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This paper compares different solution methods for computing the equilibrium
of dynamic stochastic general equilibrium (DSGE) models with rare disasters
along the lines of those proposed by Rietz (1988), Barro (2006), Gabaix (2012), and
Gourio (2012). DSGE models with rare disasters require solution methods that can
handle the large nonlinearities triggered by low-probability, high-impact events
with accuracy and speed. We solve a standard New Keynesian model with Epstein–
Zin preferences and time-varying disaster risk with perturbation, Taylor projec-
tion, and Smolyak collocation. Our main finding is that Taylor projection delivers
the best accuracy/speed tradeoff among the tested solutions. We also document
that even third-order perturbations may generate solutions that suffer from ac-
curacy problems and that Smolyak collocation can be costly in terms of run time
and memory requirements.
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1. Introduction

Rietz (1988), Barro (2006), and Gabaix (2012) have popularized the idea that low-
probability events with a large negative impact on consumption (“rare disasters”) can
account for many asset pricing puzzles, such as the equity premium puzzle of Mehra and
Prescott (1985). Barro (2006), in particular, argues that a rare disaster model calibrated
to match data from 35 countries can reproduce the observed high equity premium, the
low risk-free rate, and the stock market volatility. Barro assumed disaster probabilities
of 1�7% a year and declines in output/consumption in a range of 15 to 64%. Barro (2009)
can also match the responses of the price/dividend ratio to increases in uncertainty.

Many researchers have followed Barro’s lead and formulated, calibrated/estimated,
and solved models with disaster probabilities and declines in consumption that are
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roughly in agreement with Barro’s original proposal, including among others, Barro
and Ursúa (2012), Barro and Jin (2011), Nakamura, Steinsson, Barro, and Ursúa (2013),
Wachter (2013), and Tsai and Wachter (2015). The approach has also been extended
to analyze business cycles (Gourio (2012)), credit risk (Gourio (2013)), and foreign ex-
change markets (Farhi and Gabaix (2016) and Gourio, Siemer, and Verdelhan (2013)).
These calibrations/estimations share a common feature: they induce large nonlineari-
ties in the solution of the model. This is not a surprise. The mechanism that makes rare
disasters work is the large precautionary behavior responses induced in normal times
by the probability of tail events.

Dealing with these nonlinearities is not too challenging when we work with endow-
ment economies. A judicious choice of functional forms and parameterization allows a
researcher to derive either closed-form solutions or formulae that can be easily evalu-
ated.

The situation changes, however, when we move to production models, such as those
of Gourio (2012, 2013), Andreasen (2012), and Isoré and Szczerbowicz (2017). Suddenly,
having an accurate solution is of foremost importance. For example, rare disaster mod-
els may help to design policies to prevent disasters (with measures such as a financial
stability policy) and to mitigate them (with measures such as bailouts and unconven-
tional monetary policy). The considerable welfare losses associated with rare disasters
reported by Barro (2009) suggest that any progress along the lines of having accurate
quantitative models to evaluate counter-disaster policies is a highly rewarding endeavor.

But we also care about speed. Models that are useful for policy analysis often require
estimation of parameter values, which involves the repeated solution of the model, and
that the models be as detailed as the most recent generation of dynamic stochastic gen-
eral equilibrium (DSGE) models, which are indexed by many state variables.

Gourio (2012, 2013) and Petrosky-Nadeau, Zhang, and Kuehn (2015) solve their
models with standard projection methods (Judd (1992)). Projection methods are highly
accurate (Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006)), but they suffer
from an acute curse of dimensionality. Thus, the previous papers concentrate on an-
alyzing small models. Andreasen (2012) and Isoré and Szczerbowicz (2017) solve more
fully-fledged models with third-order perturbations. Perturbation solutions are fast to
compute and can handle many state variables. However, there are reasons to be cautious
about the properties of these perturbation solutions (see also Levintal (2017)). Pertur-
bations are inherently local and rare disasters trigger equilibrium dynamics that travel
far away from the approximation point of the perturbation (even, due to precautionary
behavior, in normal times without disasters). Moreover, perturbations may fail to ac-
curately solve for asset prices and risk premia due to the strong volatility embedded in
these models.1

We get around the limitations of existing algorithms by applying a new solution
method, the Taylor projection, to compute DSGE models with rare disasters. This
method, proposed by Levintal (2018), is a hybrid of Taylor-based perturbations and

1Isoré and Szczerbowicz (2017) addressed this problem by designing the model such that the detrended
variables are independent of the disaster shock. This is possible when the disaster shock scales down the
size of the economy, but it does not affect its composition.
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projections (and hence its name). Like standard projection methods, Taylor projection
starts from a residual function created by plugging the unknown decision rules of the
agents into the equilibrium conditions of the model and searching for coefficients that
make that residual function as close to zero as possible. The novelty of the approach
is that instead of “projecting” the residual function according to an inner product, we
approximate the residual function around the steady state of the model using a Taylor
series, and find the solution that zeros the Taylor series.2 We show that Taylor projection
is sufficiently accurate and fast so as to allow the solution and estimation of rich models
with rare disasters, including a New Keynesian model à la Christiano, Eichenbaum, and
Evans (2005).

To do so, we propose in Section 2 a standard New Keynesian model augmented with
Epstein–Zin preferences and time-varying rare disaster risk. We also present seven sim-
pler versions of the model. In what we will call version 1, we start with a benchmark real
business cycle model, also with Epstein–Zin preferences and time-varying rare disas-
ter risk. This model has four state variables (capital, a technology shock, and two addi-
tional state variables associated with the time-varying rare disaster risk). Then we pro-
gressively add shocks and price rigidities, until we get to version 8, our complete New
Keynesian model with 12 state variables. Our layer-by-layer analysis gauges how accu-
racy and run time change as new mechanisms are incorporated into the model and as
the dimensionality of the state space grows.

In Section 3, we calibrate the model with a baseline parameterization, which cap-
tures rare disasters, and with a nondisaster parameterization, where we shut down rare
disasters. The latter calibration helps us in measuring the effect of disasters on the ac-
curacy and speed of our solution methods.

In Section 4, we describe how we solve each of the eight versions of the model, with
the two calibrations, using perturbation, Taylor projection, and Smolyak collocation. We
implement different levels of each of the three solution methods: perturbations from
order 1 to 5, Taylor projections from order 1 to 3, and Smolyak collocation from level 1 to
3. Thus, we generate 11 solutions per each of the eight versions of the model and each of
the two calibrations, for a total of 176 possible solutions (although we did not find a few
of the Smolyak solutions because of convergence constraints).

In Section 5, we present our main results. Our first finding is that first-, second-, and
third-order perturbations fail to provide a satisfactory accuracy. This is particularly true
for the risk-free interest rate and several impulse response functions (IRFs). Our sec-
ond finding is that fifth-order perturbations are much more accurate, but they become
cumbersome to compute and require a nontrivial run time and some skill at memory

2The Taylor-projection algorithm is close to how Krusell, Kuruscu, and Smith (2002) solve the generalized
Euler equation (GEE) implied by their model. These authors, as we do, postulate a polynomial approxima-
tion to the decision rule, plug it into the GEE, take derivatives of the GEE, and solve for the coefficients
that zero the resulting derivatives. Coeurdacier, Rey, and Winant (2011), den Haan, Kobielarz, and Rendahl
(2015), and Bhandari, Evans, Golosov, and Sargent (2016) proposed related solution methods. The approach
in Levintal (2018) is, however, backed by theoretical results and more general than in these three previous
papers. Also, applying the method to large-scale models requires, as we do in this paper, developing new
differentiation tools and exploiting the sparsity of the problem.
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management. Our third finding is that second- and third-order Taylor projections offer
an outstanding compromise between accuracy and speed. Second-order Taylor projec-
tions can be as accurate as Smolyak collocations and, yet, be solved in a fraction of the
time. Third-order Taylor projections take longer to run, but their accuracy can be quite
high, even in a testbed as challenging as the New Keynesian model with rare disasters.
The findings are complemented by Section 6, which documents a battery of robustness
exercises.

Finally, we provide an Online Appendix, available in a supplementary file on the
journal website, http://qeconomics.org/supp/744/supplement.pdf, with further details
on the model and the solution and a MATLAB toolbox to implement the Taylor projection
method for a general class of DSGE models.

We postulate, therefore, that a new generation of solution methods, such as Taylor
projection (but also, potentially, others such as those in Maliar and Maliar (2014)), can
be an important tool in fulfilling the promises of production models with rare disasters.
We are ready now to start our analysis by moving into the description of the model.

2. A DSGE model with rare disasters

We build a standard New Keynesian model along the lines of Christiano, Eichenbaum,
and Evans (2005). In the model, there is a representative household, a final good pro-
ducer, a continuum of intermediate good producers subject to Calvo pricing, and a
monetary authority that sets up the nominal interest rate following a Taylor rule. Given
the goals of this paper and to avoid excessive complexity in the model, we avoid wage
rigidities.

We augment the standard New Keynesian model along two dimensions. First, we
introduce Epstein–Zin preferences. These preferences have been studied in the context
of New Keynesian models by Andreasen (2012), Rudebusch and Swanson (2012), and
Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017), among others. Second, we
add a time-varying rare disaster risk. Rare disasters impose two permanent shocks on
the real economy: a productivity shock and a capital depreciation shock. When a disaster
occurs, technology and capital fall immediately. This specification should be viewed as
a reduced form that captures severe disruptions in production, such as those caused by
a war or a large natural catastrophe, and failures of firms and financial institutions, such
as those triggered by massive labor unrest or a financial panic.

We present first the full New Keynesian model and some of its asset pricing implica-
tions. Then, in Section 2.7, we describe the simpler versions of the model mentioned in
the Introduction.

2.1 The household

A representative household’s preferences are representable by an Epstein–Zin aggrega-
tor between the period utility Ut and the continuation utility Vt+1:

V
1−ψ
t =U1−ψ

t +βEt
(
V

1−γ
t+1

) 1−ψ
1−γ � (1)

http://qeconomics.org/supp/744/supplement.pdf


Quantitative Economics 9 (2018) Solution methods for models 907

where the period utility over consumption ct and labor lt is given by Ut = eξt ct(1 − lt)
ν

and Et is the conditional expectation operator. The parameter γ controls risk aversion
(Swanson (2012)) and the intertemporal elasticity of substitution (IES) is given by 1/ψ̂,
where ψ̂ = 1 − (1 + ν)(1 − ψ) (Gourio (2012)). The intertemporal preference shock ξt
follows:

ξt = ρξξt−1 + σξεξ�t� εξ�t ∼ N (0�1)�

The household’s budget constraint is given by

ct + xt + bt+1

pt
=wtlt + rtkt +Rt−1

bt

pt
+ Ft + Tt� (2)

where xt is investment in capital,wt is the wage, rt is the rental price of capital, Ft are the
profits of the firms in the economy, and Tt is a lump-sum transfer from the government.
The household trades a nominal bond bt that pays a gross return of Rt . We transform
the nominal bond into real quantities by dividing by the price pt of the final good. There
is, as well, a full set of Arrow securities. With complete markets and a zero net supply
condition for those securities, we can omit them from the budget constraint.

