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Research and development, profits, and firm value:
A structural estimation
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This study presents a model in which firms invest in research and development
(R&D) to generate innovations that increase their underlying profitability and in-
vest in physical capital to produce output. Estimating the model using a method
of moments approach reveals that R&D expenditures contribute significantly to
profits and firm value. The model also captures variation in R&D intensity, profits,
and firm value across R&D-intensive industries. Counterfactual experiments sug-
gest that changes in the distribution of firms in the economy may, over the long
run, mitigate tax policy changes designed to encourage R&D expenditures.
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1. Introduction

Following the seminal article by Griliches (1979), the empirical research and develop-
ment (R&D) literature has yielded many insights about the importance of R&D expendi-
tures in understanding both firm behavior and overall economic growth. Although the
literature acknowledges limitations of production-function-based regressions (see Hall
and Mairesse (1995) and Griliches (2000)), it remains the main approach used in em-
pirical R&D studies. Recently, a burgeoning literature has developed that examines the
role of R&D using new models (for examples, see Xu (2008), Aw, Roberts, and Xu (2011),
Bloom, Schankerman, and van Reenen (2013), and Doraszelski and Jaumandreu (2013)).
This paper adds to the literature by estimating a model where firms invest in R&D so as to
generate innovations that increase profitability and invest in physical capital to produce
output. The estimated model is used to evaluate the response of firms to an increase in
the R&D tax credit, both in the short run and across steady states.
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The underlying model used in the estimation in this paper builds on the endogenous
growth literature, which emphasizes the role of R&D in generating innovations and eco-
nomic growth.1 Firms invest in R&D to increase the probability of innovations, which
lead to increases in the underlying profitability process that fade over time. Firms pro-
duce output using capital and labor, and, as such, respond to successful innovations
with new physical investment. Thus, the model takes into account both the impact of
R&D expenditures on profitability as well as the interaction between R&D expenditures
and physical investment (see Lach and Schankerman (1989)). One additional feature of
the model is that the innovation probability is a function of the accumulated R&D stock,
implying that current R&D expenditures influence the probability of innovations in fu-
ture years.

The model is estimated using the simulated method of moments (see Gourieroux,
Monfort, and Renault (1993)). This approach involves matching means, variances, and
autocorrelations of and correlations between variables of interest from the data with
the corresponding model counterparts. The approach sidesteps difficulties caused by
the fact that the model’s first-order conditions are not expressed in terms of observable
variables. One benefit of this approach is that it yields a joint estimate of all the model
parameters of interest.

The data set used in the estimation is derived from the Compustat data base.
The sample is restricted to nonfinancial firms that consistently report R&D expenses.
The main variables of interest in the estimation are R&D intensity, measured as R&D
expenses divided by sales, Tobin’s q, measured as the market value of the firm divided
by the replacement cost of capital, and profitability, measured as operating income di-
vided by capital. An examination of the data indicates that firms in the sample have, on
average, high R&D intensities. These firms also have high Tobin’s q values that cannot be
justified solely based on investment frictions, suggesting that R&D investment plays an
important role in understanding their profits and firm values.

The estimates reveal that R&D expenditures have an economically and statistically
significant impact on profits and firm value. The findings imply that firms obtain jumps
in profitability from successful innovations in most periods. On average, firms expect
their R&D expenditures to generate about an 18�5% increase in the underlying prof-
itability process. These profitability increases are also quite persistent. The large persis-
tent expected profitability increases arising from R&D expenditures enable the model to
match the high levels of R&D expenditures observed in the data as well as the high To-
bin’s q levels. In addition, the model captures the low correlation between Tobin’s q and
investment observed in the data. Also, the estimation yields an obsolescence rate for
R&D stocks of about 32%, somewhat higher than the value of 15% typically used in the
literature (see Griliches and Mairesse (1984)). An extension of the model that allows for
R&D expenditures to influence both the success rate of innovations and the increase in
profitability arising from an innovation generates broadly similar findings. Firms expect
innovations to lead to about a 20% increase in profitability, and the estimated obsoles-
cence rate of R&D equals 23%.

1See Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992).
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Estimating the model on selected R&D-intensive industries—chosen based on four-
digit standard industrial classification (SIC) codes—demonstrates that the model suc-
cessfully captures variations in R&D intensity, profitability, and firm value across these
industries. The results from each of these industries reveal that while firms face un-
certainty in the outcomes from their R&D expenditures, they can realize economically
meaningful increases in profits from innovations. This estimation also highlights the im-
portance of the non-R&D-related parameters, with both the curvature of the profit func-
tion and the persistence of shocks to the profitability process influencing firms’ R&D
expenditures.

The study carries out a number of related analyses to address identification concerns
regarding the R&D-related parameters. An examination of the generalized method of
moments (GMM) objective function minimized in the estimation reveals that the func-
tion is steeply sloped at the estimated parameter values, enabling identification. This
steep slope arises from the fact that the moments chosen in the study are sensitive to
changes in the underlying parameters. Finally, the estimation method is able to recover
the underlying parameter values when applied to data obtained from simulating the
model.

The structural estimation approach enables a counterfactual experiment on an in-
crease in the tax subsidy provided to R&D expenditures. This experiment is motivated by
recent policy discussions on providing further support to R&D expenditures. The model
enables this analysis to be carried out both in the short run and across steady states.
In comparison, a regression-based approach typically only identifies the short-run ef-
fect of a tax policy change. The counterfactual increase in the R&D tax subsidy leads
to an overall increase in R&D expenditures and a small increase in the success rate of
innovations. The estimated elasticities imply that a $1 tax subsidy to R&D expenses gen-
erates about $1 more of R&D expenses, similar to the estimates reported by Hall and van
Reenen (2000) and Bloom, Griffith, and van Reenen (2002). The analysis also reveals that
the beneficial effect of the increased R&D tax subsidy over the long run may be some-
what smaller than the immediate short-run effect, as the increased R&D expenditures
changes the profitability distribution, and therefore R&D expenditures, of firms in the
economy.

This study is organized as follows. Section 2 details the model and derives the opti-
mal policy function for R&D. Section 3 discusses the data and the estimation approach.
Section 4 presents the results from the various estimations. Section 5 addresses model
identification concerns. Section 6 evaluates the policy experiment within the context of
the model, and Section 7 concludes. Additional material is available in a supplementary
file on the journal website, http://qeconomics.org/supp/282/code_and_data.zip.

2. Model

The model economy consists of a large number of heterogeneous firms. The firms can
invest in a physical capital stock, K, and an R&D stock, S. The firms face exogenous prof-
itability shocks as well as endogenous jumps in profitability that arise from their R&D
investment. Firms return any cash remaining after investment costs to shareholders as
dividends. The objective of each firm is to maximize the present value of dividends.

http://qeconomics.org/supp/282/code_and_data.zip
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2.1 Physical investment and profits

The output of the ith firm follows a constant returns to scale Cobb–Douglas specification
with

Y(Ki�xi) = xiK
α
i L

1−α
i �

where xi denotes the firm’s output productivity level and α denotes the elasticity of out-
put with respect to capital (time subscripts omitted). The firm faces a downward-sloping
demand curve with price per unit of output

Pi = diY
−ν
i �

where di denotes a demand shift parameter and ν equals the inverse price elasticity of
demand. Thus, sales are given by

PiYi = diY
1−ν
i �

These assumptions correspond to a monopolistic competition setting where each firm
possesses a degree of pricing power. Assume flexible labor markets, a deterministic wage
process, and a per-period fixed cost of operations, fc. After substituting in the optimal
labor input, the profits of the firm can be written as

Π(Ki� zi) = ziK
θ
i − fc� (1)

where the composite profitability level zi inherits the properties of xi and di. The curva-
ture of the profit function is given by

θ = α(1 − ν)

ν + α(1 − ν)
� (2)

The subsequent analysis employs the above profit function. The firm spends its profits
on physical investment and R&D expenditures, and returns any cash left as a dividend
to shareholders, with negative dividends indicating a share issuance.

Investment or disinvestment of physical capital incurs a quadratic adjustment cost,

b
I2
i

2Ki
, and firms can disinvest.2 Recent studies such as Cooper and Haltiwanger (2006)

emphasize the role of nonconvex adjustment costs in investment; however, this ev-
idence comes from plant-level data. In contrast, Eberly, Rebelo, and Vincent (2008)
demonstrate that the quadratic adjustment cost specification fits investment data quite
well at the firm level, as the data show little evidence of nonconvex adjustment costs
when investment is aggregated to the firm level. The capital stock of the firm in the next
period is given by

K′
i = Ki(1 − δ)+ Ii�

where δ denotes the depreciation rate and Ii equals investment.

