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11. OUTLINE

We let AG2 abbreviate the main paper “Identification- and singularity-robust inference
for moment condition models.” References to sections with section numbers less than
11 refer to sections of AG2. All theorems, lemmas, and equations with section numbers
less than 11 refer to results and equations in AG2.

We let SM abbreviate Supplemental Material. We let AG1 abbreviate the paper An-
drews and Guggenberger (2017). The SM to AG1 is given in Andrews and Guggenberger
(2014).

Section 12 provides further discussion of the literature related to AG2.

Section 13 extends the subvector tests in Section 9 to allow for the possibility that
0F = Erg;g; is singular.

Section 14 provides some miscellaneous backup material for AG2.

Section 15 introduces the SR-CQLRp test that applies when the moment functions
are of a multiplicative form, u;(6)Z;, where u;(9) is a scalar residual and Z; is a k-vector
of instrumental variables.

Sections 16 and 17 provide parts of the proofs of the asymptotic size results given in
Sections 6 and 15.

Section 18 generalizes the SR-AR, SR-CQLR, and SR-CQLRp tests from i.i.d. observa-
tions to strictly stationary strong mixing observations.
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Section 19 compares the test statistics and conditioning statistics of the SR-CQLR,
SR-CQLRp, and Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statis-
tic and conditioning statistic in the homoskedastic linear IV model with fixed (i.e., non-
random) IVs.

Section 20 provides finite-sample null rejection probability simulation results for the
SR-AR and SR-CQLR tests for cases where the variance matrix of the moment functions
is singular and near singular.

Section 21 provides finite-sample simulation results that illustrate that Kleibergen’s
CLR test with moment-variance weighting can have low power in certain linear IV mod-
els with a single right-hand side (rhs) endogenous variable, as the theoretical results in
Section 19 suggest.

Section 22 establishes some properties of the eigenvalue-adjustment procedure de-
fined in Section 5.1 and used in the definitions of the SR-CQLR and SR-CQLRp tests.

Section 23 defines a new SR-LM test.

The remainder of the SM provides the rest of the proofs of the results stated in AG2
and the SM. Section 24 proves Lemmas 16.2, 5.1, and 15.1. Section 25 proves Lemma 16.4
and Proposition 16.5. Section 26 proves Theorem 16.6. Section 27 proves Theorem 16.1
(using Theorem 16.6). Section 28 proves Theorems 7.1 and 15.3. Section 29 proves Lem-
mas 19.1, 19.2, and 19.3. Section 30 proves Theorem 18.1, which concerns the time series
results. Section 31 proves Theorems 9.1, 13.1, and 9.2, which concern the subvector in-
ference results.

For notational simplicity, throughout the SM, we often suppress the argument 6 for
various quantities that depend on the null value 6.

12. FURTHER DISCUSSION OF THE RELATED LITERATURE

The first paragraph of AG2 lists a number of models in which weak identification
may arise. Specific references are as follows. For new Keynesian Phillips curve mod-
els, see Dufour, Khalaf, and Kichian (2006), Nason and Smith (2008), and Kleibergen
and Mavroeidis (2009). For DSGE models, see Canova and Sala (2009), Iskrev (2010), Qu
and Tkachenko (2012), Dufour, Khalaf, and Kichian (2013), Guerron-Quintana, Inoue,
and Kilian (2013), Qu (2014), Schorfheide (2014), and I. Andrews and Mikusheva (2015,
2016). For the CCAPM, see Stock and Wright (2000), Neely, Roy, and Whiteman (2001),
Yogo (2004), Kleibergen (2005), Carroll, Slacalek, and Sommer (2011), and Gomes and
Paz (2013). For interest rate dynamics, see Jegannathan, Skoulakis, and Wang (2002) and
Grant (2013). For the BLP model, see Armstrong (2016). For the returns-to-schooling
wage equations, see Angrist and Krueger (1991, 1992) and Cruz and Moreira (2005).

For the time series models, see Hannan (1982), Terdsvirta (1994), Nelson and Startz
(2007), and Andrews and Cheng (2012, 2013b). For the selection model, see Puhani
(2000). For the mixing and regime switching models, see Cho and White (2007), Chen,
Ponomareva, and Tamer (2014), and references therein. For the nuisance parameter only
under the alternative models, see Davies (1977) and Andrews and Ploberger (1994).

Some asymptotic size results in the linear IV regression model with a single right-
hand side endogenous variable (i.e., p = 1) include the following. Mikusheva (2010) es-
tablished the correct asymptotic size of LM and CLR tests in the linear IV model when
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the errors are homoskedastic. Guggenberger (2012) established the correct asymptotic
size of heteroskedasticity-robust LM and CLR tests in a heteroskedastic linear IV model.

Subvector inference via the Bonferroni or Scheffé projection method, is discussed
in Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010),
Chaudhuri and Zivot (2011), and McCloskey (2017) for Bonferroni’s method, and Dufour
(1989) and Dufour and Jasiak (2001) for the projection method. Both methods are con-
servative, but Bonferroni’s method is found to work quite well by Chaudhuri et al. (2010)
and Chaudhuri and Zivot (2011).28 Andrews (2017) provided subvector methods that are
closely related to the Bonferroni method but are not conservative asymptotically.

Other results in the literature on subvector inference include the following. Subvec-
tor inference in which nuisance parameters are profiled out is possible in the linear IV
regression model with homoskedastic errors using the AR test, but not the LM or CLR
tests; see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012). Andrews and Cheng
(2012, 2013a, 2013b) provided subvector tests with correct asymptotic size based on ex-
tremum estimator objective functions. These subvector methods depend on the follow-
ing: (i) one has knowledge of the source of the potential lack of identification (i.e., which
subvectors play the roles of B8, 7, and ¢ in their notation), (ii) there is only one source
of lack of identification, and (iii) the estimator objective function does not depend on
the weakly identified parameters 7 (in their notation) when 8 = 0, which rules out some
weak IVs models.?® Cheng (2015) provided subvector inference in a nonlinear regres-
sion model with multiple nonlinear regressors, and hence, multiple potential sources of
lack of identification. I. Andrews and Mikusheva (2016) developed subvector inference
methods in a minimum distance context based on Anderson-Rubin-type statistics. Cox
(2017) provided subvector methods in a class of models that allows for multiple sources
of weak identification and includes factor models. I. Andrews and Mikusheva (2015)
provided conditions under which subvector inference is possible in exponential fam-
ily models (but the requisite conditions seem to be quite restrictive). I. Andrews (2018)
considered subvector inference in the context of a two-step procedure that determines
first whether one should use an identification-robust method or not.

Phillips (1989) and Choi and Phillips (1992) provided asymptotic and finite-sample
results for estimators and classical tests in simultaneous equations models that may
be unidentified or partially identified when p > 1. However, their results do not cover
weak identification (of standard or nonstandard form) or identification-robust infer-
ence. Hillier (2009) provided exact finite-sample results for CLR tests in the linear model
under the assumption of homoskedastic normal errors and known covariance matrix.
Antoine and Renault (2009, 2010) considered GMM estimation under semi-strong and

28Cavanagh, Elliott, and Stock (1995) provided a refinement of Bonferroni’s method that is not conser-
vative, but it is much more intensive computationally. McCloskey (2017) also considered a refinement of
Bonferroni’s method.

29Montiel Olea (forthcoming) also provided some subvector analysis in the extremum estimator con-
text of Andrews and Cheng (2012). His efficient conditionally similar tests apply to the subvector (7, {) of
(B, m, {) (in Andrews and Cheng’s (2012) notation), where B is a parameter that determines the strength of
identification and is known to be strongly identified. The scope of this subvector analysis is analogous to
that of Stock and Wright (2000) and Kleibergen (2004).
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strong identification, but do not consider tests or CSs that are robust to weak identifica-
tion. Armstrong, Hong, and Nekipelov (2012) showed that standard Wald tests for mul-
tiple restrictions in some nonlinear IV models can exhibit size distortions when some
IVs are strongly identified and others are semi-strongly identified—not weakly identi-
fied. These results indicate that identification issues can be more severe in nonlinear
models than in linear models, which provides further motivation for the development
of identification-robust tests for nonlinear models.

13. SUBVECTOR SR TESTS FOR POTENTIALLY SINGULAR MOMENTS VARIANCE MATRICES

Figure SM-1 provides additional power comparisons to those given in Section 9.4 for the
subvector null hypothesis in the endogenous probit model. Figure SM-1 provides results
for p = 0, whereas Figure 1 in Section 9.4 provides results for p = 0.9. See Section 9.4 for
a discussion of the results.

In the remainder of this section, we extend the subvector tests in Section 9 to
allow for the possibility that 2y = Erg;g; is singular. We employ the definitions in
(10) and (11) with 7 in place of 6. That is, 7,(0, B) := rk(£2,(6, 8)) and 2,(0, B) :=
Zﬁ(@, B)ﬁn((), ,8)2{}(0, B)’, where ﬁn((}, B) is the k x k diagonal matrix with the eigen-
values of ﬁn(e, B) on the diagonal in nonincreasing order, and Z{}(@, B)isak x k
orthogonal matrix of eigenvectors corresponding to the eigenvalues in I,(0, B). We
partition 2;?(6, B) according to whether the corresponding eigenvalues are positive
or zero: A2(6, B) = [A,(6, B), AL (6, B)], where A,(6, B) € R*>*7n(8:B) and A+-(6, B) €
RFx(k=7u(0.8) _The columns of A, (6, B) are eigenvectors of £,(6, B) that correspond to
positive eigenvalues of ﬁn(e, B).

Analogously, consider the spectral decomposition for the population quantity, de-
fined in (4) with 7 in place of 6, that is, Qr (6, B) = A2(9, B)IIF (6, B) A$ (6, B)', and de-
fine rp (0, B) := rk(£2r (6, B)). We partition A%(6, B) as

AP0, B)=[Ar (6, B), AF(6, )], where .
Ar(6,B) € RerF(G,ﬁ), AJF_(O, B) e ka(k—rF(G,ﬁ)), :

and the columns of Ar(6, B) are eigenvectors of (6, B) that correspond to positive
eigenvalues of Qr (6, B). Let I1;r(6, B) denote the upper left rr(6, B) x rr(6, B) sub-
matrix of IIr(0, B). The matrix I11r(6, B) is diagonal with the positive eigenvalues of
0r(6, B) on its diagonal in nonincreasing order. As above, we sometimes leave out the
argument 0 and denote by ﬁn( B) the matrix ﬁn(eo, B) and similarly for other expres-
sions.

Recall the definition following (42) of En, the null-restricted first-stage GMM es-
timator. Analogously to the full vector SR test, the subvector SR test is defined using
the nonredundant moment functions. That is, rather than using the moment function
gi(6, B), the test of the hypothesis in (38) is based on

£7:(0, B) = A,(00, Bn) gi (0, B) € R 00:Pn). (13.2)
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From now on, whenever a subindex A appears on an object defined in Section 9.2, it
means that it is defined as in Section 9.2 but resulting from a moment condition model
defined in terms of the nonredundant moment conditions g 3,(6, 8). In particular,

n ~ ~
03,00,B):=n"">"g7,(0,8)83;(0, B) — 83,0, B)87,(0, B) € R C0-B)>Tulbo. ),
i=1

€a,(0,B):=n"") g3,0,p), and (13.3)
i=1

o . o~ ~ 2
4o = argmin| & 5,8 4,60, B) |,
BeB
where aj‘l\n c Ra(BOaEn)X/”\n(GO,En) SatiSﬁeS
o~ g | ~
$3,@4, =273, (60, Bn). (13.4)

The subvector SR-AR and SR-CQLR test statistics, denoted by SR-ARﬁ(GO, Eﬁn) and
SR-QLRﬁ(OO, ﬁgn), respectively, are defined as the nonrobust tests are defined, but
based on the moment functions g;(6, 8) in place of g;(6, 8) and using the GMM es-
timator EZn rather than ﬁn to estimate the nuisance parameter 8. When 7, (6, E,,) >0,
the subvector SR-AR test at nominal size « € (0, 1) rejects if

SR-ARS (69, B3,) > X%wo,ﬁ,,m—a' (13.5)

The subvector SR-CQLR test at nominal size « € (0, 1) rejects if
s ~ —~ ~ ~ ~
SR-QLR; (60, B3,) > S0, By.p (/> D%, (00, B4,)> I 2,60, B,),1—a).  (13.6)

If 7,(60, Br) = 0, then SR-ARS (6, B 5,,) and SR-QLRS (6, B 5,,) := 0 and X;n 0B 1—a

and C?,l(eo,ﬁ,,),p(”l/zﬁ%n(a(la Bz.)>J 4,60, B,), 1 —@) := 0 and the two tests do not reject
H,.

Next, we define the parameter spaces for the subvector SR-AR and SR-CQLR tests.
We denote the column and null spaces of a matrix by col(-) and N(-), respectively.
We impose the conditions in ]-'A?R’ 1 defined in (50) which guarantee consistency of
the preliminary estimator 8,. The parameter space ‘FASR,2 defined in (51) is modi-
fied in four ways: (i) the condition Ayin(Ergig;) > & is dropped, (ii) the condition
Epsupgepge.) 1122 (B)Ar(BY (8i(B) — Ergi(B)) |1 < M is added, (iii) all of the remain-
ing conditions are formulated in terms of the moment functions I7, Fl / 2(00, B*)AF (6,
B*)'gi(6y, B), rather than g;(6y, B), and (iv) the condition, for some ¢+ > 0, N(£2F(6o,
B*)) =N(2Fr (0, B)) forall B € B(B*, {+), where B* denotes the true value of 3, is added.
Call the resulting space ]-"jf}’f:l;. We define the null parameter space for the subvector SR
AR test to be

SSR._ S S,SR
FaR ‘_‘FAR,lm]:AR,Z‘ (13.7)
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The null parameter space for the subvector SR-CQLR test, denoted by F5-5R, is defined as
F¥ is defined in (53) with the following modifications. First, F ;\QR isreplaced by ]—"ﬁf{SR, and
second, all of the remaining conditions are formulated in terms of the moment functions
11,,% (80, B*) AF (89, B*)' x gi(6p, B), rather than g;(6p, B).

We can also construct confidence regions for # with correct asymptotic confidence
size by inversion of the subvector SR-AR and SR-CQLR tests. The relevant parameter

spaces are given by

Foan = {(F.B.00): (F. B) € Fyp " (60), 6p € O} and o)
Fo SR = [(F, B, 00) : (F, B) € F5SR(0y), 0 € B},

respectively, where FgﬁSR(OO) and 7558 (¢,) denote ]-";EﬁSR and F5-SR with the latter sets’
dependence on 6y made explicit.

Note that condition (iv) of ]-"g}’zs,g can be restrictive. We now discuss a scenario in
which it holds. Consider the case where the moment functions are of the form

8i(0, B)=u;(0, B)Z,, (13.9)

where Z; is a vector of instrument variables, the residual u;(0, B) is scalar, Ef u%(()o, B*) >
0, and EFM%(B(), B*)Z;Z factors into EFMZZ(B(), B*)ErZ;Z.. (Note that the latter condi-
tion is implied by conditional homoskedasticity: EF(ulZ(OO, B*)|Z;) = o2 a.s. for some
constant o2 > 0.) Under these conditions, Q2r(6y, B) = EFM%(G(), B)Z:Z; — Eru;(6, B) x
ZiErui(89, B)Z}, and Qp (89, B*) = Epu?(6y, B*)ErZ; Z.. If ApllF A}, denotes a singu-
lar value decomposition of ErZ;Z; with Il1r = Diag(Ilf, Ilyr), where II;r € R" con-
tains the nonzero eigenvalues and ITor € RK~" contains the zero eigenvalues and
Af = (A1r, Agr) is a decomposition of the matrix of eigenvectors corresponding to
the nonzero/zero eigenvalues, respectively, then Ao = N(£2F(6y, B*)). It follows that
ALEpZ;Z!Ap = Diag(Ii, IIyr), and thus, in particular, EF(A%Zi)f =0forj=r+
1,..., k. Therefore, (A%Z;); =0 as. for j=r +1,..., k. But then A3Qrp(6y, B)Ar =
Eputz(eo, B)ARZ,Z Ar — Erui(6y, B)ARZ; - EFui(6y, B)Z; Ar, for any B € B, equals a
block diagonal matrix with the lower right block equal to 0%~"*(x=7)This implies
0r (8, B) Agp = 05— which implies that N(2r(6y, B*)) C N(2r(6y, 8)). Thus, in
the setup of (13.9), condition (iv) of ]:jfﬁs,g holds provided N (£2Fr(6y, B*)) is not a strict
subset of N (£2r(6g, B)).

Note that condition (iv) of ]—"ﬁﬁ%? implies that rr(B) is constant for all 8 € B(B*, {).
Furthermore, itimplies that col(2r(6y, B*)) = col(£2r (6, B)) for all B € B(B*, {;), thatis,
that col(Ar(B*)) =col(Ar(B)) for all B € B(B*, {+). Therefore, without loss of generality,
under condition (iv) of fﬁfifz{, we can take Ar(B) = Ar(B*) for all B € B(B*, {+), that is,
Ar(B) does not depend on g for all B8 € B(B*, {).

The asymptotic size and similarity results for the subvector SR-AR and SR-CQLR tests
are as follows.

THEOREM 13.1. Suppose Assumption gB holds. The asymptotic sizes of the subvector
SR-AR and SR-CQLR tests defined in (13.5) and (13.6), respectively, equal their nomi-
nal size a € (0, 1) for the null parameter spaces F ghSR and FS-SR, respectively. These tests
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are asymptotically similar (in a uniform sense) for the subsets of these parameter spaces
that exclude distributions F under which g; = 0¥ a.s. Analogous results hold for the corre-

sponding subvector SR-AR and SR-CQLR CSs for the parameter spaces ]-"(‘;’iR and Fg 5.5k

CoMMENT. Theorem 13.1 is proved in Section 31 below.