Investment xt induces the law of motion for capital:

k∗
t = (1 − δ)kt +μt

(
1 − S

[
xt

xt−1

])
xt� (3)

where

logkt = logk∗
t−1 − dtθt (4)

and

S

[
xt

xt−1

]
= κ

2

(
xt

xt−1
−Λx

)2
�

Here, k∗
t−1 is the capital decision taken by the household in period t−1. Actual capital kt ,

however, depends on the disaster shock. Define a binary, i.i.d. random variable dt that
takes values 0 (no disaster) with probability 1 −pd or 1 (disaster) with probability pd . If
dt = 1, kt falls by θt . Gourio (2012) interprets θt as the permanent capital depreciation
triggered by a disaster.

We want, in addition, to capture the idea that the disaster risk can be time-varying.
To do so, we add an AR structure to the log of θt :

logθt = (1 − ρθ) log θ̄+ ρθ logθt−1 + σθεθ�t� εθ�t ∼ N (0�1)� (5)

We specify the evolution θt in logs to ensure θt > 0 for all t. The law of motion in
(5) resembles those in models with stochastic volatility (Andreasen (2012), Fernández-
Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2015), and Gabaix (2012)).

The second term on the right-hand side of equation (3),

μt

(
1 − S

[
xt

xt−1

])
xt�
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includes two parts: an investment-specific technological shock μt that follows:

logμt = logμt−1 +Λμ + σμεμ�t� εμ�t ∼ N (0�1)�

and a quadratic capital adjustment cost function that depends on investment growth
(Christiano, Eichenbaum, and Evans (2005)).

The household maximizes its preferences (1) subject to the budget constraint (2) and
the law of motion for capital (3). The optimality conditions for this problem are (see the
Online Appendix for details):

Et
(
Mt+1 exp(−dt+1θt+1)

[
rt+1 + qt+1(1 − δ)]) = qt� (6)

1 = qtμt
[(

1 − S
[
xt

xt−1

])
− S′

[
xt

xt−1

]
xt

xt−1

]

+Et

(
Mt+1

[
qt+1μt+1S

′
[
xt+1

xt

](
xt+1

xt

)2])
�

(7)

ν
ct

1 − lt =wt� (8)

where λt is the Lagrange multiplier associated with the budget constraint, qt is the La-
grange multiplier associated with the evolution law of capital (as a ratio of λt ), andMt+1
is the stochastic discount factor:

Mt+1 = βλt+1

λt

V
ψ−γ
t+1

Et
(
V

1−γ
t+1

)ψ−γ
1−γ

�

A nonarbitrage condition also determines the nominal gross return on bonds:

1 = EtMt+1
Rt

Πt+1
�

2.2 The final good producer

The final good yt is produced by a perfectly competitive firm that bundles a continuum
of intermediate goods yit using the production function:

yt =
(∫ 1

0
y
ε−1
ε

it di

) ε
ε−1
� (9)

where ε is the elasticity of substitution. The final good producer maximizes profits sub-
ject to the production function (9) and taking as given the price of the final good, pt , and

all intermediate goods prices pit . Well-known results tell us that pt = (
∫ 1

0 p
1−ε
it di)

1
1−ε .

2.3 Intermediate good producers

There is a continuum of differentiated intermediate good producers that combine capi-
tal and labor with the production function:

yi�t = max
{
Atk

α
i�t l

1−α
i�t −φzt�0

}
� (10)
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The common neutral technological levelAt follows a random walk with a drift in logs:

logAt = logAt−1 +ΛA + σAεA�t − (1 − α)dtθt� εA�t ∼ N (0�1)�

subject to a Gaussian shock εA�t and a rare disaster shock dt with a time-varying impact
θt . Following Gabaix (2011) and Gourio (2012), disasters reduce physical capital and total
output by the same factor. This can be easily generalized at the cost of heavier notation
and, possibly, additional state variables. The common fixed cost, φzt , is indexed by a

measure of technology, zt =A
1

1−α
t μ

α
1−α
t , to ensure that it remains relevant over time.

Intermediate good producers rent labor and capital in perfectly competitive markets
with flexible wages and rental rates of capital. However, intermediate good producers
set prices following a Calvo schedule. In each period, a fraction 1 − θp of intermediate
good producers reoptimize their prices to p∗

t = pit (the reset price is common across all
firms that update their prices). All other firms keep their old prices. Given an indexation
parameter χ, this pricing structure yields a Calvo block (see the derivation in the Online
Appendix):

kt

lt
= α

1 − α
wt

rt
� (11)

g1
t = mctyt + θpEtMt+1

(
Π
χ
t

Πt+1

)−ε
g1
t+1� (12)

g2
t =Π∗

t yt + θpEtMt+1

(
Π
χ
t

Πt+1

)1−ε( Π∗
t

Π∗
t+1

)
g2
t+1� (13)

εg1
t = (ε− 1)g2

t � (14)

1 = θp
(
Π
χ
t−1

Πt

)1−ε
+ (1 − θp)

(
Π∗
t

)1−ε
� (15)

mct =
(

1
1 − α

)1−α( 1
α

)αw1−α
t rαt
At

� (16)

Here, Πt ≡ pt
pt−1

is the inflation rate in terms of the final good, Π∗
t ≡ p∗

t
pt

is the ratio be-
tween the reset price and the price of the final good, mct is the marginal cost of the
intermediate good producer, and g1

t and g2
t are auxiliary variables that allow us to write

this block recursively.

2.4 The monetary authority

The monetary authority sets the nominal interest rate according to the Taylor rule:

Rt

R
=

(
Rt−1

R

)γR((
Πt

Π

)γΠ( yt

yt−1

exp(Λy)

)γy)1−γR
eσmεm�t � (17)

where εm�t ∼ N (0�1) is a monetary shock, the variable Π is the target level of inflation,
and R is the implicit target for the nominal gross return of bonds (which depends onΠ,
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β, and the growth rate Λy along the balanced growth path of the model). The proceed-
ings from monetary policy are distributed as a lump sum to the representative house-
hold.

2.5 Aggregation

The aggregate resource constraint is given by

ct + xt = 1
v
p
t

(
Atk

α
t l

1−α
t −φzt

)
� (18)

where

v
p
t =

∫ 1

0

(
pit
pt

)−ε
di

is a measure of price dispersion with law of motion:

v
p
t = θp

(
Π
χ
t−1

Πt

)−ε
v
p
t−1 + (1 − θp)

(
Π∗
t

)−ε
�

2.6 Asset prices

Rare disasters have a large impact on asset prices. Indeed, this is the reason they have
become a popular area of research. Thus, it is worthwhile to review three asset pricing

implications of the model. First, the price of a one-period risk-free real bond, qft , is

q
f
t = Et(Mt+1)�

Second, the price of a claim to the stream of dividends divt = yt − wtlt − xt (all income
minus labor income and investment), which we can call equity, is equal to

qet = Et
(
Mt+1

(
divt+1 +qet+1

))
�

We specified that the household owns the physical capital and rents it to the firm. Given
our complete markets assumption, this is equivalent to the firm owning the physical
capital and the household owning these claims to dividends. Our ownership conven-
tion makes deriving optimality conditions slightly easier. Third, we can define the price-
earnings ratio:

qet
divt

= Et

(
Mt+1

divt+1

divt

(
1 + qet+1

divt+1

))
�

All of these prices can be solved indirectly once we have obtained the solution of
Mt+1 and other endogenous variables or simultaneously. To show the flexibility of Tay-

lor projection, we will solve for qft and qet simultaneously with the other endogenous
variables. This approach is necessary, for example, in models with financial frictions,
where asset prices can determine real variables.
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However, in general, it is not a good numerical strategy to solve simultaneously for
volatile asset prices. For instance, the price of a consol fluctuates wildly, especially if the
expected return is low or negative. This happens when the disaster risk suddenly rises.
The perturbation solution for the price of this asset displays large Taylor coefficients
that converge very slowly. Series-based methods may even fail to provide a solution if
the variables move outside the convergence domain of their series.

2.7 Stripping down the full model

To examine the computational properties of the solution for models of different size and
complexity, we solve eight versions of the model. Version 1 of the model is a benchmark
real business cycle model with Epstein–Zin preferences and time-varying disaster risk.
Prices are fully flexible, the intermediate good producers do not have market power (i.e.,
ε goes to infinity), and there are no adjustment costs in investment. Hence, instead of
the Calvo block (11)–(16), factor prices are determined by their marginal products:

rt = αAtkα−1
t l1−α

t � (19)

wt = (1 − α)Atkαt l−αt � (20)

The benchmark version consists of four state variables: planned capital k∗
t−1, disaster

shock dt , disaster risk θt , and technology innovations σAεA�t . Also, since the model sat-
isfies the classical dichotomy, we can ignore the Taylor rule.

Version 2 of the model introduces investment adjustment costs to version 1, but not
the investment-specific technological shock. This adds past investment xt−1 as another
state variable. We still ignore the monetary part of the model.

Version 3 of the model reintroduces price rigidity. Since we start using the Calvo
block (11)–(16), we need two additional state variables: past inflationΠt−1 and price dis-
persion vpt−1. However, in this version 3, we employ a simple Taylor rule that responds
only to inflation. Versions 4 and 5 extend the Taylor rule, so it responds to output growth
and the past interest rate. These two versions introduce past output and the past interest
rate as additional state variables. But, in all three versions, there are no monetary shocks
to the Taylor rule.

Finally, versions 6, 7, and 8 of the model introduce the investment-specific techno-
logical shock, the monetary shocks, and the preference shocks. These shocks are added
to the vector of state variables one by one. The full model (version 8) contains 12 state
variables.

3. Calibration

Before we compute the model, we normalize all relevant variables to obtain stationarity.
We follow the normalization scheme in Fernández-Villaverde and Rubio-Ramírez (2009)
(see the Online Appendix).

The model is calibrated at a quarterly frequency. When needed, Gaussian shocks are
discretized by monomial rules with 2nε nodes (for nε shocks). Parameter values are listed
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Table 1. Baseline calibration.

Parameter Value Source

Leisure preference (ν) 2�33 Gourio (2012)
Risk aversion (γ) 3�8 Gourio (2012)
Inverse IES (ψ̂) 0�5 Gourio (2012)
Trend growth of technology (ΛA) 0�0028 FQR (2015)
Std. of technology shocks (σA) 0�01 Gourio (2012)
Trend growth of investment shock (Λμ) 0
Std. of investment shock (σμ) 0�0024 FQR (2015)
Discount factor (β) 0�99 FQR (2015)
Cobb–Douglas parameter (α) 0�21 FQR (2015)
Depreciation (δ) 0�025 FQR (2015)
Fixed production costs (φ) 0 FQR (2015)
Disaster probability (pd) 0�0043 Gourio (2012)
Mean disaster size (θ̄) 0�5108
Persistence of disaster risk shock (ρθ) 0�9
Std. of disaster risk shock (σθ) 0�025
Adjustment cost parameter (κ) 9�5 FQR (2015)
Calvo parameter (θp) 0�8139 FQR (2015)
Automatic price adjustment (χ) 0�6186 FQR (2015)
Elasticity of substitution (ε) 10 FQR (2015)
Inflation target (Π) 1�005
Inflation parameter in Taylor rule∗ (γΠ) 1�3
Output growth parameter in Taylor rule (γy ) 0�2458 FQR (2015)
Interest smoothness in Taylor rule∗ (γR) 0�5
Std. of monetary shock (σm�t ) 0�0025 FQR (2015)
Persistence of intertemporal shock (ρξ) 0�1182 FQR (2015)
Std. of intertemporal shock (σξ) 0�1376 FQR (2015)

in Table 1. Most parameters are taken from Fernández-Villaverde, Guerrón-Quintana,
and Rubio-Ramírez (2015), who perform a structural estimation of a very similar DSGE
model (hereafter FQR). There are three exceptions. The first exception is Epstein–Zin pa-
rameters and the standard deviation of TFP shocks, which we take from Gourio (2012).