2The model does not include any irreversibility of selling physical capital as in Abel and Eberly (1994) or
any costs of external finance as in Gomes (2001) and Brown, Fazzari, and Petersen (2009).
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2.2 R&D investment

In addition to physical investment, firms also invest in R&D. The R&D stock of the firm
does not directly impact the production function as in Griliches (1979) and others. In-
stead, the R&D stock stochastically affects the transition of profitability across periods.
The model views R&D stocks as measuring the potential for future innovations rather
than measuring the stock of ideas applicable for production. When a firm’s R&D activity
is successful, the firm realizes a profitability jump in the next period.3 If it was unsuc-
cessful, the firm will not realize a jump in profitability. Thus, innovations reflect discov-
eries by firms that lead to an increased profitability of the firm’s capital stock.4 A fraction
of the R&D stock becomes obsolete each period, reflecting the conclusion or abandon-
ment of R&D projects. The model attempts to capture the inherently uncertain nature
of the innovation process through this mechanism, as a firm would realize a negative
return from its R&D investment in a period in which it failed to innovate.

Denote the accumulated R&D stock of the firm at the end of each period by S′
i. Let

Ri equal the investment in R&D activity. The law of motion for Si is given by

S′
i = Si(1 − γ)+Ri� (3)

where γ denotes the rate at which R&D stocks become obsolete. There are no additional
costs of R&D investment, and the only constraint on it is that the R&D stock, S′

i, remains
nonnegative. This specification assumes that firms can sell their R&D stock for its resid-
ual value if necessary. The reversibility assumption is supported by anecdotal evidence
of firms selling partially developed products to other firms, particularly in the pharma-
ceutical sector. Although the assumption of no adjustment costs of R&D investment is
debatable, the literature typically does not assume additional adjustment costs for R&D
investment (see Doraszelski and Jaumandreu (2013)).

One feature of the modeling framework is that R&D stocks determine the probabil-
ity of innovation instead of R&D expenditure flows, as in Akcigit (2009), Aw, Roberts,
and Xu (2011), and Doraszelski and Jaumandreu (2013). The R&D stock-based approach
employed in the model generalizes the flow-based approach, as it allows for R&D expen-
ditures to impact the probability of profit increases not only in the next period, but also
in future periods. Put differently, the above specification nests one based solely on R&D
flows, as S′

i =Ri when γ = 1. Generalizing the model to allow for R&D stocks to influence
innovation does come at the cost of introducing an additional parameter, γ, that needs
to be estimated.

Let ji denote a binary variable that equals 1 if the firm successfully innovates and 0
otherwise. The probability of a successful innovation is given by a Bernoulli distribution
with success probability

p(ji = 1) = 1 − exp
(

−a
S′
i

Kθ
i

)
� (4)

3Other papers that provide a similar treatment of the innovation process include Thompson (2001),
Klette and Kortum (2004), and Aghion, Bloom, Blundell, Griffith, and Howitt (2005).

4The vintage capital models of Greenwood and Jovanovic (1999) and Hobijn and Jovanovic (2001) em-
phasize macro level technological revolutions that have different impacts on the value of current and future
capital.
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where a is a parameter that influences the success rate of innovations and Kθ
i reflects

the scaling of revenues with the firm’s capital stock.5 Higher R&D stocks lead to a greater
probability of a successful innovation. This parsimonious parametrization implies that
success probabilities are concave in S′

i, consistent with economic reasoning. In the event
of success, log profitability, z, jumps by a constant, λ, which measures the improve-
ment in the firm’s profitability from a successful innovation. In related work, Pakes and
McGuire (1994) analyze a framework where firms realize a constant jump in profitabil-
ity with endogenous probability that is a decreasing function of product development
expenditures.6

The success probability decreases as firm size increases. The scaling by Kθ
i can be

thought of as capturing an increase in R&D project size with average revenues. As such,
larger firms with greater average revenues require a greater level of R&D investment to
generate the same probability of success as a small firm. This is similar to the approach
in Klette and Kortum (2004), where the firm’s innovation intensity is proportional to its
R&D investments scaled by revenues.7 An alternative specification would be to scale by
per-period sales instead of the capital stock to the power θ. However, scaling by per-
period sales would have the unappealing property that, ceteris paribus, a firm that re-
ceived a negative profitability shock, and therefore had lower sales, would have a higher
probability of realizing an innovation.

The transition equation for profitability includes a standard autoregression (AR(1))
component plus jumps from innovations:

log
(
z′
i

) = μ+ ρ log(zi)+ λji + εi�

ji ∝ B

(
p

(
S′
i

Kθ
i

))
� (5)

εi ∝ N
(
0�σ2)�

The distribution for ji is independent of the distribution for εi. In this setup, the jump
intensity varies endogenously with R&D stocks. Further, firms base their decisions on
realizations of z′

i and do not distinguish between changes in profitability due to exoge-
nous shocks or innovations. Therefore, the impact of an innovation will decay at the
same rate ρ as the impact of exogenous shocks. These assumptions yield the simplifica-
tion that only the current level of profitability enters into the firm’s policy functions.

The model is agnostic on the source of the jump in profitability from a successful in-
novation. This innovation may arise from either improvements in the current products
of the firm, the introduction of entirely new products, or productivity increases. More

5In the monopolistically competitive framework development in Section 2.1, profits and revenues exhibit
the same curvature with respect to the capital stock.

6Kortum (1997) employs a search theoretic approach in which the rate of arrival of ideas is exogenous
and the efficiency of the improvement depends on the R&D stock.

7The endogenous growth theory model of Romer (1990) implies that innovation increases with the level
of R&D. Subsequent work by Jones (1995b) demonstrates that this relationship does not hold in the data.
Jones (1995a), Young (1998), and Segerstrom (1998) introduce endogenous growth models without scale
effects.
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formally, a successful innovation may result in an increase in the productivity parame-

ter xi or the demand shifter di. This is similar to the approach taken in the production-

function-based literature, where the impact of R&D on value added could be due to all

of the above factors. The model also does not take a stand on whether patent protection

is necessary for generating an increase in profitability (see Boldrin and Levine (2008)).

The above approach allows R&D investment to have a broad impact on the firm. Cor-

respondingly, the endogenous growth literature highlights both quality improvements

and new product introductions as the outcome of innovations.

The timing of the firm’s decisions and the notation for R&D and capital stocks war-

rant clarification. Firms enter each period with an R&D stock, a capital stock, and a

profitability level. The firms invest in R&D and capital during the period. Denote the

R&D and capital stocks at the end of the period by S′ and K′, respectively. At the end of

the period, each firm discovers whether it successfully innovated or not. The innovation

probability depends on the ratio of the R&D stock at the end of the period (S′) to the

average revenues a firm of that size would have earned over the period (Kθ). If a firm

succeeds, its next period profitability will be higher than if it did not. The accumulated

R&D stock carries over to the next period, and a fraction of it becomes obsolete after

the realization of the innovation outcome. The capital stock, adjusted for investment

and depreciation, carries over to the next period and is used to generate output. This

timing structure captures the idea that R&D investment in the current period—which

determines R&D stocks at the end of the period—impacts the transition function for the

firm’s profitability from this period to the next.

2.3 Tax subsidy on R&D investment

The Research and Experimentation Tax Credit was established by the Economic Recov-

ery Tax Act of 1981 to encourage R&D investment by U.S. firms. However, only some R&D

expenses are eligible for the tax credit, and the set of qualifying expenses has evolved

over time. The tax credit is calculated as a percentage of qualifying expenses that ex-

ceed a base amount that varies either with the company’s past qualifying expenses or

sales. In addition, an alternative tax credit, established in 1996, benefits companies with

smaller increases in R&D expenses. Since inception, the Research and Experimentation

Tax Credit has existed as a temporary tax benefit that has been repeatedly extended over

time.

The complexities of the Research and Experimentation Tax Credit and the uncer-

tainty over its permanence make it very challenging to accurately capture the details of

the tax credit in the model. As such, this study takes a simplified approach that incorpo-

rates the Research and Experimentation Tax Credit as a linear tax subsidy, τrd, of all R&D

expenses. The subsidy rate is calibrated at 2�5%, based on the findings of Moris (2005),

who reports that the tax credit as a percentage of all corporate R&D expenses ranges

from about 1�5% to 3�5%.
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2.4 Firm value

The dividends paid by the firm in each period are given by

(
Π(Ki� zi)−Ri

)
(1 − τ)+ δKtτ +Riτrd − Ii − b

I2
i

2Ki
�

where τ denotes a linear tax rate. As in the tax code, R&D expenses are treated as tax
deductible. The δKtτ term captures the tax deductibility of depreciation, and the Riτrd

term captures the R&D tax credit. The tax rate parameter, τ, is calibrated using data on
aggregate taxes and profits. The model thus incorporates other factors that affect taxes
payable by firms, such as debt financing, in a parsimonious manner.

