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Appendix A: Proofs

Proof of Theorem 2.1. (i) The constraint set in (P) is nonempty if and only if T̄ ∈
coT(DN). Since coT(DN) is nonempty, compact, convex, and the objective function in
(P) is strictly convex (a well known property of the Kullback–Leibler information), the
claim is trivial.

(ii) The “if” part is Theorem 2 of Tanaka and Toda (2013). To show the “only if” part,
suppose that λN is a solution to (D). Since the objective function is differentiable, by
taking the derivative we get

T̄ −
N∑
n=1

qneλ
′
NT(xn)

N∑
n=1

qneλ
′
NT(xn)

T (xn)= 0�

Letting pn be as in (2.3), this equation shows T̄ = ∑N
n=1 pnT(xn),

∑N
n=1 pn = 1, and pn > 0

for all n. Therefore, T̄ ∈ int coT(DN).

(iii) This is Theorem 1 of Tanaka and Toda (2013). �

Proof of Theorem 3.2. The proof is a special case of the following theorem by setting
Σt =D (constant). �

Theorem A.1. Let {yt} be a VAR with stochastic volatility

yt =Ayt−1 + εt� εt ∼ (0�Σt−1)�
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where all eigenvalues of A are less than 1 in absolute value and {Σt} is an exogenous,
stationary, ergodic finite-state Markov chain. Let zt = (yt�Σt). Suppose that zdt = (ydt �Σt)

is a stationary and ergodic Markov chain approximation of zt such that the conditional
mean and variance of yt are exact, so

E
[
ydt |zdt−1

] = E
[
yt |zdt−1

] =Aydt−1�

Var
[
ydt |zdt−1

] = Var
[
yt |zdt−1

] = Σt−1�

Then the unconditional mean, variance, and all autocovariance (hence the spectrum) of
{yt} and {ydt } are identical, and so are all k-step ahead conditional mean and variance.

Proof. By assumption, Σ := E[Σt] exists and E[yt] = 0.
Define the discretized error term εdt := ydt − Aydt−1. First we prove that the first two

unconditional moments are exact. Since by assumption the conditional mean is exact,
we have

E
[
εdt |zdt−1

] = E
[
ydt |zdt−1

] −Aydt−1 =Aydt−1 −Aydt−1 = 0�

and hence E[εdt ] = 0. Since by assumption {ydt } is stationary and the eigenvalues of A are
less than 1 in absolute value, taking the unconditional expectation of both sides of ydt =
Aydt−1 + εdt , we get E[ydt ] = 0. Therefore, the unconditional mean is exact. To compute
the variance, note that

ydt
(
ydt

)′ = (
Aydt−1 + εdt

)(
Aydt−1 + εdt

)′

= Aydt−1
(
ydt−1

)′
A′ +Aydt−1

(
εdt

)′ + εdt
(
ydt−1

)′
A′ + εdt

(
εdt

)′
�

Since E[εdt |zdt−1] = 0 and the conditional variance is exact, taking the conditional expec-
tation we obtain

E
[
ydt

(
ydt

)′|zdt−1
] = Aydt−1

(
ydt−1

)′
A′ +Σt−1�

Taking the unconditional expectation, using the law of iterated expectations, and noting
that {ydt } is stationary, we get

Var
[
ydt

] = E
[
E
[
ydt

(
ydt

)′|zdt−1
]] =AE

[
ydt−1

(
ydt−1

)′]
A′ + E[Σt−1]

= AVar
[
ydt−1

]
A′ +Σ= AVar

[
ydt

]
A′ +Σ�

But the variance matrix of the true process {yt} satisfies the same equation. Since the
eigenvalues of A are less than 1 in absolute value, the solution is unique. Therefore,
Var[ydt ] = Var[yt].

Let �(k) = E[yt+ky
′
t] be the true kth order autocovariance matrix and let �d(k) =

E[ydt+k(y
d
t )

′] be that of the discretized process. Multiplying (ydt )
′ from the right to both

sides of ydt+k+1 = Aydt+k +εdt+k+1 and taking expectations, we obtain �d(k+ 1)= A�d(k).

By iteration, we get �d(k) = Ak�d(0). Similarly, �(k) = Ak�(0). Since �(0) = Var[yt] =
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Var[ydt ] = �d(0), it follows that �d(k) = �(k) for all k. Therefore, all autocovariances of
{yt} are exact, and so is the spectrum.

To evaluate the k-step ahead conditional moments, note that

ydt+k = εdt+k + · · · +Ak−1εdt+1 +Akydt �

Since {ydt } is a Markov process, we have

E
[
εdt+j|zdt

] = E
[
E
[
εdt+j|ydt+j−1

]|zdt ] = 0

for any j ≥ 1. Therefore, E[ydt+k|zdt ] = Akydt , so the k-step ahead conditional mean is ex-
act. The proof for the conditional variance is analogous. �

Remark. If the conditional variance of εt is unknown at t − 1, say εt ∼ (0�Σt), then the
same result holds by replacing Σt−1 in the proof by E[Σt |Σt−1].

Proof of Proposition 3.3. Let ρ(M) denote the spectral radius of the matrix M . Since
ρ(|A|) < 1, there exists δ > 0 such that α := ρ(δI+|A|) < 1. By the Perron–Frobenius the-
orem, δI + |A| has a strictly positive eigenvector v = (v1� � � � � vK) � 0. Take a tensor grid
DN with convex hull coDN = [−v1� v1] × · · · × [−vK�vK]. Let ȳn be any grid point of DN

and let T(x) = x be the moment defining function for the conditional mean (therefore it
is the identity map). Then T(DN) =DN and

T̄n := E
[
T(yt)|yt−1 = ȳn

] = E[yt |yt−1 = ȳn] = Aȳn�

Taking absolute values element by element, since 0 <α< 1 we get

|T̄n| ≤ |A||ȳn| ≤ |A|v ≤ (
δI + |A|)v = αv � v�

so T̄n ∈ int coT(DN). �

Proof of Proposition 3.4. Let D = {x̄n}Nn=1 be the set of grid points and let M =
maxn|x̄n|. Suppose xt−1 = x, where x ∈ D. By symmetry, without loss of generality we
may assume x ≥ 0. Then the conditional first and second (uncentered) moments of xt
are ρx and (ρx)2 + 1, respectively. The moment defining function is T(x) = (x�x2). By
Theorem 2.1, it suffices to show that (ρx� (ρx)2 + 1) ∈ int coT(D).

