ X has the same limiting distribution as the empirical process√
n[P̂n(A|x)− P(A|x)] by Theorem 4.1 of Bickel and Freedman (1981).

4. Simulation based on Example 1

We now illustrate and assess the performance of our procedure on the game described
in Example 1. Throughout the experiment, we assume that (ε1� ε2) is uniformly dis-
tributed on [−1/2�1/2]2 and J = (J1� J2) is a vector of independent Bernoulli(1/2) ran-
dom variables. True values for the parameters are indicated with a 0 subscript. We con-
sider the following true parameter specifications: (β0� c0)= (0�0) (point identified case)
and (β0� c0) = (0�1/4) (which corresponds in some sense to the greatest possible inde-
terminacy). For the true data generating process, we consider four distinct equilibrium
selection rules (which, like the true parameter values, are of course supposed unknown
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in the inference procedure). The first rule specifies that in case of multiplicity, all equilib-
rium strategy profiles in the equilibrium correspondence are selected with equal prob-
ability: we call this case uniform selection. The second selection rule specifies that in
case of multiplicity, only symmetric equilibria will be selected, and the latter with equal
probability if there are more than one. We call this case symmetric selection. The third
selection rule specifies that in case of multiplicity, the equilibrium with largest aggre-
gate investment is selected: Suppose, for instance, that the equilibrium correspondence
takes the value {HH�HL�LO}; then equilibrium strategy profileHH is realized. We call
this case maximal selection. Finally, the case, where the equilibrium with the lowest ag-
gregate investment (the poverty trap) is selected is dubbed minimal selection. Maximal
and minimal selections are identical in case (β0� c0)= (0�0), so we consider seven simu-
lation experiments in total. In all cases with (β0� c0)= (0�0), β0 = 0 is assumed known a
priori by the analyst performing inference (to avoid an unbounded identified set in the
simulations). In the remaining cases, β0 is unknown a priori.

The experiment is run as follows. In each of the seven cases above, we calculate
the distribution of the true data generating process. With the latter, we compute the
identified set. In the point identified cases, namely (β0� c0) = (0�0) in all cases and
(β0� c0) = (0�25�0) in the minimal selection case, the identified set is equal to the true
value. In the case c0 = 0�25, with β= 0 known a priori, the identified set is [0�211�0�333]
for maximal selection as explained in the example at the end of Section 2; for uniform
selection, it is [0�250�0�275]. In case (c0 = 0�25�β0 = 0) and β0 a priori unknown, with
uniform selection, the identified set projects to [0�0�375] on the c coordinate and to
[0�0�320] on the β coordinate.

We then simulate 5000 samples of sizes n= 100, n= 500, and n= 1000 from these dis-
tributions. We use 999 bootstrap replications. We consider confidence levels 90%, 95%,
and 99%. Coverage probabilities of the true value and of the identified set by the confi-
dence region, as computed from the 5000 samples, are displayed in Tables 2, 3, 4, and 5
for the data generating process obtained with uniform, symmetric, maximal, and mini-
mal selections, respectively.

We report Monte Carlo coverage of the true value (Point Coverage) and of the iden-
tified set (Set Coverage). The two are identical in case of point identification, hence the
dashes in the tables under Set Coverage for such cases. We also report the effective level
at which condition (3.5) is satisfied to directly assess the bootstrap functional quantile
approximation.

We find only 12 cases of undercoverage of the identified set out of a possible 72. We
also find 12 cases of undercoverage of the true value out of 72. All cases of undercov-
erage except 4 occur for sample size 100. We find very high levels of point coverage in
all partially identified cases. Coverage of the identified set is higher in cases where the
equilibrium selection involves randomization, i.e., when the true data generating pro-
cess involves uniform and symmetric selection, as opposed to maximal and minimal
selection.

Monte Carlo frequency of violation of condition (3.5) is lower than the theoretical
level in 21 cases out of a possible 72. This overrejection occurs mostly for sample size 100.
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Table 2. Coverage probabilities of (c0�β0) and of the identified set by the confidence region, as
computed from 5000 samples.

