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Appendix A: Approximation

An approximation scheme approximates a function F(x) with F̂(x; b) = ∑n
j=0 bjφj(x)

for some vector of parameters b. A spectral method uses globally nonzero basis func-
tions φj(x). Examples of spectral methods include ordinary or Chebyshev polynomial
approximation. In contrast, a finite element method uses local basis functions where for
each j the basis function φj(x) is zero except on a small part of the approximation do-
main. Examples of finite element methods include piecewise linear interpolation, cubic
splines, and B-splines. See Cai and Judd (2014, 2015) and Judd (1998) for more details.

Chebyshev polynomial approximation

Chebyshev polynomials on [−1�1] are defined as φj(z) = cos(j cos−1(z)). The Cheby-
shev polynomials on a general interval [xmin�xmax] are defined as φj((2x − xmin −
xmax)/(xmax − xmin)) for j ≥ 0, and are orthogonal under the weighted inner product
〈f�g〉 = ∫ xmax

xmin
f (x)g(x)w(x)dx with the weighting function

w(x) =
(

1 −
(

2x− xmin − xmax

xmax − xmin

)2)−1/2
�

A degree-D Chebyshev polynomial approximation for V (x) on [xmin�xmax] is

V̂ (x; b) =
D∑
j=0

bjφj

(
2x− xmin − xmax

xmax − xmin

)
� (46)
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where bj are the Chebyshev coefficients.
The canonical Chebyshev nodes on [−1�1] are zi = − cos((2i − 1)π/(2m)) for i =

1� � � � �m, and the corresponding Chebyshev nodes adapted for the general interval
[xmin�xmax] are xi = (zi + 1)(xmax − xmin)/2 + xmin. If we have Lagrange data {(xi� vi):
i = 1� � � � �m} with vi = V (xi), then the coefficients bj in (46) are

bj = 2
m

m∑
i=1

viφj(zi)� j = 1� � � � �D� (47)

and b0 = ∑m
i=1 vi/m. The method is called the Chebyshev regression algorithm in Judd

(1998).

Multidimensional complete Chebyshev approximation

In a d-dimensional approximation problem, the domain of the approximation function
will be {

x = (x1� � � � � xd) : xmin�i ≤ xi ≤ xmax�i� i = 1� � � � � d
}
�

Let xmin = (xmin�1� � � � � xmin�d) and xmax = (xmax�1� � � � � xmax�d). We let [xmin�xmax] denote
the domain. Let α = (α1� � � � �αd) be a vector of nonnegative integers. Let φα(z) denote
the product

∏d
i=1 φαi(zi) for z = (z1� � � � � zd) ∈ [−1�1]d . Let

Z(x) =
(

2x1 − xmin�1 − xmax�1

xmax�1 − xmin�1
� � � � �

2xd − xmin�d − xmax�d

xmax�d − xmin�d

)
for any x = (x1� � � � � xd) ∈ [xmin�xmax]. With this notation, the degree-D complete Cheby-
shev approximation for V (x) is

V̂ (x; b) =
∑

α≥0�|α|≤D

bαφα
(
Z(x)

)
�

where |α| = ∑D
i=1 αi. This is a degree-D polynomial and it has

(d+D
D

)
terms.

Appendix B: Application to a RBC model with a constraint on investment

Here we apply NLCEQ to solve a RBC model with a constraint on investment to illus-
trate that NLCEQ can solve problems with inequality constraints that occasionally bind
(Christiano and Fisher (2000); Guerrieri and Iacoviello (2015)).