Define the points P = (M�M2), Q = (−M�M2), X = (x�x2), and X ′ = (ρx� (ρx)2 +1).
If x = M , for X ′ ∈ int coT(D) it is necessary that X ′ lies below the segment PQ, so we
need

(ρM)2 + 1 <M2 ⇐⇒ M >
1√

1 − ρ2
�

which is condition (i) in Proposition 3.4. Therefore X ′ lies below PQ. Now take any x ∈ D

and set μ = ρx. Take two grid points a1 < a2 ∈ D such that μ ∈ [a1� a2]. Let A1 = (a1� a
2
1)

and A2 = (a2� a
2
2). If X ′ lies above the segment A1A2, then X ′ is in the interior of the
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quadrilateral A1A2PQ, which is a subset of coT(D). Therefore, it suffices to show that
X ′ lies above A1A2. The equation of the straight line A1A2 is

y = a2
2 − a2

1
a2 − a1

(x− a1)+ a2
1 = (a1 + a2)(x− a1)+ a2

1�

Therefore, X ′ lies above A1A2 if and only if

μ2 + 1 > (a1 + a2)(μ− a1)+ a2
1 ⇐⇒ (μ− a1)(a2 −μ) < 1� (A.1)

First, consider the case in which the maximum distance between neighboring points is
d < 2. Take a1 and a2 as neighboring points. By the arithmetic mean-geometric mean
inequality, we have

(μ− a1)(a2 −μ) ≤
(
(μ− a1)+ (a2 −μ)

2

)2
=

(
a2 − a1

2

)2
≤ (d/2)2 < 1�

so (A.1) holds. Next we show (3.3). Setting a2 = x and μ = ρx in (A.1) and solving the
inequality, a sufficient condition for existence is

ρx = μ ≥ a1 > ρx− 1
(1 − ρ)x

�

which is (3.3) by setting x = x̄n and a1 = x̄n′ . �

Proof of Corollary 3.5. Since the grid {x̄n}Nn=1 spans from −M to M and is evenly

spaced, the grid size is d = 2M
N−1 . Suppose that M > σ = 1/

√
1 − ρ2, so condition (i) of

Proposition 3.4 holds. Note that the grid has at least three points 0 and ±M , so N ≥ 3.
Case (i). [ρ≤ 1− 2

N−1 ]. By Proposition 3.4, it suffices to show d < 2 ⇐⇒ M <N−1. Since

M ≤ √
2σ

√
N − 1 by assumption, it suffices to show

√
2
√
N − 1√

1 − ρ2
<N − 1 ⇐⇒ ρ2 < 1 − 2

N − 1
�

But this inequality is trivial because ρ2 < ρ ≤ 1 − 2
N−1 . Case (ii). [ρ > 1 − 2

N−1 ]. Let
−M = x̄1 < · · · < x̄N = M be the grid points. By Proposition 3.4, it suffices to show that
(3.3) holds for all n such that x̄n > 0, which means that the interval (ρx̄n − 1

(1−ρ)x̄n
� ρx̄n)

contains a grid point. Since the length of this interval is dn := 1
(1−ρ)x̄n

, if d < dn, then

the interval contains a grid point. Furthermore, since dn = 1
(1−ρ)x̄n

is decreasing in x̄n, it
follows that if d < dn for some n, then d < dn′ for all n′ < n such that x̄n′ > 0.

Consider the point n =N − 1. Since d = 2M
N−1 , we have x̄N−1 =M −d =MN−3

N−1 . Hence

dN−1 = 1
M(1−ρ)

N−1
N−3 . Therefore,

d < dN−1 ⇐⇒ 2M
N − 1

<
1

M(1 − ρ)

N − 1
N − 3

⇐⇒ M <
N − 1√

2(1 − ρ)(N − 3)
�
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Since M ≤ σ
√
N − 1 by assumption, to show d < dN−1, it suffices to show√

N − 1√
1 − ρ2

<
N − 1√

2(1 − ρ)(N − 3)
⇐⇒ 1 + ρ >

2(N − 3)
N − 1

⇐⇒ ρ > 1 − 4
N − 1

�

which trivially holds because ρ > 1 − 2
N−1 .

Therefore it remains to show that the two inequalities in (3.3) also hold for n = N , the
boundary point. Take n′ =N−1. Since x̄N−1 =MN−3

N−1 , the right inequality holds because

x̄N−1 ≤ ρx̄N ⇐⇒ M
N − 3
N − 1

≤ ρM ⇐⇒ ρ ≥ 1 − 2
N − 1

�

which is trivial. The left inequality is equivalent to

ρx̄N − 1
(1 − ρ)x̄N

< x̄N−1 ⇐⇒ ρM − 1
(1 − ρ)M

<M
N − 3
N − 1

⇐⇒ M2
(
ρ− N − 3

N − 1

)
<

1
1 − ρ

�

Since M ≤ σ
√
N − 1, it suffices to show

N − 1

1 − ρ2

(
ρ− N − 3

N − 1

)
<

1
1 − ρ

⇐⇒ (N − 1)ρ− (N − 3) < 1 + ρ

⇐⇒ ρ < 1�

which is trivial. �

Appendix B: Accuracy of discretization

The accuracy of discretization has traditionally been evaluated by simulating the re-
sulting Markov chain (Tauchen, 1986, Gospodinov and Lkhagvasuren, 2014). However,
we think that such simulations have limited value, for the following reason. According
to Theorem 3.2, for VARs the first two population moments—both k-step ahead con-
ditional and unconditional—are exact whenever the one-step ahead conditional mo-
ments are exact. Since the population moments will be identical for such discretizations,
any difference in the simulation performance must be due to sampling error.

