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In this supplement, I show that one can estimate quantile treatment effects in the
surviving-compliers subpopulation, that one can test the CD condition, and that
my results extend to multivariate treatment and instrument, to fuzzy regression
discontinuity designs, and to survey nonresponse.

S1. Testability and quantile treatment effects

In this section, I show that random instrument, exclusion restriction, and CD have a
testable implication. Then I discuss how the testable implications of random instru-
ment, exclusion restriction, and ND studied in Huber and Mellace (2012), Kitagawa
(2015), and Mourifie and Wan (forthcoming) relate to the CD condition.

For any random variable R, let S(R) denote the support of R. Let Udz be a ran-
dom variable uniformly distributed on [0�1] denoting the rank of an observation in
the distribution of Y |D = d�Z = z. If the distribution of Y |D = d�Z = z is continuous,
Udz = FY |D=d�Z=z(Y). If the distribution of Y |D= d�Z = z is discrete, one can randomly
allocate a rank to tied observations by setting

Udz = FY |D=d�Z=z

(
Y−) + V

(
FY |D=d�Z=z(Y)− FY |D=d�Z=z

(
Y−))

�

where V is uniformly distributed on [0�1] and independent of (Y�D�Z), and Y− =
sup{y ∈ S(Y |D = d�Z = z) : y < Y }.1 For every d ∈ {0�1}, let pd = FS

P(D=d|Z=d) . Notice that
both p0 and p1 are included between 0 and 1. Finally, let

L = E(Y |D = 1�Z = 1�U11 ≤ p1)−E(Y |D= 0�Z = 0�U00 ≥ 1 −p0)�

L = E(Y |D = 1�Z = 1�U11 ≥ 1 −p1)−E(Y |D= 0�Z = 0�U00 ≤ p0)�

Theorem S1. If Assumptions 1, 2, and 5 are satisfied,

L ≤W ≤ L� (29)

The intuition of this result is as follows. Under random instrument, exclusion restric-
tion, and CD, E(Y1 −Y0|CV ) is point identified: following Theorem 2.1 in the main paper,
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it is equal to W . It is also partially identified. The term CV is included in {D = 0�Z = 0},
and it accounts for p0% of this population. Therefore, E(Y0|CV ) cannot be larger than
the mean of Y0 of the p0% of this population with the largest Y0. It also cannot be smaller
than the mean of Y0 of the p0% with the lowest Y0 (see Horowitz and Manski (1995)
and Lee (2009)). Combining this with a similar reasoning for E(Y1|CV ) yields worst-case
bounds for E(Y1 −Y0|CV ): L and L. The estimand of E(Y1 −Y0|CV ) should lie within its
bounds, hence the testable implication.

To implement this test, one can use results from Andrews and Soares (2010). Let θ
satisfy the two moment inequality conditions

0 ≤E

(
YZ

P(Z = 1)
− Y(1 −Z)

P(Z = 0)
− FS

(
θ+ YDZ1{U11 ≤ p1}

P(D = 1�Z = 1�U11 ≤ p1)

− Y(1 −D)(1 −Z)1{U00 ≥ 1 −p0}
P(D = 0�Z = 0�U00 ≥ 1 −p0)

))
�

0 ≤E

(
FS

(
θ+ YDZ1{U11 ≥ 1 −p1}

P(D = 1�Z = 1�U11 ≥ 1 −p1)
− Y(1 −D)(1 −Z)1{U00 ≤ p0}

P(D = 0�Z = 0�U00 ≤ p0)

)

−
(

YZ

P(Z = 1)
− Y(1 −Z)

P(Z = 0)

))
�

This defines a moment inequality model with preliminary estimated parameters. This
model satisfies all the technical conditions required in Andrews and Soares (2010)
if E(|Y |2+δ) < +∞ for some strictly positive δ, and if P(Z = 0), P(Z = 1), P(D = 1�
Z = 1�U11 ≤ p1), P(D = 1�Z = 1�U11 ≥ 1 − p1), P(D = 0�Z = 0�U00 ≤ p0), and
P(D = 0�Z = 0�U00 ≥ 1 −p0) are all bounded from below by some strictly positive con-
stant ε. Under these two mild restrictions, their Theorem 1 applies, and one can use it
to construct a uniformly valid confidence interval for θ. Equation (29) is rejected when
0 does not belong to this confidence interval.