14. MISCELLANEI
14.1 Moore-Penrose expression for the SR-AR statistic

The expression for the SR-AR statistic given in (15) of AG2 holds by the following cal-
culations. For notational simplicity, we suppress the dependence of quantities on 6. We
have

A [An, AT [An, AF] A0) ™ A8

(14.1)
PR ﬁ*l O7n><(k77n) R R
1 J_ 1PN
|:0(k znn)xr,, =) (k=) [An’ An] 8n

=ng, A, H 1A’ "8ns

where the spectral decomposition of 2, given in (10) and (11) is used once in each equa-
tion above. It is not the case that SR-AR, () equals the rhs expression in (15) with prob-
ability one when (2+ (0) is replaced by an arbitrary generalized inverse of 2,(0).

The expression for the SR-AR statistic given in (13) is preferable to the Moore-
Penrose expression in (15) for the derivation of the asymptotic results for the SR-AR test.

14.2 Computation implementation

The computation times given in Section 5.3 are for the model in Section 10 for the
country Australia, although the choice of country has very little effect on the times. The
computation times for the PI-CLC, MM1-SU, and MM2-SU tests depend greatly on the
choice of implementation parameters. For the PI-CLC test, these include (i) the number
of linear combination coefficients “a” considered in the search over [0, 1], which we take
to be 100, (ii) the number of 51mulat10n repetitions used to determine the best choice of
“a,” which we take to be 2000, and (iii) the number of alternative parameter values con-
sidered in the search for the best “a,” which we take to be 41 for p = 1. For the MM1-SU
and MM2-SU tests, the implementation parameters include (i) the number of variables
in the discretization of the maximization problem, which we take to be 1000, and (ii) the
number of points used in the numerical approximations of the integrals 41 and 42 that
appear in the definitions of these tests, which we take to be 1000. The run-times for
the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical value
look up table for the PI-CLC test, that only need to be computed once when carrying
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out multiple tests. The computations are done in GAUSS using the Impt application to
do the linear programming required by the MM1-SU and MM2-SU tests. Note that the
computation time for the SR-CQLR test could be reduced by using a look-up table for
the data-dependent critical values, which depend on p singular values. This would be
most useful when p = 2.

15. SR-CQLRp TEST

In this section, we define the SR-CQLRp test, which is quite similar to the SR-CQLR test,
but relies on g;(#) having a product form. This form is

8i(0) = ui(0)Z;, (15.1)

where Z; is a k vector of IVs, u;(6) is a scalar residual, and the (random) function u;(-)
is known. This is the case considered in Stock and Wright (2000). It covers many GMM
situations, but can be restrictive. For example, it rules out Hansen and Scheinkman’s
(1995) moment conditions for continuous-time Markov processes, the moment condi-
tions often used with dynamic panel models, for example, see Ahn and Schmidt (1995),
Arellano and Bover (1995), and Blundell and Bond (1995), and moment conditions of the
form g;(0) = u;(0) ® Z;, where u;(9) is a vector.

The SR-CQLRp test reduces asymptotically to Moreira’s (2003) CLR test in the ho-
moskedastic linear IV regression model with fixed IVs for sequences of distributions in
all identification categories. In contrast, the SR-CQLR test does so only under sequences
in the standard weak, semi-strong, and strong identification categories; see Section 6.2
for the definitions of these identification categories.

15.1 SR-CQLRp parameter space
When (15.1) holds, we define

d
ug;(0) := %ui(ﬂ) € R? and

15.2
o= <5;i((?)> e RP™1,  and we have G;(6) = Z;ug;(8)'.3° e
The null parameter space for the SR-CQLRp test is
FsR:={F e PR Ep |1 40 Zi | < M, Er|uf > < M, and
Er |l 4 Zi| 21 (2 > ¢) < 172}, (15.3)

30As with G(W;, ) defined in (2), ug;(#) need not be a vector of partial derivatives of u;(6) for all sample
realizations of the observations. It could be the vector of partial derivatives of u;(0) almost surely, rather
than for all W}, which allows u;(0) to have kinks, or a vector of finite differences of u;(0). For the asymptotic
size results for the SR-CQLR, test given below to hold, u;(6) can be any random p vector that satisfies the
conditions in 75® (defined in (15.3)).
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for some y > 0 and some M, ¢ < oo, where II;r and Af are defined in Section 3.2. By
definition, 75} 7SR ¢ F3R.

The conditions in F }S,R are only marginally stronger than those in 758, defined in (6).
A sufficient condition for the last condition in }'E,R to hold for some ¢ < 00 is Er uf <M,
for some sufficiently large M, < oo (using the first condition in F }S)R and the Cauchy-
Bunyakovsky-Schwarz inequality).

The conditions in ]-"1§R place no restrictions on the column rank or singular values
of ErG;. The conditions in ]—';R also place no restrictions on the variance matrix 2 :=
Ergig; of gi, such as Ayin(£2F) > & for some 8 > 0 or Ayin(2F) > 0. Hence, 2F can be
singular.

In Section 3.2, it is noted that identification failure yields singularity of Q2 in
likelihood scenarios. It also does so in all quasi-likelihood scenarios when the quasi-
likelihood does not depend on some element(s) of 6 (or some transformation(s) of
6) for 6 in a neighborhood of 6y.3! Another example where 2 may be singular is
the following homoskedastic linear IV model: y;; = Y28 + U; and Yy; = Zj7 + V3;,
where all quantities are scalars except Z;, 7w € R and 6 = (B, @)’ € Rtz The cor-
responding reduced-form equations are y;; = Z;wg + Vj; and Yy; = Zi7 + V4;, where
Vli =U;+ Vzlﬁ We assume EU; = EVZi =0, EU;Z;,= EVZI'Z,' = OdZ, and E(V,V/|Z;) = EV
a.s. for V; := (V3;, V5;)’ and some 2 x 2 constant matrix 3;-. The moment conditions for
0 are g;(0) = (v, — Z;mB)Z,, (Yo — Zim)Z}) € Rk, where k = 2d,. The variance ma-
trix 3y ® EZ; Z] of gi(60) = (V1;Z;, V>, Z})' is singular whenever the covariance between
the reduced-form errors V3; and 1%; is one (or minus one) or EZ;Z; is singular. In this
model, we are interested in joint inference concerning 8 and #. This is of interest when
one wants to see how the magnitude of 7 affects the range of plausible B values.

Section 3.2 and Grant (2013) note that Qf can be singular in the model for inter-
est rate dynamics in Jegannathan, Skoulakis, and Wang (2002, Section 6.2) (JSW). JSW
considered five moment conditions and a four-dimensional parameter 6. The first four
moment functions in JSW are (a(b — r,-)rl._zy - yazri_l,a(b - rl_)rl_—z«/+1 —(y—1/2)02,(b—
rr = (1720 b — ryr % — (1/2)0%rY 7Y, where 6 = (a, b, 0, y)’ and r; is
the interest rate. The second and third functions are equivalent if y = (a + 1) /2; the sec-
ond and fourth functions are equivalent if y = (¢ + 1)/2; and the third and fourth func-
tions are equivalent if o = a. Hence, the variance matrix of the moment functions is
singular when one or more of these three restrictions on the parameters holds. When
any two of these restrictions hold, the parameter also is unidentified.

Next, we specify the parameter space for (F, 6) that is used with the SR-CQLRp CS.
It is denoted by ]—'g}}P. For notational simplicity, the dependence of the parameter space

]-"}S,R in (15.3) on 6y is suppressed. When dealing with the SR-CQLRp CS, rather than test,
we make the dependence explicit and write it as 51 (6)). We define

Forp={(F,00): F € Fg"(00), 0y € 6}. (15.4)

311n this case, the moment functions equal the quasi-score and some element(s) or linear combina-
tion(s) of elements of moment functions, equal zero a.s. at 6y (because the quasi-score is of the form
gi(0) = (d/90)log f(W;, 6) for some density or conditional density f(W;, 0)). This yields singularity of the
variance matrix of the moment functions and of the expected Jacobian of the moment functions.
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15.2 Definition of the SR-CQLRp test

First, we define the CQLRp test without the SR extension. It uses the statistics g, (6),

n(H) ARn(f)), and Dn(O) (deﬁned in (8) (9), and (18)). The CQLRp test also uses ana-
logues R #(0) and V (9) ofR (0) and V (6) (defined in (19)), respectively, which are de-
fined as follows:

Ru(8) := (B(6) ® I)Va(6)(B(6) ® Iy) € RPHVRX(PHDE - \where

~

=1 Y (7 (0) =5, (0)) ((0) ~ T, (0))) ® (ZiZ7) € RIPHDIXPDE,

05, (0) == 5,(6)'Z; e RP*,
En(0):=(Z  Znxk) " Z,, U*(0) € RR*(PHD) (15.5)
ZﬂXk = (Z17 R Z}'l)/ € Rl’le’

U*(0) := (u}(0), ..., u5(0) e R™PTD and

10 (p+Dx(p+1)
B(6) := P | e RPFOX(P+D
—0 -I,

where u?(0) := (1;(0), up;(0)")" is defined in (15.2). Note that (i) Vn(e) isan estimatgr of
the variance matrix of the moment functions and their vectorized derivatives, (ii) ;,(0)
exploits the functional form of the moment conditions given in (15.1), (iii) V,, (0) typically
is not of a Kronecker product form (because of the average over i =1, ...,n), and (iv)

(0) is the best linear predictor of u}(60) based on {Z; : n > 1}. The estimators Rn(0),

V ( 0), and Zn( 0) (defined immediately below) are defined so that the SR-CQLR} test,
which employs them, is asymptotically equivalent to Moreira’s (2003) CLR test under all
strengths of identification in the homoskedastic linear IV model with fixed IVs and p rhs
endogenous variables for any p > 1; see Section 19 for details. The SR-CQLRp test differs
frorn the SR-CQLR test because V (0) (and the statistics that depend on it) differs from
V,,(B) (and the statlstlcs that depend on it).

We define 2,,(0) e R(p+Hx(p+h) ' just as 3, (6) is defined in (20) and (21), but with
R 2(0) in place ofR (0). We define D*(0) just as D*(O) is defined in (23), but with 2,,(0)
in place of 2,,(0) That is,

Dx(0) := 2,(0)"12D,(0)L)/*(6) € R**P,  where
(15.6)

La(0) = (0,1,)(35(0)) 7" (0,1,).

The estimator 3,(0) is an estimator of a matrix that could be singular or nearly singular
in some cases. For example, in the homoskedastic linear IV model (see Section 19.1 be-
low) 3,,(0) is an estimator of the variance matrix 3 of the reduced-form errors when 6 is
the true parameter, and 3y could be singular or nearly singular. In the definition of L.(6)
above, we use an eigen\@lue-adjuste,(\l version of 3, (0), denoted by 3%(6), whose condi-
tion number (i.e., Amax(2,(6))/Amin (21 (8))) is bounded above by construction. Based on
the finite-sample simulations, we recommend using ¢ = 0.01.
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The QLRp statistic without the SR extension, denoted by QLRp,,(6), is defined just as
QLR, (0) is defined in (23), but with D; (0) in place of D} (6). For « € (0, 1), the nominal
size a« CQLRp test (without the SR extension) rejects Hy : 6 = 6 if

QLRp,(80) > cx, p(n'/*D(89), 1 - a), (15.7)

where ¢ ,(-,1 — «) is defined in (24). The nominal size 100(1 — @)% CQLRp CS is
CScQLRp,n = (00 € @ : QLRp,(69) < cx, , (n'2D}5(6p), 1 — ).
The CQLRp test statistic and critical value satisfy the following invariance properties.

LeMmwmA 15.1. The statistics QLRp,,, ck’p(n1/25;j, 1-—a), 5;‘/52, AR,, 'L?}*n, 5,,, and Zn are
invariant to the transformation (Z;, u) ~ (M Z;, uy) Vi < n for any k x k nonsingular
matrix M. This tmnsformation induces the following tmnsformations gi~ Mg;Vi<n,
G~ MG;Vi<n,g, wMgn, G,, wMGn, _(2 wM_QnM an WMFJ,,M/ Vi< p, Dn
MDnr ank“’“’ankadn“"’M/ :n»Vn (Ip+1 ®M)Vn(1p+l®M)r anan (Ip+1®
M)Rn(1p+1 QM )-

CoMMENT. This lemma is important because it implies that one can obtain the cor-
rect asymptotic size of the CQLRp test defined above without assuming that Api, (2F)
is bounded away from zero. It suffices that 2r is nonsingular. The reason is that (in the
proofs) one can transform the moments by g; ~» Mrg;, where MpQrM l’p = I}, such that
the transformed moments have a variance matrix whose eigenvalues are bounded away
from zero for some 8 > 0 (since Varp(Mrg;) = Ij) even if the original moments g; do not.

For the CQLRp test with the SR extension, we define D 4n(0) as in (26). We let
Z 4i(0) := Ap(0)' Z; € R and Z 4,51 (0) := Zp k. An(0) € R0 We define

Van(0) :=n=1 Y (e (0) — W, (0)) (] (0) — Wiy (0))) ® (Z4i(0)Z.4i(0)')
i=1

c R(p+1)?n(0)x(p+1)?n(a)’ where 158
W0 (0) = 2 40 (0) Z 4i(0) € RPT,
=1 -1 _
E an(0) = (Zansk (0 Z sk (0)) ™' Z i () U*(8) € RMO*(P+D),

and rn((?) and A, (0) are defined in (10) and (11), respectively. In addition, we define
RAn(9) EAn(9) Lan(6), D ,(0), and 0.4n(0) as R 4,(6), EAn(e) L 4n(6), D n(0), and
Q 4n(0) are defined, respectlvely, in (27) and (28), but with VAn(O) in place of VAn( 0)
in the definition of R 4,,(0), with RAn(B) in place of RA,,(H) in the definition of EA,,(O),
and so on in the definitions of L. An(0), D ,(0), and Q An(0). We define the test statistic
SR-QLRp, (6) as SR-QLR,,(60) is defined in (28) but with QAn(O) in place of QA,,(H)
Given these definitions, the nominal size « SR-CQLRp test rejects Hy : 6 = 6 if

SR-QLRp,,(60) > c5,(00),p (12 D%, (00), 1 — @) or  A-(60)8n(Bg) # 0F %0 32 (15.9)

32By definition, A;-(69)'gn(6p) # 0K72(%) does not hold if 7,(69) = k. If 7, (6) =0, then SR-QLRp,,(6) :=
Oand x% ,  ,_, :=0.In this case, 4 (6y) = Iy and the SR-CQLRp test rejects Hy if g1 (6o) # 0F.
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The nominal size 100(1 — «)% SR- CQLRP CSis CSgg.- CQLRp.n = ={6g € O :SR-QLRp, (b)) <
7,001, p(Y/2D¥,(00), 1 — o) and A;L(68)'Gu(p) = 0k 7n(00)} 33

Two simple examples where the extra rejection condition in (15.9) for the SR-CQLRp
test (and in (14) and (29) for the SR-AR and SR-CQLR tests, resp.) improves the power
of these tests are the following. First, suppose (Xy;, X»;)’ ~ i.i.d. N(6, QF), where 6 =
(61, 62) € R%, QF is a2 x 2 matrix of ones, and the moment functions are gi(0) = (Xy; —
01, X2; — 65). In this case, Q2 is smgular An(eo) =(1,1) as., AL(BO) =(1,-1) a.s., the
SR-AR statistic is a quadratic form in An(OO) 2:(00) = X1, + X2, — (0109 + 62), where
Xmn =013 Xy form=1,2, and A;-(0)'8n(00) = X1, — Xon — (610 — 029) a.s. If one
does not use the extra rejection condition, then the SR-AR test has no power against
alternatives 0 = (61, 0,)’ (# 6y) for which 6, + 6, = 61y + 6,9. The same is true for the SR-
CQLR and SR-CQLRp tests (because the SR-QLR,, and SR-QLRp,, test statistics depend
on the SR-AR, test statistic). However, when the extra rejection condition is utilized,
all 6 € R? except those on the line §; — 6, = 019 — 6, are rejected with probability one
(because X1, — X2, = ErX1;— ErX»; = 01 — 0, a.s.) and this includes all of the alternative
0 values for which 61 + 6, = 619 + 6.

Second, suppose X; ~ i.i.d. N(61, 6,), 8 = (61, 62)' € R?, the moment functions are
gi(0) = (X; — 61, X? — 62 — 6,)’, and the null hypothesis is Hy : 6 = (619, 029)'. Consider
alternative parameters of the form 6 = (6, 0)’. Under 6, X; has variance zero, X; = X,, =
01 a.s., X7 = X2 = 67 a.s., where X2:=n1yL 1 X2, 8n(00) = (61 — 610, 03 — 0%, — 020’
a.s., (2,,(00) g,,(eo)g,,(eo) — 21(00)81(00) = 022 as. (provided £, (6y) is defined as in
(8) with the sample means subtracted off), and 7,,(6y) = 0 a.s. In consequence, if one
does not use the extra rejection condition, then the SR-AR, SR-CQLR, and SR-CQLRp
tests have no power against alternatives of the form 6 = (61, 0)’ (because, by definition,
the test statistics and critical values equal zero when 7,,(6y) = 0). However, when the
extra rejection condition is utilized, all alternatives of the form 6 = (61, 0)’ are rejected
with probability one.343%36,37

33By definition, if 7, (6y) = k, the condition A (69)'g,(89) = 0¥+ holds.

34This holds because the extra rejection condition in this case leads one to reject Hy if X, 69 or X_,% —
63, — 620 # 0, which is equivalent a.s. to rejecting if 6; # 619 or 67 — 62, — 69 # 0 (because X, = 0; a.s. and
Xi,% = 9% a.s. under 6), which in turn is equivalent to rejecting if 6 # 6y (because if 69 > 0 one or both of the
two conditions is violated when 6 # 6y and if 0,y = 0, then 6 # 6y only if 6; # 61 since we are considering
the case where 6, =0).