Denote the value of the firm after the realization of zi but prior to the obsolescence
of the R&D stock as V (Ki�Si� zi).8 For notational convenience, define

D(Ki� zi)= Π(Ki� zi)(1 − τ)+ δKtτ − Ii − b
I2
i

2Ki
� (6)

The value of the firm can be expressed as a solution to the Bellman equation

V (Ki�Si� zi) = max
Ii�K

′
i�Ri�S

′
i

D(Ki� zi)−Ri(1 − τrd − τ)+βEz
[
Vc

(
K′

i� S
′
i� z

′
i

)]
�

K′
i = Ki(1 − δ)+ Ii�

(7)
S′
i = Si(1 − γ)+Ri�

S′
i ≥ 0�

where the continuation value of the firm, Vc(K′
i� S

′
i� z

′
i), takes into account the possibil-

ity that the firm may exit next period and Ez[·] denotes expectation conditional on the
current profitability level, zi. The expectation in the Bellman equation is taken over the
joint distribution for ji� εi. The results in Bertsekas (2000, Chapter 7) yield the existence
and uniqueness of the solution to the above problem.

The above value function can be simplified by noting that the absence of any fric-
tions on adjusting R&D imply that the value function is separable in Si. This simplifica-
tion helps with the estimation as it reduces the number of state variables in the firm’s
optimization problem and enables a derivation of the optimal R&D stock as a function
of the capital stock and profitability stock. The simplification follows from substituting
the expression for Ri into the maximization problem, which yields

V (Ki�Si� zi) = max
Ii�K

′
i�S

′
i

D(Ki� zi)+ Si(1 − γ)(1 − τrd − τ)

− S′
i(1 − τrd − τ)+βEz

[
Vc

(
K′

i� S
′
i� z

′
i

)]
�

K′
i = Ki(1 − δ)+ Ii�

S′
i ≥ 0�

8Defining the value function at this point ensures notational symmetry between capital and R&D stocks.
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The stock variable Si does not impact the optimization problem for either K′
i or S′

i. This
motivates the conjecture that the value of the firm can be simplified as

V (Ki�Si� zi)= G(Ki� zi)+ Si(1 − γ)(1 − τrd − τ)� (8)

The value of the R&D stock equals Si(1 − γ)(1 − τrd − τ) due to the model’s timing con-
vention. The effective value of Si equals its value after obsolescence, which is modified
by the tax benefits of R&D expenses. Substituting the above expression into the Bellman
equation, one obtains

G(Ki� zi) = max
Ii�K

′
i�S

′
i

D(Ki� zi)− S′
i(1 − τrd − τ)

+βS′
i(1 − γ)(1 − τrd − τ)+βEz

[
Gc

(
K′

i� z
′
i

)]
�

(9)
K′

i = Ki(1 − δ)+ Ii�

S′
i ≥ 0�

The expected value of Ez[Gc(K
′
i� z

′
i)] takes into account both the realization of profitabil-

ity jumps from innovations and the exogeneous shocks. Using the law of iterated expec-
tations, it can be written as

Ez
[
Gc

(
K′

i� z
′
i

)] = Ez
[
Gc

(
K′

i� z
′
i

)|ji = 1
]
p(ji = 1)

(10)
+Ez

[
Gc

(
K′

i� z
′
i

)|ji = 0
]
p(ji = 0)�

where the probability of a successful innovation depends on the optimal R&D stock S′
and is given by equation (4). The continuation value, Gc(K

′
i� z

′
i), is given by

Gc
(
K′

i� z
′
i

) = max
{
G

(
K′

i� z
′
i

)
�0

}
� (11)

This analysis establishes our conjecture and demonstrates that the value function
is separable in the R&D stock. Note that this is not a general result; it arises from the
assumption that the R&D stocks can be adjusted without any friction. Put differently, the
above result states that, because of the lack of adjustment costs, the optimal R&D stock
does not depend on the lagged R&D stock. The separability of the value function also
has the additional implication that firms realize a negative return to R&D investment in
periods where they fail to innovate.

While the R&D stock, Si, is not a state variable per se in the model, it does influ-
ence the optimal R&D expenditure flows, Ri, which equal the optimal next-period R&D
stock minus the current period R&D stock adjusted for obsolescence.9 In addition, firm
value is given by equation (8), which incorporates the residual value of the existing R&D

9One could draw an analogy with investment policy in (S� s) models, such as Caballero and Engel (1999),
where, conditional on adjustment, the next-period capital stock does not depend on the current capital
stock. However, conditional on adjustment, the optimal investment policy in these models does depend on
the current capital stock, as it equals the next-period capital stock minus the current capital stock adjusted
for depreciation.
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stock. As such, the formulation of the model in terms of R&D stocks—a more general
formulation than using only R&D expenditures—has a meaningful effect on the model
implications.

2.5 R&D policy

The above analysis enables the derivation of the optimal R&D policy. The optimal choice
of S′

i affects the current period dividend payment, the level of the R&D stock carried over
to the next period, and the transition function for profitability z. The first two terms are
linear in S′

i. Let S̃′
i be the optimal policy in the interior region where the S′

i ≥ 0 constraint
does not bind. The following proposition characterizes the optimal R&D stock.

Proposition 1. The optimal R&D stock of the firm when S′
i > 0 is given by

S̃′
i

Kθ
i

= 1
a

[
log(a)− log

(
(1 − τrd − τ)

(
1 −β(1 − γ)

))

+ log
(
β(Ez[Gc(K

′
i� z

′
i)|ji = 1] −Ez[Gc(K

′
i� z

′
i)|ji = 0])

Kθ
i

)]
�

See Appendix A for the proof.
Therefore, the optimal policy function for R&D stocks is given by

S′
i

Kθ
i

= max
(

S̃′
i

Kθ
i

�0
)
�

The optimal R&D stock increases with the expected increase in firm value per unit
of average sales from an innovation, which is a function of the profitability jump pa-
rameter, λ. In addition, the optimal R&D stock depends on the discount rate, the tax
subsidy to R&D, and the obsolence rate, γ. The exponential function for the success rate
implies that the above terms affect the optimal R&D stock logarithmically. Finally, the
success rate parameter a also enters into the optimal R&D policy function. The above
expression indicates that the three R&D related parameters, a, λ, and γ in the model all
influence the optimal R&D stock (and therefore R&D expenditures) in a distinct manner.

The above expression indicates that one can decompose the total return from R&D
investment into an increase in the residual R&D stock and an expected increase in firm
value from an innovation. The increase in firm value from an innovation incorporates
both increases in profitability in the next period and beyond and the optimal rebalanc-
ing of the capital stock following an innovation. This decomposition highlights the dy-
namic benefits to R&D in the model, where firms follow a successful innovation with
investment in physical capital, amplifying the benefit of the initial profit increase. While
the above approach enables one to examine R&D expenditures and investment together,
one disadvantage is that it ignores the impact of industry structure on firms’ R&D ex-
penditures, as emphasized by Aghion, Harris, Howitt, and Vickers (2001) and Aghion,
Blundell, Griffith, Howitt, and Prantl (2009).
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3. Data and estimation

This study estimates the above model using simulated methods of moments estimation
(see Gourieroux, Monfort, and Renault (1993) for details).10 This method involves com-
paring a selected set of data moments with the same moments from an artificial data
set obtained by simulating the model for a given set of parameters. The parameter esti-
mates are obtained by minimizing a quadratic form of the difference between the data
and simulated moments. Appendices B and C discuss the estimation in more detail.

The simulated method of moments is employed since the model’s policy function
for R&D is expressed in terms of jumps in firm value arising from innovations, an unob-
servable variable. Further, using this method enables one to simultaneously estimate all
the parameters of interest, which enables policy experiments on changing the R&D tax
credit.

3.1 Data

The data for the estimation are obtained from the Compustat annual data set.11 The
data set includes information on profits, research and development expenses, capital
expenditures, and balance sheet items for listed U.S. corporations. The market value of
equity is obtained from the linked Center for Research in Security Prices (CRSP) data set.
The sample period extends from 1985 to 2006 and excludes financial firms and regulated
utilities. The sample is an unbalanced panel, as firms enter and exit the data. This cor-
responds to the model where a firm may exit if its continuation value net of the value of
the R&D stock, G(K�z), becomes negative.

More than half of the firm–year observations report data on research and develop-
ment expenditures (Compustat annual data item 46). This series measures company-
funded R&D and excludes those funded by the government. Many companies do not
report this series for any years. Among the firms that do report, more than 75% report
R&D expenses for all years. This indicates that one can fairly clearly identify a subset of
firms that engage in R&D. Those that do not engage in R&D are considered to do so for
exogenous reasons and are excluded from the estimation. The sample of firms that re-
port R&D expenditures in each year are included in the sample, and these comprise the
bulk of it. For firms that report R&D expenditures in some, but not all years, the study
includes those with R&D values in at least half their years in the sample.12 This implies
that a few observations in the sample have zero R&D expenditures; the inclusion of these
few observations is not inconsistent with data obtained from simulating the model, as a
very small fraction of simulated firm–year observations have such steep declines in R&D
stocks that their R&D expenditures are slightly negative.

