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S1. Min-cut–Max-flow theorem

The network flow problem refers to the optimal way to route quantities through a given
exogenous network to meet supply, demand, and capacity constraints.

Definition S1 (Directed graph). A directed graph is a pair G = (V �E), where V =
{1� � � � � n} is a finite set of points, called nodes, and E is a set of ordered pairs e= (v1� v2)

of elements of V , called arcs.

Definition S2 (Path). Fix a graph G= (V �E) and a sequence v1� � � � � vr of nodes in V .
A path is a sequence of arcs e1� � � � � er−1, such that ei = (vi� vi+1) for each i= 1� � � � � r − 1.

Definition S3 (Network). A network is a directed graph G = (V �E) with two distinct
nodes s and t designated as source and sink, respectively, such that there is at least one
path between s and t, and such that each arc e ∈ E is endowed with a positive number
c(e) called its capacity. A network will be denotedN = (V �E� c).

A flow problem is defined on a network.

Definition S4 (Flow). A flow is an assignment of weights f (e) to each arc e ∈ E of a
networkN = (V �E� c), which satifies the following contraints:

(1) Capacity constraint: For any e ∈E, 0 ≤ f (e)≤ c(e).
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(2) Flow conservation: For any v ∈ V \ {s� t}, the sum of flows f (e) on arcs e = (v� ·)
starting at v is equal to the sum of flows f (e′) on arcs e′ = (·� v) ending at v.

The sum of f (·� t) flowing into the sink t will be denoted F and will be called the value of
the flow.

The maximum flow problem is the problem of finding a flow that maximizes the sum
of f (·� t) flowing into the sink t. It is the dual of a problem known as minimum cut.

Definition S5 (Cut). A cut in a network is a node partition (S�T), i.e., S ∪ T = V and
S ∩ T = ∅, such that s ∈ S and t ∈ T . The capacity c(S�T) of a cut (S�T) is the sum of
capacities c(v�w) for all arcs (v�w) such that v ∈ S and w ∈ T (i.e., arcs leaving S).

The minimum cut problem is the problem of finding a cut in a network with mini-
mum capacity.

Observe the following facts:

(1) By definition of a cut (S�T), the net flow across a cut, i.e., the sum of f (v�w) for all
arcs (v�w) such that v ∈ S andw ∈ T (i.e., arcs leaving S), is equal to the value of the flow,
i.e., the amount F reaching the sink t.

(2) By the capacity constraints and the previous observation, the value F of the flow
is smaller than the capacity of any cut.

(3) From the previous observation, it immediately follows that if there is a flow and a
cut such that value F is equal to the capacity of the cut, then the flow is maximum and
the cut is minimum.

We can now state the main theorem, which is from Ford and Fulkerson (1957).

Theorem S1 (Min-cut–max-flow). In any network, the value of the maximum flow
equals the capacity of the minimum cut.

Before we prove the theorem and present the Ford–Fuljerson algorithm to find a
maximum flow, two more definitions are needed.

Definition S6 (Residual network). A residual network is obtained from a network en-
dowed with a flow by removing all arcs (v�w) such that f (v�w) > 0 and replacing them
by an arc (w�v) with capacity equal to f (v�w) and, when f (v�w) < c(v�w), arc (v�w)
with capacity equal to c(v�w)− f (v�w).
Definition S7 (Augmenting path). An augmenting path in a network endowed with a
flow is a path in the residual network.

The Ford–Fulkerson algorithm to find a maximum flow in a network consists in find-
ing augmenting paths and increasing flow along the latter. Its convergence is based on
the proof below.

Proof of Theorem S1. The method of proof is to show the equivalence of the following
three statements:
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(1) Flow F is maximum.

(2) There is no augmenting path.

(3) There exists a cut with capacity F .

By definition, if the flow is maximum, there is no augmenting path. By previous obser-
vation, if there exists a cut with capacity F , then the cut is minimal and the flow is max-
imum. There remains to show that if there is no augmenting path, then there is a cut
with capacity F . Let S be the set of vertices v such that there is a path from s to v in the
residual network. Then we have the following scenarios:

• The set S contains s.

• Since there is no augmenting path, t /∈ S.

• All arcs e leaving S in the original network have f (e)= c(e).
Hence, (S�V \ S) is a cut with capacity F as required. �

S1.1 A note on the validity of the bootstrap

There seems to be a common misconception that the use of the bootstrap in partially
identified settings is invalid because of the “parameter-on-the-boundary problem.” We
thought it useful to add a little heuristic note to dispel this misconception, recasting the
issue in the terms of Problem 2, page 10 of the Supplementary Material to Bugni (2010).
Consider the latter with the maximum as a choice for the criterion G. Hence we are
looking to approximate the limiting distribution of

Γn = √
nmax

[
max(EnY1�0)�max(EnY2�0)

]
�

If the approximating statistic is constructed in the manner

Γ ∗
n (naive)= √

nmax
[
max

(
E∗
nY1�0

)
�max

(
E∗
nY2�0

)]
�

Andrews (2000) shows that we have an invalid procedure in the sense that Γ ∗
n (naive)

may have a different limiting distribution from Γn if the parameter is on the boundary
(EY1 = 0, say).