35In this second example, suppose the null hypothesis is Hy : 8 = (819, 0)’. That is, 8,9 = 0. Then the SR-
AR test rejects with probability zero under Hy and the test is not asymptotically similar. This holds because
gn(0g) = X, —910,X 9%0)/ =(0,0) a.s., 7,(6y) =0a.s., SR-AR,(6p) = X?n(ﬁo) 1_e =0as. (because7,(6y) =
0 a.s.), and the extra rejection condition leads one to reject Hy if X, # 6y or X2 — 9%0 — 69 # 0, which is
equivalent to 619 # 619 or 0%0 — 0%0 — 6y # 0 (because X; = 0; a.s.), which holds with probability zero.

Asshown in Theorem 6.1, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null
distributions F for which the g;(6) = 0% a.s. under F, such as in the present example, from the parameter
space of null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.

36We thank Kirill Evdokimov for bringing these two examples to our attention.

37An alternative definition of the SR-AR test is obtained by altering its definition given in Section 4 as
follows. One omits the extra rejection condition given in (14), one defines the SR-AR statistic using a weight
matrix that is nonsingular by construction when ﬁn(oo) is singular, and one determines the critical value
by simulation of the appropriate quadratic form in mean zero normal variates when ﬁ,,(eo) is singular. For
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When the sample variance matrix is singular, an alternative to using the SR-AR,(6y)
statistic is to arbitrarily delete some moment conditions. However, this typically leads
to different test results given the same data and can yield substantially different power
properties of the test depending on which moment conditions are deleted, which
is highly undesirable. The following simple example illustrates this. Suppose W; =
(Wi, Wa;, Wa;)' has a normal distribution with mean vector (61, 6,, 6,)’, all variances are
equal to one, the covariance between Wj; and W,; equals one, (W;, W,;) and Wj; are inde-
pendent, g(W;, 6) = (Wy; — 61, Wa; — 6, W3; — 6,)’, and the null hypothesis is Hy : 0 = 6
for some 6y = (61, 8p2)' € R%. The sample variance matrix is singular with probability
one. A nonsingular sample variance matrix can be obtained by deleting the first moment
condition or the second. If the first moment condition is deleted, the sample moments
evaluated at 6 are (W,;» — 6p2, W3 — 62)’. If the second moment condition is deleted,
they are (W,; — 6g1, W,3 — 62)'. When 6; — 61y and 6, — 6, are not equal (where 6;
and 6, denote the true values), these two sets of moment conditions are not the same.
Furthermore, it is clear that the power of the two tests based on these two sets of mo-
ment conditions is quite different because the first set of sample moments contains no
information about 61, whereas the second set does.

15.3 Asymptotic size of the SR-CQLRp test

The correct asymptotic size and similarity results for the SR-CQLRp test are as follows.

THEOREM 15.2. The asymptotic size of the SR-CQLRp fest defined in (15.9) equals its
nominal size a € (0, 1) for the null parameter spaces F IS)R. Furthermore, this test is asymp-
totically similar (in a uniform sense) for the subset of this parameter space that excludes
distributions F under which g; = 0% a.s. Analogous results hold for the corresponding
SR-CQLRp CS for the parameter space ]—"(ff‘P, defined in (15.4).

CoMMENT. (i) For distributions F under which g; = 0F a.s., the SR-CQLR, test re-
jects the null hypothesis with probability zero when the null is true. Hence, asymptotic
similarity only holds when these distributions are excluded from the null parameter
spaces.

(ii) The proof of Theorem 15.2 is given in Sections 16, 17, and 25-27 below.

example, such a weight matrix can be constructed by adjusting the eigenvalues of 0,,(69) to be bounded
away from zero, and using its inverse.

However, this method has two drawbacks. First, it sacrifices power relative to the definition of the SR-AR
testin (14). The reason is that it does not reject Hy with probability one when a violation of the nonstochas-
tic part of the moment conditions occurs. This can be seen in the example with identities in Section 4 and
the two examples given here.

Second, it cannot be used with the SR-CQLR and SR-CQLR, tests introduced in Sections 5 and 15. The
reason is that these tests rely on the statistic D, (6y), defined in (18), that employs £ (6y) and if 21 (6y) is
replaced by a matrix that is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested
above, then one does not obtain asymptotic independence of g, (6y) and 5,,(0@ after suitable normaliza-
tion, which is needed to obtain the correct asymptotic size of the SR-CQLR and SR-CQLR, tests.
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15.4 Asymptotic efficiency of the SR-CQLRp test under strong identification

Here, we show that the SR-CQLRp test is asymptotically efficient in a GMM sense un-
der strong and semi-strong identification (when the variance matrix of the moments
is nonsingular and the null parameter value is not on the boundary of the parameter
space).

Suppose k > p. Let Ar and I1;r be defined as in (4) and (5) and the paragraph fol-
lowing these equations with 6 = 6. Define A}, A}, and {/\;’h :n>1} as A, Awy,p, and
{An,n : n > 1}, respectively, are defined in (16.16)-(16.18), but with g; and G; replaced
by g3, := ;"> Ajgi and G}, := II;,/* A}, G;, with Fp replaced by F3R in the definition
of Fwy, and with Wr (:= Wy (Wsp)) and U (:= U;(Uyfr)) defined as in (16.11) with g;
and G, replaced by g7, and G7%,. In addition, we restrict {)\Z, , - =1} to be a sequence
for which Ay (EF, gig;) > 0 for all n > 1. By definition, a sequence {)\2, , - n > 1} is said
to exhibit strong or semi-strong identification if n!/ 2s; F, — 00, where s;‘; 7 denotes the
smallest singular value of EfG%,.38

The LM,, and LM$MM statistics are defined in (32). Let X?U,lia denote the 1 — « quan-

tile of the x2 distribution. The critical value for the LM,, and LM{MM tests is Xi _y

TueoreM 15.3. Suppose k > p. For any sequence {X\” , : n > 1} that exhibits strong or
semi-strong identification (i.e., for which n/ zs; F, — 00) and for which X}, , € A}, Vn>1,
we have

(@ SR-QLRp, =QLRp, +0,(1) =LM, + 0,(1) = LMSMM 4 o ,(1) and
b) cx,,(n'/2D 1 —a) -, X |

CoMMENT. (i) Theorem 15.3 establishes the asymptotic efficiency (in a GMM sense)
of the SR-CQLRp test under strong and semi-strong identification. Theorem 15.3 pro-
vides asymptotic equivalence results under the null hypothesis, but by the definition of
contiguity, these asymptotic equivalence results also hold under contiguous local alter-
natives.

(ii) The proof of Theorem 15.3 is given in Section 28.

15.5 Summary comparison of CLR-type tests in Kleibergen (2005) and AG2

We briefly summarize some of the results in AGl and AG2 concerning Kleibergen’s
(2005) moment-variance-weighted CLR (MVW-CLR) and Jacobian-variance-weighted
CLR (JVW-CLR) tests, the SR-CQLR test in AG2, and the SR-CQLRp test introduced
above. (i) The MVW-CLR test has correct asymptotic size for all p > 1 (for the param-
eter space in AG1, which imposes nonsingularity of the variance matrix and some other

38The singular value s;F, defined here, equals s,r, defined in Section 6.2, for all F with Ay (£2F) > 0,

because in this case Qp = Apllip Ay, 05" = ApIl; > Ay, Q5 EpG; = Apll|}* AL ErG; = ApErGy,,
and A is an orthogonal k x k matrix. Since we consider sequences here with Amin (2F,) = Amin(EF, 8i8}) >
0 for all n > 1, the definitions of strong and semi-strong identification used here and in Section 6.2 are

equivalent.
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conditions). (ii) The JVW-CLR test has correct asymptotic size for p = 1 (under simi-
lar conditions to the MVW-CLR test). (iii) For p > 2, AG1 provides an expression for the
asymptotic size of the JWV-CLR test that depends on a vector of localization parameters.
It is unknown whether the asymptotic size exceeds the nominal size. (iv) The MVW-CLR
test is not asymptotically equivalent to Moreira’s (2003) CLR test in the homoskedastic
linear IV (HLIV) model for any p > 1. (v) The JVW-CLR test is asymptotically equivalent
to Moreira’s (2003) CLR test in the HLIV model for p = 1, but not for p > 2. (vi) The SR-
CQLR test has correct asymptotic size for the parameter space F5® in Section 3.2, which
is larger than the parameter space in (i) and (ii). (vii) The SR-CQLRp test has correct
asymptotic size for the parameter space }'E,R (c FSR). (viii) The SR-CQLR test is asymp-
totically equivalent to Moreira’s (2003) CLR test in the HLIV model for p = 1, but not for
p > 2, although the difference for p > 2 is only due to the difference between treating the
IVs as random, rather than fixed. (ix) The SR-CQLRp test is asymptotically equivalent to
Moreira’s (2003) CLR test in the HLIV model for all p > 1.

16. TESTS WITHOUT THE SINGULARITY-ROBUST EXTENSION

The next two sections and Sections 25-27 below are devoted to the proof of Theorems 6.1
and 15.2. The proof proceeds in two steps. First, in this section, we establish the correct
asymptotic size and asymptotic similarity of the tests and CSs without the SR extension
for parameter spaces of distributions that bound Api, (2F) away from zero. (These tests
are defined in (9), (25), and (15.7).) We provide parts of the proof of this result in this
section and other parts in Sections 25-27 below. Second, we extend the proof to the case
of the SR tests and CSs. We provide the proof of this extension in Section 17 below.

16.1 Asymptotic results for tests without the SR extension

For the AR, CQLR, and CQLRp tests without the SR extension, we consider the following
parameter spaces for the distribution F that generates the data under Hy : 6 = 6y:

Far:={F : Ergi=0%, Er||gi|**" < M, and Amin (Ergig}) = 8},
F:=|F € Far : Er|vec(Gp|**” <M}, and (16.1)
Fpi=|F e F:Ep|Zi|*" <M, Ep|uf|*"" < M, Ain(Er Z:Z}) > 6}

for some vy, § > 0 and M < oco. By definition, Fp C F C Far. The parameter spaces Fag,
F, and Fp are used for the AR, CQLR, and CQLR, tests, respectively. For the corre-
sponding CSs, we use the parameter spaces: Fg aR := {(F, 6p) : F € Far(0p), 0y € 0},
Fo = {(F, 0) : F € F(0p), 6y € O}, and Fo.p :={(F,0) : F € Fp(by), 6p € O}, where
Far(6p), F(6p), and Fp(6y) equal Far, F, and Fp, respectively, with their dependence
on 6y made explicit.

THEOREM 16.1. The AR, CQLR, and CQLRp tests (without the SR extensions), defined in
(9), (25), and (15.7), respectively, have asymptotic size equal to their nominal size a € (0, 1)
and are asymptotically similar (in a uniform sense) for the parameter spaces Far, F, and
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Fp, respectively. Analogous results hold for the corresponding AR, CQLR, and CQLRp CSs
for the parameter spaces Fg ar, Fo, and Fg,p, respectively.

CoMMENT. (i) The first step of the proof of Theorems 6.1 and 15.2 is to prove Theo-
rem 16.1.

(ii) Theorem 16.1 holds for both £ > p and k < p. Both cases are needed in the proof
of Theorems 6.1 and 15.2 (even if £ > p in Theorems 6.1 and 15.2).

(iii) In Theorem 16.1, as in Theorems 6.1 and 15.2, we assume that the parameter
space being considered is nonempty.

(iv) The results of Theorem 6.1 still hold if the moment bounds in Fagr, F, and
Fp are weakened very slightly by, for example, replacing Er|/g;||*"Y < M in Far by
Erllgil*1(lgill > j) < g; for all integers j > 1 for some ¢; > 0 (that does not depend on
F) for which &; — 0 as j — oo. The latter conditions are weaker because, for any random
variable X and constants vy, j > 0, EX?1(|X| > j) < E|X|**7/j?. The latter conditions
allow for the application of Lindeberg’s triangular array central limit theorem for inde-
pendent random variables, for example, see Billingsley (1979, Theorem 27.2, p. 310), in
scenarios where the distribution F depends on x. For simplicity, we define the parame-
ter spaces as is.

Analogously, the results in Theorems 6.1 and 15.2 still hold if the moment bounds
in F gg, FSR, and ]—'E,R are weakened very slightly by, for example, replacing
Ep|H3"* Apgil|**Y < M in FRR by Erl| T3> Apgi 11T Apgill > j) < & for all inte-
gers j > 1 for some ¢; > 0 (that does not depend on F) for which ¢; — 0 as j — oo.

The following lemma shows that the critical value function ¢ ,(D, 1 — «) depends
on D only through its singular values.

LEmMA 16.2. Let D be a k x p matrix with the singular value decomposition D = CY'B/,
where C is a k x k orthogonal matrix of eigenvectors of DD’, B is a p x p orthogonal
matrix of eigenvectors of D'D, and Y is the k x p matrix with themin{k, p} singular values
{rj:j <min{k, p}} of D as its first min{k, p} diagonal elements and zeros elsewhere, where
7; is nonincreasing in j. Then ¢ ,(D,1 — a) = ¢ (Y, 1 - «a).

CoMMENT. A consequence of Lemma 16.2 is that the critical value ¢ p(nl/ 2132(00), 1-
a) of the CQLR test depends on 5,";(00) only through 5;(00)’52(00) (because when
k > p, the p singular values of n!/ 252(00) equal the square roots of the eigenvalues of
nﬁ;';(eo)/ﬁtl(ao) and, when k < p, ¢x ,(D,1 — «) is the 1 — « quantile of the Xi distribu-
tion which does not depend on D).

16.2 Uniformity framework

The proofs of Theorems 6.1, 15.2, and 16.1 use Corollary 2.1(c) in Andrews, Cheng, and
Guggenberger (2019) (ACG), which provides general sufficient conditions for the correct
asymptotic size and (uniform) asymptotic similarity of a sequence of tests.
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Now we state Corollary 2.1(c) of ACG. Let {¢,, : n > 1} be a sequence of tests of some
null hypothesis whose null distributions are indexed by a parameter A with parame-
ter space A. Let RP,(A) denote the null rejection probability of ¢, under A. For a finite
nonnegative integer J, let {h,(A) = (h1,(A), ..., hj,(A)) € R : n > 1} be a sequence of
functions on A. Define

H = {h € (R u {:I:oo})J : hy, (Ay, ) — h for some subsequence {w,}

of {n} and some sequence {A,,, € A:n> 1}}. (16.2)

AssumPTION B*. For any subsequence {w,} of {n} and any sequence {A,,, € A :n> 1} for
which hy,, (Ay,) = h € H,RPy,, (Ay,) — a for some a € (0, 1).

ProrosiTION 16.3 (ACG, Corollary 2.1(c)). Under Assumption B*, the tests {¢, : n > 1}
have asymptotic size « and are asymptotically similar (in a uniform sense).
That is, AsySz := limsup,_, . sup,.4sRP,(A) = a and liminf,_, infycq RP,(A) =
limsup,,_, ., sup,c4 RP»#(A).

CoMMENT. (i) By Comment4 to Theorem 2.1 of ACG, Proposition 16.3 provides asymp-
totic size and similarity results for nominal 1 — & CSs, rather than tests, by defining A as
one would for a test, but having it depend also on the parameter that is restricted by
the null hypothesis, by enlarging the parameter space A correspondingly (so it includes
all possible values of the parameter that is restricted by the null hypothesis), and by re-
placing (a) ¢, by a CS based on a sample of size n, (b) a by 1 — «, (c) RP,(A) by CP,(A),
where CP,(A) denotes the coverage probability of the CS under A when the sample size
is n, and (d) the first limsup,,_, ., sup,. 4 that appears by liminf,, , o infyc 4. In the present
case, where the null hypotheses are of the form Hy : 6 = 6y for some 6y € O, to estab-
lish the asymptotic size of CSs, the parameter 6y is taken to be a subvector of A and A is
specified so that the value of this subvector ranges over 6.

(ii) In the application of Proposition 16.3 to prove Theorems 6.1, 15.2, and 16.1,
one takes A to be a one-to-one transformation of Fagr, F, or Fp for tests, and one
takes A to be a one-to-one transformation of Fg ar, Fe, or Fg p for CSs. With these
changes, the proofs for tests and CSs are the same. In consequence, we provide explicit
proofs for tests only and obtain the proofs for CSs by analogous applications of Propo-
sition 16.3.

(iii) We prove the test results in Theorems 16.1 and 15.2 using Proposition 16.3
by verifying Assumption B* for a suitable choice of A, 4,(A), and A. The verifica-
tion of Assumption B* is quite easy for the AR test. It is given in Section 27.6. The
verifications of Assumption B* for the CQLR and CQLRp tests are much more diffi-
cult. In the remainder of this Section 16, we provide some key results that are used
in doing so. (These results are used only for the CQLR and CQLRp tests, not the
AR test.) The complete verifications for the CQLR and CQLRp tests are given in Sec-
tion 27.
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16.3 General weight matrices W, and U,

As above, for notational simplicity, we suppress the dependence on 6, of many quanti-
ties, such as g;, G, ug;, B, and f;, as well as the quantities Vr, R, &, I7p, and R r, that are
introduced below. To provide asymptotic results for the CQLR and CQLRp tests simulta-
neously, we prove asymptotic results for a QLR test statistic and a conditioning statistic
that depend on general random weight matrices W, € R&k and U, € RP*P. In particu-
lar, we consider statistics of the form Wnﬁn ﬁn and functions of this statistic, where 5,1 is
defined in (18). Let®®

QLRwy., = ARy — Amin(nOwu,n), Where

PO (16.3)
Owu.n = (WDnUn, 0 *80) (W DU, 0 280) € RPFD (2D,
The definitions of the random weight matrices W, and U, depend upon the statistic
that is of interest. They are taken to be of the form

W, := Wy (Ws,) € RF** and U, := Uy(U,,) € RP*P, (16.4)

where Wzn and ﬁZn are random finite-dimensional quantities, such as matrices, and
Wi(-) and U;(-) are nonrandom functions that are assumed below to be continuous
on certain sets. The estimators W, and U, have corresponding population quantities
Wsr and U,p, respectively. Thus, the population quantities corresponding to W, and U,
are

Wp:=Wi(Wpr) and Up:=U(Uzf), (16.5)

respectively.