A better approach is to directly compare the population moments of interest of the
true process with those of the discretized Markov chains. For example, suppose that
(xt� yt)

∞
t=0 ⊂R

K ×R is generated by some covariance stationary process such that

yt = β′xt + εt�

where E[xtεt] = 0. Then the population OLS coefficient is

β = E
[
xtx

′
t

]−1 E[xtyt]�
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If (xdt � y
d
t )

∞
t=0 is a discretized Markov chain, then we can define its OLS coefficient by

βd = E
[
xdt

(
xdt

)′]−1 E
[
xdt y

d
t

]
�

where the expectation is taken under the ergodic distribution of the Markov chain. Then
the bias of the discretization is βd −β. Here we used the OLS coefficient as an example,
but it can be any quantity that is defined through the population moments.

B.1 VAR(1)

As a concrete example, following Gospodinov and Lkhagvasuren (2014), consider the
two-dimensional VAR(1) process

xt = Bxt−1 +ηt�

where

xt =
[
zt
gt

]
� ηt =

[
ez�t
eg�t

]
� B =

[
0�9809 0�0028
0�0410 0�9648

]
�

and the shocks ez�t� eg�t are uncorrelated, i.i.d. over time, and have standard deviations
0�0087 and 0�0262, respectively. The implied unconditional variance–covariance matrix
is [

σ2
z σzg

σzg σ2
g

]
=

[
0�00235 0�00241
0�00241 0�01274

]
and the eigenvalues of the coefficient matrix B are ζ1 = 0�9863 and ζ2 = 0�9594.

To evaluate the accuracy of discretization, we compute the Markov chain counter-
part θd of the parameter θ = σ2

z �σ
2
g�σzg�1−ζ1�1−ζ2 and calculate the log10 relative bias

log10|θd/θ − 1| for various number of nodes in each dimension, N = 5�9�15�21. For our
method, we consider the evenly spaced, quantile, and Gauss–Hermite quadrature grids,
which we label as ME-Even, ME-Quant, and ME-Quad, respectively. As a comparison,
we consider the existing methods of Tauchen (1986), Tauchen and Hussey (1991) (TH),
and Gospodinov and Lkhagvasuren (2014) (GL).1 The GL method has two versions: one
that is the VAR generalization of the Rouwenhorst method (referred to as GL0) and an-
other that fine-tunes this method by targeting the first and second conditional moments
(referred to as GL). Table B.1 shows the results.

We can make a few observations from Table B.1. First, as is well known, the accuracy
of discretization for the Tauchen and Tauchen–Hussey methods are poor, with relative
bias of order about 100. Consistent with Gospodinov and Lkhagvasuren (2014), the GL
methods improve upon earlier methods by several orders of magnitude.

1For the Tauchen method, we need to specify the grid spacing. To give it the best chance, following
Kopecky and Suen (2010) we set the grid size proportional to the unconditional standard deviation of the
VAR, and choose the constant of proportionality so as to make the unconditional variance as close to the
true VAR as possible.
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Table B.1. The log10 relative bias of VAR discretization.

Existing Methods ME Methods

N Param. Tauchen TH GL0 GL Even Quant Quad

5 σ2
z −0�106 −0�052 −1�061 −1�500 −3�062 −1�465 −0�138

σ2
g −0�106 −0�087 −0�918 −1�331 −2�369 −0�772 −0�138

σzg −0�001 −0�006 −4�394 −1�015 −2�408 −0�811 −0�138
1 − ζ1 1�641 1�178 −1�100 −1�235 −7�932 −8�178 −7�604
1 − ζ2 1�158 0�657 −1�865 −1�949 −9�303 −8�554 −8�538

9 σ2
z −0�106 −0�098 −1�004 −2�342 −9�321 −8�126 −0�379

σ2
g −0�106 −0�166 −0�859 −2�156 −8�918 −9�372 −0�372

σzg −0�001 −0�021 −1�024 −1�915 −9�337 −7�787 −0�373
1 − ζ1 1�639 0�950 −1�904 −2�171 −8�690 −7�694 −8�410
1 − ζ2 1�157 0�396 −2�487 −2�713 −9�271 −9�077 −8�292

15 σ2
z −0�106 −0�170 −1�093 −3�730 −8�712 −9�085 −1�454

σ2
g −0�106 −0�285 −0�944 −3�545 −8�783 −9�086 −0�760

σzg −0�001 −0�059 −1�052 −3�357 −10�015 −9�082 −0�800
1 − ζ1 1�639 0�696 −3�188 −3�664 −8�424 −8�774 −8�846
1 − ζ2 1�156 0�093 −3�650 −4�106 −8�729 −9�627 −9�790

21 σ2
z −0�106 −0�244 −1�174 −4�369 −9�539 −9�171 −8�966

σ2
g −0�106 −0�403 −1�025 −4�140 −9�694 −8�538 −11�359

σzg −0�001 −0�114 −1�129 −4�240 −10�124 −8�524 −8�672
1 − ζ1 1�638 0�494 −4�517 −5�195 −9�373 −9�202 −8�589
1 − ζ2 1�156 −0�157 −4�894 −5�563 −9�665 −9�226 −9�301

Note: N denotes the number of discrete points in each dimension; TH denotes the Tauchen and Hussey (1991) method; GL
and GL0 denote the Gospodinov and Lkhagvasuren (2014) methods with or without moment targeting; ME denotes maximum
entropy methods. The ME methods target the first two conditional moments. For ME-Even, the grid for the {yt } process (3.1)
spans [−σ

√
N − 1�σ

√
N − 1] in each dimension, where σ2 is the smallest eigenvalue of the unconditional variance of {yt }.