Instead, rewrite Γn as

Γn = max
[
max

(√
n[EnY1 −EY1] + √

nEY1�0
)
�

max
(√
n[EnY2 −EY2] + √

nEY2�0
)]
�

Under the null hypothesis that EYi ≤ 0, i = 1�2, EYi may be strictly negative, in which
case, for sufficiently large n, the term drops from the maximum, or is zero, in which
case the remaining term is max(

√
n[EnYi − EYi]�0). Hence, heuristically, the limiting

distribution is

Γ = max
[
max(Z1�0)1{EY1 = 0}�max(Z2�0)1{EY2 = 0}]� (S1.1)
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with Z1�Z2 standard normal. Using the law of iterated logarithms, (S1.1) is also the lim-
iting distribution of

max
[
max

(√
n[EnY1 −EY1]�0

)
1{EnY1 > τn/

√
n}�

(S1.2)
max

(√
n[EnY2 −EY2]�0

)
1{EnY2 > τn/

√
n}]�

where τn converges to 0 at the right rate.
Since

√
n[EnYi − EYi] and

√
n[E∗

nYi − EnYi] have the same limiting distribution (as
also pointed out in Andrews (2000, p. 402, line 6)), (S1.2) has the same limiting distribu-
tion as its version where

√
n[EnYi −EYi] is replaced by

√
n[E∗

nYi −EnYi]. Then we have
the bootstrap procedure proposed by Bugni (2010), which is also proposed, up to minor
modification, by Chernozhukov, Hong, and Tamer (2007, Remark 4.2) and by Galichon
and Henry (2009) in the context of incomplete models.

The crucial point is that
√
n[E∗

nYi − EnYi] was used to (correctly) approximate√
n[EnYi − EYi], instead of trying to approximate (incorrectly) max(EnY�0) by

max(E∗
nY�0).

In Section 3.2 of the current paper, the bootstrap approximation only relies, as does
Bugni (2010), on the fact that the bootstrapped empirical process

√
n(P∗

n − Pn) has the
same limiting distribution as the empirical process

√
n(Pn − P), in the sense of The-

orem 3.6.3 of van der Vaart and Wellner (1996), for instance. This is what allows the
classical bootstrapping of the Kolmogorov–Smirnov (KS) specification test, for instance,
where

sup
x

√
n
∣∣P∗
n(−∞�x)− Pn(−∞�x)

∣∣
has the same limiting distribution as

sup
x

√
n
∣∣Pn(−∞�x)− P(−∞�x)

∣∣
as shown in Bickel and Freedman (1981, Corollary 4.2, p. 1205), for instance. Incidentally,
note that the maximum that we have in Section 3.2 is like the KS supremum or like the
outer maximum in the expression of Γn above, not the inner max operators in Γn (this
may be the source of the common misconception). More precisely, we are only using
the fact that the finite family

(√
n
(
P∗
n(A)− Pn(A)

))
A⊆Y

has the same joint limiting distribution as the family

(√
n
(
Pn(A)− P(A)))

A⊆Y �

We also index by x, but with a finite support, so the reasoning is the same.
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S2. Elderly care provision

We estimate the determinants of long term care option choices for elderly parents in

American families. The model we use closely follows that proposed by Engers and Stern

(2002), who present these choices as the result of a family bargaining game. The family

members decide simultaneously whether to participate in a family reunion where the

care option maximizing the participants’ utility is chosen. Profits are then split among

these participants according to some benefit-sharing rule.

The data consist of a sample of 1212 elderly Americans with two children drawn from

the National Long Term Care Survey, sponsored by the National Institute of Aging and

conducted by the Duke University Center for Demographic Studies under Grant U01-

AG007198 (Duke (1999)). Elderly people were interviewed in 1984 about their living and

care arrangements. The survey questions include gender and age of their children, the

distance between homes of the elderly parent and each of the children, the disability

status of the elderly parent (where disability is referred to as problems with “activities

of daily living or instrumental activities of daily living” (ADL)), and the number of days

per week each of the children devotes to the care of the elderly parent. The dependent

variable is the care provision for the parent. The parent is asked to list children (either at

home or away from home) and how much each provides help. If only one child is listed

as providing significant help, that child is designated the primary care giver. If more than

one child is listed, the one providing the most time is designated the primary care giver.

If the elderly parent lives in a nursing home, then the nursing home is the primary care

giver. If no child is listed and the parent does not live in a nursing home, then the parent

is designated as “living alone.” Table S1 presents the list of variables used in the analysis:

they include parent characteristics, characteristics of the children, and the care option

chosen.

Table S1. List of covariates.