As pointed out in Balke and Pearl (1997) and Heckman and Vytlacil (2005), random
instrument, exclusion restriction, and ND also have testable implications. Huber and
Mellace (2015), Kitagawa (2015), Machado, Shaikh, and Vytlacil (2013), and Mourifie and
Wan (forthcoming) have developed statistical tests of these implications. I now discuss
how these tests relate to the CD condition.

The test suggested in Huber and Mellace (2015) is not a test of CD. Huber and Mel-
lace (2015) use the fact that E(Y0|NT) and E(Y1|AT) are both point and partially identi-
fied under random instrument, exclusion restriction, and ND. For instance, E(Y |D= 0�
Z = 1) is equal to E(Y0|NT) and E(Y |D = 0�Z = 0) is equal to (1 − p0)E(Y0|NT) +
p0E(Y0|C). This implies

E(Y |D= 0�Z = 0�U00 ≤ 1 −p0) ≤ E(Y |D = 0�Z = 1)

≤ E(Y |D = 0�Z = 0�U00 ≥ p0)�

But under CD, E(Y |D = 0�Z = 1) is equal to P(NT)
P(NT)+P(F)E(Y0|NT) + P(F)

P(NT)+P(F)E(Y0|F),
so the previous implication need no longer be true.
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The tests suggested in Kitagawa (2015), Machado, Shaikh, and Vytlacil (2013), and
Mourifie and Wan (forthcoming) are not tests of CD, but they are tests of the CDM con-
dition introduced hereafter.

Assumption S1 (Compliers–Defiers for Marginals (CDM)). There is a subpopulation of
C denoted CF that satisfies

P(CF)= P(F)�

Y0|CF ∼ Y0|F�
Y1|CF ∼ Y1|F�

The CDM condition requires that a subgroup of compliers have the same size and
the same marginal distributions of Y0 and Y1 as defiers. CDM is stronger than CD. On the
other hand, it is invariant to the scaling of the outcome, while CD is not. With nonbinary
outcomes, working under assumptions invariant to scaling might be desirable so one
might then prefer to invoke CDM than CD, despite the fact it is a stronger assumption.
Following the logic of Theorem 2.2 in the main paper, a sufficient condition for CDM to
hold is that there be more compliers than defiers in each subgroup with the same value
of (Y0�Y1):

P(F |Y0�Y1)≤ P(C|Y0�Y1)�

One can show that under CDM, the marginal distributions of Y0 and Y1 are identified
for surviving-compliers. The estimands are the same as in Imbens and Rubin (1997):

fY0|CV
(y0)= P(D = 0|Z = 0)fY |D=0�Z=0(y0)− P(D = 0|Z = 1)fY |D=0�Z=1(y0)

P(D = 0|Z = 0)− P(D = 0|Z = 1)
�

fY1|CV
(y1)= P(D = 1|Z = 1)fY |D=1�Z=1(y1)− P(D = 1|Z = 0)fY |D=1�Z=0(y1)

P(D = 1|Z = 1)− P(D = 1|Z = 0)
�

The testing procedures in Kitagawa (2015) and Mourifie and Wan (forthcoming) test
whether the right-hand sides of the two previous equations are positive everywhere. Un-
der CDM, these quantities are densities so they must be positive. These procedures are
therefore tests of CDM. Machado, Shaikh, and Vytlacil (2013) focus on binary outcomes.
Their procedure tests inequalities equivalent to those considered in Kitagawa (2015).
Therefore, their procedure is also a test of the CDM condition.