10Other papers that use this method include Cooper and Ejarque (2003), Hennessy and Whited (2005,
2007), Cooper and Haltiwanger (2006), Lentz and Mortensen (2008), Eberly, Rebelo, and Vincent (2008), Xu
(2008), Akcigit (2009), Bloom (2009), and Kaplan (2012).

11Griliches (1994) discusses the various data sources employed in the empirical R&D literature.
12The matched moments used in the estimation are not particularly sensitive to changes in this thresh-

old.
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One concern is whether the firms are accurately reporting their R&D expenses. Ac-
counting rules provide some comfort in this regard, as they clearly specify the classifi-
cation and reporting of R&D expenditures. In addition, the Research and Experimenta-
tion Tax Credit has indirectly increased the attention firms give to accounting for R&D
expenses. Last, a cross-industry examination shows that industries that one might ex
ante expect to be R&D intensive have much higher fractions of firms that report R&D
expenses.

The study measures sales as net sales (data item 12), profits as operating income
before depreciation (data item 13), and investment as capital expenditures (data item
30) net of retirement of fixed assets (data item 184). The replacement value of the cap-
ital stock is derived using the perpetual inventory method employed by Summers and
Salinger (1983), where the mean life of the capital stock is calculated using the dou-
ble declining balance method. Profitability equals operating income before depreciation
scaled by the replacement value of the capital stock. Tobin’s q equals the market value
of equity plus the book value of debt minus the book values of inventories and cash di-
vided by the replacement value of capital. This follows the method employed by Whited
(1992) and Gomes (2001), with the modification that cash holdings are also subtracted
from the numerator.

Panel A of Table 1 reports the summary statistics for the sample of firms used in the
study. The statistics reveal that these firms exhibit a high R&D intensity. At the same
time, these firms also have high Tobin’s q values that would be difficult to reconcile with
standard models based on investment frictions such as Hayashi (1982). This suggests
that R&D expenditures play a key role in understanding the valuation of these firms, as
emphasized in the above model.

3.2 Industry classification

In addition to estimating the model on the sample described above, this study also es-
timates the model for firms in selected R&D-intensive industries. Estimating the model
on these industries helps answer the question of whether the model can successfully
capture firms’ behavior in these industries. In addition, it sheds light on how the model
parameters vary across these industries.

The industry groups mostly follow the 49 industry groups constructed by Kenneth
French using four-digit SIC code data.13 The one exception being the medical equip-
ment industry, which combines the medical equipment and laboratory equipment in-
dustries. Appendix D details the SIC codes used in each industry category. These indus-
tries were chosen as they have the highest concentration of firms engaging in R&D as
well as the highest R&D intensities.

Panel B of Table 1 reports summary statistics for firms in these R&D-intensive in-
dustries. Compared with the overall sample, firms in these industries have higher R&D
intensities and higher Tobin’s q values.

13The industry classifications are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1. Summary statistics.

Panel A: All firms

Mean Std.

Log assets 6�099 1�940
Tobin’s q 3�520 3�340
Profitability 0�333 0�427
R&D-to-sales 0�088 0�157
Investment 0�159 0�133
Observations 32,351

Panel B: Firms in R&D-intensive industries

Mean

R&D-to-Sales Profitability Tobin’s q Observations

Business services 0�109 0�298 4�084 960
Chips 0�127 0�287 3�670 4274
Hardware 0�114 0�308 3�565 2102
Medical equipment 0�101 0�430 4�675 2719
Pharmaceuticals 0�310 0�225 6�525 2120
Software 0�171 0�289 5�636 3182

Note: Panel A reports summary statistics for firms in the entire sample. The sample includes R&D-reporting firms in non-
financial industries and contains 32,351 firm–year observations. Panel B reports selected summary statistics for firms in R&D-
intensive industries.

3.3 Calibrated parameters

Some of the auxiliary parameters are calibrated to simplify the estimation. These in-
clude the discount rate, β, which is set to 1/1�04 to match a return to capital of 4%. The
steady-state investment rate equals the depreciation rate in the simulated data. As such,
the depreciation rate δ is set equal to the investment rate in the data, 0�165. The tax
rate parameter, τ, is calibrated to equal the ratio of aggregate income taxes to operating
profits in the data. In the industry-level estimation, both the depreciation rate and the
tax rate are modified to reflect the corresponding data values for those industries. Last,
the constant term in the AR(1) equation for profitability, μ, functions only as a scaling
parameter.14 As such, μ is set such that the steady-state capital stock equals 1.

3.4 Moments and identification

When using the simulated method of moments, it is important to chose moments that
are informative about the underlying parameters. This section discusses the moments
used in the estimation and relates them to the underlying parameters.

The matched moments comprise the following: averages of R&D-to-sales, fixed
costs, profitability, and Tobin’s q; standard deviations of R&D-to-sales, profitability, and

14Changes in μ shift the steady-state capital stock, but do not affect any of the ratios used in the estima-
tion, such as the R&D-to-sales ratio or Tobin’s q.



544 Missaka Warusawitharana Quantitative Economics 6 (2015)

investment; autocorrelations of R&D-to-sales, profitability, and investment; and corre-
lations between R&D-to-sales and investment, investment and Tobin’s q, and lagged
R&D-to-sales and sales growth. So as to minimize the effect of outliers and reporting
errors in the sample data set, all the firm-level variables underlying the calculation of
these moments are top- and bottom-coded.

The moments involving the R&D-to-sales ratio help pinpoint the three R&D-related
parameters in the model: λ, γ, and a. As seen in Proposition 1, changes in all these pa-
rameters influence the optimal R&D stock and, therefore, the average and standard de-
viation of the R&D-to-sales ratio. The correlation between lagged R&D-to-sales ratio and
sales growth helps inform the impact of a successful innovation on profits, λ. The auto-
correlation of the R&D-to-sales ratio varies with the obsolescence rate, γ, as a high obso-
lescence rate implies a lower autocorrelation. The success rate parameter, a, influences
Tobin’s q in the simulated data, as higher success rates translate to a higher contribution
of R&D investment to firm value.

The fixed costs parameter, fc, is pinned down by the ratio of fixed costs to sales. The
curvature of the profit function, θ, is mainly pinned down by the averages of profitabil-
ity and Tobin’s q. The autocorrelation, ρ, and standard deviation, σ , of the profitability
process are identified by the corresponding moments for profitability. These two param-
eters also influence the average of Tobin’s q, and the autocorrelation and standard de-
viation of the R&D-to-sales ratio. The standard deviation of investment helps pin down
the investment adjustment cost parameter, b.

It should be noted that although the above discussion links specific parameters to
specific moments to help provide intuition, the estimation employs all the moments to
identify all the parameters jointly. Indeed, changes in any parameter can, and in most
cases do, influence all of the moments. Section 5 examines whether the above identifi-
cation argument fares well in practice.

4. Results

This section presents the results from estimating the structural model. It first presents
results obtained from the entire sample, and then presents results obtained from se-
lected R&D-intensive industries. Last, it presents results obtained from estimating an
extension of the model, where R&D investments can lead to multiple profitability jumps
per period.

4.1 All R&D firms

Table 2 presents the results from estimating the model on all firms in the sample. Panel
A presents the parameter estimates, and Panel B presents the matched moments from
the data and the model.

The estimate for λ indicates that the underlying profitability process z jumps by an
economically significant 22�2% when firms realize innovations. The estimate for a trans-
lates to an average success rate of about 83%. Together, these imply an expected increase
in the underlying profitability process due to R&D expenditures of 18�5%. Such a large
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Table 2. One profitability jump per period.