(c0�β0) n Level Point Coverage Set Coverage Condition (3.5)

(0�0) 100 0�99 0�9888 – 0�9866
0�95 0�9790 – 0�9750
0�90 0�9674 – 0�9636

500 0�99 0�9936 – 0�9930
0�95 0�9874 – 0�9866
0�90 0�9802 – 0�9784

1000 0�99 0�9928 – 0�9916
0�95 0�9882 – 0�9868
0�90 0�9836 – 0�9812

(0�25�0) 100 0�99 1 0�9986 0�9828
0�95 0�9998 0�9972 0�9740
0�90 0�9994 0�9968 0�9640

500 0�99 1 1 0�9930
0�95 1 0�9998 0�9884
0�90 1 0�9996 0�9822

1000 0�99 1 0�9988 0�9914
0�95 1 0�9988 0�9854
0�90 1 0�9988 0�9786

Note: The data generating process is obtained with uniform selection. The dashes indicate that the coverage probability is
identical to that in the cell on the left, as a consequence of the point identification of (c0�β0) in the case (0�0).

Table 3. Coverage probabilities of (c0�β0) and of the identified set by the confidence region, as
computed from 5000 samples.

(c0�β0) n Level Point Coverage Set Coverage Condition (3.5)

(0�0) 100 0�99 0�9896 – 0�9878
0�95 0�9764 – 0�9720
0�90 0�9608 – 0�9528

500 0�99 0�9924 – 0�9920
0�95 0�9864 – 0�9844
0�90 0�9762 – 0�9724

1000 0�99 0�9936 – 0�9908
0�95 0�9876 – 0�9838
0�90 0�9802 – 0�9752

(0�25�0) 100 0�99 0�9978 0�9974 0�9676
0�95 0�9976 0�9968 0�9490
0�90 0�9974 0�9962 0�9182

500 0�99 1 1 0�9896
0�95 1 1 0�9780
0�90 1 0�9994 0�9588

1000 0�99 1 0�9998 0�9882
0�95 1 0�9998 0�9758
0�90 1 0�9996 0�9592

Note: The data generating process is obtained with symmetric selection. The dashes indicate that the coverage probability
is identical to that in the cell on the left, as a consequence of the point identification of (c0�β0) in the case (0�0).
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Table 4. Coverage probabilities of (c0�β0) and of the identified set by the confidence region, as
computed from 5000 samples.

(c0�β0) n Level Point Coverage Set Coverage Condition (3.5)

(0�0) 100 0�99 0�9824 – 0�9792
0�95 0�9608 – 0�9592
0�90 0�9320 – 0�9308

500 0�99 0�9928 – 0�9926
0�95 0�9794 – 0�9792
0�90 0�9618 – 0�9606

1000 0�99 0�9874 – 0�9870
0�95 0�9782 – 0�9776
0�90 0�9616 – 0�9610

(0�25�0) 100 0�99 0�9368 0�9368 0�9278
0�95 0�9364 0�9354 0�9068
0�90 0�9250 0�9226 0�8770

500 0�99 0�9884 0�9884 0�9834
0�95 0�9770 0�9766 0�9648
0�90 0�9590 0�9584 0�9366

1000 0�99 0�9922 0�9918 0�9858
0�95 0�9802 0�9798 0�9652
0�90 0�9658 0�9648 0�9392

Note: The data generating process is obtained with maximal selection. The dashes indicate that the coverage probability is
identical to that in the cell on the left, as a consequence of the point identification of (c0�β0) in the case (0�0).

Table 5. Coverage probabilities of (c0�β0) and of the identified set by the confidence region, as
computed from 5000 samples.

(c0�β0) n Level Point Coverage Set Coverage Condition (3.5)

(0�25�0) 100 0�99 0�9394 – 0�9362
0�95 0�9296 – 0�9218
0�90 0�9126 – 0�8964

500 0�99 0�9856 – 0�9846
0�95 0�9722 – 0�9680
0�90 0�9548 – 0�9464

1000 0�99 0�9900 – 0�9878
0�95 0�9778 – 0�9732
0�90 0�9606 – 0�9530

Note: The data generating process is obtained with maximal selection. The identified set and its coverage in the case (0�0)
are identical with maximal and minimal selections, and are omitted here. The dashes indicate that the coverage probability is
identical to that in the cell on the left, as a consequence of the point identification of (c0�β0) in the case (0�25�0).