S2. Multivariate treatment and instrument

Results presented in the main paper extend to applications where treatment is mul-
tivariate. Assume that for every z ∈ {0;1}, Dz ∈ {0�1�2� � � � � J} for some integer J. Let
(Yj)j∈{0�1�2�����J} denote the corresponding potential outcomes. Let Cj = {D1 ≥ j > D0}
denote the subpopulation of compliers induced to go from a treatment below to above j

by the instrument. Let Fj = {D0 ≥ j > D1} denote the subpopulation of defiers induced
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to go from above to below j by the instrument. As in Angrist and Imbens (1995), I as-
sume that the c.d.f. of D|Z = 0 stochastically dominates that of D|Z = 1. This implies
that P(Cj) ≥ P(Fj). Consider the following CD condition.

Assumption S2 (Compliers–Defiers for Multivariate Treatment (CDMU)). For every j ∈
{1�2� � � � � J}, there is a subpopulation of Cj , denoted C

j
F , that satisfies

P
(
C
j
F

) = P
(
Fj

)
�

E
(
Yj −Yj−1|Cj

F

) = E
(
Yj −Yj−1|Fj

)
�

If CDMU is satisfied, one can show that W is equal to the average causal response,

J∑
j=1

wjE
(
Yj −Yj−1|Cj

V

)
�

where C
j
V is a subset of Cj of size P(Cj) − P(Fj), and wj are positive real numbers. This

generalizes Theorem 1 in Angrist and Imbens (1995).
Their Theorem 2 considers the case where the instrument is multivariate: Z ∈

{0�1�2� � � � �K}. Let β denote the coefficient of D in a 2SLS regression of Y on D using
the set of dummies (1{Z = k})1≤k≤K as instruments. Angrist and Imbens (1995) show
that if Dz′ ≥ Dz for every z′ ≥ z, β is equal to a weighted average of average causal re-
sponses. Let Cjz = {Dz ≥ j > Dz−1} (resp. Fjz = {Dz ≥ j > Dz−1}) denote the subpop-
ulation of compliers induced to go from a treatment below to above j (resp. above to
below j) when the instrument moves from z − 1 to z. Consider the following condition:

Assumption S3 (Compliers–Defiers for Multivariate Treatment and Instrument
(CDMU2)). For every j ∈ {1�2� � � � � J} and z ∈ {0�1�2� � � � �K}, there is a subpopulation
of Cjz , denoted C

jz
F , that satisfies

P
(
C
jz
F

) = P
(
Fjz

)
�

E
(
Yj −Yj−1|Cjz

F

) =E
(
Yj −Yj−1|Fjz

)
�

Under CDMU2, one can show that β is equal to a weighted average of average causal
responses for surviving-compliers.

S3. Fuzzy regression discontinuity designs and survey nonresponse

My results also extend to many treatment effect models relying on ND type conditions.
An important example is fuzzy regression discontinuity (RD) designs studied in Hahn,
Todd, and Van der Klaauw (2001). Their Theorem 3 still holds if their Assumption A.3, an
“ND at the threshold” assumption, is replaced by a “CD at the threshold” assumption.
Let S denote the forcing variable and let s denote the threshold. Let Cs = {C�S = s} and
Fs = {F�S = s}, respectively, denote compliers and defiers at the threshold.
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Assumption S4 (Compliers–Defiers at the Threshold (CDT)). There is a subpopulation
of Cs , denoted Cs

F , that satisfies

P
(
Cs
F |S = s

) = P
(
Fs|S = s

)
�

E
(
Y1 −Y0|Cs

F�S = s
) = E

(
Y1 −Y0|Fs�S = s

)
�

Finally, ND type conditions have also been used in the sample selection and survey
nonresponse literatures, for instance, in Lee (2009) or Behaghel, Crépon, Gurgand, and
Le Barbanchon (2015). My results also extend to these applications: the results in Lee
(2009) or Behaghel, Crépon, Gurgand, and Le Barbanchon (2015) remain valid under a
weakening of the ND condition similar in spirit to the CD condition.

Appendix SA: Proofs

Proof of Theorem S1. Proving that L and L are valid bounds for E(Y1 −Y0|CV ) relies
on an argument similar to the proof of Proposition 1.a in Lee (2009). Due to a concern for
brevity, I refer the reader to this paper for this part of the proof. The testable implication
directly follows. �
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