Panel A: Parameter estimates

Parameter θ ρ σ λ a b γ fc Ψ̂

Estimate 0�396 0�587 0�380 0�222 5�293 0�497 0�322 0�409 2671
Std. err. (0�002) (0�006) (0�003) (0�003) (0�253) (0�031) (0�018) (0�004)

Panel B: Moments

Moments Data Model

Averages
R&D-to-sales 0�087 0�082
Fixed costs 0�241 0�229
Profitability 0�333 0�365
Tobin’s q 3�477 3�571

Standard deviations
R&D-to-sales 0�056 0�028
Profitability 0�253 0�309
Investment 0�105 0�101

Autocorrelations
R&D-to-sales 0�366 0�709
Profitability 0�422 0�555
Investment 0�341 0�317

Correlations between
R&D-to-sales and investment −0�022 −0�108
Investment and Tobin’s q 0�280 0�341
Lagged R&D-to-sales and sales growth 0�062 0�286

Success rate 0�833

Note: Panel A reports the estimated structural parameters and a goodness-of-fit statistic, Ψ̂ . Panel B reports the matched
moments from the sample and simulated data sets. The sample includes R&D-reporting firms in nonfinancial industries and
contains 32,351 firm–year observations. Section 3.1 details the construction of the sample and the variable definitions. The
probability of success from R&D investment is given by a Bernoulli distribution. The estimation is carried out using simulated
method of moments.

impact from R&D investment not only helps the model generate high levels of R&D ex-
penditures, it also enables the model to generate the high Tobin’s q levels observed in
the data.15 Indeed, an average value for Tobin’s q of 3�57 would be hard to justify using
only a physical investment perspective. For comparison, the model generates an aver-
age shadow price of capital, 1 + b I

K , of only 1�08.
The estimated obsolescence rate for R&D investment, γ, is higher than the value

of 15% traditionally employed in the production-function literature (see Griliches and
Mairesse (1984)). Hall (2010) obtains depreciation rates in the range of 20–40% using a
valuation-based approach. Further, the model incorporates successful innovations from
past R&D investments in the z term, whereas all the benefits of past R&D investments
accrue in the R&D stock in the production-function-based literature. As such, it is plau-

15See Hall (2001) and Corrado, Haltiwanger, and Sichel (2005) for evidence that intangible capital, more
broadly, plays an important role in understanding the value of the aggregate capital stock.
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sible to expect a higher obsolescence rate from a modeling approach that emphasizes
the role of R&D in generating innovations. Conversely, the finding that γ < 1 indicates
that R&D stocks influence innovations, not R&D flows, as would be the case if γ = 1.

The estimated curvature of the profit function, θ, is lower than the estimates ob-
tained by Cooper and Haltiwanger (2006). Assuming a capital share of 1/3 and apply-
ing equation (2), one obtains an implied price elasticity of demand of 2�97 (= 1/0�337),
within the range of estimates obtained in the literature (see Broda and Weinstein (2006)
and Hendel and Nevo (2006)). The estimated autocorrelation and profitability shock
terms are directly related to their matched moments. Last, the estimated adjustment
cost parameter, λ, is within the range of 0–2 typically obtained in the literature (see
Cooper and Haltiwanger (2006) and Whited (1992)).

In terms of the matched moments, the model matches the average moments quite
well. The model generates a mean R&D-to-sales ratio that is a bit lower than the data,
while generating somewhat higher mean profitability and Tobin’s q levels. The model
does not fare so well regarding the standard deviation moments, as it implies a lower
standard deviation of R&D than in the data, suggesting that other sources of hetero-
geneity also influence firms’ R&D decisions.

The model manages to match the correlation between lagged R&D-to-sales and sales
growth fairly well. This moment captures the impact of R&D expenditures on subse-
quent sales growth and, therefore, on subsequent increases in profitability. The model
also generates the modest correlation between investment and Tobin’s q observed in the
data; investment-based models typically have difficulty matching this moment, as these
models imply a high correlation. Measurement error in Tobin’s q may provide part of the
explanation as to why the correlation between it and investment in the data is less than
what would be implied by investment models (see Erickson and Whited (2000)). Finally,
the model implies a somewhat surprising negative correlation between R&D-to-sales
and investment. This arises because while the optimal policy for the R&D stock given
in Proposition 1 is highly correlated with Tobin’s q and investment, the correlation be-
tween the flow of R&D expenditures and investment is much weaker and can become
negative.

4.2 R&D-intensive industries

Table 3 reports the parameter estimates obtained from the estimation of the model on
the selected R&D-intensive industries, as detailed in Section 3.2.

The parameter estimates indicate that the model captures heterogeneity across
these industries both in terms of their R&D-related parameters and other parameters.
For instance, successful innovations have a much bigger immediate impact on the un-
derlying profitability process in the pharmaceutical and software industries than in
other industries. That said, innovations have a meaningful impact on profitability in all
of the selected industries.

The model generates a range of estimates for the obsolescence rate for R&D, γ. While
the estimate for some industries is similar to that obtained for all firms, in other in-
dustries the estimates are not significantly different from 1, indicating that R&D flows
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Table 3. Parameters from industry-level estimation.

Parameter θ ρ σ λ a b γ fc Ψ̂

Business services
Estimate 0�392 0�591 0�348 0�228 4�392 0�457 0�365 0�375 103
Std. err. (0�009) (0�024) (0�017) (0�022) (1�019) (0�071) (0�089) (0�020)

Chips
Estimate 0�450 0�599 0�387 0�207 8�750 0�585 1�000 0�337 435
Std. err. (0�006) (0�010) (0�008) (0�004) (2�631) (0�088) (0�275) (0�011)

Hardware
Estimate 0�421 0�617 0�438 0�246 4�144 0�674 0�378 0�409 238
Std. err. (0�007) (0�020) (0�008) (0�015) (0�285) (0�087) (0�058) (0�023)

Medical equipment
Estimate 0�260 0�599 0�242 0�384 9�514 0�345 0�534 0�479 294
Std. err. (0�003) (0�020) (0�005) (0�006) (1�242) (0�011) (0�064) (0�006)

Pharmaceuticals
Estimate 0�256 0�545 0�102 0�504 2�190 0�391 0�902 0�327 281
Std. err. (0�002) (0�012) (0�003) (0�008) (0�245) (0�023) (0�108) (0�011)

Software
Estimate 0�250 0�591 0�256 0�461 7�018 0�443 0�896 0�456 926
Std. err. (0�002) (0�014) (0�006) (0�005) (1�373) (0�059) (0�173) (0�005)

Note: The table reports the parameter estimates obtained from the estimation of the model on firms in selected R&D-
intensive industries constructed using four-digit SIC codes. Appendix D details the SIC codes used in each industry group.
Section 3.1 details the construction of the sample and the variable definitions. The probability of success from R&D investment
is given by a Bernoulli distribution. The estimation is carried out using the simulated method of moments.

influence innovations, not R&D stocks. Nonetheless, even in these industries, R&D in-
vestments can influence profitability and valuations for many years through the per-
sistence of increases in profitability from innovations. That said, the high obsolescence
rate in the pharmaceuticals industry is somewhat puzzling given the long duration of
R&D projects in this industry. Mechanically, having a high obsolescence rate helps the
model generate the high rate of R&D investment observed in the data. The estimates of
a vary widely across the industries, translating into noticeable differences in the average
success rate of innovations, which ranges from 0�67 in the pharmaceutical industries
to 0�94 in the medical equipment industry. Broadly speaking, even firms in these R&D-
intensive industries face some risk each year of not realizing a positive payoff from R&D
investments through an innovation.

The estimates for the curvature parameter θ reflect changes in the average value of
Tobin’s q across these industries. Having a lower value of θ enables the model to gener-
ate a higher average Tobin’s q, as lower θ values reduce the change in the optimal capital
stock necessary following a successful innovation (or a large profitability shock). This
also helps lead to higher R&D expenditures. The estimated parameter values for ρ and σ

mainly reflect the autocorrelation and standard deviation of profitability in these indus-
tries. Last, changes in the adjustment cost parameter, b, mainly reflect differences in the
standard deviation of investment. Notably, each of these parameter estimates is broadly
similar to the estimates from all R&D firms reported in Table 2.
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Table 4. Moments from industry-level estimation.

Averages Correlations Between

Lag R&D-to-Sales Investment
R&D-to-Sales Profitability Tobin’s q Sales Growth Tobin’s q Success Rate

Business services
Data 0�107 0�299 4�042 0�277 0�107
Model 0�101 0�331 4�098 0�211 0�292 0�799

Chips
Data 0�125 0�287 3�636 0�331 0�042
Model 0�112 0�326 3�681 0�267 0�356 0�693

Hardware
Data 0�113 0�307 3�533 0�383 −0�064
Model 0�110 0�354 3�710 0�471 0�269 0�808

Medical equipment
Data 0�100 0�429 4�632 0�223 0�132
Model 0�092 0�470 4�808 0�242 0�400 0�938

Pharmaceuticals
Data 0�307 0�231 6�503 0�239 0�135
Model 0�280 0�267 6�586 0�102 0�433 0�667

Software
Data 0�170 0�289 5�607 0�296 0�014
Model 0�164 0�341 5�893 0�195 0�409 0�914

Note: The table reports selected matched moments from the actual data and the simulated data derived from the estima-
tion of the model on firms in selected R&D-intensive industries constructed using four-digit SIC codes. Appendix D details
the SIC codes used in each industry group. Section 3.1 details the construction of the sample and the variable definitions.
The probability of success from R&D investment is given by a Bernoulli distribution. The estimation is carried out using the
simulated method of moments.