Model overview

We solve the social planner’s problem

max
c

E

{ ∞∑
t=0

βtU(ct)

}
(48)
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subject to the constraints

ct + It =Atk
α
t � (49)

kt+1 = (1 − δ)kt + It� (50)

It ≥φIss (51)

for t ≥ 0, where ct is consumption, It is investment, kt is capital, and At is technology
following the autoregression process

ln(At+1) = ρ ln(At)+ σεt+1� (52)

where εt is an exogenous innovation with standard normal distribution. We use the pa-
rameter values in Guerrieri and Iacoviello (2015), that is, β = 0�96, δ = 0�1, φ = 0�975,
α = 0�33, ρ = 0�9, σ = 0�013, and U(c) = (c1−γ − 1)/(1 − γ) with γ = 2. Moreover, Iss is
investment in the steady state of the deterministic variant of the model (48) with At ≡ 1.
From the first-order conditions for the deterministic variant, we know that the steady
state is

kss =
(

1
α

(
1
β

− 1 + δ

)) 1
α−1

and Iss = δkss ≈ 0�3533. Since the value of φ is chosen to be close to 1, the inequality (51)
will bind frequently.

Error measure

Let βtλt denote the Lagrange multiplier of (51) at period t. We have the consumption
Euler equation and the Kuhn–Tucker condition for (51):

U ′(ct)− λt = βEt
{
U ′(ct+1)

(
1 − δ+ αAt+1k

α−1
t+1

) − (1 − δ)λt+1
}
�

λt(It −φIss) = 0�

Similarly to the examples in Section 4, we use NLCEQ to get the estimate of the
optimal consumption function, C(k�A), and the function for the Lagrange multiplier,
Λ(k�A), on a domain [0�5kss�1�5kss] × [0�5�1�5]. The optimal investment function is
I(k�A) = Akα −C(k�A), and the next-period capital is K+(k�A) = (1 − δ)k+ I(k�A).

Using these approximate functions, for a given (K�θ), we can compute the unit-free
Euler error

E1(k�A) =
∣∣∣∣βE

{
U ′(c+)(

1 − δ+ αA+(
k+)α−1) − (1 − δ)λ+} + λ

U ′(c)
− 1

∣∣∣∣� (53)

where A+ is the next-period productivity, c = C(k�A), λ = Λ(k�A), k+ = K+(k�A),
c+ = C(k+�A+), and λ+ = Λ(k+�A+). We use the 15-point Gauss–Hermite quadrature
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rule to estimate the integration in (53). Similarly, the unit-free error for the Kuhn–Tucker
condition is

E2(k�A) =
∣∣∣∣λ(

I

φIss
− 1

)∣∣∣∣
with I = I(k�A). The error measure for the investment constraint (51) cannot be omit-
ted, because the true solution of the model without the constraint (51) will also have
E1(k�A) = 0 and E2(k�A) = 0 with λ = 0, that is, E1 and E2 are not enough for error
measurement. Thus we need to check the unit-free error

E3(k�A) = max
(

0�1 − I

φIss

)
�

We then compute the global L∞ and L1 errors on a set of points (k�A), denoted D , to
measure the accuracy of our solution,

EL∞ = max
i=1�2�3

{
max

(k�A)∈D
Ei(k�A)

}
�

EL1 = max
i=1�2�3

{
1

|D |
∑

(k�A)∈D

Ei(k�A)

}
�

where |D | is the number of points in the set D . We choose two sets of points, D1 and
D2, where D1 is a set of 10,000 points randomly and uniformly drawn in [0�7kss�1�3kss]×
[0�7�1�3],1 and D2 is a set of 10,000 simulated points in the path of (kt�At), where
k0 = kss , A0 = 1, At+1 is simulated based on the stochastic process (52), and kt+1 =
K+(kt�At) for t = 0� � � � �9999. Thus, D2 represents the ergodic set of (k�A), so the er-
rors on D2 are weighted errors with more weights on the area around the steady state.

Numerical results

In the transformation step of the NLCEQ method, we choose T = 100 and the problem
becomes

Ṽ (k0�A0)= max
c

T−1∑
t=0

βtU(ct)+βT ṼT (kT �AT ) (54)

subject to (49)–(51) with a deterministic process of At : ln(At+1)= ρ ln(At). The terminal
value function ṼT (k�A) is given as U(0�7Akα)/(1 − β). In the approximation step of
NLCEQ, we use the tensor grid of Chebyshev nodes (D + 1 nodes in each dimension)
and degree-D complete Chebyshev polynomials.