ExampLE 1. For the CQLR test,
Wo=0,"7 and T,:=Ly":=((60,1,)(3) " (60, 1,))"?, (16.6)

where ﬁn is defined in (8) and fn is defined in (20) and (21).
The population analogues of 17,1 and ﬁn, defined in (19), are

Vr = Ep(fi = Erf)(fi — Erf))’ € RPFDE@HDE and
(16.7)
Rp = (B ® I})Vr(B® I},) € RPHDIx(p+DE,

39The definition of QWU,, in (16.3) writes the Ay (-) quantity in terms of (W,D,,U,, fz;l/zg,,), whereas
(23) writes the Ay, (-) quantity in terms of (.(2 1/ 2’g\n, D), which has the .Q 172 g, vector as the first column
rather than the last column. The ordering of the columns does not affect the value of the Apin(+) quantity.
We use the order (.Q i Zzg‘n, D3) in (23) because it is consistent with the order in Moreira (2003) and An-
drews, Moreira, and Stock (2006, 2008). We use the order (Wnﬁﬂ l7,,, ﬁ;l/ 2§n) here because it has significant

notational advantages in the proof of Theorem 16.6 below, which is given in Section 26.
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In this case,

5 = —1/2
Way:=0n,  Wop:=Qp :=Epgigl,  WiWap):=W,;"%,

Uy (Uzr) = ((60, 1,) (25 (2F, Rp)) ™ (00, 1,)) "7,

ﬁZn = (§n7§}1)7 UZF = (‘QF7RF)7 and
Sje(QF, Rp) = tr(Ryyp Q5") / k

(16.8)

for j,¢ =1,...,p + 1, where 3;(Qp, Rp) € RPTD*(P+D denotes the (j,¢) element
Z(QF,RF), S(QF, Rp) is defined to minimize (1,41 ® 2;")[Z ® QF — Rel(p31 ®

22| over symmetric pd matrices 3 € RP+D*(P+) (analogously to the definition of
Zn in (20)), the last equality in (16.8) holds by the same argument as used to obtain (21),
3%(Qr, Rr) is defined given 3({2r, RF) by (22), and R¢r denotes the (j, £) k x k subma-
trix of Rp.40

ExampLE 2. Forthe CQLRp test, one takes W, Wzn, War, Wi(+), and U;(-) asin Example 1
and

U= Lh% = (00, 1,)(35) " (60, 1,))"?, (16.9)

where S,, = Sn(eo) is defined just above (15.5) and Zﬁ is defined given fn by (22).
The population analogues of 1}, and R,,, defined in (15.5), are

Vi = Erfif, — Er((gi, Gi) BF ® Z;Z}) — EF (55 (gi, Gi) ® ZiZ))
+ Ep(BpZiZEr ® Z:Z))
€ R(P+DIx(p+Dk anq (16.10)
Rp = (B’®Ik)I7F(B®Ik) € RWPHDkx(p+Dk  \where
Er:=(ErZiZ) 'Er(g, Gi) e RV fi.= (gl vec(Gy)) € RPHDE,

and B = B(6y) is defined in (19).
For the CQLRp test,

ﬁZn = (ﬁna ﬁn)a UZF = (‘QFa ﬁF)a and

~ N ] (16.11)
30(QF, Rp) = tr(R}p Q) / K,

for j,¢ =1,...,p + 1, where 3j,(2r, Rr) € RPTD*(+D denotes the (j,¢) element
Z(QF,RF), 3(Qr, Rp) is defined to minimize 1Ipr1 ® .(2_1/2)[2 ® Np — ﬁp](IpH ®
0, 172 )| over symmetric pd matrices 3 € R(?+D*(P+D) (analogously to the definition of
En(e) in (20)), the last equality in (16.11) holds by the same argument as used to obtain
2D, ES(QF,IEF) is defined given S(Qr, Rp) by (22), and Eng denotes the (j,£) k x k
submatrix of Rp.

4ONote that W, (War) and U, (U,r) in (16.8) define the functions W (-) and U (-) for any conformable
arguments, such as W5, and Uy, not just for W,r and Uyr.
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We provide results for distributions F in the following set of null distributions:
Fwu :={F € F: Amin(WF) = 81, Amin(Ur) = 61, [|Wr| < My, and |Ur|| < M} (16.12)

for some constants §; > 0 and M < oo, where F is defined in (16.1).

For the CQLR test, which uses the definitions in (16.6)—(16.8), we show that 7 C Fwy
for 8; > 0 sufficiently small and M; < oo sufficiently large; see Lemma 27.4(a). Hence,
uniform results over Fwy for this test imply uniform results over F.

For the CQLRp test, which uses the definitions in (16.9)-(16.11), we show that Fp C
Fwu for 6; > 0 sufficiently small and M; < oo sufficiently large, where F is defined in
(16.1); see Lemma 27.4(b) in Section 27.1. Hence, uniform results over Fp N Fwy for
arbitrary §; > 0 and M < oo for this test imply uniform results over Fp.

16.4 Uniformity reparametrization

To apply Proposition 16.3, we reparametrize the null distribution F to a vector A. The
vector A is chosen such that for a subvector of A convergence of a drifting subsequence
of the subvector (after suitable renormalization) yields convergence in distribution of
the test statistic and convergence in distribution of the critical value in the case of the
CQLR tests. In this section, we define A for the CQLR and CQLRp tests. The same defini-
tion is used for both tests. The (much simpler) definition of A for the AR test is given in
Section 27.6 below.
The vector A depends on the following quantities. Let

Br denote a p x p orthogonal matrix of eigenvectors of

Up(ErG)'WgWr(ErG)Ur (16.13)

ordered so that the corresponding eigenvalues («ir, ..., k,r) are nonincreasing. The
matrix B is such that the columns of Wr(ErG;)UrBF are orthogonal. Let

Cr denote a k x k orthogonal matrix of eigenvectors of
Wr(EFG)URUR(ErGy) Wi (16.14)
The corresponding eigenvalues are (kf, ..., kxr) € R¥. Let
(T1F, - -+ Tmin{k, p)F) denote the min{k, p} singular values of Wp(ErG;)Ufr,  (16.15)

which are nonnegative, ordered so that 7;r is nonincreasing. (Some of these singular
values may be zero.) As is well known, the squares of the min{k, p} singular values of a
k x p matrix A equal the min{k, p}largest eigenvalues of 4’4 and 4 A’. In consequence,
KiF = TJZ-F forj=1,..., min{k, p}.Inaddition, x;r = 0 for j = min{k, p}+1, ..., max{k, p}.

41The matrices Br and Cr are not uniquely defined. We let Br denote one choice of the matrix of eigen-
vectors of U (ErG;) WiWr(ErG;)Ur and analogously for Cr.
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Define the elements of A to be*2:43

. in{k,
ALF = (TIFs -+, Tmin{k, pjF)’ € Rmintk Pl
Ay R := Bp € RP*P,

. kxk
)\3,}7 = CFER x 5

)\4’1: = EFGl' S kap,

/
o 8i 8i (p+Dkx(p+Dk
Aspi=F R'P P
>F F (VGC(GQ) (Vﬁ:C(G,-)) € ’

TOF Tmin{k, p}F
A6,F = (A6,1F> - - - A6, (minfk, p}—DF) = <—, e 7,;)
T1F T(min{k, p}—1)F

(16.16)

e [0, 1mintk.Pi=1 " where 0/0 := 0,

A7.F =W,

Ag.p = Usp,

A9,F = F, and

A=Ap:=(ALF,--- Ag,F).

The dimensions of W,r and U,r depend on the choices of 1717,, = Wl(Wzn) and 17,1 =
U1(Uz,). We let A5 gr denote the upper left k£ x k submatrix of As z Thus, A5 gr =
Ergig; = . We consider two parameter spaces for A: Awy and Awy, p, which corre-
spond to Fwy and Fwy N Fp, respectively, where Fp and Fwy are defined in (16.1) and
(16.12), respectively. The space Awy is used for the CQLR test. The space Awy, p is used

for the CQLRp test.** The parameter spaces Awy and Awy, p and the function 4, ()) are
defined by

Awy = {A: A=Ay, ..., Ao p) for some F € Fyy},
Awu,p:={A: A=Ay F,..., Ao ) for some F € Fwy N Fp}, and (16.17)
Bp(A) = (Y201 Fy Ao Fo A3 Py A o AS Fy Mg s A7,Fs A8, F).

By the definition of 7, Awy and Awy, p index distributions that satisfy the null hy-
pothesis Hy : 6 = 6p. The dimension J of 4,(A) equals the number of elements in

(A,F,...,Ag,F). Redundant elements in (AqF,...As F), such as the redundant off-
diagonal elements of the symmetric matrix As g, are not needed, but do not cause any
problem.

We define A and 4,()) as in (16.16) and (16.17) because, as shown below, the asymp-
totic distributions of the test statistics under a sequence {F, : n > 1} for which 4,(Af,) —

42For simplicity, when writing A = (A 1,F»---» Ag i), we allow the elements to be scalars, vectors, matrices,
and distributions and likewise in similar expressions.

41If p =1, no vector A r appears in A because A;_ only contains a single element.

44Note that the parameter A has different meanings for the CQLR and CQLR tests because U, is differ-
ent for the two tests.
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h € H depend on the behavior of lim nl/z)\LFn, aswell aslim A, r, form=2,...,8. Note
that A r measures the strength of identification.
For notational convenience,

{An,5 :n > 1} denotes a sequence {A, € Awy : n > 1} for which £, (A,) - he H (16.18)

for H defined in (16.2) with A equal to Awy.** By the definitions of Awy and Fwy, {A, 5 :
n > 1} is a sequence of distributions that satisfies the null hypothesis Hy : 6 = 6j.

We decompose /4 (defined by (16.2), (16.16), and (16.17)) analogously to the de-
composition of the first eight components of A: & = (44, ..., hg), where A, r and A,
have the same dimensions for m = 1,...,8. We further decompose the vector %; as
hy = (h1,1, ..., hi,minik, py)’» Where the elements of /1 could equal co. We decompose /¢
as hg = (hg 1, - - - » M6 minik, py—1)’- In addition, we let hs ; denote the upper left k x k sub-
matrix of 5. In consequence, under a sequence {A,, ; : n > 1}, we have

n]/szF,, — h1,;>0 Vj<min{k, p},
Am,Fy = hm Ym=2,...,8,
(16.19)
AsgF, = 0F, = EF,gig; — hs g, and
A6, jF, = he,j Yj=1,...,min{k, p} — 1.

By the conditions in 7, defined in (16.1), A5 g is pd.

16.5 Assumption WU

We assume that the random weight matrices 1717,1 = Wl(Wzﬂ) and 17,1 = Ul(UZn) defined
in (16.4) satisfy the following assumption that depends on a suitably chosen parameter
space A, (C Awy), such as Awy or Awy p.

AssumPTION WU FOR THE PARAMETER SPACE A, C Awy. Under all subsequences {wy}
and all sequences {\y,, p : n > 1} with Ay, 5 € Ay,

(@) Wi, —p h7 (=limWap,),

(b) Uaw, — p hs (=1im Uy, ), and

(c) Wi() is a continuous function at h7 on some set W that contains {A7 (= Wap : A =

(AM,Fs ..., Ao, F) € Ay} and contains Wan wp — 1 and U1(-) is a continuous function at hg
on some set U, that contains {Ag p(= Usr) : A = (A1F, ..., Ao, F) € Ay} and contains Uy,
wp — 1.

In Assumption WU and elsewhere below, “all sequences {A,,, ; : n > 1}” means “all
sequences {A,, , : n > 1} for any h € H,” where H is defined in (16.2) with A equal to
Awy, and likewise with n in place of wy,.

Assumption WU for the parameter spaces Awy and Awy p is verified in Lemma 27.4
in Section 27 below for the CQLR and CQLRp tests, respectively.

45Analogously, for any subsequence {w,, : n > 1}, {Aw,,n 1 n > 1} denotes a sequence {Ay, € A :n > 1} for
which Ay, (Ay,) > he H.
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16.6 Asymptotic distributions

This section provides the asymptotic distributions of QLR and QLRp test statistics and
corresponding conditioning statistics. These statistics are used in the proof of Theo-
rem 16.1 to verify Assumption B* of Proposition 16.3.

For any F € F, define

O = Varg (vee(Gy) — (Ervee(Ge)g;) 2 gi)  and
16.20
@D = lim ) o

whenever the limit exists, where the distributions {F, : n > 1} correspond to {A,,, 5 :
n > 1} for any subsequence {w, : n > 1}. The assumptions allow (I)ZCC(G") to be singu-
lar.

By the CLT and some straightforward calculations, the joint asymptotic distribution
of n'/2(g,, vec(Dy, — Er,G;)') under {A,,j, : n > 1} is given by

g kx pk

8h (p+nk [ hse 0

D) "N\ L 16.21
(VCC(Dh)) ( ’ (Opkxk (D\}/lec(Gl) ( )

where g, € RF and D, € R¥*? are independent by the definition of D,; see Lemma 16.4
below.*6

To determine the asymptotic distributions of the QLR,, and QLRp,, statistics (de-
fined in (23) and just below (15.6)) and the conditional critical value of the CQLR and
CQLRp tests (defined in (24), (25), and (15.7)), we need to determine the asymptotic
distribution of anﬁnUFn without recentering by Er, G;. To do so, we post-multiply
Wk, D,U. F, first by Br, and then by a nonrandom diagonal matrix S, € R?*? (which may
depend on F, and /). The matrix S, rescales the columns of anﬁn Ur, Br, to ensure that
nl/2 Wk, ﬁn Ur, BF, S, converges in distribution to a (possibly) random matrix that is finite
a.s. and not a.s. zero.

The following is an important definition for the scaling matrix S, and asymp-
totic distributions given below. Consider a sequence {A,; : n > 1}. Let g = g; (e
{0, ..., min{k, p}}) be such that

hyj=o00 forl<j<gq, and hyj<oo forg,+1<j<min{k, p}, (16.22)

where hy j := limn'/?7;p, > 0 for j = 1,..., min{k, p} by (16.19) and the distributions

{Fy : n > 1} correspond to {A, ) : n > 1} defined in (16.18). This value g exists be-
cause {hy ;: ] < min{k, p}} are nonincreasing in j (since {7;r : j < min{k, p}} are non-
increasing in j, as defined in (16.15)). Note that ¢ is the number of singular values of
Wr, (Er,G)UF, that diverge to infinity when multiplied by n!/2. Heuristically, g is the

461f one eliminates the A, (Er gigg) > § condition in F and one defines 5,, in (18) with ﬁn replaced by
the eigenvalue-adjusted matrix ﬁﬁ for some ¢ > 0, then the asymptotic distribution in (16.21) still holds, but
without the independence of g, and D;,. However, this independence is key. Without it, the conditioning
argument that is used to establish the correct asymptotic size of the CQLR and CQLR, tests does not go
through. Thus, we define 5,, in (18) using fl\n, not fl\fl
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maximum number of parameters, or one-to-one transformations of the parameters,
that are strongly or semi-strongly identified. (That is, one could partition 6, or a one-
to-one transformation of 6, into subvectors of dimension ¢ and p — ¢ such that if the
p — q subvector was known, and hence, was no longer part of the parameter, then the
g subvector would be strongly or semi-strongly identified in the sense used in this pa-
per.)

Let

Sy :=Diag{(n"?r15,) ", ..., (0"P745,) "' 1,..., 1} € RP*P and

T, =B, S, € RP*P,

(16.23)

where g = ¢g;, is defined in (16.22). Note that S, is well-defined for » large, because
n'27jp — coforall j <gq.

The asymptotic distribution of D, after suitable rotations and rescaling, but without
recentering (by subtracting ErG;), depends on the following quantities. We partition 4,
and /3 and define A, as follows:

hy = (ha,g, h2, p—g), h3 = (h3,q, h3 k—¢),

02x(P—q)
hip—q := | Diag{hy,g41,...,h1,p} | € RKX(r=0  if k> D,
0k=p)x(p—q)
I 09x k=) 09x(p=k)
hS = e RF*(=9 iff < p, (16.24)
LP=4"" | Diaglhy g1, ..., hi g} 0K D*@P=R) <p

Kh = (Zh,q’ Zh,p—q) € RkXp7 Zh,q = h3,q7

Kh)p_q = h3h<1>,p_q + h715hh81h2,p—q7

h71:=Wi(h7), and hgy = Uj(hg),

where hy, € RPX4, hy ,_, € RP*(P=D, h3 . € Rkxa, h3k—q € Rkx(k=q) Zh,q € Rkxa,
Ap, p—q € RF*¥P=D | h7 € Rk and hgy € RP*P 47 Note that when Assumption WU holds
h71 =lim WFn = limI/V](I/VZFn) and hgl =lim UFn =lim U] (Uzpn) under {/\n,h ‘n= 1}.

The following lemma allows for £ > p and k < p. For the case where k > p, it appears
in the SM to AG1 as Lemma 10.3.

LemMmA 16.4. Suppose Assumption WU holds for some nonempty parameter space A, C
Awu. Under all sequences (A, j, :n > 1} with A, , € Ay,

128, Dy — Ef,Gi, Wg,DyUr, Ty) = 4 (84> D, Ap),

where (a) (g}, D) are deﬁn_ed in (16.21), (b) Zh is the nonrandom function of h and Dy,
defined in (16.24), (c) (Dy,Ay) and g, are independent, and (d) under all subsequences

“"There is some abuse of notation here. For example, &, 4 and h, ,_, denote different matrices even if
p — g happens to equal q.
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{wy} and all sequences {A,,, j : n > 1} with A, , € Ay, the convergence result above and
the results of parts (a)—(c) hold with n replaced with wy,,.