In almost all cases, the Monte Carlo set coverage is higher than the Monte Carlo fre-
quency of condition (3.5) being satisfied.

Improvements with sample size (in the sense of reducing undercoverage or overre-
jection) occurs in all 12 cases of set undercoverage, in all 12 cases of true value under-
coverage, and in all 21 cases of overrejection of condition (3.5). Overall, the procedure is
conservative and this feature persists with increasing sample sizes.
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5. Application to long term elderly care decisions

We estimate the determinants of long term care option choices for elderly parents in

American families. The model we use closely follows that proposed by Engers and Stern

(2002), who present these choices as the result of a nonfamily participation game. The

family members decide simultaneously whether to participate in a family reunion where

the care option maximizing the participants’ utility is chosen. Profits are then split

among these participants according to some benefit-sharing rule. The data consist of a

sample of 1212 elderly Americans with two children drawn from the National Long Term

Care Survey, sponsored by the National Institute of Aging and conducted by the Duke

University Center for Demographic Studies under Grant U01-AG007198 (Duke (1999)).

Elderly people were interviewed in 1984 about their living and care arrangements. The

survey questions include gender and age of the children, the distance between homes

of the elderly parent and each of the children, the disability status of the elderly parent

(where disability is referred to as problems with “activities of daily living or instrumental

activities of daily living” (ADL)), and the number of days per week each of the children

devotes to the care of the elderly parent. The dependent variable is the care provision for

the parent. The parent is asked to list children (either at home or away from home) and

how much each provides help. If only one child is listed as providing significant help,

that child is designated the primary care giver. If more than one child is listed, the one

who provides the most time is designated the primary care giver. If the elderly parent

lives in a nursing home, then the nursing home is the primary care giver. If no child is

listed and the parent does not live in a nursing home, then the parent is designated as

“living alone.” Table 6 presents the list of variables used in the analysis. They include par-

ent characteristics, characteristics of the children, and the care option chosen. A more

detailed discussion, summary statistics, and additional results can be found in the Sup-

plement.

Table 6. List of variables.

Variables Equal to 1 if Percentage of Sample

Care option Living with child 1 26�81
Living with child 2 6�75
Living in nursing home 19�92
Living home alone 46�54

Parent variables
DA Highly disabled 33�81
DM Living with the spouse 40�36

Children variables
DD Distance from parent: 31 min and more 49�45
DS Female 49�26
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5.1 The game

The observable choice of care option is modeled as in Engers and Stern (2002) as the

outcome of a family bargaining game. We index family members as follows: parent, 0;

firstborn child, 1; second born child, 2. The payoff to family member i, i = 0�1�2, is the

sum of three terms. The first term Vij is the value to parent 0 and to child i of care op-

tion j, where j ∈ 1�2 means child j becomes the primary care giver, j = 0 means the

parent remains self-reliant, and j = 3 means the parent is moved to a nursing home. The

matrix V = (Vij)ij is known to both children and the parent. We suppose it takes the form

V (X;θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ β00

+βmDM
+βahDA

⎞
⎠ (ψsDS1 ) 0 0

(
βmDM

+βahDA
) ⎛

⎝ β11

+ψ1DD1

+βacDA

⎞
⎠ 0 0

(
βmDM

+βahDA
)

0

⎛
⎝ β11

+ψ1DD2

+βacDA

⎞
⎠ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎢⎣
u1 u2 u3 u4

u1 u2 u3 u4

u1 u2 u3 u4

⎤
⎥⎦ �

where all explanatory variables are defined in Table 6 and u is a matrix of nid(0�σ2
u)

unobserved utility shocks that are common knowledge to the participants.

The second term in the payoff results from the family bargaining process as follows.

We assume that it is always in the interest of the parent to attend the family reunion.