The second exception is the three parameters in the Taylor rule, which we calibrate
somewhat more conservatively than those in FQR. Specifically, we pick the inflation tar-
get to be 2% annually, the inflation parameter γΠ to be 1�3, which satisfies the Taylor
principle, and the interest smoothing parameter γR to be 0�5. The estimated values of
γR and γΠ in FQR are less common in the literature and, when combined with rare dis-
asters, they generate too strong, and empirically implausible, nonlinearities.

The third exception is the parameters related to disasters. In the baseline calibra-
tion, we calibrate the mean disaster impact θ̄ such that output loss in a disaster is
40%. This is broadly in line with Barro (2006), who estimates an average contraction
of 35% compared to trend. We do not account for partial recoveries, so the impact of
disaster risk may be overstated. For our purposes, this bias makes the model harder
to solve because the nonlinearity is stronger. The persistence of disaster risk is set at
ρθ = 0�9, which is close to Gourio (2012) and Gabaix (2012), although those researchers
use slightly different specifications. The standard deviation of the disaster risk is cali-
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brated at σθ = 0�025. The four disaster parameters—probability, mean impact, persis-
tence, and standard deviation—have a strong effect on the precautionary saving motive
and asset prices. Ideally, these parameters should be jointly estimated, but to keep our
focus, we do not pursue this route. Instead, we choose parameter values that generate
realistic risk premia and that are broadly consistent with the previous literature.

We also consider an alternative no-disaster calibration, where we set the mean and
standard deviation of the disaster impact very close to zero, while keeping all of the other
parameter values as in the baseline calibration in Table 1. We do so to benchmark our
results without disasters and gauge the role of large risks regarding accuracy and com-
putational time.

4. Solution methods

Given that we deal with models with up to 12 state variables, we only investigate so-
lution methods that scale well in terms of the dimensionality of the state space. This
eliminates, for example, value function iteration or tensor-based projection methods.
The three methods left on the table are perturbation (a particular case of which is lin-
earization), Taylor projection, and Smolyak collocation.3 The methods are implemented
for different polynomial orders. More concretely, we aim to compute 176 solutions, with
11 solutions per each of the eight versions of the model—perturbations from order 1 to
5, Taylor projections from order 1 to 3, and Smolyak collocation from level 1 to 3—and
the two calibrations described above, the baseline calibration and the no-disaster cali-
bration. As we will point out below, we could not find a few of the Smolyak collocation
solutions.

Perturbation and Smolyak collocation are well known. They are described in detail
in Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016). In comparison, Taylor
projection is a new method recently proposed by Levintal (2018). We discuss the three
methods briefly in the next pages (see also an example in the Online Appendix). But,
first, we need to introduce some notation by casting the model in the form

Etf (yt+1� yt� xt+1�xt)= 0� (21)

yt = g(xt)� (22)

xt+1 = h(xt)+ηεt+1� (23)

where xt is a vector of nx state variables, yt is a vector of ny control variables, f :
R

2nx+2ny → R
nx+ny , g : Rnx → R

ny , h : Rnx → R
nx , η is a known matrix of dimensions

nx × nε, and ε is a nε × 1 vector of zero mean shocks. The first equation gathers all ex-
pectational conditions, the second one maps states into controls, and the last one is the
law of motion for states. Equations (21)–(23) constitute a system of ny + nx functional

3Judd, Maliar, and Maliar (2011) offered an alternative, simulation-based solution method. Maliar and
Maliar (2014) surveyed the recent developments in simulation methods. We abstract from simulation meth-
ods, because the Smolyak collocation method is already satisfactory in terms of computational costs. For
larger models, simulation methods may be more efficient than Smolyak collocation, although we will later
comment on why we conjecture that, for our class of models, simulation methods may face challenges.
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equations in the unknown policy functions g and h. In practical applications, some of
the elements of h are known (e.g., the evolution of the exogenous state variables), so the
number of unknown functions and equations is smaller.

4.1 Perturbation

Perturbation introduces a parameter σ that controls the volatility of the model. Specifi-
cally, equation (22) is replaced by yt = g(xt�σ) and equation (23) with xt+1 = h(xt�σ)+
σηεt+1. At σ = 0, the economy boils down to a deterministic model, whose steady state,
x̄ (assuming it exists), can often be easily calculated. Then, by applying the implicit func-
tion theorem, we recover the derivatives of the policy functions g and h with respect to
x and σ . Having these derivatives, the policy functions are approximated by a Taylor se-
ries around x̄. To capture risk effects, the Taylor series must include at least second-order
terms.

High-order perturbation solutions have been developed and explored by Judd
(1998), Gaspar and Judd (1997), and Aruoba, Fernández-Villaverde, and Rubio-Ramírez
(2006), among others. Obtaining perturbation solutions is easy for low orders, but cum-
bersome at high orders, especially for large models. In this paper, we use the pertur-
bation algorithm presented in Levintal (2017), which allows solving models with non-
Gaussian shocks up to the fifth order. We also reduce computational time by adopting
the algorithm proposed by Kameník (2005) to solve the Sylvester equation that arises in
perturbation methods.

4.2 Smolyak collocation

Collocation is one of the projection methods introduced by Judd (1992). The policy func-
tions g(x) and h(x) are approximated by polynomial functions ĝ(x�Θg) and ĥ(x�Θh),
where Θg and Θh are the polynomial coefficients of ĝ and ĥ, respectively. Let Θ =
(Θg�Θh) denote a vector of size nΘ of all polynomial coefficients. Substituting in equa-
tion (21) yields a residual function R(xt�Θ):

R(xt�Θ)= Etf
(
ĝ
(
ĥ(xt�Θh)+ηεt+1�Θg

)
� ĝ(xt�Θg)� ĥ(xt�Θh)+ηεt+1�xt

)
� (24)

Collocation methods evaluate the residual function R(x�Θ) at N points {x1� � � � � xN},
and find the vector Θ for which the residual function is zero at all points. This requires
solving a nonlinear system forΘ:

R(xi�Θ)= 0� ∀i= 1� � � � �N� (25)

The number of grid points N is chosen such that the number of conditions is equal to
the number of coefficients to be solved (nΘ).

Since DSGE models are multidimensional, the choice of the basis function is cru-
cial for computational feasibility. We follow Krüger and Kubler (2004) by using Smolyak
polynomials of levels 1, 2, and 3 as the basis function. These approximation levels
vary in the size of the basis function. The level 1 approximation contains 1 + 2nx
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terms, the level 2 contains 1 + 4nx + (4nx(nx − 1))/2 terms, and the level 3 contains
1+8nx+12nx(nx−1)/2+8nx(nx−1)(nx−2)/6 terms. The Smolyak approximation level
is different from the polynomial order, as it contains higher order terms. For instance,
an approximation of level 1 contains quadratic terms. Hence, the number of terms in
a Smolyak basis of level k is larger than the number of terms in a kth-order complete
polynomial.4

The first step of this approach is to construct the grid {x1� � � � � xN}. The bounds of the
grid affect the accuracy of the solution. For a given basis function, a wider grid reduces
accuracy, because the same approximating function has to fit a larger domain of the
state space. We would like to have a good fit at points that the model is more likely to
visit, at the expense of other less likely points.

Disaster models pose a special challenge for grid-based methods because the dis-
aster periods are points of low likelihood, but with a large impact. Hence, methods that
build a grid over a high probability region (Maliar and Maliar (2014)) may not be ap-
propriate for disaster models. For this reason, we choose a more conservative approach
and construct the grid by a hypercube. Specifically, we obtain a third-order perturba-
tion solution, which is computationally cheap, and use it to simulate the model. Then
we take the smallest hypercube that contains all the simulation points (including the
disaster periods) and build a Smolyak grid over the hypercube. In the level-3 Smolyak
approximations, we had to increase the size of the hypercube by up to 60%; otherwise,
the Jacobian would be severely ill-conditioned (we use the Newton method; see below).
Our grid method is extremely fast, so we ignore its computational costs in our run time
comparisons.5

The final and most demanding step is to solve the nonlinear system (25). Previous
studies have used time iteration, for example, Krüger and Kubler (2004), Malin, Krüger,
and Kubler (2011), and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-
Ramírez (2015), but this method can be slow. More recently, Maliar and Maliar (2014)
have advocated the use of fixed-point iteration. For the size of our models (up to 12 state
variables), a Newton method with analytic Jacobian performs surprisingly well. The run
time of the Newton method is faster than that of the fixed-point methods reported in
the literature for models of similar size, for example, see Judd et al. (2014). Moreover, the
Newton method ensures convergence if the initial guess is sufficiently good, whereas
fixed-point iteration does not guarantee convergence even if it starts near the solution.
Our initial guess is a third-order perturbation solution, which proves to be sufficiently
accurate for our models. Thus, the Newton method converges in just a few iterations.6

4We use the codes by Judd, Maliar, Maliar, and Valero (2014) to construct the Smolyak polynomials and
the corresponding grid. We also employ their codes of monomial rules to discretize Gaussian shocks.

5Judd et al. (2014) proposed replacing the hypercube with a parallelotope that encloses the ergodic set.
This technique may increase accuracy if the state variables are highly correlated. In our case, the correlation
between the state variables is low (piecewise correlation is 0�14 on average), so the potential gain from this
method is small, while computational costs are higher. More recently, Maliar and Maliar (2014, 2015) have
proposed new types of grids. Given the dimensionality of our problem and the feasibility of using a Newton
algorithm with analytic derivatives to solve for Θ, these techniques, which carry computational costs of
their own, are unlikely to perform better than our implementation.

6We work on a Dell computer with an Intel(R) Core(TM) i7-5600U Processor and 16GB RAM, and our
codes are written in MATLAB/MEX.
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Our implementation of Smolyak collocation yields a numerically stable system. By
comparison, derivative-free solvers (e.g., Maliar and Maliar (2015)) gain more flexibility
in the choice of basis functions and grids, but lose the convergence property of Newton-
type solvers, which are especially convenient in our case because we have access to a
good initial guess.

4.3 Taylor projection

Taylor projection is a new type of projection method proposed by Levintal (2018). As
with standard projection methods, the policy functions g(x) and h(x) are approximated
by polynomial functions ĝ(x�Θg) and ĥ(x�Θh), whereΘ= (Θg�Θh) is a vector of size nΘ
of all polynomial coefficients. In our application, we use simple monomials as the basis
for our approximation, but one could employ a more sophisticated basis. Given these
polynomial functions, we build the residual functionR(x�Θ) exactly as in equation (24).
As with standard projection methods, the goal is to findΘ for which the residual function
R(x�Θ), defined by equation (24), is approximately zero over a certain domain of the
state space that is of interest.