1Guerrieri and Iacoviello (2015) show their results in a much narrower range for A, [0�97�1�025]. However,
our range for A, [0�7�1�3], is reasonable: from ln(At+1)= ρ ln(At)+ σεt+1, if At is inside the range[

exp
( −2σ

1 − ρ

)
�exp

(
2σ

1 − ρ

)]
�

which is close to [0�7�1�3], then only when εt+1 are always simulated in [−2�2], can we make sure that At+1
is inside the same range. That is, if At is at one end of the range, then it has about a 2�3% probability that
At+1 is outside the range.
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Table 7. Errors of the NLCEQ solution with degree-D complete Chebyshev polynomials for the
RBC model with a constraint on investment.

Approx Error for c Approx Error for λ Global Error on D1 Global Error on D2

D ÊL∞ ÊL1 ÊL∞ ÊL1 EL∞ EL1 EL∞ EL1

10 5�2(−3) 1�7(−3) 2�5(−2) 5�4(−3) 2�6(−2) 3�1(−3) 2�1(−2) 2�5(−3)
20 2�6(−3) 5�0(−4) 1�5(−2) 1�4(−3) 1�3(−2) 7�9(−4) 5�3(−3) 6�9(−4)
50 1�6(−3) 8�5(−5) 9�8(−3) 2�7(−4) 4�5(−3) 1�4(−4) 4�9(−4) 9�7(−5)

100 8�2(−4) 2�1(−5) 2�2(−3) 6�9(−5) 2�0(−3) 1�2(−4) 1�9(−3) 1�8(−4)

Note: Note that ζ(−j) means ζ × 10−j .

Table 7 reports approximation errors and global errors of the solution of NLCEQ over
two sets of points, D1 and D2, for various degrees D. We see that higher degree approx-
imation achieves higher accuracy, and the weighted errors on D2 are a bit smaller than
those on D1. Because of the kinks caused by the frequently binding constraint on in-
vestment, a polynomial approximation is not very good at approximating functions with
kinks until a high degree approximation (this is reflected by the approximation errors of
Lagrange multiplier λ in the table; moreover most of global errors in the table come from
the investment constraint error E3 because of the kinks on the investment function), so
NLCEQ achieves accuracy with O(10−3) in L∞ or O(10−4) in L1 until the degree-50 ap-
proximation.2

However, the order-1 perturbation (log-linearization) method has an L∞ global er-
ror up to 0�73 and an L1 global error up to 0�17 on the domain [0�7kss�1�3kss] × [0�7�1�3],
although its L∞ error is 0�02 and L1 error is 0�003 for the model without the investment
constraint (51). The order-2 perturbation method does not improve the accuracy as its
L∞ error is 0�8 and L1 error is 0�18, although it increases about two order accuracy for
the model without the investment constraint (51). Therefore, this shows that NLCEQ is
much more accurate, about two or three orders of magnitude higher, than the order-1
and order-2 perturbation methods for this problem with the occasionally binding con-
straint.

The comparison between NLCEQ and log-linearization is also shown in Figure 5,
which shows the global errors of their solutions when A= 0�7, 1, and 1�3. The NLCEQ so-
lution is the one with degree-100 complete Chebyshev polynomial approximation. Fig-
ure 5 shows clearly that NLCEQ is much more accurate than log-linearization globally,
particularly when the state is not close to the steady state.

We now try two-dimensional piecewise linear interpolation as the approximation
method, because piecewise linear interpolation can deal with the kinks better than poly-
nomials. For the approximation nodes, we choose the tensor grid of n equally spaced
capital in [0�5kss�1�5kss] and n equally spaced productivity in [0�5�1�5]. Table 8 lists ap-
proximation errors and global errors from NLCEQ with piecewise linear interpolation,
and we found that the piecewise linear interpolation has smaller, about one order of

2We also tried the case with φ= 0, and found that its NLCEQ solution has a bit smaller errors than those
in Table 7.
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Figure 5. Errors of the solutions from NLCEQ or log-linearization for the RBC model with a
constraint on investment.

Table 8. Errors of the NLCEQ solution with piecewise linear interpolation for the RBC model
with a constraint on investment.