CoMMENT. (i) Lemma 16.4(c) is a key property that leads to the correct asymptotic size
of the CQLR and CQLRp tests.

(i) Lemma 10.3 in the SM to AG1 contains a part (part (d)), which does not appear
in Lemma 16.4. It states that Aj, has full column rank a.s. under some additional con-
ditions. For Kleibergen’s (2005) LM statistic and Kleibergen’s (2005) CLR statistics that
employ it, which are considered in AG1, one needs the (possibly) random limit matrix
of nl/ ZWFn ﬁn Ur,BF, Sy, namely, A}, to have full column rank with probability one, in or-
der to apply the continuous mapping theorem (CMT), which is used to determine the
asymptotic distribution of the test statistics. To obtain this full column rank property,
AGI restricts the parameter space for the tests based on aforementioned statistics to be
a subset Fy of F, where 7 is defined in Section 3 of AG1. In contrast, the QLR,, and
QLRp,, statistics considered here do not depend on Kleibergen’s LM statistic and do not
require the asymptotic distribution of n!/ ZWFnﬁn Ur, BF, Sy to have full column rank a.s.
In consequence, it is not necessary to restrict the parameter space from F to 7, when
considering these statistics.

Let

P S A U

&jn denote the jth eigenvalue of nU, D, W, W,,D,U,, Vj=1,...,p, (16.25)

ordered to be nonincreasing in j. The jth singular value of n!/ 21717,,5,1 ﬁn equals ?%2 for
j=1,...,min{k, p}.

The following proposition, combined with Lemma 16.2, is used to determine the
asymptotic behavior of the data-dependent conditional critical values of the CQLR and
CQLRp tests. The proposition is the same as Theorem 10.4(c)-(f) in the SM to AG1, ex-
cept that it is extended to cover the case k < p, not just k > p. For brevity, the proof of
the proposition given in Section 25 below just describes the changes needed to the proof
of Theorem 10.4(c)—(f) in the SM to AG1 in order to cover the case k < p. The proof of
Theorem 10.4(c)-(f) in the SM to AG]1 is similar to, but simpler than, the proof of Theo-
rem 16.6 below, which is given in Section 26.

ProposITION 16.5. Suppose Assumption WU holds for some nonempty parameter space
Ay C Awy. Under all sequences (A, j, :n > 1} with A, , € Ay,

(@) Kjn —>pooforallj<gq,

(b) the (ordered) vector of the smallest p — q eigenvalues of nU, D,,W,W,D,U,, that is,
(K(g+1yns - - - » Kpn)', converges in distribution to the (ordered) p — q vector of the eigenval-
- _ B B
ues of Ay ,_qh3 k—qh' iy X Anp—q € RP=D*(p=a)
(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-
ma 16.4, and



28 Andrews and Guggenberger Supplementary Material

(d) under all subsequences {w,} and all sequences {Ay,, j : n > 1} with Ay, j; € A, the
results in parts (a)-(c) hold with n replaced with w,,.

CoMMENT. Proposition 16.5(a) and (b) with Wn = ﬁ;l/z and ﬁn = z}l/z is used to de-
termine the asymptotic behavior of the critical value function for the CQLR test, which
depends on n'/ 25* defined in (23), see the proof of Theorem 27.1 in Section 27.2. Propo-
sition 16.5(a) and (b) with Wn =1, 0.2 and U,, = Z,ll/ 2 is used to determine the asymptotic
behavior of the critical value function for the CQLRp test, which depends on nl/ 2]37; de-

fined in (15.6); see the proof of Theorem 27.1 in Section 27.2.

The next theorem provides the asymptotic distribution of the general QLRyyy ,
statistic defined in (16.3) and, as special cases, those of the QLR,, and QLRp,, statistics.

THEOREM 16.6. Suppose Assumption WU holds for some nonempty parameter space
Ay C Awy. Under all sequences (A, j, : n > 1} with A, , € Ay,

1= ~ —1/2— \/ ~ —1/2—
QLRwy,» —4 g/hhS,ggh = Amin (8%, p—g> hS,g/ Zh) h3,k—qh/3,k7q(Ah,p—q’ hS,g/ gn))

and the convergence holds jointly with the convergence in Lemma 16.4 and Proposi-
tion 16.5. When q = p (which can only hold if k > p because q < min{k, p}), Zh,p_q
does not appear in the limit random variable and the limit random variable reduces to
(h;i, 2§h) h3, ph, phs l,/zgh Xf,- When q = k (which can only hold if k < p), the Anin(-)
expression does not appear in the limit random variable and the limit random variable
reduces to g/hh; i,gh ~ Xi- When k < p and q < k, the Ay (-) expression equals zero and

the limit random variable reduces to g, h ;gh ~ Xi- Under all subsequences {w,} and all
sequences {\y,, p :n > 1} with Ay, , € A, the same results hold with n replaced with w,.

CoMMENT. (i) Theorem 16.6 gives the asymptotic distributions of the QLR,, and QLRp,
statistics (defined by (23) and (15.6), resp.) once it is verified that the choices of (Wn, 0, )
for these statistics satisfy Assumption WU for the parameter spaces Awy and Awuy,p,
respectively. The latter is done in Lemma 27.4 in Section 27.1.

(ii) When g = p, the parameter 6y is strongly or semi-strongly identified and Theo-
rem 16.6 shows that the QLRyyy , statistic has a X%; asymptotic null distribution.

(iii) When k = p, Theorem 16.6 shows that the QLRyyy,, statistic hasa Xi asymptotic
null distribution regardless of the strength of identification.

(iv) When k < p, 0 is necessarily unidentified and Theorem 16.6 shows that the
asymptotic null distribution of QLRyyy , is Xi.

(v) The proof of Theorem 16.6 given in Section 26 also shows that the largest g eigen-
values of n(W D Un, Q 1/2A ) (W D U,,, (2 gn) diverge to infinity in probability and
the (ordered) vector of the smallest p+1— g eigenvalues of this matrix converges in dis-
tribution to the (ordered) vector of the p+ 1 — g eigenvalues of (Kh, p—q> hs_,iv/ zgh)/hl k—gq X

12—
3k q(Ahl’ Q’th 8n)-
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Propositions 16.3 and 16.5 and Theorem 16.6 are used to prove Theorem 16.1. The
proofis given in Section 27 below. Note, however, that the proof is not a straightforward
implication of these results. The proof also requires (i) determining the behavior of the
conditional critical value function ¢, ,(D, 1 — @), defined in the paragraph containing
(24), for sequences of nonrandom k x p matrices {D, : n > 1} whose singular values may
converge or diverge to infinity at any rates, (ii) showing that the distribution function of
the asymptotic distribution of the QL Rwu, , statistic, conditional on the asymptotic ver-
sion of the conditioning statistic, is continuous and strictly increasing at its 1 — « quan-
tile for all possible (k, p, g) values and all possible limits of the scaled population singu-
lar values {nl/ZTan :n>1}forj=1,..., min{k, p}, and (iii) establishing that Assumption
WU holds for the CQLR and CQLRp tests. These results are established in Lemmas 27.2,
27.3, and 27.4, respectively, in Section 27.

17. SINGULARITY-ROBUST TESTS

In this section, we prove the main Theorems 6.1 and 15.2 for the SR-AR, SR-CQLR, and
SR-CQLRp tests using Theorem 16.1 for the tests without the SR extension. These tests,
defined in (14), (29), and (15.9), depend on the random variable 7;,(6) and random ma-
trices A,,(H) and AL(G) defined in (10) and (11). First, in the following lemma, we show
that with probability that goes to one as n — oo (wp — 1), the SR test statistics and data-
dependent critical values are the same as when the nonrandom and rescaled population
quanutles rp(0) and IT; F/ (0) Ar(0) are used to define these statistics, rather than7,(6)
and An(a)’ where rr(0), Ap(60), and II £ (0) are defined as in (4) and (5). The lemma
also shows that the extra rejection condition in (14), (29), and (15.9) fails to hold wp — 1
under all sequences of null distributions.

In the following lemma, 6y, is the true value that may vary with n (which is needed
for the CS results) and col(-) denotes the column space of a matrix.

LEMMA 17.1. For any sequence {(Fy, 6o,) € F RAR n > 1}, (@) 7 (00,) = rF, (00n) Wp — 1,

(b) 001(2,,(00,1)) = col(AF, (60,)) wp — 1, (c) the statistics SR-AR,(6y,), SR-QLR,,(6g,),
SR-QLRp,, (80n), ¢, (60,), p(n/2D*, (00n), 1 — ), and cz, gy, p(n*/>D*,, (60,), 1 — ) are in-
variant wp — 1 to the replacement of 7, (6y,) and A n(00n)" by rF, (00,) and H_l/ (60,) %

AF, (00,)’, respectively, and (d) AL(GO,,) 2 (00n) = 0K Tn(0on) wp —> 1, where thls equality
is defined to hold whenT,,(0y,) =

CoMMENT. 1. We now provide an example that appears to be a counterexample to
the claim that 7,, = » wp — 1. We show that it is not a Counterexample because the
distributions considered violate the moment bound in ]—'AR in (6). Suppose k£ =1 and
gi =1, —1, and 0 with probabilities p, /2, p,/2, and 1 — p,, respectively, under F,,, where
pn=c/nforsome 0 < ¢ < oco. Then Ef, g; =0, as is required, and rk(2f,) = rk(Eanl )=
rk(p,) = 1. We have Qn = 0if g; = 0 Vi < n. The latter holds with probability (1 — pn)” =
(1—-c¢/n)"*— e ¢>0asn— oco. In consequence, Ppn(rk(ﬂn) =1k(2F,)) = Pr, (rk(!)n) =
1) <1—Pr,(gi=0Vi<n)—1-e°<1, which is inconsistent with the claim that
7, = r wp — 1. However, the distributions {F}, : n > 1} in this example violate the moment
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bound EF |11, —12 4 F8&i 7Y <M in Fx SR r» S0 there is no inconsistency with the claim. This

holds because for these distributions Ep, |11, 1/ZA/ - 8i |>+Y = EF, |VarF1/ (g)gil™ =

DPn g Er,|gil = pn 2 00 asn— oo, where the second equality uses |g;| equals 0

or 1 and the third equality uses EF, |gi| = pa.

2. The example in the previous comment is extreme. A simple version of a more
typical example where singularity and near singularity may occur is the case where

W; ~iid N (6, QF) for 6 € R*, Qp € Rk*k, g(W;, 0) :=W; — 6, Qr has spectral decompo-
sition Arllp A, and some eigenvalues of 2y may be close to zero or equal to zero. In
this case, IT ;1/ ZA% gi is a vector of independent standard normal random variables and
the moment conditions in fgg and 7SR hold immediately. In this case, the conditions
in ]-'gR and FSR are mild moment conditions that allow one to obtain asymptotic results
without the normality assumption.

Proor orF LEMMA 17.1. For notational simplicity, we suppress the dependence of var-
ious quantities on 6y,. By considering subsequences, it suffices to consider the case
where rp, =rforalln>1forsomere{0,1,...,k}.
First, we establish part (a). We have 7;,, < r a.s. for all n» > 1 because for any con-
stant vector A € R* for which NQOp A =0, we have X'g; =0 a.s. [F,] and /\/ﬁ A=
-1 Y (Ngi )2 —(NZn)? =0a.s. [F,], where a.s. [F,] means “with probability one under
F,.” This completes the proof of part (a) when r = 0. Hence, for the rest of the proof of
part (a), we assume r > 0.
We have 7, := rk(() ) > rk(H_l/zA’ !2 nAfp, 11 1F/ ) because !2 isk xk, Ap 11 _1/ is
k xr,and 1 <r < k. In addition, we have

“12 4§ o2
g~ A F2n A LY

=

=n"" Y (I, 1/2AF )(Huvl/2 anl)/

i

/
_ 1/2 1 12
( 1ZH1F,, anl>( anF,, F,8 ) 17.1)

Er, (T35 A1) (T35 A 8)

=11, A, Op, Ap, 11,

Il
—_

=11,,> A, AP 1T, A2 AF,ZH_l/Z I,

and Ef,I1,, Iln/ 2A’Fn gi = 0", where the second last equality in (17.1) holds by the spec-
tral decomposition in (4) and the last equality in (17.1) holds by the definitions of 4%,
Ap, and IT;f in (4) and (5). By (17.1), the moment conditions in 7SR, and the weak
law of large numbers for L'*+7/2-bounded i.i.d. random variables for y > 0, we obtain
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H_l/zA/ (2 nAF, HlF — p Ir. In consequence, tk(I1 1/ZA’ _(2 nAF, 1F/ )>rwp— 1,
Wthh concludes the proof that 7, = r wp — 1.48
Next, we prove part (b). Let N(-) denote the null space of a matrix. We have

/\GN(QF,,) - )\/.QF,,AZO > Vaan(/\/gi) =0
— Ngi=0 as.[F,] = 02,A=0 as.[F,]
— AeN{, as.[F,] (17.2)

That is, N(QF,) C N(£,) a.s. [F,]. This and rk(Q2r,) = rk({2,) wp — 1 imply that
NW2f,) = N(ﬁn) wp — 1 (because if N(ﬁn) is strictly larger than N({2f,) then the di-
mension and rank of ﬁn must exceed the dimension and rank of N (£2F, ), which is a con-
tradiction). In turn, N(£2f,) = N(ﬁ,,) wp — 1 implies that col(;l\,,) = col(Af,) wp — 1,
which proves part (b).

To prove part (c), it suffices to consider the case where r > 1 because the test statistics
and their critical values are all equal to zero by definition when7, =0and7, =0 wp — 1
when r = 0 by part (a). Part (b) of the lemma implies that there exists a random r x r
nonsingular matrix ]\7,1 such that

o~

Ay = Ap, 11, M, wp— 1, (17.3)

because IIf, is nonsingular (since it is a diagonal matrix with the positive eigenval-
ues of 2F, on its diagonal by its definition following (5)). Equation (17.3) and 7, = r
wp — 1 imply that the statistics SR-AR,;, SR-QLR,,, SR-QLRp,,, C?n,p(”l/szqn;} —a), and

. e, p(nt/ zDzn, 1 — a) are invariant wp — 1 to the replacement of 7, and A/, by r and
M WL 1/ 2A’ , respectively. Now we apply the invariance results of Lemmas 5.1 and 15.1
with (k gi, G i) replaced by (r, 11, 1/ZA’ gl,H 1/ZA/ G ;) and with M equal to M’ These
results imply that the previous ﬁve statistics When based on rand Il . Y 2A’ - gi are in-

variant to the multiplication of the moments I1,, 1/ 2A’ . 8i by the nonsmgular matrix M -
Thus, these five statistics, defined as in Sectlons 5.2 and 15, are invariant wp — 1 to the
replacement of 7,, and A’ by r and IT; F/ Ap, , respectively.

Lastly, we prove part (d). The equality (Aﬁ)”g‘n = 0%~ holds by definition when 7, =
k (see the statement of Lemma 17.1(d)) and 7, = r wp — 1. Hence, it suffices to consider
the case where r € {0, ...,k — 1}. For all n > 1, we have EFn(A%‘_n)/’g\” =0k and

nVarr, ((A},) 8) = (AF,) Qr, A%, = (A%) AL ITE, (AD) AF, =056 (7.4

48We now provide an example that appears to be a counterexample to the claim that7, =r wp — 1. We
show that it is not a counterexample because the distributions considered violate the moment bound in
]—fﬁ. Suppose k =1 and g; = 1, —1, and 0 with probabilities p,/2, p,/2, and 1 — p,, respectively, under F,,
where pn=c/n for some 0 < ¢ < cc. Then EF, g; =0, as is required, and rk({2r,) = rk(EF, g; 2y =rk(pp) = 1.
We have 0, =0 if g; = 0 Vi < n. The latter holds with probability (1 — p,)" = (1 —c/n)" — e¢=“ > 0asn— oco.
In consequence, P, (rk(.(Z ) =1k(2F,)) = PF, (rk(.(Z )=1)<1-Pp,(gi=0Vi<n)—1—-e¢<1,whichis
inconsistent with the claim that7, = r wp — 1. However, the distributions {F}, : n > 1} in this example violate
the moment bound Ef||IT 5 —12 4 &i 12tY <M in fgg, so there is no inconsistency with the claim. This holds

because for these distributions Er, |11} l/ZA’ gl = Epn|Vaan/ (8Ngil**" = pn T PER |gil = pn Y >
oo as n — oo, where the second equallty uses | gll equals 0 or 1 and the third equality uses EF, |gi| = pn.
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where the second equality uses the spectral decomposition in (4) and the last equality
uses Af =[Ap, AI%], see (5). In consequence, (Al%n )'8, = 0¥~ a.s. This and and the result

of part (b) that col(;l\j) = col(At#n) wp — 1 establish part (d). O

Given Lemma 17.1(d), the extra rejection conditions in the SR-AR, SR-CQLR, and
SR-CQLRp tests and CSs (i.e., the second conditions in (14), (16), (29), (15.9), and in the
SR-CQLR and SR-CQLRp CS definitions following (29) and (15.9)) can be ignored when
computing the asymptotic size properties of these tests and CSs (because the condi-
tion fails to hold for each test wp — 1 under any sequence of null hypothesis values for
any sequence of distributions in the null hypotheses, and the condition holds for each
CS wp — 1 under any sequence of true values 6, for any sequence of distributions for
which the moment conditions hold at 6y,,).