To do so, one can approximateR(x�Θ) in the neighborhood of x0 by a kth-order Tay-
lor series about x0. In our application, we select x0 to be the deterministic steady state
of the model, but nothing forces us to make that choice. This flexibility in the selection
of x0 is an advantage of Taylor projection with respect to standard perturbation, which
is constrained to take the Taylor series expansion of the decision rules of the economy
around the deterministic steady state of the model.

More concretely, if all the Taylor coefficients up to the kth-order are zero, then
R(x�Θ)≈ 0 in the neighborhood of x0. This amounts to finding values for Θ that make
the residual function and all its derivatives with respect to the state variables up to the
kth-order zero at x0. Formally,Θ solves

R(x0�Θ)= 0�

∂R(x�Θ)

∂xi

∣∣∣
x0

= 0� ∀i= 1� � � � � nx�

∂2R(x�Θ)

∂xi1∂xi2

∣∣∣
x0

= 0� ∀i1� i2 = 1� � � � � nx�

���

∂kR(x�Θ)

∂xi1 · · ·∂xik
∣∣∣
x0

= 0� ∀i1� � � � � ik = 1� � � � � nx�

(26)

System (26) is solved using the Newton method with the analytic Jacobian. For com-
parability with Smolyak collocation, we use the same initial guess (the polynomial coef-
ficients implied by a third-order perturbation solution) and the same stopping rule for
the Newton method.
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Taylor projection offers several computational advantages over standard projection
methods. First, a grid is not required. The polynomial coefficients are identified by infor-
mation that comes from the model derivatives, rather than a grid of points. Second, the
basis function is a complete polynomial. This gives additional flexibility over Smolyak
polynomials. For instance, interaction terms can be captured by a second-order solu-
tion, which has 1 + nx + nx(nx + 1)/2 terms in the basis function. In Smolyak polynomi-
als, interactions show up only at the level-2 approximation with 1+4nx+(4nx(nx−1))/2
terms in the basis function (asymptotically four times larger). More terms in the basis
function translate into a larger Jacobian, which is the main computational bottleneck of
the Newton method. Finally, the Jacobian of Taylor projection is much sparser than the
one from collocation. Hence, the computation of the Jacobian and the Newton step is
cheaper.

The main cost of Taylor projection is the computation of all of the derivatives. The
Jacobian requires differentiation of the nonlinear system (26) with respect to Θ. These
derivatives can be computed efficiently by the chain rule method developed by Levintal
(2018). This method expresses higher-order chain rules in compact matrix notation that
exploits symmetry, permutations, and repeated partial derivatives. The chain rules can
also take advantage of sparse matrix (or tensor) operations; for more details, see Levintal
(2018).

5. Results

We are now ready to discuss our results. In three subsections, we will describe our find-
ings regarding accuracy, simulations, and computational costs.

5.1 Accuracy

As proposed by Judd (1992), we assess accuracy by comparing the mean and maximum
unit-free Euler errors across the ergodic set of the model. We approximate this ergodic
set by simulating the model with the solution that was found to be the most accurate
(third-order Taylor projection). The length of the simulation is 10�000 periods starting
at the deterministic steady state, from which we exclude the first 100 periods (results
were robust to longer burn-in periods). All simulations are buffeted by the same random
shocks.

We first report accuracy measures for the no-disasters calibration model to bench-
mark our results. Tables 2 and 3 report the mean and maximum error for this calibra-
tion. As expected, all 11 solutions are reasonably accurate for each of the eight versions
of the model. The mean Euler errors (in log10 units) range from around −2�7 (for a first-
order perturbation) to −10�2 (for a level-3 Smolyak). The max Euler errors range from
−1�3 (for a first-order perturbation) to −9�2 (for a level-3 Smolyak). These results repli-
cate the well-understood notion that models with weak volatility can be accurately ap-
proximated by linearization; see, for a similar result, Aruoba, Fernández-Villaverde, and
Rubio-Ramírez (2006).7

7We approximate the same set of variables by all methods and use the model equations to solve for the
remaining variables. While applying perturbation methods, researchers usually employ the perturbation
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Table 2. No disasters: Mean Euler errors (log10) across the ergodic set.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ 4 −2�8 −3�3 −5�2 −6�3 −7�1 −3�2 −6�1 −8�6 −3�3 −7�4 −10�2
2. + capital adjustment costs 5 −2�7 −3�9 −5�0 −6�6 −7�1 −2�9 −4�7 −6�5 −2�7 −4�9 −7�0
3. + Calvo 7 −2�7 −3�9 −4�4 −5�9 −6�5 −3�1 −4�9 −6�6 −3�1 −5�2 −6�9
4. + Taylor rule depends on output growth 8 −2�7 −4�0 −4�7 −6�1 −6�9 −3�1 −4�9 −6�7 −3�1 −5�2 −6�4
5. + Taylor rule is smoothed 9 −2�7 −4�0 −4�6 −6�0 −6�7 −3�1 −4�9 −6�7 −3�1 −5�2 −6�4
6. + investment shock 10 −2�7 −4�0 −4�6 −6�1 −6�7 −3�1 −4�9 −6�7 −3�1 −5�2 −6�5
7. + monetary shock 11 −2�7 −4�0 −4�6 −5�9 −6�7 −3�0 −4�8 −6�5 −3�1 −5�1 −6�4
8. + intertemporal preference shock 12 −2�7 −3�9 −4�6 −5�7 −6�6 −2�9 −4�6 −6�3 −3�1 −5�1 −6�4

Table 3. No disasters: Max Euler errors (log10) across the ergodic set.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ 4 −1�3 −2�3 −4�2 −5�4 −7�1 −1�3 −3�4 −5�5 −1�8 −6�2 −9�2
2. + capital adjustment costs 5 −1�6 −2�6 −3�8 −5�2 −6�4 −1�6 −2�6 −3�9 −1�2 −2�9 −5�4
3. + Calvo 7 −1�4 −2�5 −3�7 −5�0 −5�7 −1�4 −2�5 −3�7 −1�7 −4�0 −5�0
4. + Taylor rule depends on output growth 8 −1�4 −2�5 −3�7 −5�1 −6�1 −1�4 −2�5 −3�7 −1�7 −3�9 −4�7
5. + Taylor rule is smoothed 9 −1�4 −2�5 −3�8 −5�1 −6�3 −1�4 −2�5 −3�7 −1�7 −3�7 −4�5
6. + investment shock 10 −1�5 −2�6 −3�9 −5�3 −6�3 −1�5 −2�7 −3�9 −1�7 −3�9 −4�6
7. + monetary shock 11 −1�5 −2�6 −3�8 −5�2 −6�1 −1�5 −2�6 −3�8 −1�7 −3�7 −4�6
8. + intertemporal preference shock 12 −1�4 −2�5 −3�7 −5�0 −5�9 −1�4 −2�5 −3�7 −1�7 −3�7 −4�6
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Table 4. Disaster models—Mean Euler errors (log10) across the ergodic set.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�7 −2�1 −2�5 −3�0 −3�5 −3�1 −5�2 −6�9 −3�2 −6�0 −8�5
2. + capital adjustment costs 5 −1�6 −2�0 −2�4 −2�9 −3�3 −2�4 −3�9 −5�3 – −1�6 −3�5
3. + Calvo 7 −1�7 −2�0 −1�8 −1�7 −1�9 −2�4 −3�8 −4�8 −1�0 −2�6 −3�6
4. + Taylor rule depends on output growth 8 −1�8 −2�1 −2�1 −2�0 −2�2 −2�5 −3�9 −5�1 −1�0 −2�6 −3�5
5. + Taylor rule is smoothed 9 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�6
6. + investment shock 10 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�5
7. + monetary shock 11 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�7
8. + intertemporal preference shock 12 −1�8 −2�2 −2�1 −2�1 −2�2 −2�2 −3�6 −4�4 – −2�5 −3�6

Table 5. Disaster models—Max Euler errors (log10) across the ergodic set.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�5 −1�6 −1�8 −2�1 −2�4 −1�5 −3�0 −3�7 −1�8 −4�7 −6�8
2. + capital adjustment costs 5 −0�1 −0�8 −1�5 −2�0 −2�3 −0�1 −0�8 −1�4 – −0�4 −1�9
3. + Calvo 7 −0�2 −1�2 −1�7 −1�6 −1�6 −0�3 −1�2 −2�1 −0�1 −1�5 −2�7
4. + Taylor rule depends on output growth 8 −0�1 −1�1 −1�8 −1�8 −1�9 −0�2 −1�1 −1�7 −0�1 −1�4 −2�4
5. + Taylor rule is smoothed 9 −0�1 −1�0 −1�6 −1�7 −1�9 −0�2 −1�1 −1�6 – −1�4 −2�3
6. + investment shock 10 −0�1 −1�1 −1�7 −1�8 −1�9 −0�2 −1�1 −1�8 – −1�4 −2�4
7. + monetary shock 11 −0�2 −1�3 −1�7 −1�8 −1�9 −0�3 −1�3 −1�8 – −1�5 −2�5
8. + intertemporal preference shock 12 −0�3 −1�4 −1�7 −1�8 −1�8 −0�4 −1�4 −2�0 – −1�4 −2�4
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Tables 4 and 5 report the accuracy measures for the baseline calibration.8 The accu-
racy measures change significantly when disasters are introduced into the model. The
mean and maximum errors are now, across all solutions, one to three orders of mag-
nitude larger than before. First-order perturbation and Taylor projection solutions are
severely inaccurate, with max Euler errors as high as −0�1. Higher-order perturbation
solutions are more accurate, but errors are still relatively large. In particular, we find that
a third-order perturbation solution is unlikely to be accurate enough, with mean Euler
errors between −1�8 and −2�5 and max Euler errors between −1�5 and −1�8. Even a fifth-
order perturbation can generate a disappointing mean Euler error of between −1�9 and
−3�5. It is interesting to highlight that the higher-order terms introduced in the approx-
imated solution by the fourth- and fifth-order perturbations are larger than in similar
models without rare disasters. For example, the contribution of the fifth-order correc-
tion term associated with the perturbation parameter changes the annualized interest
rate by roughly 0�3%, which is nonnegligible. Levintal (2017) discussed in detail the in-
terpretation of these additional correction terms.

In comparison, second- and third-order Taylor projections deliver a much more
solid accuracy, with mean Euler errors between −3�6 and −6�9. The max Euler errors
are about two orders of magnitude larger, suggesting that in a few rare cases these solu-
tions are less accurate. We will later explore whether the differences between mean and
max Euler errors are economically significant. We can, however, provide some intuition
as to why the Taylor projection outperforms perturbation. In standard perturbation, we
find a solution for the variables of interest by perturbing a volatility of the shocks around
zero. In comparison, in the Taylor projection (as we would do in a projection), we take
account of the true volatility of the shocks. More concretely, we evaluate the residual
function and its derivatives at a point such as the deterministic steady state of the state
variables (although other points are possible), but all of the relevant conditional expec-
tations in the Euler conditions are still exact, not approximated around a zero volatility.
In models with strong volatility, such as those with rare disasters, this can make a big
difference.