Second, the relative bias of ME-Even and ME-Quant is substantially smaller (of order
about 10−9, except when N = 5), which makes our method about 4–6 orders of magni-
tude more accurate than the GL methods. The reason why the bias is not exactly zero—
although it should theoretically be zero if the regularity condition (2.7) holds—is be-
cause our method involves the numerical minimization of the dual function in (D′

n), in
which we set the error tolerance to 10−10.2 Therefore, this result suggests that for this
particular example, ME-Even and ME-Quant match all first and second conditional mo-
ments of the VAR.

Third, our method with Gauss–Hermite quadrature grid (ME-Quad) is poor for N =
5�9�15, especially for the unconditional variance. This is because, by construction, the
quadrature method uses the Gauss–Hermite quadrature nodes of the conditional vari-
ance. When the process is highly persistent (as in this case since the spectral radius is
ζ1 = 0�9863, which is close to 1), the unconditional variance is much larger than the con-
ditional variance. Since the grid is much smaller than typical values of the true process,

2This point also explains why the accuracy does not monotonically improve as N gets larger for ME-
Even and ME-Quant: since the relative bias is essentially the error tolerance (which is constant), it need not
be monotonic in N . In contrast, since the relative bias is not zero for existing methods and ME-Quad, the
accuracy of these methods monotonically improves with larger N .
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Table B.2. Computation time for discretizing the VAR(1) process in seconds.

Existing Methods ME Methods

N Tauchen TH GL0 GL Even Quant Quad

5 0�490 0�008 0�013 0�559 0�684 0�616 1�017
9 1�198 0�016 0�047 2�107 1�397 1�268 1�851

15 3�487 0�049 0�265 5�910 3�212 3�031 3�525
21 8�324 0�078 0�730 12�074 5�561 5�616 6�301

Note: The table shows the computing time in seconds for discretizing the VAR(1) process in this section using a Windows
10 laptop computer with 2.2-GHz Intel Core i5 processor. The Tauchen method matches the unconditional variance. The codes
for the ME methods are available as discussed in Appendix E. The GL methods use the codes supplied in the online appendix
to Gospodinov and Lkhagvasuren (2014).

the regularity condition (2.7) may be violated and a solution to the dual problem may
not exist. Note that ME-Quad is still quite accurate for the parameters θ = 1 − ζ1�1 − ζ2.
The reason is that since 1 − ζ1and 1 − ζ2 depend only on the coefficient matrix B and
not on the variance, if the discretization method is able to match all first conditional
moments, then the coefficient matrix will be exact. But B in this example satisfies the
assumption of Proposition 3.3, so we can match 1 − ζ1 and 1 − ζ2 exactly.

While Table B.1 shows the high accuracy of discretization by ME methods, is it com-
putationally efficient? Table B.2 shows the computing time for discretizing the VAR(1)
process using various methods and numbers of grid points in each dimension. The TH
and GL0 methods, which require no optimization, are clearly very fast. All other meth-
ods involve solving optimization problems. According to the table, the ME methods are
faster than the GL method, probably because we solve the unconstrained dual problem
using the Newton algorithm by supplying the analytical gradient and Hessian.

B.2 AR(1) with stochastic volatility

Next, we consider the accuracy of the stochastic volatility discretization in Section 3.2.
As a comparison, we construct an alternative approximation that uses the Rouwenhorst
method to discretize the xt process and the Tauchen method to discretize the condi-
tional distributions yt |xt−1� yt−1. This is the most logical choice since x is just an AR(1)
process (for which the Rouwenhorst method is accurate) and there is no obvious way
to discretize the y process except by the Tauchen method. We choose the spacing of the
y process to target the unconditional variance σ2

y . As in the simple autoregressive case,

when discretizing the log variance process (xt ), we use
√
N − 1 standard deviations for

the Rouwenhorst method and either the evenly spaced grid, Gauss–Hermite quadrature
grid or the quantile grid for our method. A similar type of discretization is considered
in Caldara et al. (2012), although they use Tauchen’s method to discretize both the log
variance and the level of the process.

Following Caldara et al. (2012), we set the parameter values to λ = 0�95, ρ = 0�9, and
σ = 0�06, and choose μ = −9�9426 to make the conditional standard deviation of the y

process equal to 0�007. As a robustness check, we also vary λ, the persistence of technol-
ogy shocks, between 0 and 0�99. We focus on characteristics of the time series of yt (the
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Table B.3. The log10 relative bias of stochastic volatility discretization.

N λ TR ME-Even ME-Quant ME-Quad

Parameter 1 − λ σ2
y 1 − λ σ2

y 1 − λ σ2
y 1 − λ σ2

y

9 0 −∞ −9�781 −∞ −6�101 −∞ −5�034 −∞ −5�282
0�5 −1�819 −9�352 −9�556 −6�102 −9�997 −5�034 −8�755 −5�281
0�9 −0�982 −8�265 −9�458 −6�102 −9�790 −5�034 −8�857 −5�281
0�95 −0�718 −9�666 −9�117 −6�102 −9�153 −5�034 −9�409 −5�281
0�99 −1�381 −8�034 −8�390 −6�102 −8�091 −5�034 −8�455 −5�281

15 0 −∞ −11�15 −∞ −7�371 −14�33 −5�203 −14�70 −6�060
0�5 −2�189 −8�943 −9�079 −7�367 −9�647 −5�203 −9�630 −6�060
0�9 −1�337 −8�502 −9�376 −7�364 −9�845 −5�203 −9�269 −6�060
0�95 −1�061 −8�334 −9�902 −7�363 −9�245 −5�203 −9�158 −6�060
0�99 −0�540 −8�112 −8�652 −7�399 −7�777 −5�204 −8�059 −6�067

21 0 −∞ −9�336 −14�78 −8�625 −15�96 −5�317 −15�66 −6�898
0�5 −2�436 −9�821 −10�09 −8�668 −9�813 −5�317 −10�46 −6�900
0�9 −1�575 −8�693 −9�663 −8�700 −9�556 −5�317 −9�725 −6�900
0�95 −1�296 −9�755 −10�44 −8�645 −9�993 −5�317 −10�24 −6�899
0�99 −0�705 −8�193 −9�537 −8�750 −7�823 −5�319 −8�974 −6�909

OLS coefficient λ and the unconditional variance σ2
y ), because the component approxi-

mations of xt are just the standard autoregressive processes we studied before. For each
discretization procedure, we vary N (the number of log variance and technology points)
between 9, 15, and 21. Table B.3 shows the results.