Given Lemma 17.1(c), the asymptotic size properties of the SR-AR, SR-CQLR, and
SR-CQLRp tests and CSs can be determined by the analogous tests and CSs that are
based on rf, (6p) and H;;H/Z(OO)AF,L(OO)/ (for fixed 0y with tests and for any 6y € ® with
CSs). For the tests, we do so by partitioning ]-'gﬁ, FSR and ]-'}S,R into k sets based on
the value of rk(£2r(6p)) and establishing the correct asymptotic size and asymptotic
similarity of the analogous tests separately for each parameter space. That is, we write
]-'gg = Uf:o }—gglrl’ where ]—'ﬁﬁlr] ={F € }'gﬁ : tk(£2F(0p)) = r}, and establish the de-
sired results for 73R | separately for each r. Analogously, we write 7% = U, Fi and
FoR = Uy FoR), where 758 .= 73R | 0 PSR and 3R, .= 73R | n 7SR, Note that we do
not need to consider the parameter space 7, ﬁgm for r = 0 for the SR-AR test when deter-
mining the asymptotic size of the SR-AR test because the test fails to reject Hy wp — 1
based on the first condition in (14) when r = 0 (since the test statistic and critical value
equal zero by definition when7, =0 and 7, = r =0 wp — 1 by Lemma 17.1(a)). In addi-
tion, we do not need to consider the parameter space F gg[r] for r = 0 for the SR-AR test
when determining the asymptotic similarity of the test because such distributions are
excluded from the parameter space F gg by the statement of Theorem 6.1. Analogous ar-
guments regarding the parameter spaces corresponding to » = 0 apply to the other tests
and CSs. Hence, from here on, we assume r € {1, ..., k}.

For given r = rk(£2Fr(6)p)), the moment conditions and Jacobian are
gh=11 g and G%; =11, 4G, (17.5)

where Ar € R¥", IT1r € R™, and dependence on 6 is suppressed for notational sim-
plicity. Given the conditions in F SR we have

Er|gp |7 = Ex 113, Appgi |77 < M,
Ep|vee(Gy,)| Y = Ep|vee(IT;} > 4:Gy) |77 < M, (17.6)
Amin(EFgEigt) = Amin (T2 ApQp ApTT M%) = Apin(1) = 1,

and Ergy; = 07, where the second equality in the third line of (17.6) holds by the spec-

tral decomposition in (4) and the partition A7 =[AF, A]in (5). Thus, F € 75\ implies
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that F € 7 with § < 1, when F is defined with (g};, G%,) in place of (g;, G;), where the
definition of F in (16.1) is extended to allow g; and G; to depend on F. Now we apply
Theorem 16.1 with (g}, G};) and r in place of (g;, G;) and k and with § < 1, to obtain
the correct asymptotic size and asymptotic similarity of the SR-CQLR test for the param-
eter space ]-'[Sr}f forr =1, ..., k. This requires that Theorem 16.1 holds for k < p, which it
does. The fact that g}, and G}; depend on F, whereas g; and G; do not, does not cause
a problem, because the proof of Theorem 16.1 goes through as is if g; and G; depend
on F. This establishes the results of Theorem 6.1 for the SR-CQLR test. The proof for the
SR-CQLR CS is essentially the same, but with 6 taking any value in ® and with F, gR and
Fo, defined in (7) and just below (16.1), in place of F SR and F, respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLR test and CS,
but with vec(G};,) deleted in (17.6) and with the subscript AR added to the parameter
spaces that appear.

Next, we consider the SR-CQLRp test. When the moment functions satisfy (15.1),
thatis, g; = u; Z;, we define Z};, := H{Fl/zA’FZi, gp; = uiZy;, and G, = Zj,up,;, where ug;
is defined in (15.2) and the dependence of various quantities on 6y is suppressed. In this
case, by the conditions in F3X, the IVs Z}, satisfy Er|| Z},||*tY = EF||H]_F1/2A%Z,~||4+“/ <
M and EF||uj||2+7 < M, where u} := (u;, uj;)". Next, we show that Anin(ErZ5,; Z5)) is

l
bounded away from zero for F € Fp\,. We have

Amin(EFZ5; ZF;)

—-1/2 -1/2
zAmin(EFan/ A%ZiZEAFHW/ )

= et [Ee(VI PZi) 1} <€) + Er (VI P A 2) 1 (4] > )]

1 - —-1/2 2
= )\ER}:Iﬁt/;”:l[c 1EF()\/HlF/ ApZi) uil(uf < c)]
= C—l)\ Rllﬁﬁn ][EF()\,H;[}/ZA/FZ[)ZM% _EF(A/HI—Fl/ZA/FZl)Zulzl(uLz - C)]
ER": =

> c‘l[)\min(ﬂ]_;/zA’FQFAFH;Fl/Z) —  sup EF()\/Hl_Fl/zA%Zi)zulZl(u% - c)]
AER”:||A||=1

> ¢ '[1— Bp [ 43 Zi a1 (42 > o))

>1/(2¢c), (17.7)

where the second inequality uses g; = Z;u; and r := Efg;g;, the third inequality
holds by I1 ; Fl / ZA}Q rApIl ; Fl 2_p » (using (4) and (5)) and by the Cauchy-Bunyakovsky-
Schwarz inequality applied to A'I1;, Fl / ZA%Z,-, and the last inequality holds by the condi-

P ALZi2ud x 1(u? > ¢) <1/2in F3R,

tion Ep |11, Fl

The moment bounds above and (17.7) establish that F e ]-"IS,F,] implies that F € Fp
for 8 <min{1, 1/(2¢)}, when Fp is defined with (g,, G},) in place of (g;, G;), where the
definition of Fp in (16.1) is taken to allow g; and G; to depend on F.*® Now we apply

49We require § < min{1, 1/(2c)}, rather than 8§ < 1/(2c), because Amin(Ergh;g5;) = 1 by (17.6) and F (C
Far) requires Amin (EFgy;&5;) = 6.
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Theorem 16.1 with (gy;, G%;) and r in place of (g;, G;) and k and é < min{1, 1/(2¢)} to
obtain the correct asymptotic size and asymptotic similarity of the CQLRp test based on
(gF;» GF;) and r for the parameter space 7 SR forr=1,..., k. As noted above, the depen-
dence of gr; and G, on F does not cause a problem in the application of Theorem 16.1.
This establishes the results of Theorem 15.2 for the SR-CQLRp test by the argument given
above.?® The proof for the SR-CQLR, CS is essentially the same, but with 6, taking any
value in @ and with ]—'S 0.P and Fg >, defined in (7) and just below (16.1), in place of ]—'IS,R
and Fp, respectively.
This completes the proof of Theorems 6.1 and 15.2 given Theorem 16.1.

18. TIME SERIES OBSERVATIONS

In this section, we define the SR-AR, SR-CQLR, and SR-CQLR, tests for observations
that are strictly stationary strong mixing. We also generalize the asymptotic size results
of Theorems 6.1 and 15.2 from i.i.d. observations to strictly stationary strong mixing
observations. In the time series case, F denotes the distribution of the stationary infinite
sequence {(W;:i=...,0,1,...}.5

We define

(0
(i)

QF ,(0) := Varp (n_l/z Zgi((?)), and  rp,(0) :=rk(Qp ,(0)).
i=1

(18.1)

Note that Vr ,(6), 2F ,(0), and rr ,(6) depend on n in the time series case, but not in the
ii.d. case. We define Ar ,(6) and 11;r ,(0) as Ar(0) and I11r(6) are defined in (4), (5),
and the paragraph following (5), but with Q2F ,(0) in place of 2r(0).

For the SR-AR test, the parameter space of time series distributions F for the null
hypothesis Hy : 6 = 6y is taken to be

]:Ts AR ‘= {F {W;:i=...,0,1,...} are stationary and strong mixing under F with
strong mixing numbers {ar(m) : m > 1} that satisfy ar(m) < Cm™4,

Ergi=0%, and sup B 1157 A i < M (18.2)

for some y >0, d > (2+ v)/y, and C,M < oo, where the dependence of g;, Ilir ,,
and Afr, on 6y is suppressed. For CSs, we use the corresponding parameter space

50The fact that Z}, depends on 6 through H;Fl/z(GO)AF(eo)/ and that G, (6o) # (3/39') g}, (00) (because
(0/06') Z};; is ignored in the specification of G};;(6p)) does not affect the application of Theorem 16.1. The
reason is that the proof of this theorem goes through even if Z; depends on 6y and for any G;(6y) that
satisfies the conditions in Fp, not just for G;(6y) := (3/36')gi(6p).

51 Asymptotics under drifting sequences of true distributions {F, : n > 1} are used to establish the correct
asymptotic size of the SR-AR, SR-CQLR, and SR-CQLRp tests and CSs. Under such sequences, the observa-
tions form a triangular array of row-wise strictly stationary observations.
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]-'%S ©.AR ‘= ={(F, 0y : F e ]-'%S Ar(00), 0p € O}, where ]-'%g Ar(00) denotes ]-}Q’g ag With its
dependence on 6y made explicit. The moment conditions in ]-"%S AR are placed on the

normalized moment functions HlFl/nzA’ n8i that satisfy Varp(n—1/2 Y HlFl/nzA’ &) =
I foralln>1.

For the SR-CQLR and SR-CQLRp tests, we use the null parameter spaces ]-'% and
]-"%g p» respectively, which are defined as F SR and F IS)R are defined in (6) and (15.3), but

with (i) ]—'%g AR ID place of F; AR, (i) Ar and I1f replaced by Af , and I1;F ,, respectively,

and (iii) sup,,.. ; added before the quantities 758 and 73" that depend on A, and ITf,,.
For SR-CQLR and SR-CQLRp CSs, we use the parameter spaces ]:%g’ 0 and ]-'ng, 0.p» e-
spectively, which are defined as ]-'%‘ 6.AR is defined, but with ]-'%,};(00) and ]-'%,IS{’ p(0p) in
place of ]-'%S Ar(00), where ]-'%‘(60) and ]-"%S p(6p) denote ]-'%‘ and ]-'%‘, p with their de-
pendence on 6y made explicit.

The SR-CQLR and SR-CQLRp test statistics depend on some estimators Vo (= I’/\n((}g))
of ’r ,. The SR-AR test statistic only depends on an estimator ﬁn (= ﬁn(ﬂo)) of the sub-
matrix Qf , of Vr,. For the SR-AR, SR-CQLR, and SR-CQLRp tests, these estimators
are heteroskedasticity and autocorrelation consistent (HAC) variance matrix estimators
based on {g; — g, :i <n}, {fi — fA,, i < n} (defined in (19)), and {(u} — u}) ® Z; : i < n}
(defined in (15.5)), respectively. There are a number of HAC estimators available in the
literature, for example, see Newey and West (1987) and Andrews (1991).

We say that V, is equivariant if the replacement of g; and G; by A'gi and A'Gj, re-
spectively, in the definition of Vn transforms Vn into ({41 ® A’ )Vn(l 1 ® A) for any
matrix 4 € R™* with full row rank r < k for any r = {1,. k} Equivariance of _(2 means
that the replacement of g; by A4’g; transforms 0, into A QnA. Equivariance holds quite
generally for HAC estimators in the literature.

We write the (p + 1)k x (p + 1)k matrix 1, in terms of its k x k submatrices:

0, ffn r’

R Nn Voin - VG

o= " ‘“ ‘ e (18.3)
Fpn VGpm to I//\Gppn

We define 7, (=7,(6y)) and A, (= A,(6y)) as in (10) and (11) with 6 = 6, but with Q,
defined in (18.3), rather than in (8).

The asymptotic size and similarity properties of the tests considered here are the
same for any consistent HAC estimator. Hence, for generality, we do not spec1fy a partic-
ular estimator Vn (or (2,,) Rather, we state results that hold for any estimator V (or Qn)
that satisfies one the following assumptions when the null value 6y is the true value. The
following assumptions are used with the SR-CQLR test and CS, respectively.

AsSUMPTION SR-V. @) [ps1 ® (T2 (00) A% ,(00)Va(00) — Vi,n(60)Ips1 ®

(Af,, n(@g)an n(eo))] — p 0PHDRXPHDE ynder (F, : n > 1} for any sequence {F, € F35 :
n > 1} for which Vg, ,(69) — V for some matrix V and rr, ,(68y) =r for all n large, for any
re{l,..., k}.
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(b) I//\,,(Oo) is equivariant.
(©) Ngi(60) =0 a.s. [F] implies that N'2,(60)A =0 a.s. [F] forall A € R* and F e TR

For SR-CQLR CSs, we use the following assumption that allows both the null param-
eter 6y, as well as the distribution F,,, to drift with n.

ASSUMPTION SR-V-CS. (@) [[ps1 ® (T % (000 A, (B0a)IVa(B0n) — Vi,n(Bon)]
Upi1 ® (AFn,n(GOn)H;;n/,zn(6011))] — p 0PHDEX(p+DK ypder (F, : n > 1} for any sequence

{(Fp, 00n) € Fra g : 1> 1} for which Vi, »(80,) — V' for some matrix V and rg, »(8on) = r
foralln large, foranyre{l,...,k}.

(b) I//\,,(Oo) is equivariant for all 6 € 6.

(c) Ngi(6g) =0 a.s. [F] implies that A’ﬁn(eo))\ =0a.s. [Flforall e R¥ and (F, 6y) €
28 o-

Assumptions SR-V(a) and SR-V-CS(a) require the HAC estimator based on the nor-
malized moments and Jacobian (i.e., Hl_;n/i(ng)A%M(Ogn)gi(eo,,) and H;Fln/72,1(00n) X
A%n)n(HOn)Gi(HOn), resp.) to be consistent. This can be verified using standard methods.
For typical HAC estimators, equivariance and Assumptions SR-V(c) and SR-V-CS(c) can
be shown easily.

For the SR-CQLRp test and CS, we use Assumptions SR-Vp and SR-Vp-CS, which are
defined as Assumptions SR-V and SR-V-CS are defined, respectively, but with ]-'ng pand
Frs.o.p in place of 3¢ and Frg .

For the SR-AR test and CS, we use Assumptions SR-{2 and SR-{2-CS, which are de-
fined as Assumptions SR-V and SR-V-CS are defined, respectively, but with (i) Assump-
tion SR-02(a) being: IT,,’> (60) A}, (00)[2u(60) — 2, w(00)1AF, (60T ;5 (60) —
0%*k under {F, : n > 1} for any sequence {F, € ]—"%{,AR : n > 1} for which Qp, ,,(6g) — (2
for some matrix (2 and rr, ,(69) = r for all n large, for any r € {1, ..., k}, (ii) Assumption
SR-02-CS(a) being as in (i), but with 6y, and ]-“%g’ 6.AR in place of 6y and ]—"%" Ag (i) ﬁ,,(eo)

R SR
S.AR 1D place of ¢ in part

in place of 17,,(60) in part (b) of each assumption, and (iv) J-"%
(c) of each assumption.

Now we define the SR-AR, SR-CQLR, and SR-CQLRp tests in the time series context.
The definitions are the same as in the i.i.d. context given in Sections 4, 5, and 15 with the
following changes. For all three tests, 7, and 2,% in the condition ;4}/ 8n # 05 7nin (14) are
defined as in (10) and (11), but with ﬁn defined to satisfy Assumption SR-{2, rather than
being defined in (8). The SR-AR statistic is defined as in Section 4, but with 0, defined to
satisfy Assumption SR-{2. This affects the definitions of 7, and A n, givenin (10) and (11).
With these changes, the critical value for the SR-AR test in the time series case is defined
in the same way as in the i.i.d. case.

In the time series case, the SR-QLR statistic is defined as in Section 5, but with 17,1 and
0, defined to satisfy Assumption SR-V and (18.3) based on {f; — ﬁ :i < n}, in place of /,
and ﬁn defined in (19) and (8), respectively. This affects the definitions of R\n, fn, Zn, 5’;,
T En, and SR-AR,, (which appears in (23)). Given the previous changes, the definition
of the SR-CQLR critical value is unchanged.
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In the time series case, the SR-CQLRp statistic is defined as in Section 15, but with I//\n
and 0, defined to satisfy Assumption SR-Vp and (18.3) based on {(u] —u}, ) ® Z; : i <n},
rather than in (15 5) and (8), respectively. In turn, this affects the deﬁnltlons of Rn, Zn,
L, Dn, Qn, Ty An, and SR-AR,,. Given the changes described above, the definition of the
SR-CQLRp critical value is unchanged.

In the time series context,

VF = l1mVarF (I’L 172 Z (VeC(G )))

= 3 8i 8i-m
= ZOOEF (VeC(Gi —EFG,-)> (Vec(Gi_m _EFGi—m)> and (18.4)

m=—

o)
Z Ergigi_m»
m=—0oQ
where the dependence of various quantities on the null value 6 is suppressed for nota-
tional simplicity. The second equality holds for F € ]-'%‘, P2
For the time series case, the asymptotic size and similarity results for the tests de-
scribed above are as follows.

THEOREM 18.1. Suppose the SR-AR, SR-CQLR, and SR-CQLRp tests are defined as in this
section, the null parameter spaces for F are F§ yp, Fys, and F35 p, respectively, and the
corresponding Assumption SR-(2, SR-V, or SR-Vp holds for each test. Then these tests have
asymptotic sizes equal to their nominal size « € (0, 1). These tests also are asymptotically
similar (in a uniform sense) for the subsets of these parameter spaces that exclude distri-
butions F under which g; = 0% a.s. Analogous results hold for the SR-AR, SR-CQLR, and
SR-CQLRp CSs for the parameter spaces Fi§ g ap» Frs.¢r and Fi§ g p, respectively, pro-
vided the corresponding Assumption SR-02-CS, SR-V- CS, or SR-Vp-CS holds for each CS,

rather than Assumption SR-(2, SR-V, or SR-Vp.