The Smolyak solution is an improvement over the fifth-order perturbation solu-
tion, but it is typically less accurate than a Taylor projection of comparable order. How
can this happen given the higher-order terms in the polynomials forming the Smolyak
solution—because of the strong nonlinearity generated by rare disasters. The Smolyak
method has to extrapolate outside the grid. Since the grid already contains extreme
points (rare disasters), extrapolating outside these extreme points introduces even more
extreme points (e.g., a disaster period that occurs right after a disaster period). By com-
parison, Taylor projection evaluates the residual function and its derivatives at one
point, which is a normal period. Thus, it has to extrapolate only for next-period likely

solution for all variables instead. We avoid that practice because we want to be consistent across all solution
methods. See the Online Appendix for details.

8The results for the level-1 Smolyak collocation are partial because the Newton solver did not always
converge. For the level-3 Smolyak and to avoid ill-conditioned Jacobians, the size of the grid was increased
by 30% for version 3 of the model and by 60% for versions 4–8.
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outcomes, which can be either normal or disaster periods. This reduces the approxima-
tion errors that contaminate the solution. Furthermore, Taylor projection takes advan-
tage of the information embedded in the derivatives of the residual function, informa-
tion that is ignored in projection methods.

To dig deeper, we plot in Figure 1 the model residuals across the ergodic set for
fourth- and fifth-order perturbations, for second- and third-order Taylor projection, and
level-2 and level-3 Smolyak collocation (lower level approximations display similar er-
rors, but of higher magnitude). We show the errors for the last 1000 periods out of our
simulation of 10�000 and for the full model (version 8).

These plots reveal three important differences among the errors of each method.
First is the larger magnitude of the errors in perturbation in comparison with the errors
in Taylor projection and Smolyak. Second, Taylor projection exhibits very small errors
throughout the sample, except for one peak of high errors (and five intermediate ones),
which occur around particularly large disaster periods.9 Since Taylor projection zeros
the Taylor series of the residual function, the residuals are small as long as the model
stays around the center of the Taylor series (in our case, the deterministic steady state).
Namely, Taylor projection yields a locally accurate solution, which deteriorates at points
distant from the center. Fortunately, these points are unlikely, even considering the dis-
aster risk. More crucially, the simulated model moments and IRFs (and, thus, the eco-
nomic implications) of Taylor projection and Smolyak are nearly indistinguishable (see
the next subsection). Also, recall that most of the interesting economics of rare disasters
is not in what happens after a disaster (the economy sinks), but on how the possibility
of a disaster changes the behavior of the economy in normal times (e.g., regarding as-
set prices). Thus, obtaining good accuracy in normal times, as Taylor projection does, is
rather important.

To make this point clearer, in Figure 2, we replicate Figure 1, but with zero realiza-
tions of the disaster risk (the representative household still believes the probability for
disasters is as described in Section 2). Figure 2 shows the excellent performance of Taylor
projection in comparison with the other solution methods when the economy is travel-
ing around its ergodic mean and no disaster occurs, indeed more so than alternative
algorithms.

Third, the Smolyak errors are more evenly distributed than the errors from the Taylor
projection. This is not surprising: the collocation algorithm minimizes residuals across
the collocation points, which represent the ergodic set. This also reflects the uniform
convergence of projection methods (Judd (1998)). The disaster periods tilt the solution
toward these rare episodes at the expense of the more likely normal states. As a result,
the errors in normal states get larger, because the curvature of the basis function is lim-
ited. In other words, to get a bit better accuracy in five periods than Taylor projection,
Smolyak sacrifices some accuracy in 995 periods. Given the evidence that we report be-
low of the moments of the simulations, the shape of the IRFs, and computational time,
and the economic logic of the model about the importance of its behavior in normal

9We can also see in Figure 1 that four equations exhibit the largest errors consistently across all solutions.
These are the law of motion of capital (equation (3)), the Euler condition for qt (equation (7)), and the law
of motions for g1 and g2 (equations (12) and (13)).
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Figure 1. Model residuals across the ergodic set. This figure depicts the unit-free residuals of
the model equilibrium conditions (version no. 8) for six different solution methods. The resid-
uals are computed across a fixed sample of 1000 points, which represent the ergodic set of the
model. Each plot contains 15 lines for the 15 equations of the model. Note that the scale of the
third-order Smolyak and the third-order Taylor projection is different from the other plots.

times outlined above, this sacrifice is not worthwhile. A possible solution to the problem
would be to increase the Smolyak order, but again as shown below, the computational
costs are too high.

Finally, we can improve the accuracy of Taylor projection by solving the model out-
side the deterministic steady state (as we will do in Section 6) or at multiple points (as
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Figure 2. Model residuals across the ergodic set conditional on no realized disasters. This figure
depicts the unit-free residuals of the model equilibrium conditions (version no. 8) for six differ-
ent solution methods. The residuals are computed across a fixed sample of 1000 points, which
represent the ergodic set of the model with zero realized disasters. Each plot contains 15 lines for
the 15 equations of the model. Note that the scale of the third-order Smolyak and the third-order
Taylor projection is different from the other plots.

in Levintal (2018)). For instance, we could solve the model also at a disaster period and
use this solution when the model visits that point. For these solutions to be accurate,
an important condition must hold: the state variables must not change dramatically (in
probability) from the current period to the future period. This condition holds when the
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model is in a normal state, because it is highly likely that it stays at a normal state in the
next period as well. However, if the model is in a disaster state, it is very likely that it will
change to a normal state in the next period. Hence, solving the model in a disaster state
is prone to higher approximation errors. Nevertheless, a researcher can build the model
in such a way that the future state of the economy is likely to be similar to the current
state (for instance, by increasing the frequency of the calibration or the persistence of
the exogenous shocks).

5.2 Simulations

Our second step is to compare the equilibrium dynamics generated by the different so-
lutions. In particular, we look at two standard outputs from DSGE models: moments
from simulations and IRFs.

Rare disasters generate a strong impact on asset prices and risk premia. The solu-
tion methods should be able to approximate these effects. Hence, we examine how the
different solutions approximate the prices of equity and risk-free bonds. Tables 6 and 7
present the mean risk-free rate and the mean return on equity across simulations gener-
ated by the different methods (again, 10�000 periods with a burn-in of 100). We focus on
the full model (version 8). By the previous accuracy measures, the most accurate solu-
tions are Taylor projection of orders 2 and 3, and Smolyak collocation of orders 2 and 3.
The mean risk-free rate in these four solutions is 1�5–1�6%. Despite the differences in
mean and maximum Euler errors, from an economic viewpoint, these four solutions
yield roughly the same result.

By comparison, perturbation solutions, which have been found to be less accurate,
generate a much higher risk-free rate, ranging from 4�6% at the first order to 2�1% at
the fifth order. At the third order (a popular choice when solving models with stochas-
tic volatility), the risk-free rate is 2�7%. Thus, perturbation methods fail to approximate
accurately the risk-free rate, unless one goes for very high orders. At the fifth order, the
approximation errors are relatively small, which is consistent with the results in Levintal
(2017). The mean return on equity is more volatile across the different perturbation so-
lutions, but fairly close to the 5�3–5�4% obtained by the four accurate solutions.

Differences in real variables can also be significative. Tables 8 and 9 report the sim-
ulation averages of (detrended) investment and capital in the model, the two real vari-
ables most affected by the precautionary behavior induced by disasters. We can see dif-
ferences of nearly 5% in the average level of investment and capital between, for ex-
ample, a first-order perturbation and a third-order Taylor projection. A similar exercise
appears in Tables 10 and 11, but now in terms of the standard deviation of both vari-
ables. While the differences in the standard deviation of investments are small, they are
relevant for capital. These differences in asset prices and real quantities may cause, for
instance, misleading calibrations or inconsistent estimators, as researchers try to match
observed data with model-simulated data.

We next examine IRFs. We focus on the disaster variables, which generate the main
nonlinearity in our model. Figure 3 presents the response of the model to a disaster
shock. The initial point for each IRF is the stochastic steady state implied by the cor-
responding solution method (note the slightly different initial levels of each IRF). After
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Table 6. Disaster models—Risk-free rate (% annualized)—Simulation average.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 4�6 3�0 1�8 1�1 0�8 0�7 0�7 0�7 0�7 0�7 0�7
2. + capital adjustment costs 5 4�6 2�9 1�6 0�9 0�5 0�5 0�4 0�4 – 0�3 0�4
3. + Calvo 7 4�6 3�0 2�0 1�5 1�1 0�6 0�5 0�5 0�4 0�5 0�5
4. + Taylor rule depends on output growth 8 4�6 3�4 2�6 2�2 1�9 1�5 1�6 1�6 2�0 1�5 1�6
5. + Taylor rule is smoothed 9 4�6 3�3 2�7 2�3 2�0 1�4 1�5 1�5 – 1�5 1�5
6. + investment shock 10 4�6 3�3 2�7 2�3 2�0 1�4 1�5 1�5 – 1�5 1�5
7. + monetary shock 11 4�6 3�3 2�7 2�3 2�1 1�4 1�5 1�6 – 1�5 1�6
8. + intertemporal preference shock 12 4�6 3�3 2�7 2�3 2�1 1�4 1�5 1�6 – 1�5 1�5

Table 7. Disaster models—Return on equity (% annualized)—Simulation average.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 5�1 5�1 5�1 5�1 5�1 5�1 5�1 5�1 5�1 5�1 5�1
2. + capital adjustment costs 5 5�2 5�3 5�5 5�5 5�5 5�5 5�6 5�6 – 5�8 5�6
3. + Calvo 7 5�1 5�3 5�5 5�6 5�6 5�4 5�4 5�4 4�8 5�4 5�4
4. + Taylor rule depends on output growth 8 5�0 5�2 5�4 5�4 5�5 5�3 5�3 5�3 4�4 5�3 5�3
5. + Taylor rule is smoothed 9 5�0 5�1 5�5 5�6 5�7 5�2 5�3 5�3 – 5�3 5�3
6. + investment shock 10 5�0 5�1 5�5 5�7 5�7 5�3 5�3 5�4 – 5�3 5�3
7. + monetary shock 11 5�0 5�2 5�5 5�7 5�7 5�3 5�3 5�4 – 5�3 5�4
8. + intertemporal preference shock 12 5�0 5�2 5�5 5�7 5�7 5�3 5�3 5�4 – 5�3 5�4
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Table 8. Detrended investment—Simulation average.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Smallest 4 0�0699 0�0699 0�0696 0�0695 0�0695 0�0696 0�0695 0�0695 0�0695 0�0695 0�0695
2. 5 0�0700 0�0691 0�0682 0�0678 0�0676 0�0661 0�0673 0�0675 – 0�0697 0�0675
3. 7 0�0563 0�0553 0�0545 0�0539 0�0535 0�0533 0�0534 0�0534 0�0507 0�0534 0�0534
4. 8 0�0563 0�0553 0�0545 0�0540 0�0537 0�0537 0�0536 0�0536 0�0499 0�0536 0�0536
5. 9 0�0563 0�0553 0�0543 0�0538 0�0536 0�0528 0�0536 0�0536 – 0�0536 0�0536
6. 10 0�0563 0�0553 0�0544 0�0538 0�0536 0�0528 0�0536 0�0537 – 0�0537 0�0537
7. 11 0�0563 0�0553 0�0543 0�0538 0�0536 0�0528 0�0536 0�0537 – 0�0536 0�0537
8. Largest 12 0�0563 0�0553 0�0543 0�0538 0�0536 0�0529 0�0536 0�0537 – 0�0536 0�0536