Variables Equal to 1 if Percentage of Sample

Care Option Living with child 1 26�81
Living with child 2 6�75
Living in nursing home 19�92
Living home alone 46�54

Parent Variables
DA Highly disabled 33�81
DM Living with the spouse 40�36

Children Variables
DD0 Living with parent 11�55
DD1 Distance from parent: 31 min and more 49�45
DS Female 49�26
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S3. Data summary statistics

The dependent variable is the care option chosen by the family. We classify it in four
categories: child 1 (resp. child 2) means that the firstborn child (resp. the second born
child) provides the most care in terms of days spent helping the parents. Our data ex-
hibit a strong dominance of the choice of child 1 over the choice child 2. Child 1 is listed
as primary care giver in 26�81% of the families, while child 2 is only listed in 6�75% of our
observations. On average, the older child provides 3�50 (3�12) days of care, while the sec-
ond child provides 0�48 (1�34) days. When child 1 is the chosen option, the average num-
bers of days spent by the primary care giver climbs to 4�32 (2�92), while the other child
provides on average only 0�17 (0�77) days of care. When child 2 is the preferred option,
the firstborn will spend on average only 0�29 (1�29) days of care, while the second child
provides 1�74 (2�15) days of care. The third care option—for the parent to enter a nurs-
ing home—represents 19�92% of the families in our sample. The remaining option—for
parents to live alone—includes all the cases where no child is listed and the parent does
not live in a nursing home (it could well be the case that another individual, other than
the children, provides care for the parent). The parent is living alone in the remaining
46�74% of the sample, which makes it the most frequent option in our sample. We use
two types of explanatory variables: those relative to the elderly parent and those rela-
tive to children. The first variable relative to the elderly parent is their disability status
based on six types of daily living activities: bed, bathing, dressing, eating, toileting, walk-
ing inside. As much as 65% of the parents in the sample population suffer at least one
disability, of which 51�5% have four or more. In the following discussion, we introduce
a categorical variable DA, which has value 1 when the parent shows at least four dis-
abilities and value 0 otherwise. The second variable relative to the parent characteristics
is a categorical variable for the presence of the parent’s spouse in the household. We
denote it DM . Previous studies show a positive effect on the incentive to remain home
when the parent lives with his or her spouse. In our sample, 40�36% live with a spouse.
We consider three characteristics of each child: their distance to the parent, their birth
order, and their gender. The distance can be viewed as a cost for a child to provide days
of care to the parent. The survey measures the time required to travel from each child’s
residence to the parent’s residence. About 50% of the children in the sample live at a
travel distance of 30 minutes or more, and 12% of the children live in the same house-
hold as their parent. Among care givers, the distribution of distance is quite different.
Among the firstborn children in charge of the parent, 25% live in the same household,
and the percentage of those living more than 30 minutes away drops to 31%. Similarly,
among primary care giver who are second born children, the percentage of those liv-
ing more than 30 minutes away is only 25%. However, the number of those living in the
same household as the parents is 7%. As noted by Engers and Stern (2002), the observa-
tions where the parent lives in the same household as the child induces some statistical
problems. It is unclear if the child is the actual care giver for the parent or if the par-
ent is actually the care giver for the child. To capture the effect of distance on children’s
incentives, we will therefore conduct estimation conditional on the children living in a
different household than the parent’s household. In our analysis, we include a dummy
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variable for each one of the children: DD1i = 1 if child i lives 30 minutes away or more,
and = 0 otherwise. The child’s gender is an important variable in most of the analysis.
Previous work (see, for example, Horowitz (1982), Treas, Gronvold, and Bergston (1980))
suggests that being female makes a child most likely to provide care. However, Stern
(1995) and Engers and Stern (2002) indicate that the data set suffers from significant
misclassification of gender (see Stern (1995) for a detailed discussion of the problems
with the data set). In the specification, we introduce a random error term to account for
misclassification of gender.

S4. The game

The observable choice of care option is modeled as in Engers and Stern (2002) as the
outcome of a family bargaining game. Before going further, we introduce some nota-
tion. We will index family members as follows: parent, 0; firstborn child, 1; second born
child, 2. The payoff to family member i, i= 0�1�2, is the sum of three terms.

The first term Vij is the value to parent 0 and to child i of care option j, where j ∈ 1�2
means child j becomes the primary care giver, j = 0 means the parent remains alone,
and j = 3 means the parent is moved to a nursing home. The matrix V = (Vij)ij is known
to both children and the parent. We suppose it takes the form

Vij = γij +Wβij +Zjψij�

where W indicates the characteristics of the parents (DA and DM), Zj indicates the
characteristics of care option j (DS, DD1, and DD2), and X = (W �Z). The object of
inference θ= (γij�βij�ψij)′ is unknown to the analyst.