However, child i (i = 1�2) can refrain from participating in the meeting. By choosing

not to participate, a member of that family agrees on whatever is decided but can nei-

ther assume the role of primary care giver nor be involved in any side payment. Both

children simultaneously decide whether or not to participate in the long term care de-

cision. Suppose M is the set of children who participate. The option chosen is option

j ∈M ∪{0�3}, which maximizes the participants’s total utility
∑
i∈M Vij . It is assumed that

participants abide by the decision and that benefits are then shared equally among par-

ent and children participating in the decision through a monetary transfer si, which is

the second term in the children’s payoff. The third term εi in the payoff is a random ben-

efit from participation, which is 0 for children who decide not to participate and is dis-

tributed according to absolutely continuous distribution ν(·|θ) for each child who does

participate. All children observe the realizations of ε, whereas the analyst only knows

its distribution. The payoff matrix is given in Table 7, where overall benefit shares wIJi ,

i= 1�2, I� J =N�P , are defined and derived in the Supplement. Multiple Nash equilibria

in pure and mixed strategies are also derived in the Appendix. Each equilibrium action

profile results in a (almost surely) unique care option choice; hence for each participa-

tion shock ε, we can deriveG(ε|X;θ) as the set of probability measures on the set of care

options {0�1�2�3} induced by mixed strategy profiles, which are probabilities on the set

of participation profiles {NN�NP�PN�PP}.
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Table 7. Payoffs for the family participation game.

Child 2

Child 1 N P

N wNN1 �wNN2 wNP1 � ε2 +wNP2

P ε1 +wPN1 �wPN2 ε1 +wPP�ε2 +wPP

5.2 Estimation methodology

The methodology proposed in the paper allows the construction of the identified set
based on the hypothetical knowledge of the true distribution of the data. As described
in Section 3, we account for sampling uncertainty and control the level of confidence
by constructing set functions A �→ P(A|X), which dominate P(A|X) (uniformly over
A⊆ {0�1�2�3} and X) with probability 1 − α (the chosen level of confidence; here 0�95).
We implement the method detailed in Section 3 with a number of bootstrap replications
B= 999. Second, we obtain the model likelihood by simulating the valuation matrix and
computing the equilibrium correspondence from the payoff matrix, for given values of
X and θ. The procedure, for a givenX and θ, is as follows.

• We generate and store R draws of the vector u and ε from the distribution νθ. Here
R= 1000. The components of random vector u (resp. ε) are independent and normally
distributed with mean 0 (resp. μ) and variance σ1 (resp. σ2). Note that μ�σ1�σ2 belong
to the parameter θ.

• For each value ur , we compute the valuation matrix V (X�ur�θ) and the correspond-
ing payoff matrix.

• Then we determine the equilibrium correspondence G(X�ur�εr;θ) from the ana-
lytical results derived in the preceding section. The Gambit software provides an alter-
native for computing numerically the sets of Nash equilibria for more complex games.

• The last step of the simulation is to compute an estimator of the model likelihood L
defined in (3.3) as L̂(A|X;θ)= 1

R

∑R
r=1 min{σ(A) :σ ∈G(X�ur�εr;θ)}.

Having constructed those two elements, the identified set comprises all values of
θ such that for all observed values of the explanatory variables, the minimum over
A⊆ {0�1�2�3} of the function P(A|X)− L̂(A|X;θ) is nonnegative, as explained in Sec-
tion 3. We used a grid search over the parameter space.2 In the following application,
a standard laptop is used to compute the five-dimensional parameter space in a few
hours. In the Supplement, we construct confidence regions for specifications involving
12-dimensional parameter space. In the latter case, since estimation time grows expo-
nentially with the number of parameters induced by the model, parallel processing be-
comes necessary. We use an open-MP procedure for parallel processing, which is per-
fectly suited to the method we propose. The computation resources have been provided

2The grid was adaptive in the sense that more points were investigated in the interval between an ac-
cepted and a rejected point, so as to better approximate the frontier of the identified set.
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by the Réseau Québécois de Calcul de Haute Performance (RQCHP). All computation
where made under the system Cottos, which provides up to 128 computation nodes
(1024 CPU cores) equipped with two Intel Xeon E5462 quad-core processors at 3 GHz.
Under one node, approximately 5 × 107 parameter points can be tested in 24 hours.

5.3 Results

We perform the estimation under different values of the mean and variance of the er-
ror term. We first test the significance of some of the individual parameters by checking
whether the hyperplanes defined by θi = 0—where θi is a component of θ—intersect
the 95% confidence region. We fail to reject the null hypothesis if the estimation pro-
cedure returns a nonempty set. We then obtain a constrained confidence region for the
remaining parameters. For each value of mean and variance of the error term, we find
a nonempty intersection between the confidence region and the hyperplane defined by
β11 = 0. This means we fail to reject (at the 5% level) the null hypothesis that there is
no additional constant disutility for a child to take care of an elderly parent. Since, this
hypothesis is not rejected, we obtain a constrained confidence region for the remaining
parameters.