Table 4 reports a subset of the matched moments from the data and the model from
the estimation of the model on the selected R&D-intensive industries.16 The results indi-
cate that the model can generate the very high levels of R&D intensity observed in some
of these industries. Somewhat surprisingly, the model generates somewhat higher aver-
age values of Tobin’s q and profitability than observed in the data. This may be partly
because having higher levels of Tobin’s q and profitability helps increase average R&D
intensity.

The model matches the correlation between lagged R&D intensity and sales growth
in most of the industries. This is driven partly by the role of R&D investments in gener-
ating profitability increases through innovations. While the model generates a relatively
low correlation between Tobin’s q and investment, it is nonetheless unable to generate
correlations as low as those observed in the data.

4.3 All R&D firms with multiple jumps per period

One concern with structural estimation is that the findings are based on a specific
model. As such, it is helpful to examine the sensitivity of the findings to the model spec-

16The unreported moments are available from the author on request.
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ification. This section presents the findings obtained from estimating a model that re-
laxes the assumption that firms can obtain only one profitability jump per period. Ex-
tending the model in this manner helps tackle one limitation of the baseline model.
Namely, the fact that R&D expenditures do not influence the size of the profitability
jump conditional on obtaining an innovation. With multiple possible jumps, increases
in R&D expenditures influence the probability of success and the size of the jump con-
ditional on success.

The number of profitability jumps that firms obtain from R&D expenditures is now
assumed to follow a geometric distribution, with success probability

p
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This implies that the probability of obtaining n profitability jumps is given by (1 −p)pn.
The profitability increase that firms obtain from innovations is linear in the number of
jumps, n, with λ denoting the increase in profitability arising from a single jump. For-
mally, the transition equation for z is given by
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)) denotes a geometric distribution. Other than for this change, the model

remains unchanged from that discussed above. One limitation of the extended model is
that one cannot explicitly solve for the optimal R&D stock as in Proposition 1.17

Table 5 presents the results obtained from estimating the extended model on all
firms in the sample. Panel A presents the parameter estimates, and Panel B presents
the matched moments from the data and the model.

The estimated value for the profitability increase from a single jump, λ, is much
lower than before. However, this is offset by an average number of profitability jumps
of about 9�2, implying a total expected increase in profitability from R&D investments of
about 20�3%, similar to that obtained in the model with one jump per period. The esti-
mated obsolescence rate, γ, while somewhat lower than that obtained in Section 4.1, is
still higher than the value of 0�15 that the literature often calibrates to. Finally, the esti-
mates for the non-R&D parameters are mostly similar to before.

Turning to the matched moments, the model matches the various averages used in
the estimation. As in Section 4.1, the model fails to generate the volatility of R&D in-
tensity observed in the data. The model generates a small, albeit positive, correlation
between lagged R&D intensity and sales growth. Overall, the similarity in the parameter

17The extended model is also much more computationally intensive to solve, as one needs to solve for
value functions over a range of possible jumps. To maintain tractability, the estimation sets the number of
maximum possible jumps at 10.
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Table 5. Multiple profitability jumps per period.

Panel A: Parameter estimates

Parameter θ ρ σ λ a b γ fc Ψ̂

Estimate 0�414 0�657 0�356 0�022 10�353 0�429 0�229 0�417 2544
Std. err. (0�011) (0�008) (0�004) (0�001) (0�263) (0�073) (0�006) (0�012)

Panel B: Moments

Moments Data Model

Averages
R&D-to-sales 0�087 0�080
Fixed costs 0�241 0�229
Profitability 0�333 0�371
Tobin’s q 3�477 3�644

Standard deviations
R&D-to-sales 0�056 0�024
Profitability 0�253 0�309
Investment 0�105 0�110

Autocorrelations
R&D-to-sales 0�366 0�442
Profitability 0�422 0�571
Investment 0�341 0�296

Correlations between
R&D-to-sales and investment −0�022 −0�163
Investment and Tobin’s q 0�280 0�466
Lagged R&D-to-sales and sales growth 0�062 0�215

Average number of jumps 9�23

Note: Panel A reports the estimated structural parameters and a goodness-of-fit statistic, Ψ̂ . Panel B reports the matched
moments from the sample and simulated data sets. The sample includes R&D-reporting firms in all industries and contains
32,351 observations. Section 3.1 details the construction of the sample and the variable definitions. The number of successful
profitability jumps obtained from R&D investment is given by a geometric distribution. The estimation is carried out using the
simulated method of moments.

estimates and the simulated moments obtained using the estimations with a single prof-
itability jump and multiple profitability jumps gives comfort regarding the robustness of
the results.

4.4 Firm life cycles and growth

A limitation of the model is that it does not incorporate firm life cycle dynamics, which
have been shown to be important in the literature (see Cooley and Quadrini (2001) and
Haltiwanger, Jarmin, and Miranda (2013)). One could potentially augment the model
to incorporate a role for firm age, and estimate the richer model on the data used in
this study combined with additional information on firm growth, entry and exit, and
other life cycle moments (see Lentz and Mortensen (2008)). While such an approach
could provide valuable insights, it would not be appropriate to estimate a rich life cycle
model on the Compustat data set used in this study as those data reflect only publicly
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Table 6. Sales growth in simulated and actual data.

Data Model

All firms 7�6% 9�3%

Selected industries
Business services 9�3% 8�1%
Chips 9�6% 9�6%
Hardware 6�7% 12�1%
Medical equipment 9�0% 4�0%
Pharmaceuticals 15�1% 3�7%
Software 9�6% 5�0%

Note: The table presents mean sales growth rates from the data and the corresponding
values from the estimated models on the sample of all firms and on the samples of firms
in selected R&D-intensive industries. The parameter values used in the simulations are re-
ported in Tables 2 and 3, respectively. All values are reported in percentages.

traded corporations. These firms are likely the most successful firms in the economy,
and even among these firms, one observes them only after they become publicly traded.
One would instead wish to turn to a Census data set of all firms in the economy to esti-
mate such a model, though such data sets do not contain information on firm value.

That said, examining the model-implied growth rates and entry/exit rates is helpful
for understanding strengths and weaknesses of the model. Table 6 presents the mean
sales growth rates from the data and the corresponding values from the estimated mod-
els for all firms and for firms in selected R&D-intensive industries. As the mean sales
growth rate moment was not used in the estimation, this comparison provides an out-
of-sample evaluation of the model.

The results indicate that the model fares quite well on this dimension for the estima-
tion on all firms. This is striking given that the only growth-related moment used in the
estimation is the correlation between lagged R&D-to-sales and sales growth. Although
the model captures firms in the steady state, it generates positive mean sales growth
rates due to the fact that the jumps in the profitability process from innovations help
generate asymmetric sales growth rates with nonzero means.

The model-implied sales growth rates match the corresponding data values for some
of the industries but not others. In particular, the mean sales growth implied by the
estimates for the pharmaceutical industry are far apart from the data, likely reflecting
the fact that the mechanism in the model cannot capture the long gestation periods
involved in drug development and the very high payoffs generated by successful new
drugs.

The model fares less well on the entry/exit margin. Although the model contains a
fixed cost, there is no exit (and thus no entry in equilibrium) at the estimated parame-
ter values for all of the estimations. Economically, the continuation values of the firms
are such that the fixed costs are insufficient to generate exit. Indeed, one may expect
that while fixed costs are helpful for understanding exit among small, young firms, they
would be unlikely to drive exit among large corporations. Turning to the data, Corbae
and D’Erasmo (2014) report that the exit rate in the Compustat sample, excluding exits
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due to mergers and acquisitions, equals 0�71%. They also report that more than half of
these exits are due to firms defaulting on their debt.

One could address the absence of exit by expanding the model to include default-
able debt, though such an extension would be beyond the scope of this study. More sim-
ply, one could introduce an exogenous exit rate into the model and estimate this aug-
mented model after calibrating the exit rate to the corresponding data value. Given that
the exit rate among Compustat firms is less than 1%, one would expect that estimating
this augmented model would yield results similar to those reported in the study. Finally,
the absence of an entry/exit margin occurs more broadly in the structural investment
literature; seminal studies such as Cooper and Haltiwanger (2006) and Bloom (2009) do
not feature an entry/exit margin.

5. Identification

It is important to establish that the estimation procedure used in the study can indeed
identify the various model parameters, particularly those related to R&D investment.
This section tackles identification concerns using two methods: a graphical examination
of the sensitivity of the simulated moments to model parameters and a reestimation of
the model on simulated data.