Since the state space of the volatility process is continuous, Theorem A.1 does not
apply, so the unconditional moments need not be exact. However, Table B.3 shows that
our method is highly accurate, with a relative bias on the order of 10−8 or less for 1 − λ

and 10−5 or less for σ2
y . This is likely because the finite-state Markov chain approxima-

tion of the volatility process is so accurate that Theorem A.1 “almost” applies. As ex-
pected, the Tauchen–Rouwenhorst (TR) method does extremely well for the uncondi-
tional variance because it is designed to match by construction. However, it does very
poorly compared to the ME methods for the persistence, and this gap widens as λ gets
closer to 1.

Appendix C: Solving asset pricing models

C.1 Analytical solution with AR(1)/VAR(1) shocks

Burnside (1998) iterates (4.2) forward and obtains a closed-form solution as follows. So
as to be consistent with the notation in Section 3, let

xt = (I −B)μ+Bxt−1 +ηt�

where μ is the unconditional mean of {xt} and ηt ∼N(0�Ψ). Let

Ψ̃ = (I −B)−1Ψ
(
I −B′)−1

�
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Ψn =
n∑

k=1

BkΨ̃
(
B′)k�

Cn = B
(
I −Bn

)
(I −B)−1�

Ωn = nΨ̃ −CnΨ̃ − Ψ̃C ′
n +Ψn�

Then we have

V (x) =
∞∑
n=1

βn exp
(
nα′μ+ α′Cn(x−μ)+ 1

2
α′Ωnα

)
� (C.1)

A similar formula can be derived even if the shock distribution is non-Gaussian. For
example, for the AR(1) case (so Ct = Dt ), Tsionas (2003) shows that the price–dividend
ratio is

V (x) =
∞∑
n=1

βn exp
(
an + bn(x−μ)

)
� (C.2)

where

bn = (1 − γ)ρ
1 − ρn

1 − ρ
�

an = (1 − γ)μn+
n∑

k=1

logM
(
(1 − γ)

1 − ρk

1 − ρ

)
�

and M(·) is the moment generating function of εt .
In general, the infinite series (C.1) or (C.2) have to be approximated. Burnside (1999)

notes that truncating the series (C.1) may not be accurate when α is close to zero since
each term would have order βn, so for β close to 1 the truncation error is substantial.
A better way is to use the exact terms up to some large number N , and for n >N we can
replace Cn�Ψn by their limits C∞ = B(I −B)−1, Ψ∞ = ∑∞

k=1 B
kΨ̃(B′)k, and Ωn by

nΨ̃ −C∞Ψ̃ − Ψ̃C ′∞ +Ψ∞�

in which case the infinite sum can be calculated explicitly. The result is

V (x) ≈
N∑
n=1

βn exp
(
nα′μ+ α′Cn(x−μ)+ 1

2
α′Ωnα

)
(C.3)

+ rN+1

1 − r
exp

(
α′C∞(x−μ)+ 1

2
α′(Ψ∞ −C∞Ψ̃ − Ψ̃C ′∞

)
α

)
�

where r = βexp(α′μ + 1
2α

′Ψ̃α) < 1. If r ≥ 1, the price–dividend ratio is infinite. Proposi-
tion C.1 shows that the approximation error of (C.3) is O((rρ)N), where ρ is the absolute
value of the largest eigenvalue of B. On the other hand, if we simply truncate the series
(C.1) at N , the error would be O(rN), which is much larger.
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Proposition C.1. Consider the asset pricing formula (C.2). Let VN(x) be the value of
V (x), where ρn is replaced by 0 for n > N . Let an�bn be as in (C.2), let mn = logM((1 −
γ)(1 − ρn)/(1 − ρ)), let Sn = ∑n

k=1 mn, let b = limbn = 1−γ
1−ρρ, let m = limmn = logM( 1−γ

1−ρ ),
and assume r = β((1 − γ)μ+m)< 1. Then

VN(x) =
N∑
n=1

βn exp
(
an + bn(x−μ)

) + rN+1

1 − r
exp

(
SN −mN + b(x−μ)

)
�

Furthermore, the approximation error |V (x)− VN(x)| is of order (rρ)N .

Proof. Let a′
n be the value of an, where ρk is set to 0 for k >N . Since a′

n = (1 − γ)μn +
SN +m(n−N), we get

VN(x)−
N∑
n=1

βn exp
(
an + bn(x−μ)

)
=

∞∑
n=N+1

βn exp
(
a′
n + b(x−μ)

)

=
∞∑

n=N+1

βn exp
(
(1 − γ)μn+ SN +m(n−N)+ b(x−μ)

)

=
∞∑

n=N+1

rn exp
(
SN −mN + b(x−μ)

) = rN+1

1 − r
exp

(
SN −mN + b(x−μ)

)
�

If we replace ρn with 0 for n >N , since logM(·) is differentiable and the domain of M for
the asset pricing formula is bounded (hence logM is Lipschitz continuous), |mn−m| and
|bn − b| are both of the order ρn. Since an contains the sum of mn’s, we have |an − a′

n| ≈∑n
k=N+1 ρ

k = O(ρN). Since |ρ|< 1, letting cn = an + bn(x−μ) and c′
n = a′

n + b(x−μ), we
have |cn − c′

n| < 1 eventually, so by the mean value theorem, |exp(cn − c′
n) − 1| ≤ e|cn −

c′
n| = O(ρN). Therefore,

∣∣V (x)− VN(x)
∣∣ ≤

∞∑
n=N+1

βn
∣∣exp

(
an + bn(x−μ)