Example S1. Consider the following family, in which the matrix where the given value
ofX and θ result in V takes the form

V =
⎡
⎣0 0 0 −1

0 4 −1 1
0 −1 4 1

⎤
⎦ �

Rows indicate family member i = 0�1�2 and columns represents care giving options
j = 0�1�2�3, in that order. In this example, the parent is indifferent between all the care
options, except the one where she has to move to the nursing home. Each child prefers to
be the primary care giver to any other care option, followed by living in a nursing home,
the parent living at home, and being taken care of by the other child, in that order.

The second term in the payoff results from the family bargaining process as follows.
We assume that it is always in the interest of the parent to attend the family reunion.
However, child i (i= 1�2) can refrain from participating in the meeting. By choosing not
to participate, a member of the family agrees on whatever is decided but can neither
ensure the role of primary care giver nor be involved in any side payment. Both children
simultaneously decide whether to participate in the long term care decision. SupposeM
is the set of children who participate. The option chosen is option j ∈M ∪ {0�3}, which



8 Henry, Méango, and Queyranne Supplementary Material

maximizes the participants’ total utility
∑
i∈M Vij . It is assumed that participants abide

by the decision and that benefits are then shared equally1 among parent and children
participating in the decision through a monetary transfer si, which is the second term in
the children’s payoff.

The third term εi in the payoff is a random benefit from participation, which is 0
for children who decide not to participate and is distributed according to absolutely
continuous distribution ν(·|θ) for each child who does participates. All children observe
the realizations of ε, whereas the analyst only knows its distribution.

Therefore, the payoff matrix of the participation game can be determined in the fol-
lowing way.

• If both children decide to participate, denoted PP , child i’s payoff (for i= 1�2) is

Πi = εi +wPP

= εi + 1
3

×
(

max
j∈{0�1�2�3}

∑
k∈{0�1�2}

Vkj

)
�

wherewPP is the share of the overall benefit that each child gets when both children par-
ticipate. Note that we have three participants and an equal sharing rule, which explains
the term 1

3 .

• If neither child participates, denotedNN , child i’s payoff is

Πi = Vij with j such that j = arg max{V00;V03}�

Indeed, since none of the children participates, the parent (0) picks the best option
among the two available (0 and 3). We will denote this quantity wNNi .

• If only child 1 participates, (option denoted PN), child 1’s payoff is

Π1 = ε1 +wPN1

= ε1 + 1
2

×
(

max
j∈{0�1�3}

∑
i∈{0�1}

Vij

)
�

where wPN1 is the share of the overall benefit that player 1 gets when she is the only one
to participate, and child 2’s payoff is

Π2 = V2j : j = arg max
j∈{0�1�3}

∑
i∈{0�1}

Vij�

Following previous notation, we will call this quantity wPN2 .

• For optionNP , wNPi , i= 1�2, are defined similarly.

The payoff matrix can then be written as in Table S2.

1Other benefit-sharing rules can be explored. Engers and Stern (2002) study different possible rules: two
Pareto optimal rules and one based on the Shapley value.
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Table S2.

Child 2

Child 1 N P

N wNN1 �wNN2 wNP1 � ε2 +wNP2

P ε1 +wPN1 �wPN2 ε1 +wPP�ε2 +wPP

We derive best responses (in pure strategies) bri(s3−i) for child i to a strategy s3−i
played by her sibling. Then we have

br1(P)=
{
P if ε1 ≥wNP1 −wPP ,

N if ε1 ≤wNP1 −wPP ,

br1(N)=
{
P if ε1 ≥wNN1 −wPN1 ,

N if ε1 ≤wNN1 −wPN1 ,

br2(P)=
{
P if ε2 ≥wPN2 −wPP ,

N if ε2 ≤wPN2 −wPP ,

br2(N)=
{
P if ε2 ≥wNN2 −wNP2 ,

N if ε2 ≤wNN2 −wNP2 .

These lead to the following Nash equilibria in pure strategies:

(N�N) ⇔ ε1 ≤wNN1 −wPN1 and ε2 ≤wNN2 −wNP2 �

(P�P) ⇔ ε1 ≥wNP1 −wPP and ε2 ≥wPN2 −wPP�
(N�P) ⇔ ε1 ≤wNP1 −wPP and ε2 ≥wNN2 −wNP2 �

(P�N) ⇔ ε1 ≥wNN1 −wPN1 and ε2 ≤wPN2 −wPP�
Therefore, the equilibrium correspondence ε⇒G(ε|x;θ) depends on the rankings

of the terms wri −wsi , i ∈ 1�2, and r� s ∈ {NN�NP�PN�PP}.
It can also be shown that there exists a unique Nash equilibrium in mixed strategies

as follows. A mixed profile (αP + (1 − α)N;βP + (1 −βN)) is a Nash equilibrium if and
only if

α= ε2 − (wNN2 −wNP2 )

(wPN2 −wPP)− (wNN2 −wNP2 )
and β= ε1 − (wNN1 −wPN1 )

(wNP1 −wPP)− (wNN1 −wPN1 )
�

the denominators are nonzero, and

min
{
wNN1 −wPN1 ;wNP1 −wPP}

< ε1 <max
{
wNN1 −wPN1 ;wNP1 −wPP}

�

min
{
wNN2 −wNP2 ;wPN2 −wPP}

< ε2 <max
{
wNN2 −wNP2 ;wPN2 −wPP}

�

Each action profile results in a (almost surely) unique care option choice; hence for
each participation shock ε, we can derive G(ε|X;θ) as the set of probability measures
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on the set of care options {0�1�2�3} induced by mixed strategy profiles, which are prob-
abilities on the set of participation profiles {NN�NP�PN�PP}.