5.1 Sensitivity of moments to model parameters

One potential concern is that the GMM objective function that is being minimized in
the estimation is fairly flat with respect to some of the model parameters. This would
imply that the matched moments are uninformative regarding those parameters. The
low standard errors for the model parameters suggest that this is unlikely, as a flat GMM
objective function would imply a high standard error, but it is helpful to verify that this is
indeed so. Figure 1 plots the weighted sum-of-square differences between the data and
the simulated moments over a range of values for the three R&D-related parameters,
a, λ, and γ. The parameter values range from 0�975 to 1�025 times the estimated value.
The figure indicates that the GMM objective function that is minimized by the estima-
tor is indeed steeply sloped for each of the three parameters, indicating that the GMM
objective function is sensitive to the model parameters. This implies that the moments
used in the estimation are indeed informative about the R&D-related parameters in the
model.

One further concern is that some pair of the R&D-related parameters may be colin-
ear. That is, the GMM objective function may be mostly flat along some linear combina-
tion of λ, a, and γ. The distinct manners in which these three parameters enter the R&D
policy function shown in Proposition 1 provide some comfort in this regard. Examining
the covariance matrix for the parameter estimates indicates that λ indeed has a low cor-
relation with the other parameters. However, the estimates for a and γ have a correlation
of about 0�92, indicating some difficulty in separately identifying these two parameters.
This reflects the fact that these two parameters have offsetting effects on the success
probability shown in equation (4)—a rise in a offsets the negative impact of a rise in γ
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Figure 1. GMM objective function. The figures plot the value of the GMM objective function
that is being minimized in the estimation reported in Table 2 as a function of a, λ, and γ. In each
plot, the other parameters are held constant at their estimated values, while the x-variable varies
over a 5% range centered on its point estimate.

on the R&D stock St . As such, the positive correlation between the estimates for a and γ

has little impact on the implied success rate probabilities from the model and thus has
little impact on the conclusion that firms face uncertainty in their R&D investment.

To further understand how the three R&D-related parameters are identified, Figure 2
plots some selected moments as a function of each of the three parameters. The figure
indicates that, for the most part, the selected moments are informative about each of the
R&D-related parameters. This variation in the moments with each of these parameters
generates the variation in the GMM objective function seen in Figure 1.

Figure 2 also helps explain the low correlation between λ and the other two R&D-
related parameters. While the average R&D-to-sales ratio increases with λ, it decreases
with a and increases with γ. However, while average profitability increases with λ, it
increases with a and decreases with γ, reflecting the effect of changes in steady-state
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Figure 2. Selected moments. The figure plots selected moments from the estimation reported
in Table 2 as a function of λ, a, and γ. Rows vary the selected moment, and the columns vary the
R&D-related parameter. In each plot, the other parameters are held constant at their estimated
values, while the x-variable varies over a 5% range centered on its point estimate.
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firm size on measured profitability. The differential correlation between the effect of λ
and the other two R&D-related parameters on these two moments leads to a relatively
independent estimate for λ.

Figure 2 indicates that the autocorrelation of the R&D-to-sales ratio is helpful for
identifying a and γ. While the other chosen moments have correlations with a and γ

that differ in sign, the autocorrelation of the R&D-to-sales ratio has a positive correlation
with both of these parameters, thus helping separate these two parameters.

5.2 Estimation on simulated data

The above analysis focuses on local identification of the R&D-related parameters in the
model. Another potential concern relates to global identification of the model param-
eters. The use of the simulated annealing algorithm to search for the parameter vector
that minimizes the GMM objective function partially alleviates this concern, as the sim-
ulated annealing algorithm uses a global search method to avoid getting trapped in local
minima (see Kirkpatrick, Gelatt, and Vecchi (1983)).

One method of addressing global identification concerns involves reestimating the
model on the simulated data set obtained from the initial estimation. Assuming the es-
timation procedure works well, one should recover the initial parameter estimates from
this reestimation, as these parameters, by construction, generate the target matched
moments used in the estimation. Table 7 reports the results of estimating the model
on the simulated data set. This estimation is carried out using simulated data from the
full sample estimation, as well as each of the industry-specific estimations.18

The results indicate that the estimation method is able to recover the parameters
underlying the simulated data when applied to the sample of all firms. This indicates
that the estimation method is successfully able to identify all of the model parameters
when applied to the full sample. The estimation method is also able to recover the un-
derlying parameters for some, but not all, of the industry estimates. In particular, the
positive correlation between a and γ discussed above generates difficulty in recovering
these two parameters from the estimation on the simulated data for a couple of the in-
dustry groups.

6. Counterfactual experiment

One benefit of an estimated structural model is that it can be used to carry out coun-
terfactual policy experiments. This section uses the above estimated model to study the
effect of an increase in the tax subsidy to R&D, τrd. The U.S. federal tax code provides a
research and experimentation tax credit that is slated to expire at the end of 2013. The
current budgetary environment makes the future of this tax credit uncertain, although
supporters advocate expanding the tax credit and making it permanent.19

18In addition to the matched moments, the weighting matrix used to minimize the sum-of-squared dif-
ference is also recalculated when estimating the model on the simulated data.

19On September 8, 2010, President Obama called for the Research and Experimentation Tax Credit to be
expanded and made permanent.
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Table 7. Model estimation using simulated data.

Parameter θ ρ σ λ a b γ fc

All Firms
Actual data 0�396 0�587 0�380 0�222 5�293 0�497 0�322 0�409
Simulated data 0�397 0�592 0�354 0�221 5�197 0�484 0�315 0�400

Selected Industries
Business services

Actual data 0�392 0�591 0�348 0�228 4�392 0�457 0�365 0�375
Simulated data 0�392 0�580 0�371 0�227 4�474 0�454 0�381 0�380

Chips
Actual data 0�450 0�599 0�387 0�207 8�750 0�585 1�000 0�337
Simulated data 0�450 0�599 0�387 0�207 8�801 0�587 0�997 0�338

Hardware
Actual data 0�421 0�617 0�438 0�246 4�144 0�674 0�378 0�409
Simulated data 0�431 0�646 0�343 0�233 4�015 0�660 0�362 0�361

Medical equipment
Actual data 0�260 0�599 0�242 0�384 9�514 0�345 0�534 0�479
Simulated data 0�257 0�678 0�219 0�372 16�067 0�365 0�830 0�483

Pharmaceuticals
Actual data 0�256 0�545 0�102 0�504 2�190 0�391 0�902 0�327
Simulated data 0�253 0�609 0�108 0�464 2�843 0�381 0�986 0�330

Software
Actual data 0�250 0�591 0�256 0�461 7�018 0�443 0�896 0�456
Simulated data 0�264 0�471 0�380 0�470 3�563 0�452 0�495 0�451

Note: The table presents the results obtained from estimating the model on data obtained by simulating the model with
the parameters given in Tables 2 and 3. The table reports the parameter estimates based on the actual data that are used to
construct the simulated data and the corresponding parameter estimates from the simulated data sets. The weighting matrices
for the estimations are also calculated using each of the simulated data sets.

In particular, this section examines both the short-run and the steady-state effects
of an increase in the tax credit using the estimated model. These two effects may differ
as changes in the steady-state distribution of firms can act as either a damping or am-
plifying mechanism for the initial short-run effects. For instance, in the model above,
an increased tax credit encourages additional innovation, which leads to a shift in the
steady-state profitability distribution in the economy. Investigating both the short-run
and the steady-state effects is helpful, as while regression estimates typically identify the
short-run effects, policy evaluation requires an understanding of long-run effects.

The short-run effect can be formally derived by differentiating the optimal R&D pol-
icy function given in Proposition 1 with respect to τrd to obtain

∂

∂τrd

(
S′

Kθ

)
= 1

a(1 − τrd − τ)
�

One can rewrite the above expression in terms of a dollar impact on the optimal R&D
stock of a $1�00 R&D tax credit to obtain

1
S′

∂S′

∂τrd
= Kθ

aS′(1 − τrd − τ)
� (13)
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Table 8. Counterfactual experiment on a subsidy to R&D expenditures.

$1�00 Impact Steady-State Averages

Steady R&D-to- Success
τrd Short Run State Sales Profitability Tobin’s q Rate

All Firms
Experiment 0�05 $1�19 $0�84 0�083 0�364 3�615 0�840

Selected Industries
Business services

Experiment 0�05 $1�28 $0�95 0�104 0�329 4�141 0�812

Chips
Experiment 0�05 $1�86 $1�30 0�116 0�324 3�715 0�708

Hardware
Experiment 0�05 $1�25 $0�89 0�113 0�353 3�762 0�816

Medical equipment
Experiment 0�05 $0�62 $0�45 0�093 0�468 4�860 0�939

Pharmaceuticals
Experiment 0�05 $0�92 $1�01 0�288 0�260 6�783 0�682

Software
Experiment 0�05 $0�82 $0�58 0�166 0�341 6�018 0�916

Note: The table reports the results of an increase in the tax subsidy on R&D expenditure, τrd. The first panel reports the
results from the estimations using all firms under the assumptions of a single profitability jump. The subsequent panels report
the results from the estimations for the selected R&D-intensive industries. The “Experiment” rows report values obtained with
a higher tax subsidy of τrd = 0�05.