Approx Error for c Approx Error for λ Global Error on D1 Global Error on D2

n ÊL∞ ÊL1 ÊL∞ ÊL1 EL∞ EL1 EL∞ EL1

21 3�7(−3) 1�1(−4) 4�0(−2) 3�6(−3) 5�8(−3) 7�6(−4) 1�7(−3) 3�1(−4)
51 1�9(−3) 2�6(−5) 7�3(−3) 5�9(−4) 8�7(−4) 1�7(−4) 4�5(−4) 1�1(−4)

101 7�5(−4) 4�1(−6) 4�7(−3) 1�4(−4) 3�6(−4) 1�1(−4) 2�5(−4) 9�8(−5)

Note: Note that ζ(−j) means ζ × 10−j .

magnitude, errors than the complete Chebyshev polynomials when the same number
of approximation nodes is used.

Table 9 shows global errors for various standard deviation σ (approximation errors
are independent on σ). We see that a smaller σ has smaller errors and it has about four-
digit accuracy for the smallest σ = 0�001. When σ = 0�05, the errors are up to O(10−3)

and there is almost no improvement by increasing n from 51 to 101. Moreover, when σ

is up to 0�05, the global errors on the ergodic set D2 are larger than those on D1, because
the domain containing D1, [0�7kss�1�3kss] × [0�7�1�3], is not large enough to contain D2
for large σ .

However, the errors for large σ can be decreased by changing the deterministic tran-
sition law of At to ln(At+1) = ρ ln(At) − 0�5σ2. Table 10 shows errors for σ = 0�05 using
the new deterministic transition law of At and piecewise linear interpolation. We see
that the errors are smaller than those in Table 9 from ln(At+1) = ρ ln(At). Moreover, a
larger n clearly improves the accuracy of the solution.

Since global errors cannot represent true errors compared with the true solution,
we implement shape-preserving value function iteration with rational spline interpola-
tion (Cai and Judd (2012)) to derive the “true” solution and then check the “true” errors.
We follow Tauchen (1986) to approximate the process of ln(At) with a Markov chain of
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Table 9. Errors of the NLCEQ solution with piecewise linear interpolation for the RBC model
with a constraint on investment and various standard deviations.

Global Error on D1 Global Error on D2

σ n EL∞ EL1 EL∞ EL1

0�001 21 7�5(−3) 8�4(−4) 2�5(−4) 3�5(−5)
51 9�3(−4) 1�2(−4) 4�5(−5) 8�2(−6)

101 2�9(−4) 3�1(−5) 3�0(−6) 6�8(−7)

0�02 21 5�6(−3) 7�9(−4) 2�0(−3) 4�6(−4)
51 1�3(−3) 2�8(−4) 7�9(−4) 2�4(−4)

101 6�6(−4) 2�4(−4) 4�2(−4) 2�3(−4)

0�05 21 8�1(−3) 1�8(−3) 9�4(−3) 1�5(−3)
51 2�9(−3) 1�4(−3) 5�9(−3) 1�4(−3)

101 2�8(−3) 1�4(−3) 4�0(−3) 1�3(−3)

Note: Note that ζ(−j) means ζ × 10−j .

Table 10. Errors of the NLCEQ solution using ln(At+1)= ρ ln(At)− 0�5σ2.

Global Error on D1 Global Error on D2

σ n EL∞ EL1 EL∞ EL1

0�05 21 5�8(−3) 9�5(−4) 7�5(−3) 7�8(−4)
51 1�8(−3) 5�1(−4) 4�9(−3) 4�6(−4)

101 1�7(−3) 4�7(−4) 3�5(−3) 3�9(−4)

Note: Note that ζ(−j) means ζ × 10−j .

Table 11. “True” relative errors of the NLCEQ solution for the RBC model with a constraint on
investment.

Piecewise Linear Interpretation Complete Chebyshev Polynomial

n Error in L∞ Error in L1 Error in L∞ Error in L1

21 6�0(−3) 3�2(−4) 5�2(−3) 1�3(−3)
51 3�2(−3) 1�5(−4) 2�7(−3) 2�5(−4)

101 4�2(−4) 1�1(−5) 1�3(−3) 1�5(−4)

Note: Note that ζ(−j) means ζ × 10−j .