S5. Specification

We provide estimates for two specifications of the utility matrix presented in this sec-
tion.

S5.1 Specification 1

The first matrix of interest is

V (X;θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ β00

+βmDM
+βahDA

⎞
⎠ (

α

+ψsDS1

)
ψsDS2 0

(
βmDM

+βahDA
) ⎛

⎝ β11

+ψ1DD1

+βacDA

⎞
⎠ 0 0

(
βmDM

+βahDA
)

0

⎛
⎝ β11

+ψ1DD2

+βacDA

⎞
⎠ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Recall that the columns indicate the options in the order {0�1�2�3}, and the rows
represent each member of the family in the order parent, child 1, child 2. For example,
the value the firstborn child (family member 1) living less than 30 minutes away from
the parent’s home attaches to the fact that she takes care of a nondisabled, nonmarried
parent is measured by β11, whereas for a disabled parent, it is β11 + βac . Note some
implications of the model:

(1) When the parent is unmarried and has no serious disability (DA = 0), the chil-
dren are indifferent between the option where they are not in charge of the parent.

(2) The presence of problems with ADL affects the utility of the family in two ways.
First, the utility of each member is affected by the term βah if the option “live alone”
is preferred. Second, if a child is chosen as primary care giver, she will bear the “cost”
(under the hypothesis that βac < 0) of taking care of the parent with a disability. This
cost is transferred to the nursing home if this option is the one preferred by the family.

(3) The parameter βm associated to the variable DM measures the additional utility
for all family member to choose the option “live alone” when a spouse is present in the
same household.

(4) The effect of distance on children’s utility is introduced in the valuation of the
primary care giver. The variable ψd measures a cost for child i to travel (30 minutes or
more) to provide care for the parent on a regular basis.

(5) As mentioned earlier, we introduce the parameter α that allows for a preference of
the parent for the oldest child. The parameter αmeasures the incremental utility for the
parent of being taken care of by the firstborn child as compared with the second born
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child. This specification allows for the presence of favoritism, as defined by Li, Rosen-
zweig, and Zhang (2010). In their words: “favoritism exists if the parent derives more
utility by spending the same time with [. . . ] one child versus another. Such favoritism
could be based on the child’s endowment,” the endowment here being simply birth or-
der. The gender effect is introduced in the same manner.

S5.2 Specification 2

We summarize the second specification of the utilities that we study in the matrix

V (X;θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ β00

+βmDM
+βahDA

⎞
⎠ (

α

+ψsDS1

)
ψsDS2 0

δV00

⎛
⎝ β11

+ψ1DD1

+βaDA

⎞
⎠ + δV03 δV04 0

δV00 δV03

⎛
⎝ β11

+ψ1DD2

+βaDA

⎞
⎠ + δV04 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

The main difference with the first model is the introduction of the term δV0i in
the evaluation of option j by child i. This term measures the degree of altruism of the
children. An individual shows altruism when their utility depends directly on someone
else’s. The children are altruistic if δ > 0.

We introduce the idiosyncratic part of the utility through two terms: first, random
participation benefits for each child εi, i ∈ {1�2}; second, error terms uj , j ∈ {0�1�2�3},
which measure unobserved components of the family evaluation of the alternatives. We
assume

εi ∼ i�i�d�N (μ�σε); uj ∼ i�i�d�N (0�σu)�

As mentioned above, we introduce in the specification a random error term to account
for misclassification of the gender of children. Recall that we include a parameter δ,
measuring the preference of the parent for a female caretaker, so that we have

V0�i = V ′
0�i +ψsDSi for i ∈ {1�2}�

where V ′
0�i sums up the remaining terms entering the parent’s utility. Suppose that (DSi)∗

is the reported value of child i’s gender, when DSi is the true value of gender. It follows
that

V0�i = V ′
0�i +ψs(DSi)∗ + ξi for i ∈ {1�2} with ξi =ψs

(
DSi − (DSi)∗

)
�

Supposing that true gender is misreported with probability pξ and that measure-
ment error is independent of true gender, we have ξi = 0 with probability 1 − pξ and
ψs(1 − 2DSi) with probability pξ. Failing to take into account this measurement error
may lead to biased estimates of the parameter ψs and may worsen the identification
issue.
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S6. Estimation methodology