Table 9. Detrended capital—Simulation average.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Smallest 4 2�4575 2�4609 2�4509 2�4473 2�4461 2�4458 2�4457 2�4457 2�4458 2�4457 2�4457
2. 5 2�4619 2�4297 2�3992 2�3848 2�3790 2�3285 2�3691 2�3746 – 2�4614 2�3756
3. 7 1�9705 1�9445 1�9166 1�8975 1�8838 1�8695 1�8774 1�8783 1�7718 1�8768 1�8785
4. 8 1�9707 1�9437 1�9162 1�9005 1�8917 1�8828 1�8861 1�8868 1�7495 1�8880 1�8857
5. 9 1�9707 1�9440 1�9110 1�8930 1�8856 1�8535 1�8851 1�8869 – 1�8878 1�8859
6. 10 1�9694 1�9432 1�9101 1�8921 1�8847 1�8525 1�8841 1�8860 – 1�8864 1�8851
7. 11 1�9693 1�9429 1�9099 1�8921 1�8848 1�8528 1�8843 1�8862 – 1�8836 1�8855
8. Largest 12 1�9695 1�9412 1�9085 1�8908 1�8835 1�8531 1�8829 1�8849 – 1�8854 1�8838
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Table 10. Detrended investment—Simulation standard deviation.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Smallest 4 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056 0�0056
2. 5 0�0054 0�0059 0�0060 0�0059 0�0059 0�0071 0�0058 0�0059 – 0�0062 0�0059
3. 7 0�0052 0�0051 0�0050 0�0049 0�0048 0�0049 0�0048 0�0049 0�0120 0�0049 0�0049
4. 8 0�0054 0�0053 0�0052 0�0051 0�0050 0�0050 0�0050 0�0050 0�0140 0�0051 0�0051
5. 9 0�0054 0�0055 0�0053 0�0051 0�0051 0�0049 0�0051 0�0051 – 0�0051 0�0051
6. 10 0�0054 0�0055 0�0053 0�0051 0�0051 0�0048 0�0050 0�0051 – 0�0051 0�0051
7. 11 0�0053 0�0054 0�0052 0�0050 0�0050 0�0047 0�0050 0�0050 – 0�0051 0�0050
8. Largest 12 0�0054 0�0053 0�0051 0�0050 0�0050 0�0048 0�0050 0�0050 – 0�0050 0�0050

Table 11. Detrended capital—Simulation standard deviation.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Smallest 4 0�0652 0�0653 0�0649 0�0647 0�0647 0�0648 0�0647 0�0647 0�0648 0�0647 0�0647
2. 5 0�1165 0�1168 0�1151 0�1140 0�1135 0�1104 0�1137 0�1132 – 0�1580 0�1125
3. 7 0�0945 0�0955 0�0932 0�0912 0�0903 0�0865 0�0901 0�0900 0�2003 0�0918 0�0899
4. 8 0�0958 0�0973 0�0951 0�0933 0�0924 0�0886 0�0920 0�0920 0�2325 0�0935 0�0920
5. 9 0�0959 0�0981 0�0955 0�0935 0�0925 0�0850 0�0921 0�0922 – 0�0936 0�0923
6. 10 0�0953 0�0974 0�0950 0�0932 0�0923 0�0857 0�0920 0�0921 – 0�0938 0�0921
7. 11 0�0980 0�1003 0�0978 0�0961 0�0953 0�0885 0�0951 0�0951 – 0�0969 0�0951
8. Largest 12 0�0972 0�0987 0�0961 0�0942 0�0934 0�0868 0�0931 0�0932 – 0�0950 0�0931
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Figure 3. Impulse response functions to a disaster shock.

the initial shock, all future shocks are zero.10 The figure plots the response of output,
investment, and consumption. In the left panels, we plot three perturbation solutions
and a third-order Taylor projection. In the right panels, we plot the three Taylor projec-

10Following conventional usage, the stochastic steady state is defined as the value of the variables to
which the model converges after a long sequence of zero realized shocks. The stochastic steady state is
different from the deterministic one because in the former the agents consider the possibility of having
nonzero shocks (although they are never realized), while, in the latter, the agents understand that they live
in a deterministic environment.
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Figure 4. Impulse response functions to a disaster risk shock.

tions and Smolyak levels 2 and 3 (the mnemonics in the figure should be easy to read).
Although the scale of the shock is large and, therefore, it tends to cluster all IRFs, we can
see some nontrivial differences in the IRFs from low-order perturbations with respect to
all the other IRFs (furthermore, the model is solved for the detrended variables, which
are much less volatile).

Figure 4 plots the IRFs of a disaster risk shock (θt ). We assume that the disaster im-
pact θt rises from a contraction of 40% to a contraction of 45%, which under our calibra-
tion is a 3�5 standard deviations event. This small change has a large impact because the
model is highly sensitive to the disaster parameters. All solutions generate in response a
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decline in detrended output, investment, and consumption, but the magnitudes differ
considerably. Note that a change in θt impacts the expected growth of neutral technol-
ogy and, therefore, it has an effect even in a first-order perturbation. As before, the left
panels of the figure compare the perturbation solutions to a third-order Taylor projec-
tion. Low-order perturbation solutions fail to approximate well the model dynamics,
although the fifth-order perturbation is relatively accurate. The right panel of Figure 4
shows a similarity of the four most accurate solutions (second- and third-order Taylor
projection and Smolyak levels 2 and 3). This figure and the results from Tables 6 and 7
indicate that the solutions generated by a second- and third-order Taylor projection are
economically indistinguishable from the solutions from a Smolyak collocation.

Figure 5 shows similar IRFs, but only for the four most accurate solutions. The left
panel depicts the same IRFs as in Figure 4 with some zooming in. The right panel shows
IRFs for a larger shock, which increases the anticipated disaster impact from 40% to
50%, a seven standard deviations event. Barro (2006) points out that, while rare, this is
a shock that is sometimes observed in the data. While the differences among the solu-
tions are economically small (the scale is log), there seem to be two clusters of solutions:
second-order Taylor projection and Smolyak level-2 and third-order Taylor projection
and Smolyak level-3.

We conclude from this analysis that second- and third-order Taylor projections and
Smolyak solutions are economically similar. We could not find a significant difference
between these solutions. The other solutions are relatively poor approximations, except
for the fifth-order perturbation solution, which is reasonably good.

5.3 Computational costs

Our previous findings suggest that the second- and third-order Taylor projections and
Smolyak solutions are similar. However, when it comes to computational costs, there are
more than considerable differences among the solutions. Table 12 reports total run time
(in seconds) for each solution. The second-order Taylor projection is the fastest method
among the four accurate solutions by a large difference. It takes about 3 seconds to solve
the full model with second-order Taylor projection, 148 seconds with third-order Taylor
projection, 56 seconds with second-order Smolyak and 7742 seconds with third-order
Smolyak. Given that these solutions are roughly equivalent, this is a remarkable result.
Taylor projection allows us to solve large and highly nonlinear models in a few seconds,
and potentially to nest the solution within an estimation algorithm, where the model
needs to be solved hundreds of times for different parameter values. Also, a second-
order Taylor projection takes considerably less time than a fifth-order perturbation (3�4
seconds versus 30�4 seconds for the full model), even if its mean Euler errors are smaller
(−3�6 versus −2�2).

The computational advantage of Taylor projection over Smolyak collocation stems
from the structure of the Jacobian. Table 13 presents the size and sparsity of the Jacobian
of the full model (version 8) for these two methods. The size of the Jacobian of Taylor
projection is much smaller than that of Smolyak collocation (e.g., for order/level 3, the
dimension is 6825 × 6825 versus 39�735 × 39�735). As explained in Section 4.3, this is due
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Figure 5. Impulse response functions to small (left) and big (right) disaster risk shocks.

to the type of basis function used to approximate the endogenous variables. In Taylor
projection, the basis function is a complete polynomial, while in Smolyak collocation it
is a Smolyak polynomial, which has a larger number of coefficients. Hence, the number
of unknown coefficients that need to be solved in collocation is larger than in Taylor
projection.

Also, the Jacobian of Taylor projection is sparser than in collocation (e.g., for or-
der/level 3, the share of nonzeros is 0�12 versus 0�24). To exploit this sparsity, the basis
function should take the form of monomials centered at x0, that is, powers of x − x0.
Since the nonlinear system is evaluated only at x0, all the powers of x−x0 are zero. Con-
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Table 12. Run time (seconds).

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 0�0 0�0 0�0 0�0 0�2 0�4 0�5 1�1 0�2 0�4 1�2
2. + capital adjustment costs 5 0�0 0�0 0�0 0�1 0�7 0�4 0�7 1�4 – 0�8 5�1
3. + Calvo 7 0�0 0�0 0�0 0�2 2�7 0�4 1�0 6�6 0�3 2�7 82�9
4. + Taylor rule depends on output growth 8 0�0 0�0 0�0 0�3 4�8 0�4 1�1 12�0 0�3 4�7 302�5
5. + Taylor rule is smoothed 9 0�0 0�0 0�0 0�5 8�1 0�4 1�4 25�9 – 10�6 679�9
6. + investment shock 10 0�0 0�0 0�1 0�7 13�7 0�4 1�8 48�4 – 19�9 1634�0
7. + monetary shock 11 0�0 0�0 0�1 1�0 20�5 0�4 2�3 89�0 – 27�4 4535�9
8. + intertemporal preference shock 12 0�0 0�0 0�1 1�3 30�4 0�4 3�4 148�1 – 55�6 7741�6

Note: We work on a Dell computer with an Intel(R) Core(TM) i7-5600U Processor and 16 GB RAM.
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Table 13. Jacobian of the full model (version 8).

Order/Level Taylor Projection Smolyak Collocation

Dimension of Jacobian
1 195 × 195 375 × 375
2 1365 × 1365 4695 × 4695
3 6825 × 6825 39�735 × 39�735
Nonzero elements
1 7342 49�728
2 269�290 5�878�132
3 5�601�050 374�482�434
Share of nonzeros
1 0�19 0�35
2 0�14 0�27
3 0�12 0�24

sequently, the coefficients associated with those powers have no effect on the nonlinear
system, so their corresponding entries in the Jacobian are zero.11 By comparison, in col-
location the nonlinear system is evaluated at many points x1� � � � � xN , so the powers of
x− x0 are not zero, thereby introducing more nonzero entries to the Jacobian. In large
models, the amount of memory required to store these nonzero entries may exceed the
available resources.