101 equally spaced values in [0�5�1�5], and use 101 equally spaced nodes for capital in
[0�5kss�1�5kss] as the approximation nodes for the rational spline interpolation for each
discrete value of the Markov process ln(At). The value function iteration stops while the
relative change of two consecutive value functions is less than 10−6. With these con-
verged “true” solution, Table 11 reports “true” relative errors for consumption function
in the domain of k and A, [0�7kss�1�3kss] × [0�7�1�3], from NLCEQ with degree-(n − 1)
complete Chebyshev polynomials or piecewise linear interpolation with n × n approx-
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Figure 6. Investment policy function for the RBC model with a constraint on investment.

imation nodes. We see that these errors are close to those global errors in Table 7 or
Table 9. We also see that the “true” relative errors from piecewise linear interpolation are
smaller than those from complete Chebyshev polynomials when n = 101.

Figure 6 shows the optimal investment policy functions from NLCEQ with piece-
wise linear interpolation (n = 101). We see that when technology At > 1 and capital
kt > 0�7kss , the investment is always larger than its lower bound. But if At is small, then
the investment is binding at the lower bound.

Appendix C: Equilibrium conditions in the new Keynesian DSGE model

The final-good firm buys intermediate goods yi�t from intermediate firms to produce a
final good yt with the production function

yt =
(∫ 1

0
y

α−1
α

i�t di

) α
α−1

(55)

and then sells yt at a price pt . Let pi�t be prices of yi�t . Then the final-good firm chooses
yi�t to maximize its profit:

max
yi�t

ptyt −
∫ 1

0
pi�tyi�t di�

Its first-order condition implies

yi�t = yt

(
pi�t

pt

)−α

� (56)

The intermediate firms rent labor supply �i�t from the household with a wage rate wt

and produce yi�t with a simple production function

yi�t = �i�t � (57)
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and sell yi�t at a price pi�t to the final-good firm. The intermediate firms are assumed to
have Calvo-type prices: a fraction 1 − θ of the firms have optimal prices and the remain-
ing fraction θ of the firms keep the same price as in the previous period.

A reoptimizing intermediate firm i ∈ [0�1] chooses its price pi�t to maximize the cur-
rent value of profit over the time when the optimal pi�t remains effective,

max
pi�t

Et

{ ∞∑
j=0

( j∏
k=0

βt+k

)
λt+jθ

j(pi�tyi�t+j −wt+j�i�t+j)

}
(58)

subject to the constraints yi�t+j = �i�t+j from (57) and

yi�t+j = yt+j

(
pi�t

pt+j

)−α

from (56) by letting pi�t+j = pi�t . Here λt is the Lagrange multiplier of the budget con-
straint (34). From the first-order conditions of the household problem (35), λt satisfies
the equation

λt = 1
ptct

� (59)

The first-order condition of the reoptimizing intermediate firm problem (58) implies

Et

{ ∞∑
j=0

( j∏
k=0

βt+k

)
λt+jθ

jpα
t+jyt+j

(
pi�t − α

α− 1
wt+j

)}
= 0� (60)

Let πt�j = pt+j/pt . From (38), (59), and (60), for any reoptimizing firm i we have

pi�t

pt
≡ qt = αχt�1

(α− 1)χt�2
� (61)

where

χt�1 ≡ yt�
η
t +Et

{ ∞∑
j=1

( j∏
k=1

βt+k

)
θjπα

t�jyt+j�
η
t+j

}
�

χt�2 ≡ yt

ct
+Et

{ ∞∑
j=1

( j∏
k=1

βt+k

)
θjπα−1

t�j

yt+j

ct+j

}
�

We have the recursive formulas for χt�1 and χt�2:

χt�1 = yt�
η
t + θEt

{
βt+1π

α
t+1χt+1�1

}
� (62)