We construct the confidence region under the additional constraint βah = −βm (see
the Supplement for a discussion of this hypothesis). We note that the null hypothesis
H0 :β00 = 0 is always rejected. Hence, when we control for all other effects, parents are
not indifferent between the first two options. They show a clear preference in favor of
living in their own home (option called living alone) instead of living in a nursing home
(β00 is always positive). Note that the identified set is not a compact set. In particular,
βac , βah, βm, and ψd are allowed to diverge to −∞.

The following results are generally consistent with expectations and previous results
on the subject.

(1) The existence of several problems with the parent’s functional ability is a key de-
terminant of the decision to enter a nursing home. The parameters βah and βac are both
negative and can both be (very) large. The negative sign of βah captures the fact that a
parent’s disability increases the value of care provided by the family or a specialized in-
stitution. In addition, βac < 0 means that the disability entails a utility cost for the child
if he is chosen as the primary care giver.

(2) Parameter βm associated with the parent living with a spouse is positive and large.
This implies that married parents are more likely to remain self-reliant. In families where
the parent is disabled, the effect of living with the spouse compensates the disutility of
disability and preserves the incentive for parents to live at home.

(3) While we cannot rule out parents being indifferent to the gender and birth or-
der of their primary care giver, estimation shows a tilt of the confidence interval toward
positive values for both parameters, with a possible positive and large magnitude of the
parameter α.

(4) Children living more than 30 minutes from the parents are less likely to provide
care than those living closer to the parents. Distance has a (possibly strong) disutility
effect on children’s incentives to participate in the care decision.
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Figure 3 shows two-dimensional projections and cuts of the confidence region for col-
umn 2 of Table 8, i.e.,με = 0, σε = 1, and σu = 1. Notice the triangular shape of the region
plotted in Figure 3(a), which entails that large values of βah are only permitted when βac
is also large.

Conclusion

We have considered the problem of statistical inference in incomplete partially iden-
tified structural models, such as models of discrete choice with interactions and other
forms of endogeneity. A characterization of the identified set for structural parameters
was given with an appeal to a classical theorem in combinatorial optimization, the max-
flow min-cut theorem, thereby emphasizing the optimization formulation of the prob-
lem of inference in such models. Finally, we have shown how to apply combinatorial
optimization methods within a bootstrap procedure so as to compute informative con-
fidence regions very efficiently, hence feasibly, in empirically relevant applications. An
application of the methodology was carried out on a family bargaining example and it
was shown that most findings in the literature on the determinants of long term elderly
care by American families were supported in this more robust framework where the ef-
fects of interaction are accounted for. This procedure applies to very general classes of
models, and its efficiency and coverage properties could no doubt be improved when
tailored to more specific applications. In particular, the application to matching games
and revealed preference testing of stability in matching still poses considerable chal-
lenges. Other perspectives for further work include the application of max-flow–min-cut
algorithms to the detection of redundant inequalities at the identification stage so as to
improve the performance at the inference stage, possibly by appealing to other existing
procedures if the number of nonredundant inequalities is small enough.

Appendix: Proofs of results in the main text

Proof of Theorem 1. By Proposition 1 of Galichon and Henry (2011), a value θ of the
parameter vector belongs to ΘI if and only if P(Y ∈ G(X�ε;θ)) = 1, X-a.s. (which we
drop from the notation from this point on). Hence, if there exists a pair (Y�U) of random
vectors on Y ×U such that Y has probability mass P(y|X), y ∈ Y , thenU has probability
mass Q(u|X;θ), u ∈ U , and P(Y ∈ U |X) = 1. This is equivalent to the existence of non-
negative weights πuy , (y�u) ∈ Y × U , such that

∑
u∈U πuy = P(y|X), ∑

y∈Y πuy = Q(u|X);
πuy = 0 when y /∈ u. The latter is equivalent to the following programming problem
with auxiliary variables ay , y ∈ Y , and au, u ∈ U , having zero as a solution. The pro-
gramming problem is the following: min(