19. SR-CQLR, SR-CQLRp, AND KLEIBERGEN’S NONLINEAR CLR TESTS IN THE
HOMOSKEDASTIC LINEAR IV MODEL

It is desirable for tests to reduce asymptotically to Moreira’s (2003) CLR test in the
homoskedastic linear IV regression model with fixed (i.e., nonrandom) IVs when
p =1, where p is the number of endogenous rhs variables, which equals the dimen-
sion of 6. The reason is that the latter test has been shown to have some (approximate)
optimality properties under normality of the errors; see Andrews, Moreira, and Stock
(2006, 2008) and Chernozhukov, Hansen, and Jansson (2009), and Andrews, Marmer,
and Yu (2019).53

In this section, we show that the components of the SR-QLRp statistic and its corre-
sponding conditioning matrix are asymptotically equivalent to those of Moreira’s (2003)

52This is shown in the proof of Lemma 20.1 in Section 20 in the SM to AG1.
53Whether this also holds for p > 2 is an open question.
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LR statistic and its conditioning statistic, respectively, in the homoskedastic linear IV
model with k > p fixed (i.e., nonrandom) IVs and nonsingular moments variance matrix
(whether or not the errors are Gaussian). This holds for all values of p > 1.

We also show that the same is true for the SR-QLR statistic and its conditioning ma-
trix in some, but not in all cases (where the cases depend on the behavior of the reduced-
form parameter matrix = € RK*P as n — 00). Nevertheless, when p =1,the SR-CQLR test
and Moreira’s (2003) CLR test are asymptotically equivalent. When p > 2, for the cases
where asymptotic equivalence of these tests does not hold, the difference is due only
to the IVs being fixed, whereas the SR-QLR statistic and its conditioning matrix are de-
signed (essentially) for random IVs.

We also evaluate the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the
homoskedastic linear IV model with fixed IVs. Kleibergen’s tests depend on the choice
of a weight matrix for the conditioning statistic (which enters both the CLR test statistic
and the critical value function). We find that when p = 1 Kleibergen’s CLR test statistic
and conditioning statistic reduce asymptotically to those of Moreira (2003) when one
employs the Jacobian-variance weighted conditioning statistic suggested by Kleibergen
(2005, 2007) and Smith (2007). However, they do not when one employs the moments-
variance weighted conditioning statistic suggested by Newey and Windmeijer (2009)
and Guggenberger, Ramalho, and Smith (2012). Notably, the scale of the scalar condi-
tioning statistic can differ from the desired value of one by a factor that can be arbitrar-
ily close to zero or infinity (depending on the value of the reduced-form error matrix 3
and null hypothesis value 6)); see Lemma 19.3 and Comment (iv) following it. Kleiber-
gen’'s nonlinear CLR tests depend on the form of a rank statistic. When p > 2, we find that
no choice of rank statistic makes Kleibergen’s CLR test statistic and conditioning statistic
reduce asymptotically to those of Moreira (2003) (when Jacobian- or moments-variance
weighting is employed).

Section 21 below provides finite-sample simulation results that illustrate the re-
sults of the previous paragraph for Kleibergen’s CLR test with moment-variance weight-
ing.

19.1 Normal linear IV model with p > 1 endogenous variables

Here, we define the CLR test of Moreira (2003) in the homoskedastic Gaussian linear
(HGL) IV model with p > 1 endogenous regressor variables and k > p fixed (i.e., non-
random) IVs. The linear IV regression model is

yii=Y;0+u; and
(19.1)
Yo =7'Zi+ Vi,

where y;; € R and Y»; € RP are endogenous variables, Z; € R¥ for k > p is a vector of
fixed IVs, and 7 € R¥*P is an unknown unrestricted parameter matrix. In terms of its
reduced-form equations, the model is

ni=Zmo+Vi,  Yu=m'Zi+Vu,  Vii=(ViVy),
Vi=u;+Vy0, and 3y :=EVV.

(19.2)
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For simplicity, no exogenous variables are included in the structural equation. The
reduced-form errors are V; € RP*!. In the HGL model, V; ~ N(07*!, 3},) for some posi-
tive definite (p + 1) x (p + 1) matrix 3y .

The IV moment functions and their derivatives with respect to 6 are

g(W;, 0)=Zi(y1; — Y5;,6) and
, (19.3)
GW,, 0)=—2;Y;;, where W;:=(yi;, Y3, Z)).

Moreira (2003, p. 1033) shows that the LR statistic for testing Hy : 0 = 6y against H; :
0 # 0y in the HGL model in (19.1)-(19.2) when 3 is known is

LRHGL,n = E;;En — Amin ((En s Tn)/(grh Tn)) , where

Spi= (Z;/quznxk)_l/z

= (n1Z) 4 Zuxk) 2028, (by Sbo) T € RY,

Z,  Ybo(bySybo)

T -1/2 - _ —-1/2
Th:= (Z;zka”Xk) / Z;kaEVlAO(Aé)ZVlAO) /
- -1z o ~ A y— _ ~1/2
= _(n 1Z}/’l><anXk) / nl/z(GnOO — 8n> Gn)ZVlAO(AéleAO) /
k
SRS, (19.4)

Zuxk :=(Z1,..., Zyn) € Rk, Y:=(Yy,...,Y,) e R*PFD,

Y= (i, Y5;) € RPFY, by:=(1,-6)) € RFH,

n
gy = nL Zg(VVi, 6o), Ay := (69, ]p)’ c R(P+1)><P’
i=1

n
Gpi=n"! Z G(W;, 6p),
i=1

Amin(-) denotes the smallest eigenvalue of a matrix, and the second equality for T, holds
by (29.12) in the SM.>* Note that (S,,T,) is a (conveniently transformed) sufficient
statistic for (0, 7r) under normality of V;, known variance matrix 3}, and fixed IVs.

Moreira’s (2003) CLR test uses the LRygy, , statistic and a conditional critical value
that depends on the k x p matrix T, through the conditional critical value function
k,p(, 1 — ) defined in (24). For « € (0, 1), Moreira’s CLR test with nominal level « re-
jects Hy if

LRuGLn > ¢k, p(Tn, 1 — ). (19.5)

When 3y is unknown, Moreira (2003) replaces 3} by a consistent estimator.
Moreira’s (2003) CLR test is similar with finite-sample size « in the HGL model with
known 3. Intuitively, the strength of the IVs affects the null distribution of the test

54We let Z,, (rather than Z) denote (Zi, ..., Z,)', because we use Z to denote a k vector of standard
normals below.
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statistic LRygr,,, and the critical value ¢, p(Tn, 1 — &) adjusts accordingly to yield a test
with size « using the dependence of the null distribution of 7', on the strength of the IVs.
When p =1, this test has been shown to have some (approximate) asymptotic optimality
properties; see Andrews, Moreira, and Stock (2006, 2008), Chernozhukov, Hansen, and
Jansson (2009), and Andrews, Marmer, and Yu (2019).

For p > 2, the asymptotic properties of Moreira’s CLR test, such as its asymptotic size
and similarity, are not available in the literature. The results for the SR-CQLRp test, spe-
cialized to the linear IV model (with or without Gaussianity, homoskedasticity, and/or
independence of the errors), fill this gap.

19.2 Homoskedastic linear IV model

The model we consider in the remainder of this section is the homoskedastic linear
IV model introduced in Section 19.1 but without the assumption of normality of the
reduced-form errors V;. Specifically, we use the following assumption.

AssuMPTION HLIV. (@) {V; e RPt':i>1}areiid. {Zie R*:i> 1} are fixed, not ran-
dom, and k > p.

(b) EV; =0, 3y :=EVjV/ is pd, and E||V;||* < 00.%

(© n~ YY", Z:Z! — Kz for some pd matrix Kz € R*>*, n=1 37 1Z||® = o(n), and
SUp; -, (¢ Zi)?/ 11 (¢ Zi)* — 0 Ve # OF.

(d) sup,.p ll7ll < oo, where I1 is the parameter space for 1.

(€) Amax(Zy)/Amin(3y) < 1/ for £ > 0 as in the definition of the SR-QLR or SR-QLRp
statistic.

Here, HLIV abbreviates “homoskedastic linear IV model.” Assumption HLIV(b) spec-
ifies that the reduced-form errors are homoskedastic (because their variance matrix
does not depend on i or Z;). Assumptions HLIV(c) and (d) are used to obtain a weak law
of large numbers (WLLN) and central limit theorem (CLT) for certain quantities under
drifting sequences of reduced-form parameters {m;, : n > 1}. These assumptions are not
very restrictive. Note that Assumptions HLIV(a)—(c) imply that the variance matrix of the
sample moments is pd. This implies that7,(=7,(6y)) = k wp — 1 (by Lemma 19.1(b) be-
low) and no SR adjustment of the SR-CQLR tests occurs (wp — 1). Assumption HLIV(e)
guarantees that the eigenvalue adjustment used in the definition of the SR-QLR statis-
tics does not have any effect asymptotically. One could analyze the properties of the
SR-CQLR tests when this condition is eliminated. One would still obtain asymptotic null
rejection probabilities equal to «, but the eigenvalue adjustment would render the SR-
CQLR tests to behave somewhat differently than Moreira’s CLR test, because the latter
test does not employ an eigenvalue adjustment.

55In this section, the underlying i.i.d. random variables {V; : i > 1} have a distribution that does not de-
pend on n. Hence, for notational simplicity, we denote expectations by E, rather than Ef,. Nevertheless, it
should be kept in mind that the reduced-form parameters 7, may depend on .
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19.3 SR-CQLRp test

The components of the SR-QLR, statistic and its conditioning matrix are n!/ 2!3,71/ 2§n

and n'/2D* (see (9) and (15.6)) when 7, = k, which holds wp — 1 under Assumption
HLIV. Those of Moreira (2003) are S, and T, (see (19.4)). The asymptotic equivalence of
these components in the model specified by (19.1)-(19.2) and Assumption HLIV is es-
tablished in parts (e) and (f) of the following lemma Parts (a)- (d) of the lemma establish
the asymptotic behavior of the components 0, and En of the test statistic SR-QLRp,, and
its conditioning statistic.

LeMMmA 19.1. Suppose Assumption HLIV holds. Under the null hypothesis Hy : 6 = 0y, for
any sequence of reduced-form parameters {m, € Il : n > 1} and any p > 1, we have

@ R, -,y ®Kz,

(b) 24— (b, Sybo)Kz, where by == (1, —6}),

(©) 3u—p (BySybo) 'Sy,

d 3£ —, (by2ybo) ' 3y,

e) n'/20, 1/2§n =S +0,(1), and

() n'2D% = —(I; + 0,())Tn(Ip + 0, (1)) + 0,(1).

CoMMENT. (i) The minus sign in Lemma 19.1(f) is not important because QLRp,, (de-
fined in the paragraph containing (15.7) using the formula in (23)) is unchanged if D, is
replaced by —D? (and SR-QLRp,, = QLRp, wp — 1 under Assumption HLIV).%®

(ii) The results of Lemma 19.1 hold under the null hypothesis. Statistics that differ
by 0, (1) under sequences of null distributions also differ by o, (1) under sequences of
contiguous alternatives. Hence, the asymptotic equivalence results of Lemma 19.1(e)
and (f) also hold under contiguous alternatives to the null.

Note that in the linear IV regression model the alternative parameter values {6, : n > 1}
that yield contiguous sequences of distributions from a sequence of null distributions
depend on the strength of identification as measured by ;. The reduced-form equa-
tion (19.2) states that y;; = Z/m,0, + V1; when m, and 6, are the true values of 7 and 6.
Contiguous alternatives to the null distributions with parameters 7, and 6 are obtained
for parameter values 7, and 6,, (¢ 6) that satisfy 7,0, — 7,609 = m,(6,, — 6g) = O(n—1/%).
If the IVs are strong, that is, liminf,_, » 77,’1n_1 > Z;Z!my, > 0, then contiguous alterna-
tives have true 6, values of distance O(n~/2) from the null value 6. If the IVs are weak
in the standard sense, for example, 7, = an~1/2 for some fixed matrix 7, then all 6 values
not equal 6 yield contiguous alternatives. For semi-strong identification in the standard
sense, for example, 7, = 7n~° for some & € (0, 1/2) and some fixed full-column-rank
matrix 7, the contiguous alternatives have 6,, — 6y = O(n~(1/2=), For joint weak identi-
fication, contiguity occurs when m,, = (w1, ..., mpn) € RE¥P, n1/2| 7, || — oo forall j < p,
limsup,, , o, Amin(n77,7,) < 00, and 6, is such that 7, (8, — 6y) = O(n=1/?).

5This holds because for a; € R¥ and A, € R¥P we have Amin((ai1,—A2) (a1, —Az)) =
infy_y, ayag=1(@1d1 = A20) (a1dy — Azdy) = infy_y _yyp=1(@1dr + A2A2) (ahy + Azd2) =
infy_x, aysag=1(a1A1 + A242) (@121 + A2X2) = Amin ((a1, A2)' (a1, A2)).



42 Andrews and Guggenberger Supplementary Material

(iii) The proofs of Lemma 19.1 and Lemmas 19.2 and 19.3 below are given in Sec-
tion 29 below.

19.4 SR-CQLR test

The components of the SR-QLR statistic and its conditioning matrix are n'/ 2@;1/ zjg‘,,

and n'/ 213;’; (see (8) and (23)) when 7, = k, which holds wp — 1 under Assumption
HLIV. Here, we show that the conditioning statistic n!/ 25’; is asymptotically equiva-
lent to Moreira’s (2003) conditioning statistic T, (in the homoskedastic linear IV model
with fixed IVs) when , — 0¥%P. This includes the cases of standard weak identifica-
tion and semi-strong identification. It is not asymptotically equivalent in other circum-
stances. (See Comment (ii) to Lemma 19.2 below.) Nevertheless, under strong and semi-
strong IVs, the SR-CQLR test and Moreira’s CLR test are asymptotically equivalent.®’
In consequence, when p = 1, the SR-CQLR test and Moreira’s CLR test are asymptoti-
cally equivalent (because standard weak, strong, and semi-strong identification cover
all possible cases). When p > 2, this is not true (because weak identification can oc-
cur even when m, - 0K*P, if n!/2 times the smallest singular value of m, is O(1)). Al-
though asymptotic equivalence of the tests fails in some cases when p > 2, the dif-
ferences appear to be small because they are due only to the differences between
fixed IVs and random IVs (which cause 3} to differ somewhat from 3}, defined be-
low).
For 7 € R**?, define

in(m):=n"Y (7' ® Z)) Z:Z)(m ® Z])
i=1

(gyeene)gieann
€ Rkpxkp. (19.6)

If limn~! Z;’:lvec(ZiZE)vec(ZiZl’.)’ exists, then () := lim ¢, () exists for all = € Rk*P,
Define

kxk 0k><kp

0
R(m) = K;+(B®I B®I,) e RK(PHDxk(p+1) 19.7
(M) =3y ® Z+( & k) |:Okp><k f(W):|( ®1I;) € > ( )

where B = B(0) is defined in (19).

57This holds because, under strong and semi-strong IVs, the SR-QLR statistic and Moreira’s CLR statistic
behave asymptotically like LM statistics that project onto n!/202, /*D,, (or equivalently, n'/20;,"/*D,L}/*)
and T, respectively, see Theorem 7.1 for the SR-QLR statistic, and n!/ 2(2,, v 2D,,Li/ 2and T, ,, are asymptoti-
cally equivalent (up to multiplication by —1) by Lemma 19.1(f). Furthermore, the conditional critical values
of the two tests both converge in probability to Xi,lia under strong and semi-strong identification; see
Theorem 7.1 for the SR-CQLR critical value.



Supplementary Material Identification and singularity robust inference 43

The probability limit of 3, is shown below to be the symmetric matrix (b, 3y bo)~! x
Sy, € RpHDx(p+D) 'where 3y, is defined as follows. The (j, £) element of 3, is

Syajei=tr(Rje(m)'K ;') /K, (19.8)
where R, () denotes the (j, £) k x k submatrix of R(m,) for j,£=1,..., p+1and m, =
lim 77,. Equivalently, 3y, is the unique minimizer of ||[/,41 ® ((bf)EVbo)*l/ ZK;/ 2)][E ®

Kz — R(m)llp11 ® ((b;)zybo)—l/ZK;/z)]|| over all symmetric pd matrices 3 e

R(P+Dx(p+1) Note that when () = 0 (as occurs when m, = 05%P), 3}, = 3}, (because
R(m,) =3y ® K7 in this case).
We use the following assumption.

AssuMpPTION HLIV2. (a) limn—! Yy vec(Z;Z))vec(Z; Z;))' exists and is finite,
(b) m, — . for some m, € R**P, and
(€) Amax(Zv+)/Amin(Zyv«) < 1/& for & > 0 as in the definition of the SR-QLR statistic.

Assumption HLIV2(c) implies that the eigenvalue adjustment to fn employed in the
SR-QLR statistic has no effect asymptotically. One could analyze the behavior of the SR-
CQLR test when this condition is eliminated. This would not affect the asymptotic null
rejection probabilities, but it would affect the form of the asymptotic distribution when
the condition is violated. For brevity, we do not do so here.

The asymptotic behavior of n!/ 252 is given in the following lemma. Under Assump-
tion HLIV, n'/2D}; equals the SR-CQLR conditioning statistic n'/2D* wp — 1 (because
Tn=kwp—1).

LEMMA 19.2. Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesis Hy, :
0 = 0 and any p > 1, we have

(@ R, —p R(m,),

(b) 3n—p (by3bo) ' Sy,

(© 35—, (b)Sybo) 'Sy, and

(d) n'/2D% = —(I + 0, (T (L) *LyJ2 + 0,(1) + 0, (1), where Lyg == (69, 1,) x
3160, 1,) € RP*P and Ly, == (60,1,)3;, (60, 1,)' € RP*P.

COMMENT. (i) If 7, = 0¥*P, which occurs when all § parameters are either weakly iden-
tified in the standard sense or semi-strongly identified, then {(m,) = 0kP>%P, R(m,) =
3y ® Kz, and 3y, = 3. In this case, Lemma 19.2(d) yields

n2D% = —(Ix 4+ 0p (1)) Tu(Ip + 0, (1) +0,(1) (19.9)

and n!/ zl/)\j; is asymptotically equivalent to T, (up to multiplication by —1).