χt�2 = yt

ct
+ θEt

{
βt+1π

α−1
t+1 χt+1�2

}
� (63)
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From (55) and (56), we have

pt =
(∫ 1

0
p1−α
i�t di

) 1
1−α

=
(
(1 − θ)(qtpt)

1−α + θ

∫ 1

0
p1−α
i�t−1 di

) 1
1−α

= (
(1 − θ)(qtpt)

1−α + θp1−α
t−1

) 1
1−α

as

pt−1 =
(∫ 1

0
p1−α
i�t−1 di

) 1
1−α

�

It follows that

qt =
(

1 − θπα−1
t

1 − θ

) 1
1−α

� (64)

From (56), (57), and the market clearing condition

�t =
∫ 1

0
�i�t di�

we get

vt+1 ≡ �t/yt =
∫ 1

0

(
pi�t

pt

)−α

di

= (1 − θ)q−α
t + θ

∫ 1

0

(
pi�t−1

pt

)−α

di

= (1 − θ)q−α
t + θπα

t

∫ 1

0

(
pi�t−1

pt−1

)−α

di

= (1 − θ)q−α
t + θπα

t vt � (65)

Appendix D: Steady state of the new Keynesian DSGE model

From (63), the steady state of χt�2 is

χ∗
2 = 1

(1 − sg)
(
1 − θβ∗(π∗)α−1)

with the given π∗ = 1�005. From (61) and (64), the steady state of χt�1 is

χ∗
1 = χ∗

2q
∗α− 1

α
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with

q∗ =
(

1 − θ
(
π∗)α−1

1 − θ

) 1
1−α

�

and from (65), the steady state of vt is

v∗ = (1 − θ)
(
q∗)−α

1 − θ
(
π∗)α �

Therefore, from vt = �t/yt and (62), we get

y∗ =
(
χ∗

1
(
1 − θβ∗(π∗)α)(

v∗)η ) 1
1+η

�

References

Cai, Y. and K. L. Judd (2012), “Dynamic programming with shape-preserving rational
spline Hermite interpolation.” Economics Letters, 117 (1), 161–164. [6]

Cai, Y. and K. L. Judd (2014), “Advances in numerical dynamic programming and new ap-
plications.” In Handbook of Computational Economics, Vol. 3 (K. Schmedders and K. L.
Judd, eds.), Chapter 8, Elsevier, Amsterdam. [1]

Cai, Y. and K. L. Judd (2015), “Dynamic programming with Hermite approximation.”
Mathematical Methods of Operations Research, 81, 245–267. [1]

Christiano, L. J. and J. D. M. Fisher (2000), “Algorithms for solving dynamic models with
occasionally binding constraints.” Journal of Economic Dynamics and Control, 24, 1179–
1232. [2]

Guerrieri, L. and M. Iacoviello (2015), “OccBin: A toolkit for solving dynamic models with
occasionally binding constraints easily.” Journal of Monetary Economics, 70, 22–38. [2, 3,
4]

Judd, K. L. (1998), Numerical Methods in Economics. The MIT Press, Cambridge. [1, 2]

Tauchen, G. (1986), “Finite state Markov-chain approximations to univariate and vector
autoregressions.” Economic Letters, 20, 177–181. [6]

Co-editor Frank Schorfheide handled this manuscript.

Manuscript received 21 January, 2015; final version accepted 9 March, 2016; available online 24
March, 2016.

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/cj12&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/cj15&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/cf00&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/gi15&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/ju98&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/ta86&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/cj12&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/cj15&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/cf00&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/cf00&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/gi15&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/ta86&rfe_id=urn:sici%2F1759-7323%28201703%298%3A1%2B%3C1%3ASTANCE%3E2.0.CO%3B2-2

	Appendix A: Approximation
	Chebyshev polynomial approximation
	Multidimensional complete Chebyshev approximation

	Appendix B: Application to a RBC model with a constraint on investment
	Model overview
	Error measure
	Numerical results

	Appendix C: Equilibrium conditions in the new Keynesian DSGE model
	Appendix D: Steady state of the new Keynesian DSGE model
	References