) − exp
(
a′
n + b(x−μ)

)∣∣
=

∞∑
n=N+1

βn exp
(
a′
n + b(x−μ)

)∣∣exp
(
cn − c′

n

) − 1
∣∣

≈
∞∑

n=N+1

rnρN = O
(
(rρ)N

)
�

�

C.2 Discretizing the rare disasters model

In this appendix we provide the details of the discretization of the resilience pro-
cess (5.2). The discussion is partly based on footnote 9 in Gabaix (2012) and his online
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appendix. First, for (5.2) to be stable, we need

1 +H∗
1 +Ht

e−φH ≤ 1 ⇐⇒ Ĥt ≥ (1 +H∗)
(
e−φH − 1

)
� (C.4)

Since in Gabaix (2012) pt = p and Bt+1 = B are constant, and by definition 0 ≤ Ft+1 ≤ 1,
from (5.1) we obtain

−p≤H∗ + Ĥt ≤ p
(
B−γ − 1

)
� (C.5)

We can take H∗ = p(B1−γ − 1) because Gabaix assumes that the average dividend re-
covery rate is the same as consumption. The inequalities (C.4) and (C.5) define bounds
for Ĥt , which we denote by [Ĥmin� Ĥmax]. For the process to remain within this bound,
Gabaix assumes that the conditional variance of εHt+1 shrinks to 0 as we approach the
boundary. Namely, he assumes

σ2(Ĥ) = 2K(1 − Ĥ/Ĥmin)
2(1 − Ĥ/Ĥmax)

2�

where K = 0�2φH |ĤminĤmax|. See (59) in the online appendix of Gabaix (2012). We use
the exact same functional form.

We define the grid of discretization to be [Ĥmin + ε� Ĥmax − ε], where ε > 0 is a small
number that we set to be ε = 10−3 × (Ĥmax − Ĥmin). The reason for shrinking the in-
terval slightly is because otherwise the conditional variance becomes exactly zero at the
boundary points, which is impossible for a discrete Markov chain. Once we have defined
the endpoints of the grid this way, we put grid points and discretize the beta distribution
at each point by matching the conditional moments using our method. We consider the
evenly spaced grid (trapezoidal formula), Clenshaw–Curtis quadrature (Clenshaw and
Curtis (1960), Trefethen (2008)), and Gauss–Legendre quadrature, which are the most
natural choices since the integration is over a bounded interval.

C.3 Solving the rare disasters model

In this appendix we explain how to numerically solve the variable rare disaster model
using discretization. We follow the notation in Gabaix (2012).

The stochastic discount factor between time t and t + 1 is

Mt+1 = e−ρ(Ct+1/Ct)
−γ = e−δ ×

{
1� no disaster�

B
−γ
t+1� disaster�

where δ = ρ + γgC . Letting Pt be the cum-dividend price of the stock and letting Vt =
Pt/Dt be the price–dividend ratio, it follows from the Euler equation that

Pt =Dt + Et[Mt+1Pt+1] =⇒

Vt = 1 + Et

[
Mt+1

Dt+1

Dt
Vt+1

]
= 1 + e−δ+gD

(
(1 −pt)END

t [Vt+1] +pt ED
t

[
B

−γ
t+1Ft+1Vt+1

])
�
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where pt is the disaster probability, and END
t and ED

t denote the expectation condi-
tional on no disaster or disaster. By the structure of the model, Vt+1 depends only on
the resilience (5.1), which evolves independently from disasters. Therefore, END

t [Vt+1] =
ED
t [Vt+1] = Et[Vt+1]. Using the definition of resilience, it follows that

Vt = 1 + e−δ+gD(1 +Ht)Et[Vt+1]�
To solve for the price–dividend ratio using discretization, suppose the state space of

resilience Ht is discretized, and let s = 1� � � � � S be the states. Since the disaster probabil-
ity is constant, it follows that

vs = 1 + e−δ+gD(1 + hs)

S∑
s′=1

πss′vs′�

where vs is the price–dividend ratio in state s, hs is the resilience in state s, and πss′ is the
transition probability from state s to s′. Letting v = (v1� � � � � vS) and h = (h1� � � � �hS) be
the vectors of those values, and letting P = (πss′) be the transition probability matrix, it
follows that

v = 1 + e−δ+gD diag(1 + h)Pv ⇐⇒ v = (
I − e−δ+gD diag(1 + h)P

)−11�

The continuous solution is obtained by interpolating these values over the entire grid
(see Proposition 4.1).

Appendix D: Asset pricing with Gaussian AR(1) shocks

In this appendix we solve the simple asset pricing model with Gaussian AR(1) shocks

xt = (1 − ρ)μ+ ρxt−1 + εt� εt ∼ N
(
0�σ2)�

where xt is log dividend growth. Using postwar data, the OLS estimates are μ = 0�0559,
ρ = 0�405, and σ = 0�0589. Preference parameters are risk aversion γ = 2 and dis-
count factor β = 0�95. To avoid cherry-picking, we consider all major existing meth-
ods: Tauchen (1986),3

 Tauchen and Hussey (1991), and Rouwenhorst (1995). For the ME
methods, we consider ME-Even, ME-Quant, and ME-Quad (all with two moments) as
well as ME-Even with four moments.4 We consider two robustness checks: (i) changing
the number of grid points N and (ii) changing the persistence of dividend growth ρ.5

The number of grid points is always N = 9 unless otherwise stated.