The methodology proposed in the paper allows the construction of the identified set
based on the hypothetical knowledge of the true distribution of the data. As described
in Section 3 of the paper, we account for sampling uncertainty and control the level of
confidence by constructing set functions A �→ P(A|X), which dominate P(A|X) (uni-
formly overA⊆ {0�1�2�3} andX) with probability 1 −α (the chosen level of confidence;
here 0�95). We implement the method detailed in Section 3 of the paper with a number of
bootstrap replications B = 2500. Second, we obtain the model likelihood by simulating
the valuation matrix and computing the equilibrium correspondence from the payoff
matrix, for given values ofX and θ. The procedure for a givenX and θ is as follows:

• We generate and store R draws of ε from the distribution νθ. Here, R = 5000 and
νθ is normally distributed with mean μ and variance σ2

ε , where (μ�σ2
ε) belong to the

parameter θ.

• For each value εr , we compute the valuation matrix V (X�εr�θ) and the correspond-
ing payoff matrix.

• Then we determine the equilibrium correspondence G(ε|X�θ) from the analytical
results derived in the preceding section. The Gambit software provides an alternative for
computing numerically the setNE for more complex games.

• The last step of the simulation is to compute an estimator of the model likelihood L
defined in (3.3) of the paper as L̂(A|X;θ)= 1

R

∑R
r=1 minσ∈G(εr |X;θ) σ(A).

Having constructed those two elements, the identified set comprises all values of
θ such that for all observed values of the explanatory variables, the minimum over
A ⊆ {0�1�2�3} of the function P(A|X;θ) − L̂(A|X;θ) is nonnegative, as explained in
Section 3 of the paper. We construct an n-dimensional grid to conduct the search over
the parameter space. Each value of the parameter can be tested in a fraction of a second
on a standard laptop, and a region of small dimensionality (1–4) can be constructed in a
few hours, again on a standard laptop without parallel processing. However, estimation
time grows exponentially with the number of parameters induced by the model. In our
case, each specification involves a 12-dimensional parameter space. Parallel processing
becomes, therefore, necessary. We use an open-MP procedure for parallel processing,
which is perfectly suited to the method we propose. The computation resources have
been provided by the Réseau Québécois de Calcul de Haute Performance (RQCHP). All
computations were made under the system Cottos, which provides up to 128 compu-
tation nodes (1024 CPU cores) equipped with two Intel Xeon E5462 quad-core proces-
sors at 3 GHz. Under one node, approximately 107 parameters points can be tested in
24 hours.

S7. Results

We perform the estimation of the two previously introduced specifications under differ-
ent values of the mean and variance of the error term. To alleviate the computational
burden, we first test the significance of some of the individual parameters by checking
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whether the hyperplanes defined by θi = 0—where θi is a component of θ—intersect the
95% confidence region. In practice, this amounts to building a constrained confidence
region under the null hypothesis. We fail to reject the null hypothesis if the estimation
procedure returns a nonempty set. We then obtain a constrained confidence region for
the remaining parameters.

S7.1 Specification 1

For each value of mean and variance of the error term, we find a nonempty intersec-
tion between the confidence region and the hyperplane defined by β11 = 0. This means
we fail to reject (at the 5% level) the null hypothesis that there is no additional con-
stant disutility for a child to take care of an elderly parent. Since this hypothesis is not
rejected, we obtain a constrained confidence region for the remaining parameters. We
then obtain confidence regions for different values of β11 and discuss the latter’s effect
on the regions. We note that the null hypothesis H0 :β00 = 0 is always rejected. Hence,
when we control for all other effects, parents are not indifferent between the first two
options. They show a clear preference in favor of living in their own home (option called
“living alone”) instead of living in a nursing home (β00 is always positive). The results we
present are then for given values of β00. We provide an insight of how different values of
this parameter change the results.

We report the range for each parameter in Table S3. Note that the identified set is not
a compact set. In particular, βac , βah, βm, and ψ are allowed to diverge to −∞.

The following results are generally consistent with expectations and previous results
on the subject.

(1) The existence of several problems with the parent’s functional ability is a key de-
terminant of the decision to enter a nursing home: βah and βac are both negative and
can both be (very) large. The negative sign of βah captures the fact that a parent’s dis-
ability increases the value of care provided by the family or a specialized institution.

Table S3. Parameters range for estimation of Specification 1 at β11 = 0, βac = −βm and for dif-
ferent values of the error terms and of β00.