The marginal costs of the different methods are extremely heterogeneous. Mov-
ing from version 7 to version 8 of the model adds only one exogenous state variable.
This change increases the run time of a second-order Taylor projection by 1�1 seconds.
By comparison, a third-order Taylor projection takes about 59 more seconds, Smolyak
level-2 takes roughly 28 more seconds, and Smolyak level-3 takes 3206 seconds. Extrap-
olating these trends forward imply that the differences in computational costs across
solutions would increase rapidly with the size of the model.

We conclude that the second-order Taylor projection solution delivers the best ac-
curacy/speed tradeoff among the tested solutions. The run time of this method is suffi-
ciently fast to enable estimation of the model, which would be much more difficult with
the other methods tested. For researchers interested in higher accuracy at the expense of
higher costs, we recommend the third-order Taylor projection solution, which is faster
than a Smolyak solution of comparable order.

Finally, we provide MATLAB codes that perform the Taylor projection method for a
general class of DSGE models, including the models defined in Section 4. Given these
codes, Taylor projection is as straightforward and easy to implement as standard pertur-

11Levintal (2018) shows that it is possible to increase further the sparsity of the Jacobian of Taylor pro-
jection by using an approximate Jacobian that has a smaller number of nonzero elements. We do not use
the approximate Jacobian because the computational gains for the size of models we consider are moder-
ate. However, for larger models the computational gains may be substantial; see the examples in Levintal
(2018).
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bation methods. In comparison, coding a Smolyak collocation requires some degree of
skill and care.12

6. Robustness analysis

In this section, we briefly report several exercises to document the robustness of our
findings. Our central message is how well Taylor projection survives changing different
characteristics of the numerical experiments.

Our first robustness exercise replicates our primary results when the ergodic set of
the model is approximated by a Smolyak solution of level 3, instead of a third-order Tay-
lor projection. The findings, for example, regarding Euler equation errors (Tables 14 and
15), remain entirely unchanged.

Our second robustness exercise keeps the approximation of the ergodic set by a
level-3 Smolyak solution, but it increases the simulation sample size to T = 100�000, in-
stead of the default T = 10�000. The mean Euler equation errors (Table 16) remain nearly
the same, but the maximum Euler errors become, unsurprisingly, larger (Table 17). With
a longer simulation, we have a higher probability of moving to a region of the state space
where a solution method will do worse. Interestingly, even with this long simulation,
Taylor projection still does a fine job. For model 8, the maximum Euler equation error
for third-order Taylor projection is −1�6.

Our third robustness exercise increases the parameter controlling risk aversion, γ,
to 5. By making the model more nonlinear, a higher risk aversion deteriorates the mean
Euler equation errors of all solution methods (Table 18) and increases the max Euler
equation error (Table 19). A third-order Taylor projection continues to be the most ac-
curate solution method for nearly all cases regarding mean Euler equation errors. This
robustness exercise is interesting because, as reported in Table 20, when we solve the
model with an accurate method such as Taylor projection or Smolyak, we can generate
negative average risk-free interest rates. The risk of a rare disaster is so severe with large
risk aversion that the household is willing to accept a negative risk-free interest rate to
hedge against it. Furthermore, the return on equity slightly increases with respect to the
baseline case (Table 21). The lower risk-free rate and the higher return on equity deliver,
for the more accurate methods, an equity premium of over 7%.

Our fourth and fifth robustness exercises double the disaster probability (0�0086
compared to 0�0043 in the benchmark model) and the standard deviation of disaster
size (σθ) (0�05 compared to 0�025), respectively. See Tables 22, 23, 24 and 25 for results.
Again, the main findings of the paper are unchanged.

In our sixth and final robustness exercise, the Taylor projection solution is approxi-
mated at the stochastic steady state instead of the deterministic steady state.13 Results
are reported in Table 26. The accuracy of the solution increases considerably. For exam-
ple, for a third-order Taylor projection, we get a mean Euler equation error of −5�4 in
version 8 of the model (the most complicated version). This exercise shows that a key

12The codes are available at http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Rare_Disasters.
zip.

13We compute the stochastic steady state using a pruned third-order perturbation.

http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Rare_Disasters.zip
http://economics.sas.upenn.edu/~jesusfv/Matlab_Codes_Rare_Disasters.zip
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Table 14. Robustness 1: Mean Euler errors—Benchmark parameterization.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�7 −2�1 −2�5 −3�0 −3�5 −3�1 −5�2 −6�9 −3�2 −6�0 −8�5
2. + capital adjustment costs 5 −1�6 −2�0 −2�4 −2�9 −3�3 −2�4 −3�9 −5�3 – −1�6 −3�5
3. + Calvo 7 −1�7 −2�0 −1�8 −1�7 −1�9 −2�4 −3�8 −4�8 −1�0 −2�6 −3�6
4. + Taylor rule depends on output growth 8 −1�8 −2�1 −2�1 −2�0 −2�2 −2�5 −3�9 −5�1 −1�0 −2�6 −3�5
5. + Taylor rule is smoothed 9 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�6
6. + investment shock 10 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�5
7. + monetary shock 11 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�7
8. + intertemporal preference shock 12 −1�8 −2�2 −2�1 −2�1 −2�2 −2�2 −3�6 −4�4 – −2�5 −3�6

Note: The ergodic set is approximated by simulating the Smolyak solution (level 3) for T = 10�000 periods. The table reports mean errors across the ergodic set.

Table 15. Robustness 1: Max Euler errors—Benchmark parameterization.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�5 −1�6 −1�8 −2�1 −2�4 −1�5 −3�0 −3�7 −1�8 −4�7 −6�8
2. + capital adjustment costs 5 −0�1 −0�8 −1�5 −2�0 −2�3 −0�1 −0�8 −1�4 – −0�4 −1�9
3. + Calvo 7 −0�2 −1�2 −1�7 −1�6 −1�6 −0�3 −1�2 −2�1 −0�1 −1�5 −2�7
4. + Taylor rule depends on output growth 8 −0�1 −1�1 −1�8 −1�8 −1�9 −0�2 −1�1 −1�7 −0�1 −1�4 −2�4
5. + Taylor rule is smoothed 9 −0�1 −1�0 −1�6 −1�7 −1�9 −0�2 −1�1 −1�6 – −1�4 −2�4
6. + investment shock 10 −0�1 −1�1 −1�7 −1�8 −1�9 −0�2 −1�1 −1�8 – −1�4 −2�4
7. + monetary shock 11 −0�2 −1�3 −1�7 −1�8 −1�9 −0�3 −1�3 −1�8 – −1�5 −2�5
8. + intertemporal preference shock 12 −0�3 −1�4 −1�7 −1�8 −1�8 −0�4 −1�4 −2�0 – −1�4 −2�4

Note: The ergodic set is approximated by simulating the Smolyak solution (level 3) for T = 10�000 periods. The table reports max errors across the ergodic set.
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Table 16. Robustness 2: Mean Euler errors—Benchmark parameterization.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�7 −2�1 −2�5 −3�0 −3�5 −3�0 −5�2 −6�9 −3�2 −6�0 −8�5
2. + capital adjustment costs 5 −1�6 −2�0 −2�4 −2�9 −3�3 −2�4 −3�9 −5�3 – −1�6 −3�5
3. + Calvo 7 −1�7 −2�0 −1�8 −1�7 −1�9 −2�4 −3�7 −4�8 −1�0 −2�6 −3�6
4. + Taylor rule depends on output growth 8 −1�8 −2�1 −2�1 −2�0 −2�2 −2�5 −3�9 −5�0 −1�0 −2�6 −3�5
5. + Taylor rule is smoothed 9 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�6
6. + investment shock 10 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�5
7. + monetary shock 11 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�5 – −2�6 −3�7
8. + intertemporal preference shock 12 −1�8 −2�1 −2�1 −2�1 −2�2 −2�2 −3�6 −4�3 – −2�5 −3�6

Note: The ergodic set is approximated by simulating the Smolyak solution (level 3) for T = 100�000 periods. The table reports mean errors across the ergodic set.

Table 17. Robustness 2: Max Euler errors—Benchmark parameterization.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�3 −1�6 −1�8 −2�0 −2�3 −1�3 −2�9 −3�5 −1�7 −4�0 −6�0
2. + capital adjustment costs 5 −0�2 −0�8 −1�4 −1�9 −2�2 −0�2 −0�7 −1�2 – −0�3 −1�8
3. + Calvo 7 −0�1 −1�2 −1�6 −1�5 −1�6 −0�1 −1�2 −2�0 0�0 −1�4 −2�5
4. + Taylor rule depends on output growth 8 0�0 −1�1 −1�8 −1�8 −1�9 0�0 −1�1 −1�9 0�0 −1�4 −2�3
5. + Taylor rule is smoothed 9 0�0 −1�0 −1�7 −1�8 −1�9 −0�1 −1�1 −1�8 – −1�4 −2�2
6. + investment shock 10 0�0 −1�0 −1�7 −1�8 −1�9 −0�1 −1�1 −1�8 – −1�2 −2�2
7. + monetary shock 11 0�0 −1�1 −1�7 −1�7 −1�9 −0�1 −1�1 −1�7 – −1�5 −2�3
8. +intertemporal preference shock 12 0�0 −1�0 −1�6 −1�7 −1�8 −0�1 −1�1 −1�6 – −1�3 −2�3

Note: The ergodic set is approximated by simulating the Smolyak solution (level 3) for T = 100�000 periods. The table reports max errors across the ergodic set.
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Table 18. Robustness 3: Mean Euler errors—Risk aversion parameter γ = 5.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�4 −1�6 −1�9 −2�3 −2�8 −2�9 −4�8 −6�4 −3�1 −5�5 −7�9
2. + capital adjustment costs 5 −1�3 −1�6 −1�9 −2�3 −2�6 −2�1 −3�4 −4�5 − −1�7 −3�3
3. + Calvo 7 −1�4 −1�6 −1�4 −1�2 −1�2 −1�9 −3�1 −3�7 −1�1 −2�3 −3�1
4. + Taylor rule depends on output growth 8 −1�4 −1�7 −1�6 −1�5 −1�5 −2�2 −3�3 −4�1 −1�0 −2�4 −3�1
5. + Taylor rule is smoothed 9 −1�4 −1�7 −1�6 −1�5 −1�5 −1�9 −3�0 −3�4 −1�0 −2�3 −2�9
6. + investment shock 10 −1�4 −1�7 −1�6 −1�5 −1�5 −1�9 −3�0 −3�4 −1�0 −2�3 −2�9
7. + monetary shock 11 −1�4 −1�7 −1�6 −1�5 −1�5 −1�9 −3�0 −3�4 −1�0 −2�5 −3�1
8. + intertemporal preference shock 12 −1�4 −1�7 −1�6 −1�5 −1�5 −1�9 −2�9 −3�4 −0�7 −2�3 −2�9