3For the Tauchen method, we need to specify the grid spacing. To give it the best chance, following
Kopecky and Suen (2010) we choose the grid spacing so as to match the unconditional variance exactly.
We also experimented with

√
N − 1 standard deviations (as in ME-Even and Rouwenhorst) or 1�2 logN (as

in Flodén (2008)), but the performance was worse.
4As discussed below, ME-Quant is uniformly dominated by other ME methods, so there is no point in

considering ME-Quant with four moments. The results for ME-Quad with four moments are similar to two
moments. We also considered matching six moments, but the performance is similar to four moments.

5Collard and Juillard (2001) perform robustness checks across other parameters such as the discount
factor, risk aversion, and volatility. They find that the solution accuracy is most susceptible to turning up
the persistence.
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Figure D.1. The log10 relative errors of the price–dividend ratio with various discretization
methods and numbers of points for the Gaussian AR(1) model. ME-Even (L) shows the result
with L moments.

Figure D.1 shows the log10 relative errors of the price–dividend ratio with vari-
ous discretization methods and numbers of points N . We can make a few observa-
tions. First, as we increase N , all methods become more accurate, as expected. This
is especially true for Tauchen–Hussey, whose performance is sensitive to N . Second,
for methods other than Tauchen–Hussey, the order of the performance is generally
ME-Quad > ME-Even (4) > ME-Even (2) > Rouwenhorst > ME-Quant > Tauchen. ME-
Quad and ME-Even (four moments) give a solution accuracy of order 10−4–10−9. Third,
the performance of ME-Quad does not improve beyond N = 9. This is because since ME
methods involve a numerical optimization, in which we set the error tolerance to 10−10,
the theoretical lower bound for the log10 errors is about −10.

Figure D.2 shows the log10 relative errors when we increase the persistence ρ, fixing
the number of points at N = 9. Not surprisingly, the performance worsens for all meth-
ods as we make the dividend process more persistent. However, the performance of the
Tauchen–Hussey method deteriorates quickly, as is well known. ME-Quad, which uses
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Figure D.2. The log10 relative errors of the price–dividend ratio with various discretization
methods and persistence for the Gaussian AR(1) model.

the same Gauss–Hermite quadrature grid as Tauchen–Hussey, also gets poorer, but it is
still the best performer along with ME-Even (four moments). The performance of the
Rouwenhorst method is robust, although it is uniformly dominated by ME-Even (2 or 4
moments) and ME-Quad.

It is well known that existing methods except Rouwenhorst are poor when the pro-
cess is persistent (Flodén (2008), Kopecky and Suen (2010)). However, since the price–
dividend ratio is infinite (i.e., the series (C.1) diverges) beyond ρ = 0�8 with the baseline
specification γ = 2 and β = 0�95, the performance of the ME methods when persistence
is high is still unanswered. To see what happens when the AR(1) process is very persis-
tent, we set (ρ�γ) = (0�9�1�5)� (0�95�1�3), for which the price–dividend ratio is finite. Fig-
ure D.3 shows the results. With ρ = 0�9, Tauchen–Hussey is one of the worst performers.
ME-Quad also deteriorates, and is slightly worse (better) than Rouwenhorst with N = 9
(N = 15) grid points. The best performers are ME-Even, with comparable performance
with two or four moments.
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Figure D.3. The log10 relative errors of the price–dividend ratio with various discretization
methods for the highly persistent Gaussian AR(1) model with (ρ�γ) = (0�9�1�5)� (0�95�1�3).

To get a better idea of the solution accuracy, consider an investor purchasing 1 mil-
lion dollar’s worth of an asset. If the investor uses each discretization method to com-
pute the fair price of the asset, what is the mistake in dollar amounts? Table D.1 shows
the mispricing using the average log10 relative errors. With the baseline specification
(N = 9, ρ = 0�405), the mispricing for the 1 million dollar investment is only 1 cent with
ME-Even (four moments). With ME-Quad and Tauchen–Hussey, the pricing error is vir-
tually zero. Even with the Rouwenhorst method, the mispricing is only 18 dollars, so it
does not make a material difference across methods except the Tauchen method, which
is off by more than 3000 dollars. However, the choice of the discretization method mat-
ters as we increase the persistence of the dividend process. With ρ = 0�8, the Tauchen
method is off by 12%, Tauchen–Hussey is off by 2�6%, and Rouwenhorst is off by 0�6%,
as opposed to 0�16% with ME-Even (four moments). The result is even more stark with
ρ = 0�9�0�95.

In summary, we find that for discretizing a Gaussian AR(1) process, (i) Tauchen–
Hussey is best if there are many points (N ≥ 15) and the process is not so persistent (ρ≤
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Table D.1. Mispricing in dollars when investing 1 million dollars.

ME Methods Existing Methods

N ρ Even (2) Quant Quad Even (4) R Tauchen TH

Changing number of grid points (γ = 2)
5 0�405 31.6 103 10.1 23.3 33.8 3161 58.9
9 7.27 71.1 0 0.011 18.1 3136 0.006

15 0.767 51.7 0 0.005 11.2 3380 0
21 0.065 39.8 0 0.03 7.89 3363 0

Changing persistence (γ = 2)
9 0�5 16.1 172 0.009 0.051 43.6 7.2K 0.393

0�6 46.6 507 0.491 0.235 127 17K 18.3
0�7 185 2.1K 21.4 92.3 501 39K 652
0�8 2.0K 21K 2.0K 1.6K 6.1K 120K 26K

Highly persistent case (γ = 1�5)
9 0�9 8.3K 53K 36K 7.4K 17K 218K 280K

15 0.89K 41K 9.3K 0.82K 9.9K 218K 77K

Highly persistent case (γ = 1�3)
15 0�95 13K 70K 67K 9.8K 32K 1.3M 1.4M
21 2.7K 65K 50K 2.2K 25K 1.3M 1.1M

Note: Even (L) denotes the ME-Even method with L moments, R denotes the Rouwenhorst (1995) method, and TH denotes
the Tauchen and Hussey (1991) method; K and M denote thousands and millions of dollars.