Parameters Min Max Min Max Min Max Min Max

β00 2 2 3 3 1 1 1 1
β11 0 0 0 0 0 0 0 0
βah −∞ −3�57 −∞ −3�57 −∞ −2�86 −∞ −2�14
βac = −βm −∞ −2�86 −∞ −2�86 −∞ −3�57 −∞ −3�57
α 0�00 8�00 0�00 8�00 1�00 5�00 0�00 4�00
ψs 0�00 5�00 0�00 4�00 1�00 4�00 0�00 2�00
ψd −∞ −2�86 −∞ −2�14 −∞ −1�43 −∞ −3�57
μ −1 −1 0 0 −1 −1 0 0
σε 1 1 1 1 1 1 1 1
σ2
u 1 1 1 1 0�25 0�25 0�25 0�25
pξ 0�1 0�1 0�1 0�1 0�1 0�1 0�1 0�1
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In addition, βac < 0 means that the disability entails a utility cost for the child if he is
chosen as primary care giver. In other words, holding all else equal, parental disability
decreases the value for family members of being primary care giver by at least 2�86 utils.
Placing the elderly parent in a nursing home transfers this cost to the institution. If we
think that the expansion of life expectancy observed in past years is correlated with the
appearance of more functional ability problems, this may partly explain the trend away
from care provision by children toward other alternatives.

(2) Parameterβm associated with the parent living with a spouse is positive and large.
This implies that married parents are more likely to stay at home. In families where the
parent is disabled, the effect of living with the spouse somehow compensates the disu-
tility created by the disability factor and, all other variables controlled, preserves the
incentive for parents to live at home.

(3) While we cannot rule out parents being indifferent to the gender or birth order of
their primary care giver, estimation shows a tilt of the confidence interval toward posi-
tive values for both parameters, with a possible positive and large magnitude of the pa-
rameter α. In caseμ= −1 and σ2

u = 0�25, the data reveal that parents exhibit a preference
for an older and a female care giver.

(4) Children living more than 30 minutes from the parents are less likely to provide
care than those living closer to the parents. Distance has a (possibly strong) disutility
effect on children’s incentives to participate in the care decision. All else being equal,
moving 30 minutes away from the parents reduces by at least 1�43 utils, the utility of a
child when providing care.

(5) Note that H0 :σ2
u = 0 is rejected. The magnitude of the unobserved idiosyncratic

term u is linked to the value of the parameter β00. Values of β00 higher than 1 are re-
jected for σ2

u = 0�25 and are the only values admissible if σu = 1. Recall that β00 mea-
sures the preference of the parent for living in their own home. Higher values of this
parameter then induce higher probabilities for the choice of the option “living alone,”
i.e., P(option “living alone”)→ 1. Higher magnitude of the unobserved heterogeneity is
therefore needed to make sense of the difference in choices that we observe in the data.
Alternatively, the unobserved heterogeneity need not have a “large” variance when β00
is close to 0, which suggests that the model explains the variance in the data well.

The shape of the confidence region also conveys a considerable amount of infor-
mation. In Figures S1 and S2, we plot two-dimensional and three-dimensional projec-
tions and cuts of the confidence region for column 2 of Table S3, i.e., με = 0, σ2

ε = 1, and
σ2
u = 1.

Of great interest is the projection of the identified set in the plane βah�βm. Fig-
ure S2(a) reveals a linear relation between the two parameters of the type βah = −βm.
The estimation rejects models for which the absolute values of the two parameters are
significantly different. The data suggest therefore, that the disutility induced by the dis-
ability of the parent can be entirely compensated by the presence of a spouse in the
same household.

Notice the triangular shape of the region plotted in Figure S2(b) that entails the si-
multaneous rejection of large values ofψs and α. This finding means that only one of the
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Figure S1. Three-dimensional representations of the confidence region for Specification 1 at
β00 = 3, β11 = 0, μ= 0, σε = 1, σu = 1, pξ = 0�1.

effects (gender or birth order) can be large, not both. In other words, firstborn daugh-
ters are not the only possible care givers. Note also that both effects can be very small,
though not jointly insignificant.

We observe similar types of constraints for the pairs (α�βah), (α�βac), (α�ψd),
(ψs�βac), and (ψs�ψd), as large values of parameters α orψs are only permitted when the
other parameters are jointly large (see Figure S2(c)–(f)). For example, we obtain a con-
strained confidence region at βac = −3�5. The ranges for the two parameters, α and ψs ,
are tighter, as α ∈ [1�2] and ψ ∈ [0�1].

Figure S3 shows the effect of the variation of parameter β11 on ψs and α. Recall that
β11 represents a fixed cost or benefit for the child chosen as care giver. We observe neg-
ative relations between β11 and ψs, and between β11 and α. Negative values of ψs and
α are only admissible for positive values of β11. Hence a model where parents exhibit
no favoritism for a daughter and/or a firstborn, or favoritism for a son and/or a second
born, will be consistent with our data if and only if there exists a strictly positive con-
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Figure S2. Two-dimensional representations of the confidence region for Specification 1 at
β00 = 3, β11 = 0, μ= 0, σε = 1, σu = 1, pξ = 0�1.
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Figure S3. Parameter β11 in relation to other parameters: Specification 1 at β00 = 3, μ = 0,
σε = 1, σu = 1, pξ = 0�1.

stant benefit for a child to be caregiver. In the case where β11 � 0, the null hypothesis
of indifference to gender and birth order of the primary care giver is rejected, and the
minimum value of both effects (gender and birth order) increases with more negative
values of the fixed cost (see Figure S3(c)).