∑
y∈Y ay + ∑

u∈U au) subject to the constraints∑
u∈U πuy + ay ≤ P(y|X), ∑

y∈Y πuy + au ≤ Q(u|X;θ), ay , au, πuy ≥ 0, and πuy = 0 when
y /∈ u. Since

∑
y∈Y ay + ∑

u∈U au ≤ ∑
y∈Y P(y|X)+ ∑

u∈U Q(u|X;θ)− 2
∑
y∈Y

∑
u∈U πuy =

2−2
∑
y∈Y

∑
u∈U πuy , the latter is also equivalent to max

∑
y∈Y

∑
u∈U πuy ≥ 1 subject to the

constraints
∑
u∈U πuy ≤ P(y|X), ∑

y∈Y πuy ≤Q(u|X), πuy ≥ 0 and πuy = 0 when y /∈ u.
The latter is equivalent to a maximum flow max

∑
y∈Y

∑
u∈U πuy of at least 1 in the di-

rected network (N�E) with nodes inN = {S} ∪Y ∪ U ∪ {T }, edges in E = {(S� y) :y ∈ Y} ∪
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Figure 3. Two-dimensional representations of the confidence region at β00 = 1, μ= 0, σε = 1,
σu = 1.
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Table 8. Parameter range for estimation of the specified participation game at β11 = 0, βah =
−βm, μ= 0, σε = 1 and for different values of the parameter σu ∈ {0�5�1�2}.

Parameters Min Max Min Max Min Max

β00 0�35 1�50 0�70 3�85 2�00 8�85
βah ∞ −0�48 ∞ −0�88 ∞ −3�65
βac ∞ −1�05 ∞ −1�80 ∞ −4�35
ψs 0�05 4�70 0�00 8�80 0�00 17�70
ψd ∞ −0�55 ∞ −0�45 ∞ −0�85
σu 0�5 0�5 1 1 2 2

{(y�u) :y ∈ Y�u ∈ U� y ∈ u} ∪ {(u�T) :u ∈ U}, and capacity constraints C(S� y) = P(y|X),
each y ∈ Y and C(u�T)=Q(u|X), each u ∈ U , the remaining edges being unconstrained
(infinite capacity). Consider cuts (Z�V ) such that S ∈ Z and T ∈ V . Since the capac-
ity of an edge from y to u is such that y ∈ u is infinite, cut (Z�V ) has finite capacity
if and only if y ∈ u and u ∈ V jointly imply y ∈ Z. Such a cut has capacity C(Z�V ) =∑
y∈Z P(y|X)+

∑
u∈U\V Q(u|X;θ)= ∑

y∈Z P(y|X)+1−∑
u∈V Q(u|X;θ). This capacity is

minimal when y /∈ u and u ∈ V jointly imply y /∈Z, hence ifZ = V ∪ = ⋃{u :u ∈ V }. There-
fore, the capacity of a minimal cut is C(V ∪� V )= ∑

y∈V ∪ P(y|X)+ 1 − ∑
u∈V Q(u|X;θ)=

P(V ∪|X)+ 1 −Q(V |X;θ). By the max-flow–min-cut theorem, the capacity of any min-
imal cut is equal to the maximum flow through the network; hence θ ∈ΘI if and only if
for all subsets V of U , P(V ∪|X)+1−Q(V |X;θ)≥ 1, i.e.,Q(V |X;θ)≤ P(V ∪|X), and (2.2)
follows. (2.3) is obtained by inverting the network and repeating the reasoning. �

Proof of Corollary 1. Since (Z∩)c = {u ∈ U :u⊆Z}c = {u ∈ U :u∩Zc 
= ∅} =Z−1, the
result follows from (2.3) by taking complements. �

Proof of Lemma 1. Take an x ∈ X . Take any u ∈ U and V ⊆ U \ {u}. We have P([V ∪
{u}]∪|x) − P(V ∪|x) = ∑

y∈⋃
v∈V ∪{u} v P(y|x) − ∑

y∈⋃
v∈V v P(y|x) = ∑

y∈u\V ∪ P(y|x) = P(u \
V ∪|x), which is nonincreasing in V , hence the result. �

Proof of Theorem 2. Given a value θ ∈ΘI , by Theorem 1, we have

sup
x∈X

max
V ⊆U

(
Q(V |x;θ)− P(V ∪|x)) ≤ 0�

Under Assumption 1,

sup
x∈X

max
V ⊆U

(
P(V ∪|x)− Pn(V ∪|x)) ≤ 0�

with limiting probability larger than 1 − α. Hence, with probability at least 1 − α,

sup
x∈X

max
V ⊆U

(
Q(V |x;θ)− Pn(V ∪|x)) ≤ 0

and, thus, θ ∈ΘI(Pn). �
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Proof of Proposition 1. We first justify BRS Step 1 by showing that wb =w′
b for all b.

Indeed observe that for any j ∈ {1� � � � � n} andA⊆ Y , we have

ζbn(A|Xj)=
∑
y∈A

P̂n(y|Xj)−
∑
y∈A

P̂bn(y|Xj)=
∑
y∈A

[
P̂n(y|Xj)− P̂bn(y|Xj)

]

and, thus, maxA⊆Y ζbn(A|Xj) is attained by selecting all the elements y ∈ Y with
P̂n(y|Xj)− P̂bn(y|Xj) > 0. It follows that

w′
b = max

1≤j≤n
max
A⊆Y

[ ∑
y∈Y

P̂n(y|Xj)−
∑
y∈A

P̂bn(y|Xj)
]

and, therefore, wb = w′
b. To justify BRS Step 2, let wopt denote the optimum objective

value of problem (3.7). If D fails to include any b such that wb >wopt, then maxb/∈Dwb >
wopt; therefore, an optimalDmust include all b such thatwb >wopt. Alternatively, ifD is
any optimal subset and some b′ ∈D satisfieswb′ ≤wopt, then discarding b′ fromD yields
a feasible subsetD \ {b′} (since |D \ {b′}|< |D| ≤ d) such that maxb∈D\{b′}wb ≤ maxb∈Dwb;
hence D \ {b′} is an alternate optimal solution. Therefore, an optimal D consists of
all indices b such that wb > wopt. Concerning the running time, BRS Step 1 requires
O(nB|Y|) time and BRS Step 2 requires O(B) time using a linear-time selection (or
median-finding) algorithm (see Blum, Floyd, Pratt, Rivest, and Tarjan (1973)). �

Proof of Proposition 2. The problem corresponds to the following decision prob-
lem: Given an m× n matrix H, an integer k, and a target value t, can one find a subset
S ⊆ {1� � � � � n} such that |S| ≥ k and

∑m
i=1 maxj∈S Hij ≤ t? Denote (H�k� t) as an instance

of the latter problem. Consider the well knownNP-hard decision problem CLIQUE (see,
for instance, Section 4.8, p. 43, of Schrijver (2004)): Given a graph G= (V �E) and an in-
teger q satisfying 2 ≤ q ≤ |V |, does there exist a subset Q ⊆ V such that |Q| ≥ q and for
all i� j ∈ V , ij ∈ E (i.e., Q is a clique). To any instance (G�q) of the problem CLIQUE, we
associate an instance (H�k� t) of our decision problem, where lines ofH corresponds to
vertices of G (elements of V ), columns of H corresponds to edges in G (elements of E),
andHij = 1 if vertex i belongs to edge j and is 0 otherwise. For any subset S ⊆E of edges
in G, we have for all i ∈ E, maxj∈S Hij = 1 if i belongs to at least one element of S and is
0 otherwise. Hence,

∑
i∈E maxj∈S Hij is the number of vertices that belong to at least one

edge in S. Define k= q(q−1)/2 and t = q. Then a set S of k edges involves at least (hence
exactly) q vertices if and only if S is the set of edges of a CLIQUE. Hence the answer to
the decision problem (H�k� t) thus defined is YES if and only if G contains a CLIQUE
with q vertices. Since CLIQUE is NP-complete, it follows that our decision problem is
NP-hard. Since k= O(|V |2) and t = O(|V |), the input size (in unitary notation) of such
instances of our problem is polynomially bounded by the input size (in unitary or binary
notation)Ω(|V |) of the corresponding instance of CLIQUE. Hence our decision problem
isNP-hard in the strong sense. �
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