Table 19. Robustness 3: Max Euler errors—γ = 5.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�1 −1�2 −1�4 −1�5 −1�8 −1�5 −2�5 −3�2 −1�8 −4�1 −6�2
2. + capital adjustment costs 5 −0�2 −1�0 −1�3 −1�5 −1�7 0�0 −0�8 −1�4 − −0�5 −1�9
3. + Calvo 7 −0�2 −1�1 −1�2 −1�0 −1�0 −0�3 −1�2 −2�1 −0�1 −1�7 −2�3
4. + Taylor rule depends on output growth 8 −0�1 −1�1 −1�4 −1�3 −1�3 −0�2 −1�1 −1�8 −0�1 −1�6 −2�3
5. + Taylor rule is smoothed 9 −0�1 −1�0 −1�3 −1�2 −1�4 −0�4 −1�1 −1�6 −0�1 −1�6 −2�1
6. + investment shock 10 −0�1 −1�0 −1�3 −1�3 −1�4 −0�4 −1�2 −1�6 0�0 −1�6 −2�1
7. + monetary shock 11 −0�1 −1�2 −1�3 −1�3 −1�3 −0�4 −1�4 −1�7 0�1 −1�7 −2�2
8. + intertemporal preference shock 12 −0�2 −1�3 −1�3 −1�3 −1�3 −0�5 −1�4 −1�7 −0�1 −1�6 −2�1
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Table 20. Robustness 3: Risk-free rate (% annualized), γ = 5.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 4�6 2�5 0�3 −1�4 −2�4 −3�0 −3�1 −3�1 −3�0 −3�1 −3�1
2. + capital adjustment costs 5 4�6 2�3 0�0 −1�8 −2�9 −3�4 −3�6 −3�6 – −3�6 −3�6
3. + Calvo 7 4�6 2�4 0�7 −0�3 −1�0 −3�3 −3�4 −3�4 −3�1 −3�4 −3�4
4. + Taylor rule depends on output growth 8 4�6 2�9 1�5 0�5 −0�1 −1�7 −1�6 −1�5 −1�0 −1�6 −1�5
5. + Taylor rule is smoothed 9 4�6 2�8 1�7 0�9 0�4 −2�6 −1�8 −1�6 −1�6 −1�6 −1�6
6. + investment shock 10 4�6 2�8 1�7 0�9 0�4 −2�6 −1�8 −1�6 −1�8 −1�6 −1�6
7. + monetary shock 11 4�6 2�8 1�7 1�0 0�4 −2�5 −1�8 −1�6 −1�5 −1�6 −1�6
8. + intertemporal preference shock 12 4�6 2�8 1�7 1�0 0�4 −2�5 −1�8 −1�6 −2�0 −1�6 −1�6

Table 21. Robustness 3: Return on equity (% annualized), γ = 5.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 5�1 5�1 5�2 5�2 5�2 5�2 5�2 5�2 5�2 5�2 5�2
2. + capital adjustment costs 5 5�2 5�4 5�7 5�8 5�9 5�1 6�0 6�0 – 6�2 6�0
3. + Calvo 7 5�1 5�3 5�7 6�1 6�4 5�6 5�6 5�6 5�5 5�6 5�6
4. + Taylor rule depends on output growth 8 5�0 5�2 5�6 5�9 6�0 5�5 5�6 5�6 5�2 5�5 5�6
5. + Taylor rule is smoothed 9 5�0 5�2 5�9 6�4 6�7 5�5 5�5 5�6 5�0 5�6 5�7
6. + investment shock 10 5�0 5�2 5�9 6�5 6�7 5�5 5�5 5�6 4�8 5�6 5�7
7. + monetary shock 11 5�0 5�2 5�9 6�5 6�7 5�5 5�5 5�6 8�0 5�6 5�7
8. + intertemporal preference shock 12 5�0 5�2 5�9 6�5 6�7 5�7 5�5 5�6 2�9 5�7 5�7
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Table 22. Robustness 4: Mean Euler errors—Disaster probability = 0�0086.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�5 −1�8 −2�2 −2�7 −3�3 −2�9 −5�0 −6�6 −3�2 −5�7 −8�2
2. + capital adjustment costs 5 −1�4 −1�7 −2�2 −2�6 −2�9 −2�0 −3�3 −4�4 − −1�5 −3�0
3. + Calvo 7 −1�4 −1�7 −1�2 −1�1 −1�4 −1�9 −3�1 −3�7 −1�0 −2�0 −2�8
4. + Taylor rule depends on output growth 8 −1�5 −1�8 −1�5 −1�5 −1�7 −2�1 −3�2 −4�0 −1�0 −2�2 −3�0
5. + Taylor rule is smoothed 9 −1�5 −1�8 −1�5 −1�5 −1�7 – −3�0 −3�5 – −2�1 −2�8
6. + investment shock 10 −1�4 −1�8 −1�5 −1�5 −1�7 – −3�0 −3�5 – −2�2 −2�9
7. + monetary shock 11 −1�5 −1�8 −1�5 −1�5 −1�7 – −3�0 −3�4 – −2�3 −3�1
8. + intertemporal preference shock 12 −1�5 −1�8 −1�5 −1�5 −1�7 −1�9 −2�9 −3�4 − −2�2 −2�8

Table 23. Robustness 4: Max Euler equation errors—Disaster probability = 0�0086.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�2 −1�4 −1�6 −1�8 −2�1 −1�5 −2�8 −3�5 −1�8 −4�5 −6�5
2. + capital adjustment costs 5 −0�2 −0�9 −1�5 −1�8 −2�0 0�0 −0�8 −1�4 – −0�3 −1�7
3. + Calvo 7 −0�1 −1�2 −1�1 −1�0 −1�1 −0�2 −1�3 −2�1 −0�1 −1�5 −2�0
4. + Taylor rule depends on output growth 8 −0�1 −1�2 −1�3 −1�3 −1�4 −0�2 −1�2 −1�8 −0�2 −1�5 −2�1
5. + Taylor rule is smoothed 9 0�0 −1�0 −1�2 −1�4 −1�5 – −1�1 −1�6 – −1�5 −1�9
6. + investment shock 10 −0�1 −0�9 −1�2 −1�4 −1�5 – −1�2 −1�6 – −1�5 −2�1
7. + monetary shock 11 −0�1 −1�1 −1�2 −1�4 −1�4 – −1�3 −1�7 – −1�6 −2�1
8. + intertemporal preference shock 12 −0�1 −1�1 −1�2 −1�3 −1�3 −0�5 −1�3 −1�7 – −1�4 −1�9
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Table 24. Robustness 5: Mean Euler errors—σθ = 0�05.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�7 −2�1 −2�5 −3�0 −3�5 −2�9 −4�6 −5�9 −2�9 −4�6 −6�9
2. + capital adjustment costs 5 −1�6 −2�0 −2�4 −2�8 −3�2 −2�3 −3�7 −4�8 – – −3�0
3. + Calvo 7 −1�7 −2�0 −1�8 −1�7 −1�8 −2�3 −3�5 −4�5 – −2�5 −2�6
4. + Taylor rule depends on output growth 8 −1�7 −2�1 −2�1 −2�0 −2�2 −2�4 −3�6 −4�7 – −2�3 –
5. + Taylor rule is smoothed 9 −1�7 −2�1 −2�1 −2�1 −2�2 −2�1 −3�4 −4�3 – −2�3 –
6. + investment shock 10 −1�7 −2�1 −2�1 −2�1 −2�2 −2�1 −3�4 −4�3 – −2�3 –
7. + monetary shock 11 −1�7 −2�2 −2�1 −2�1 −2�2 −2�1 −3�4 −4�2 – −2�3 −2�7
8. + intertemporal preference shock 12 −1�7 −2�2 −2�1 −2�1 −2�2 −2�1 −3�4 −4�1 – −2�3 –

Table 25. Robustness 5: Max Euler errors—σθ = 0�05.

Perturbation Taylor Projection Smolyak Collocation

Model State Vars. 1st 2nd 3rd 4th 5th 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −1�2 −1�3 −1�4 −1�5 −1�7 −1�5 −2�0 −2�4 −1�8 −3�2 −5�2
2. + capital adjustment costs 5 0�0 −0�5 −1�0 −1�5 −1�7 0�0 −0�5 −0�9 – – −1�6
3. + Calvo 7 0�1 −0�7 −1�4 −1�4 −1�4 0�1 −0�7 −1�8 – −1�3 −1�8
4. + Taylor rule depends on output growth 8 0�2 −0�6 −1�5 −1�5 −1�6 0�1 −0�6 −1�5 – −1�2 –
5. + Taylor rule is smoothed 9 0�2 −0�5 −1�5 −1�6 −1�6 0�1 −0�6 −1�5 – −1�2 –
6. + investment shock 10 0�1 −0�5 −1�5 −1�6 −1�6 0�1 −0�6 −1�5 – −1�2 –
7. + monetary shock 11 0�1 −0�7 −1�6 −1�7 −1�6 0�1 −0�8 −1�7 – −1�3 −1�7
8. + intertemporal preference shock 12 0�1 −0�9 −1�6 −1�6 −1�6 0�0 −1�0 −1�8 – −1�2 –
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Table 26. Robustness 6: Taylor projection at the stochastic steady state—Mean and max Euler
equation errors (EEE).

Mean EEE Max EEE

Model State Vars. 1st 2nd 3rd 1st 2nd 3rd

1. Benchmark with EZ and disasters 4 −3�1 −5�2 −6�9 −1�4 −3�0 −3�7
2. + capital adjustment costs 5 −2�7 −4�2 −5�7 −0�1 −0�8 −1�3
3. + Calvo 7 −2�7 −4�2 −5�6 −0�2 −1�3 −2�2
4. + Taylor rule depends on output growth 8 −2�8 −4�3 −5�7 −0�2 −1�1 −1�8
5. + Taylor rule is smoothed 9 −2�7 −4�2 −5�6 −0�2 −1�1 −1�6
6. + investment shock 10 −2�7 −4�2 −5�6 −0�2 −1�1 −1�9
7. + monetary shock 11 −2�7 −4�2 −5�6 −0�2 −1�4 −1�9
8. + intertemporal preference shock 12 −2�6 −4�1 −5�4 −0�3 −1�4 −2�1

advantage of Taylor projections is the ability to approximate outside the deterministic
steady state (as we are forced to do with a standard projection). We keep, however, in the
benchmark exercise the Taylor projection undertaken at the deterministic steady state
as a conservative scenario (computing the stochastic steady state can be, itself, an in-
volved problem).

7. Conclusions

Models with rare disasters have become a popular line of research in macroeconomics
and finance. However, rare disasters, by inducing significant nonlinearities, present
computational challenges that have been largely ignored in the literature or dealt with
only in a nonsystematic fashion. To fill this gap, in this paper, we formulated and solved
a New Keynesian model with time-varying disaster risk (including several simpler ver-
sions of it). Our findings are as follows. First, low-order perturbation solutions (first, sec-
ond, and third) do not offer enough accuracy as measured by the Euler errors, com-
puted statistics, or IRFs. A fifth-order perturbation fixes part of the problem, but it is still
not entirely satisfactory regarding accuracy and it imposes some serious computational
costs. Second, a second-order Taylor projection seems an excellent choice, with a sat-
isfactory balance of accuracy and run time. A third-order Taylor projection can handle
a medium size model with even better accuracy, but at a higher cost. Finally, Smolyak
collocation methods were accurate, but they were hard to implement (we failed to find
a solution on several occasions) and suffered from long run times.

This paper should be read only as a preliminary progress report. There is much more
to be learned about the properties of models with rare disasters than we can cover in
one paper. However, we hope that our results will stimulate further investigation on the
topic.
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