In comparison, the steady-state effect can be examined by comparing the change in
the mean R&D expenditures—assuming a constant capital stock—before and after the
counterfactual experiment.

Table 8 presents the results of a counterfactual experiment of an increase in the tax
subsidy to R&D expenditures, τrd, from 2�5% in the estimated model to 5%. Although
the Research and Experimentation Tax Credit uses a more complex formula than the
proportional credit employed in the model, this experiment could be helpful for under-
standing the impact of an overall increase in the tax subsidy provided to R&D expendi-
tures both in the short run and across steady states.

The increased R&D tax credit leads to an increase in R&D expenditures, reflecting
the positive marginal effect shown in equation (13). In dollar terms, an additional $1�00
of R&D tax credits leads to a short-run increase in R&D expenditures of about $1�20.
This finding is similar to that obtained by Hall and van Reenen (2000) and Bloom, Grif-
fith, and van Reenen (2002), who find that a $1�00 increase in R&D subsidies leads to a
$1�00 or more increase in R&D expenditures.20 The ability of the model to replicate these
empirical findings in the literature provides an indirect validation of the model.

The increase in the success rate leads to an overall upward shift in the steady-state
distribution of z. This also leads to a small increase in the mean profitability and To-
bin’s q. This shift can have a mixed effect on the optimal R&D stock of the firm, which

20Conversely, Wilson (2009) finds no net effect of state R&D tax subsidies on R&D expenditures.
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depends on the ratio of the expected jump in firm value from an innovation to the capi-
tal stock to the power θ. As such, the steady-state effect of the R&D tax credit may differ
from the marginal effect. As the table indicates, the results indicate that the steady-state
effect is noticeably smaller than the short-run impact, with a $1�00 R&D tax credit gener-
ating only 84 cents of additional R&D expenditures. This implies that changes in the dis-
tribution of firms may mitigate the beneficial effects of R&D tax credits. One limitation
of this analysis is that it ignores possible further general equilibrium effects—through
changes in wages and the capital stock—of these policy changes.

The additional tax credit generates a small increase of less than 1 percentage point in
the average success rate of innovations. This small increase partly reflects the fact noted
above that the effect of the additional tax credit on R&D expenditures is not particularly
large. Furthermore, the success rate function shown in equation (4) exhibits decreasing
returns to scale, and given the already high rate of R&D expenditures observed in the
economy, the marginal effect of additional R&D expenditures on the success rate is quite
modest.

The counterfactual experiment on the industry-level estimates generates broadly
similar findings. The short-run dollar impact ranges from about 62 cents to as high as
$1�86. While the corresponding long-run impact is somewhat smaller for most of the
industries, it rises for the medical equipment industry, indicating that the difference be-
tween short-run and steady-state impacts in the model varies with the estimated pa-
rameter values. The increased tax credit leads to an increase in the average success rate
of innovations in all industries; however, this increase is greater in industries that had
lower initial success rates. This finding is consistent with the above argument that the
R&D tax credits have only modest effects on success rates in the model when the esti-
mated parameters already imply a high rate of innovation.

7. Conclusion

This study presents a dynamic model of investment in R&D and physical capital. R&D
investments lead firms to generate stochastic innovations that increase profits. Firms in-
vest in physical capital following such innovations to benefit from the increase in their
profitability. The model is estimated on data on all firms that engage in R&D as well as
firms in selected R&D-intensive industries. The model captures variation in moments
on R&D expenditures, profits, and firm value across heterogenous samples. These re-
sults highlight the uncertainty that firms face from their R&D investments and that these
investments play a key role in understanding firm profits and valuations.

The estimated model is used to carry out a counterfactual experiment on an increase
in the tax credit to R&D expenditures. The increased tax credit leads to an increase
in R&D expenditures, leading to higher profitability and valuations. The increased tax
credit has only a modest effect on the rate of innovation, reflecting the already high rate
of innovation implied by the model estimates. The findings also reveal that the effect
of the increased tax credit may lessen over the long run as the increase in R&D expen-
ditures also shifts the distribution of firms in the economy. This suggests that further
research into understanding the dynamics of firms’ R&D expenditures may be helpful
for evaluating the effect of R&D tax credits over the long run.
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Appendix A: Proofs

Proposition 1. The optimal R&D stock of the firm when S′
i > 0 is given by
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Proof. The first-order condition for the optimal R&D stock yields
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The impact of R&D spending on the expected value of the firm in the next period can be
clarified by substituting the expression for p(ji) given in equation (4) into the expecta-
tion for Ez[Gc(K
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i)] given in equation (10):
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Recall that the R&D stock has no effect on the conditional expectation of Gc(K
′
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given ji. The derivative of the above expression with respect to S′
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Substituting the above expression into the first-order condition given in (A.1) yields the
optimal policy function for the firm’s R&D stock,
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Some algebra reveals that the second-order condition with respect to S′
i is negative, en-

suring that the first-order conditions yield the optimal policy in the interior region. �
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Appendix B: Simulated method of moments

The indirect inference method of Gourieroux, Monfort, and Renault (1993) obtains pa-
rameter estimates by matching a set of selected moments from the data to those ob-
tained by simulation. Denote the true values of the structural parameters by Ψ ∗. The
matched moments can be written as a solution to a minimization problem Q(Y�M),
where Y denotes the data and M denotes the moments to be matched. The data mo-
ments are then given by

M̂ = arg min
M

Q(YN�M)� (B.1)

where YN denotes a data matrix with N observations. The corresponding moments for
the simulated data set with parameter vector Ψ and n =N × S observations are given by

m̂(Ψ)= arg min
M

Q(Yn�M)� (B.2)

The study picks S = 8, which is within the recommended range.
The structural parameters are then obtained by minimizing a quadratic form of the

distance between the data and simulated moments,

Ψ̂ = arg min
Ψ

N
[
M̂ − m̂(Ψ)

]′
Ŵ

[
M̂ − m̂(Ψ)

]
� (B.3)

where Ŵ denotes a positive definite weighting matrix. The value of the above function
at the minimum provides a goodness-of-fit measure. The optimal weighting matrix is
given by

Ŵ = [
N var(M̂)

]−1
� (B.4)

The above covariance matrix is calculated with the actual data set using the influence
function method of Erickson and Whited (2000). The estimator is asymptotically normal
for fixed S with covariance matrix given by

√
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While ∂Q
∂M can be evaluated analytically, numerical methods are required to obtain ∂2Q

∂Ψ ∂M .
Both partial derivatives are computed using simulated data evaluated at the data mo-
ments.

Appendix C: Numerical solution

The simulations require a numerical solution of the value function for R&D firms. The
capital grid has 201 points and the profitability grid has 21 points. The capital grid is
centered around an approximation of the median size of the firm, given the parame-
ters. Simulations that result in steady-state firm sizes near the boundaries of the grid are
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discarded in the estimation. The profit grid is formed using the quadrature method of
Tauchen and Hussey (1991), with a mean value obtained by guessing the success rate.
The endogenous jumps in z from an innovation are handled by interpolating firm value
over two more grids constructed using the transition equation for profitability condi-
tional on whether the firm innovates. The expected value of the firm is obtained using
the law of iterated expectations.

The simulated sample is generated using the value and policy functions for R&D
firms. The law of motion for profitability is generated directly using the transition equa-
tions. The firm’s decisions are obtained using linear interpolation of the policy func-
tions. The simulation is run for 100 years, with the initial 50 discarded as a burn-in sam-
ple. The value of the quadratic form of the distance between the data moments and
the simulated moments is computed for each simulation. The program searches for the
parameters that minimize this distance using the simulated annealing algorithm. Each
estimation involved evaluating more than 50,000 candidate parameter sets and took 1–2
weeks of computing time.

The estimation of the model with multiple jumps per period follows a similar pro-
cedure. However, it is no longer possible to solve for the optimal R&D stock explicitly.
Instead, the optimal R&D stock is solved for by using a grid search method, with 301 grid
points for the optimal R&D stock.

Appendix D: Industry classification

The selected industry groups are constructed based on four-digit SIC codes. The list of
SIC codes included in each industry category is as follows:

• Business services: 2750–2759, 3993, 4220–4229, 7218, 7300, 7310–7342, 7349–
7353, 7359–7369, 7374, 7376–7385, 7389–7394, 7396–7397, 7399, 7519, 8700–8713, 8720–
8721, 8730–8734, 8740–8748, 8910–8911, 8920–8999

• Chips: 3622, 3661–3666, 3669–3679, 3810, 3812

• Hardware: 3570–3579, 3680–3689, 3695

• Medical equipment: 3693, 3811, 3820–3827, 3829–3851

• Pharmaceuticals: 2830, 2831, 2833–2836

• Software: 7370–7373, 7375.
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