0�4), (ii) ME-Quad is best if the process is moderately persistent (0�4 ≤ ρ ≤ 0�8), with ME-
Even (four moments) comparable, (iii) ME-Even and Rouwenhorst perform well over all
choices of grid points N and persistence ρ (especially ρ > 0�8), with solution accuracy
ME-Even (4) > ME-Even (2) > Rouwenhorst, and (iv) ME-Quant is poor.

Finally, one may be interested in how the discretization solution fares against con-
ventional methods such as projection, and how the performance of discretization de-
teriorates as the persistence increases. To address this issue, we fix the preference pa-
rameters at β = 0�2 and γ = 1�3, number of points N = 9, and consider the autocorre-
lation ρ = 0�8�0�9�0�95�0�99. (It is necessary to reduce the discount factor β to an unre-
alistically small number so that the analytical solution exists even for high persistence.)
For this exercise, we only consider ME-Even (2), ME-Quad, Rouwenhorst, and the pro-
jection method. For the projection method, we make the Euler equation errors zero at
the Chebyshev collocation points, and the conditional expectation is computed using
a highly accurate Gauss–Hermite quadrature (see Pohl, Schmedders, and Wilms (2015)
for details). Figure D.4 shows the results.

Unsurprisingly, the projection method is extremely accurate, since a highly accurate
Gauss–Hermite quadrature nodes are chosen for each Chebyshev collocation point. The
performance of discretization methods deteriorates as we increase the persistence. The
maximum entropy methods are more accurate for persistence less than 0�95, but beyond
that the Rouwenhorst method becomes more accurate. This is probably because the
Rouwenhorst method does not involve any numerical optimization.
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Figure D.4. The log10 relative errors of the price–dividend ratio with discretization and projec-
tion methods for the highly persistent Gaussian AR(1) model with β = 0�2, γ = 1�3, and N = 9.
“Chebyshev-GH” refers to the projection method with Chebyshev collocation and Gauss–Her-
mite quadrature.

Appendix E: Matlab files

We implement the discretization of various stochastic processes in the Matlab files
posted in a supplementary file on the journal website, http://qeconomics.org/supp/
737/code_and_data.zip.6

E.1 Subroutines

The subroutine entropyObjective.m computes the objective function (D′) for min-
imizing the Kullback–Leibler information and its gradient (2.4a) as well as the Hessian
(2.4b). The subroutine discreteApproximation.m solves the minimization problem

6Also available on our website, https://sites.google.com/site/discretevar/.

http://qeconomics.org/supp/737/code_and_data.zip
https://sites.google.com/site/discretevar/
http://qeconomics.org/supp/737/code_and_data.zip
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(D′) and computes the moment error (2.5). Writing a code for discretizing a particular
process is straightforward by using these subroutines and imitating the files listed below.

E.2 VAR

The file discreteVAR.m requires four input arguments: the parameters b,B, and Ψ in
(3.1), and N , the number of discrete points in each dimension. It outputs the grid and the
transition probability matrix. There are three optional arguments: nMoments, method,
and nSigmas. The argument nMoments specifies the number of conditional moments
to target (default: 2). The argument method specifies the method for choosing the grid,
which has to be either “even” (evenly spaced grid), “quadrature” (Gauss–Hermite
quadrature grid and weights as in Tauchen and Hussey (1991)), or “quantile” (quan-
tile grid as in Adda and Cooper (2003)). The default is “even”. If the method is “even”,
then the optional argument nSigmas specifies the number of unconditional standard
deviations over which the grid points span around the unconditional mean (default:√
N − 1). The file discreteVAR.m tries to match the first nMoments conditional mo-

ments of the VAR, so nMoments= 2 means the conditional mean and variance. If a so-
lution to the dual problem (D′

n) fails to exist (which sometimes happens when the VAR
is highly persistent and the process is close to a boundary point), then it tries to match
low order moments. Furthermore, since the discretization of highly persistent VAR is
poor with the quadrature grid, when the method “quadrature” is chosen, the file re-
turns a warning message if B has an eigenvalue with absolute value exceeding 0�9.

E.3 Stochastic volatility model

The file discreteSV.m discretizes the stochastic volatility model in (3.4). It requires
seven input arguments: lambda, rho, sigmaU, sigmaE, Ny, Nx, and method. The ar-
guments lambda, rho, and sigmaE are λ, ρ, and σ in (3.4). The equality σu = sigmaU

is the unconditional volatility of the yt process, so σ2
u = E[ext ]. Ny and Nx are the num-

ber of grid points for the yt and xt processes; method specifies the method to discretize
the AR(1) xt process, which has to be either “even”, “quadrature”, or “quantile”.
(The yt process is discretized using an evenly spaced grid that spans

√
Ny − 1 uncondi-

tional standard deviations because the explicit density is unknown.)

E.4 AR(1) with non-Gaussian shocks

The file discreteARGM.m discretizes the AR(1) process with Gaussian mixture shocks,
xt = (1 − ρ)μ + μxt−1 + εt . It requires four input arguments, mu, rho, gmObj, and Nm,
and three optional arguments, nMoments, method, and nSigmas. The arguments mu
and rho are the AR(1) parameters μ and ρ; gmObj is the Matlab Gaussian mixture
object,7 typically obtained by running fitgmdist.m on the OLS residuals; nMoments
and nSigmas are the same as in the VAR; method must be either “even”, “gauss-
legendre”, “clenshaw-curtis”, or “gauss-hermite”; “even” is the usual evenly

7http://www.mathworks.com/help/stats/gmdistribution-class.html

http://www.mathworks.com/help/stats/gmdistribution-class.html
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spaced grid (trapezoidal formula). The others are quadrature formulas corresponding to
each name. (In the paper we discuss only the evenly spaced and Gauss–Hermite quadra-
ture grid because the solution accuracy using the Gauss–Legendre and Clenshaw–Curtis
quadrature are about the same as evenly spaced grid.)
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