S7.2 Specification 2

As discussed earlier, the second specification analyzes primarily altruistic behavior on
the part of the children. The parent’s utility enters in the children’s evaluation through
the parameter δ. The greater is δ, the more the parent’s preferences influence the family’s
decision. Notice that in the case where δ= 0, both children value all options identically
when they are not in charge of the parent, irrespective of the parent characteristics, in
particular as pertains to disability.
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Table S4. Parameter ranges for Specification 2 atβ11 = 0 andβa = −βm, and for different values
of the error terms.

Parameters Min Max Min Max Min Max Min Max

β0�0 1�13 2�07 1�13 2�53 0�67 0�67 0�67 1�13
β1�1 0 0 0 0 0 0 0 0
δ 0�11 1�00 0�11 1�00 0�00 0�67 0�00 0�78
βa = −βm −∞ −4�29 −∞ −4�29 −∞ −3�57 −∞ −2�86
α 0�25 3�25 0�25 4�00 0�25 4�00 0�25 4�00
ψs 0�25 4�75 0�25 4�00 1�00 4�75 0�25 3�25
ψd −∞ −2�14 −∞ −2�14 −∞ −2�14 −∞ −1�43
μ −1 −1 0 0 −1 −1 0 0
σε 1 1 1 1 1 1 1 1
σ2
u 1 1 1 1 0�25 0�25 0�25 0�25
pξ 0�1 0�1 0�1 0�1 0�1 0�1 0�1 0�1

Not surprisingly, as in the previous specification, we reject H0 :β00 = 0 (at the 5%
level) as β00 is always positive, and we fail to reject (at the 5% level) the null hypothesis
that there is no additional constant disutility for a child to take care of the elderly parent
(H0 :β11 = 0). The effects of β11 on the remaining parameters is the same as discussed
above. We obtain constrained confidence region for the remaining parameters. We re-
port the range for each parameters in Table S4. Note again that the identified set is not a
compact set, as βac , βah, βm, and ψ are allowed to diverge to −∞.

The data seem to comply with both types of models: altruistic and nonaltruistic.
However, the hypothesis of nonaltruism is rejected for some values of the error term,
namely σ2

u = 1. That is, in the case where the variance of the unobserved heterogeneity
is higher (σ2

u = 1 compared to σ2
u = 0�25), the behavior of children can only be rational-

ized in a framework where they act according to altruistic motives. Alternatively, high
degrees of altruism (δ > 0�78) are not permitted for a low variance of u. This feature can
be understood by relating to the parameterβ00. We discussed in the previous section the
fact that σ2

u is related to β00, as large values of σ2
u imply large values of β00 (see the first

line of Table S4). In Figure S4, we plot three-dimensional cuts of the confidence region.
Figure S5(a) shows a projection of the confidence region in the space (β00� δ). We can
observe a negative dependence between the two parameters. Both parameters cannot
be both very large or both very small. This suggests that a model compatible with the
data is either one where children are predominantly selfish and parents have a strong
preference for living alone, or one where children are fairly altruistic and parents have
only a weak preference for living alone, or a middle point between the two.

In this specification, we reject the joint null hypothesis of indifference of the par-
ent to gender and birth order of the primary care giver when there exists no constant
cost or benefit associated with providing care (β11 = 0). The estimation suggests indeed
a preference of parents for an older child and for a daughter (α > 0 and ψs > 0). Nega-
tive values of β11 (i.e., existence of constant disutility for care givers) are associated with
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Figure S4. Three-dimensional representations of the confidence region for Specification 2 at
β11 = 0, μ= 0, σε = 1, σu = 1, pξ = 0�1.

larger minimum values of α and β, hence stronger preference for firstborn and female
care givers.

Confidence intervals for the other parameters do not differ significantly from the
previous specification. We again reject the hypotheses that distance (between parent
and caretaker) and parent’s disability are insignificant, as the range for ψd is ψd ∈
(−∞�−1�43] and the range for βa is βa ∈ (−∞�−2�86]. We also reject the hypothe-
sis that living with a spouse does not increase the value for a parent to remain au-
tonomous.

We observe very similar shapes of the confidence region as for the previous specifi-
cation. Most of the analysis above still applies to the second specification. Notice that in
the nonaltruistic case, i.e., δ= 0, only very large effects of the parent’s disability are con-
sistent with the data (see Figure S5(b)). In other words, parental disability reduces the
utility of providing care for the nonaltruistic type of children more than for the altruistic
type.
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Figure S5. Parameter δ in relation to other parameters: Specification 2 at β11 = 0, μ= 0, σε = 1,
σu = 1, pξ = 0�1.
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