(ii) On the other hand, if 7, # 0¥*P, then n!/ 25;’; is not asymptotically equivalent to
T, in general due to the () factor that appears in the second summand of R(7,) in
(19.7). This factor arises because the IVs are fixed in the linear IV model (by assumption),
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but the variance estimator 17:1, which appears in ﬁn (see (19)), and which determines fn
and 3y, treats the IVs as though they are random.

19.5 Kleibergen's nonlinear CLR tests

19.5.1 Definitions of the tests This section analyzes the behavior of Kleibergen'’s (2005,
2007) nonlinear CLR tests in the homoskedastic linear IV regression model with k > p
fixed IVs. The behavior of Kleibergen’s nonlinear CLR tests is found to depend on the
choice of weighting matrix for the conditioning statistic. We find that when p =1 (where
p is the dimension of §) and one employs the Jacobian-variance weighted condition-
ing statistic, Kleibergen’s CLR test and conditioning statistics reduce asymptotically to
those of Moreira’s (2003) CLR test, as desired. This type of weighting has been suggested
by Kleibergen’s (2005, 2007) and Smith (2007). On the other hand, Kleibergen’s CLR test
and conditioning statistics do not reduce asymptotically to those of Moreira (2003) when
p =1 and one employs the moments-variance weighted conditioning statistic. The lat-
ter has been suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho,
and Smith (2012). Furthermore, the scale of the scalar conditioning statistic can differ
from the desired value of one by a factor that can be arbitrarily close to zero or infinity
(depending on the value of the reduced-form error matrix 3, and null hypothesis value
0o). This has adverse effects on the power of the moment-variance weighted CLR test.
When p > 2, Kleibergen’s nonlinear CLR tests depend on the form of a rank statistic.
In this case, we find that no choice of rank statistic makes Kleibergen’s CLR test statistic
and conditioning statistic reduce asymptotically to those of Moreira (2003).
Kleibergen’s test statistic takes the form:

CLR,(6) := %(AR,,(G) — 1k, (6)

+ \/(ARn(G) — 1k, (0)) +4LM,,(6) - 1k, (0)), where (19.10)

~_1/2

LM,(6) :=1gu(0) 2 *(O)Pg12 4 5 o ()8 (6)

(0)Dn(6)™ "
and rk, (0) is a real-valued rank statistic, which is a conditioning statistic (i.e., the critical
value may depend on rk,(0)).

The critical value of Kleibergen’s CLR test is c¢(1 — «, 1k, (0)), where c(1 — «, r) is the
1 — a quantile of the distribution of

2
clr(r) := (Xi +Xi—p - r+\/()(12y +Xi_p - 7’) +4X§y”) (19.11)

N =

for 0 < r < 0o and the chi-square random variables X% and Xi—p in (19.11) are indepen-
dent. The CLR test rejects the null hypothesis Hy : 6§ = 6y if CLR,, > c¢(1 — «, k) (Where,
as elsewhere, the dependence of these statistics on 6y is suppressed for simplicity).
Kleibergen’s CLR test depends on the choice of the rank statistic rk,(6). Kleibergen
(2005, p. 1114, 2007, equation (37)) and Smith (2007, p. 7, footnote 4) propose to take
rk,(6) to be a function of 175,11/2(0)Vec(5n(6)), where Vp,(0) € RkP*kP is a consistent
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estimator of the covariance matrix of the asymptotic distribution of Vec(ﬁn(O)) (after
suitable normalization). We refer to VD_n1 / 2(0) vec(D,(0)) as the orthogonalized sample
Jacobian with Jacobian-variance weighting. In the i.i.d. case considered here, we have

Von(8) =113 " vec(Gi(8) — Gn(6)) vee(Gi(0) — Gu(6))’

i=1

PO _ (19.12)
— L(0)2,1(0)T,(6)', where

T,(0) := ([1(0), ..., [pu(6)) € RPF¥k

and ﬁ,,(o), e, fpn(o) are defined in (18).

Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) pro-
posed to take rk, (6) to be a function of A;1/2(0)l3n(0). We refer to Agl/z(e)ﬁn(e) as the
orthogonalized sample Jacobian with moment-variance weighting. Below we consider
both choices. For reasons that will become apparent, we treat the cases p=1and p >2

separately.

19.5.2 p =1 case Whether Kleibergen’s nonlinear CLR test reduces asymptotically to
Moreira’s CLR test in the homoskedastic linear IV regression model depends on the rank
statistic chosen. Here, we consider the two choices of rank statistic that have been con-
sidered in the literature. We find that Kleibergen’s nonlinear CLR test reduces asymptoti-
cally to Moreira’s CLR test with a rank statistic based on I7Dn (0), but not with a rank statis-
ticbased on ﬁn (0). This illustrates that the flexibility in the choice of the rank statistic for
Kleibergen’s CLR test can have drawbacks. It may lead to a test that has reduced power.

When p = 1, some calculations (based on the closed-form expression for the mini-
mum eigenvalue of a 2 x 2 matrix) show that

CLR,(8) = ARy () — Amin (1202, (0)84(6), 4(6))’
x (n"20,1%(0)8n(0), r1(6)))  provided (19.13)
rk,(0) =r,(0)r,(0) for some random vector r,(0) € Rk,

This equivalence is the origin of the p = 1 formula for the LR statistic in Moreira (2003).
Hence, when p = 1, for testing Hy : 6 = 6y, Kleibergen’s test statistic with rk,(6) =
ra(6)'r,(0) is of the same form as Moreira’s (2003) LR statistic with r,(6y) in place of
T, and with n1/20;,"/%(89)8,(6) in place of S,,, where 6, is the null value of 0.5 The two
choices for rk, (6) that we consider when p =1 are

tk1,(0) := nDy(0) V51 (0)Dy () and 1o, (6) := nDn(8)' 2, (0)Dy(6).  (19.14)

The statistic rk;,(6) has been proposed by Kleibergen (2005, 2007) and Smith (2007)
and rky,(6) has been proposed by Newey and Windmeijer (2009) and Guggenberger,
Ramalho, and Smith (2012).

58The functional form of the rank statistics that have been considered in the literature, such as the statis-
tics of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006) all reduce
to the same function when p = 1. Specifically, rk, (0) equals the squared length of some k vector r,,(9).
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Let

Ln () —n”ZZZ (Zjm ( *122 4 )(nlzzgzgw> ) (19.15)
=1

i=1

This definition of ¢, () is the same as in (19.6) when p = 1.

LEMMA 19.3. Suppose Assumption HLIV holds and p = 1. Under the null hypothesis Hy, :
0 = 6y, for any sequence of reduced-form parameters {m, € I : n > 1}, we have

@) 1ki,(00) = Tyllx + LyoK ;> Lu(m) K + 0, (DT, - (14 0,(1) 4+ 0,(1),

(0) tkan(60) = T\, Tu(Lyob)Sybo)~" - (1 + 0,(1)) + 0,(1), where Lyg := (6p, 1) x
3.1(60,1) € R, and

(1-20gpc+63c?)?
c2(1-p?)

(© Lyoby2vby =
Corr(V1;, V2i) € (-1, 1).

where c¢* := Var(V;)/Var(Vy;)) > 0 and p =

CoMmMENT. (i) If 7, — 0, then ,(7,) — 0 and Lemma 19.3(a) shows that rky,,(6y)
equals T;T,,(l + 0,(1)) + 0p(1). That is, under weak IVs and semi-strong IVs, rky,(6)
reduces asymptotically to Moreira’s (2003) conditioning statistic. Under strong IVs, this
does not occur. However, under strong IVs, we have rky,(6y) — , oo, just as T;Tn —p 00
In consequence, the test constructed using rk;,(6y) has the same asymptotic properties
as Moreira’s (2003) CLR test under the null and contiguous alternative distributions.

(ii) Simple calculations show that ¢,(m,) is positive semi-definite (psd). Hence,
rky,(6p) is smaller than it would be if the second summand in the square brackets in
Lemma 19.3(a) was zero.

(iii) Lemma 19.3(b) shows that the rank statistic rky, (6y) differs asymptotically from
Moreira’s conditioning statistic 7,7, by the scale factor (Lyobj3ybo)~". Thus, the non-
linear CLR test considered by Newey and Windmeijer (2009) and Guggenberger, Ra-
malho, and Smith (2012) does not reduce asymptotically to Moreira’s (2003) CLR test
in the homoskedastic linear IV regression model with fixed IVs under weak IVs. This
has negative consequences for its power. Under strong or semi-strong IVs, this test
does reduce asymptotically to Moreira’s (2003) CLR test because rk;,(6p) — , oo, just
asT, .Tn — p 00, which is sufficient for asymptotic equivalence in these case.

(iv) For example, if p =0 and ¢ =1 in Lemma 19.3(c), then (Lyoby2y bo)~ =1+
62)=2 < 1. In this case, if |6| = 1, then (Lyob, 31 bo) ™! = 1/4 and rka, (6p) is 1/4 as large
as T, T, asymptotically. On the other hand, if p = 0 and 6y = 0, then (Lyoby3ybo)~' =2,
which can be arbitrarily close to zero or infinity depending on c.

(v) When (LVob’OEVbO)” is large (small), the rky, (6)) statistic is larger (smaller) than
desired and it behaves as though the IVs are stronger (weaker) than they really are, which
sacrifices power unless the IVs are quite strong (weak). Note that the inappropriate scale
of rky,,(6y) does not cause asymptotic size problems, only power reductions.
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19.5.3 p >2case When p > 2, Kleibergen’s (2005) nonlinear CLR test does not reduce
asymptotically to Moreira’s (2003) CLR test for any choice of rank statistic rk,(6y) for
several reasons.

First, Moreira’s (2003) LR statistic is given in (19.4), whereas Kleibergen’s (2005) non-
linear LR statistic is defined in (19.10). By Lemma 19.1(e), n1/2!2 ]/ZA =S, + op(1),
where, here and below, we suppress the dependence of various quantltles on 6y. Hence,
AR, = E;En + 0,(1). Even if k, takes the form 7,7, for some random k vector r,, it is not
the case that

CLR,, = ARy, — Amin (1202, 80, 1) (0200, %80, 1)) (19.16)

when p > 2. Hence, the functional form of Kleibergen’s test statistic differs from that of
Moreira’s LR statistic when p > 2.

Second, for the rank statistics that have been suggested in the literature, namely,
those of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and
Paap (2006), 1k, is not of the form r},7,,, when p > 2.

Third, Moreira’s conditioning statistic is the k x p matrix T,. Conditioning on this
random matrix is equivalent asymptotically to conditioning on the k x p matrix n!/ 25;*1
by Lemma 19.1(f). But, it is not equivalent asymptotically to conditioning on any of the
scalar rank statistics considered in the literature when p > 2.

Fourth, if one weights the conditioning statistic in the way suggested by Kleiber-
gen (2005) and Smith (2007), then the resulting CLR test is not guaranteed to have cor-
rect asymptotic size; see Section 5 of AG1. If one weights the conditioning statistic by
ﬁ;l, as suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and
Smith (2012), then the CLR test is guaranteed to have correct asymptotic size under
the conditions given in AG1, but the conditioning statistic is not asymptotically equiva-
lent to Moreira’s (2003) conditioning statistic and the difference can be substantial; see
Lemma 19.3(b) and (c) for the p =1 case.

20. SIMULATION RESULTS FOR SINGULAR AND NEAR-SINGULAR VARIANCE MATRICES

Here, we provide some finite-sample simulations of the null rejection probabilities of
the nominal 5% SR-AR and SR-CQLR tests when the variance matrix of the moments
is singular and near singular.®® The model we consider is the following homoskedastic
linear IV model: y;; = Y2;8 + U; and Y,; = Zm + V3;, where all quantities are scalars
except Z;, m € R%, 9 = (B, 7') € RF+iz, EU; = EV5; =0, EU;Z; = EV};Z; = 092, and
EWViV!|Z) = 3y as. for V; := (V1;, V2;)’ and some 2 x 2 constant matrix 3y . The corre-
sponding reduced-form equations are yj; = Z/wB + V4; and Y; = Z7 + V3;, where 1}; =
Ui +V2;B. The moment conditions for 6 are g;(0) = ((y1; — Z;7B) Z;, (Y2; — Z\m) Z}) € Rk,
where k = 2dz and dz is the dimension of Z;. The variance matrix 3y ® EZ;Z] of
gi(00) = (1, Z;,V»; Z})' is singular whenever the covariance between the reduced-form

59 Analogous results for the SR-CQLR, test are not provided because the moment functions considered
are not of the form in (15.1), which is necessary to apply the SR-CQLR, test.
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TaBLE SM-1. Null rejection probabilities (x100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and & = 8.

SR-AR SR-CQLR

n ov 0.95 0.999999 1.0 0.95 0.999999 1.0
250 6.0 6.0 5.4 5.8 5.8 5.3
500 55 5.5 5.2 5.3 5.3 5.1
1000 5.5 55 5.2 5.3 5.3 5.1
2000 5.0 5.0 4.9 4.8 4.8 4.8
4000 5.0 5.0 5.1 4.8 4.8 5.0
8000 5.1 5.1 5.0 4.8 4.8 4.9
16,000 5.0 5.0 5.1 4.9 4.9 5.0

errors Vy; and V; is one (or minus one) or EZ;Z is singular. In this model, we are inter-
ested in joint inference concerning 8 and . This is of interest when one wants to see
how the magnitude of = affects the range of plausible g values.

We take (V4;, Va;) ~ N (02, 31,), where 3, has unit variances and correlation py, Z; ~
N (0%, 14,), Vi, Vi) and Z; are independent, and the observations are i.i.d. across i. The
null hypothesis is Hy : (B, m) = (B, mp). We consider the values: py = 0.95, 0.999999,
and 1.0; n = 250, 500, 1000, 2000, 4000, 8000, and 16,000; 7y = (719, 0, 0, 0)’, where 719 =
10, = C/n/? and C = /10, which yields a concentration parameter of A = 7' EZ; Z/m =
10 for all » > 1; and By = 0. The variance matrix {2 of the moment functions is singular
when py =1 (because g;(0y) = (V1;Z;, V1;Z}) a.s.) and near singular when py is close to
one. Under Hj, with probability one, the extra rejection condition in (14) is: reject Hy
if [I4, —1418,(6p) # 0%, which fails to hold a.s., and hence, can be ignored in probability
calculations made under Hy. Forty thousand simulation repetitions are employed.

Tables SM-1, SM-2, and SM-3 report results for k = 8 (which corresponds to dz = 4),
k =4, and k = 12, respectively. Table SM-1 shows that the SR-AR and SR-CQLR tests
have null rejection probabilities that are close to the nominal 5% level for singular and
near singular variance matrices as measured by py-. As expected, the deviations from
5% decrease with n. For all 40,000 simulation repetitions, all values of n considered, and

TaBLE SM-2. Null rejection probabilities (x100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and k = 4.

SR-AR SR-CQLR
n py 0.95 0.999999 1.0 0.95 0.999999 1.0
250 5.5 5.5 5.2 5.4 5.4 4.9
500 5.1 5.1 52 5.0 5.0 5.0

1000 4.9 4.9 5.1 4.8 4.8 4.8

2000 5.1 5.1 52 5.0 5.0 5.0

4000 5.1 5.1 5.1 5.0 5.0 4.9

8000 5.1 5.1 5.1 5.0 5.0 4.8

16,000 5.1 5.1 5.0 4.9 4.9 4.8
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TaBLE SM-3. Null rejection probabilities (x100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and k = 12.

SR-AR SR-CQLR

n py: 0.95 0.999999 1.0 0.95 0.999999 1.0
250 7.0 7.0 5.6 7.0 7.0 5.5
500 6.0 6.0 5.4 6.0 6.0 5.4
1000 5.5 5.5 5.3 55 5.5 53
2000 5.2 5.2 5.1 52 5.2 5.1
4000 5.1 5.1 5.1 5.1 5.1 5.1
8000 5.0 5.0 4.9 5.0 5.0 4.8
16,000 4.9 4.9 5.0 4.9 49 5.0

k = 8, we obtain 7,,(6y) = 8 when py < 1.0 and 7,(6y) = 4 when py = 1. The estimator
7.(0p) also makes no errors when k = 4 and 12. Tables SM-2 and SM-3 show that the
deviations of the null rejection probabilities from 5% are somewhat smaller when k =
4 and n < 1000 than when k = 8, and somewhat larger when k = 12 and »n < 500. The
results for k = 8 and C =0, 2, /30, and 10 are similar. For brevity, these results are not
reported.

We conclude that the method introduced in Section 4 to make the SR-AR and SR-
CQLR tests robust to singularity works very well in the model that is considered in the
simulations.

21. SIMULATION RESULTS FOR KLEIBERGEN’S MVW-CLR TEST

This section presents finite-sample simulation results that show that Kleibergen’s (2005)
CLR test with moment-variance weighting (MVW-CLR) has low power in some scenarios
in the homoskedastic linear IV model with normal errors, relative to the power of the
SR-CQLR and SR-CQLRp tests, Kleibergen’s CLR test with Jacobian-variance weighting
(JVW-CLR), and the CLR test of Moreira (2003) (Mor-CLR).%° As noted at the beginning
of Section 19.5, Lemma 19.3 and Comment (iv) following it show that the scale (denoted
by scale below) of the moment-variance weighting conditioning statistic can be far from
the optimal value of one.®! We provide results for one scenario where scale is too large
and one scenario where it is too small. These scenarios are chosen based on the formula
given in Lemma 19.3.

The model is the homoskedastic normal linear IV model introduced in Section 19.1
with unknown error variance matrix 3 and p = 1. The IVs are fixed—they are generated

60The MVW-CLR and JVW-CLR tests denote Kleibergen’s (2005) CLR test with the rank statistic given
by the Robin and Smith (2000) statistics rk, = /\min(nﬁ;ﬁ;l/ 25,,) and rk, = )\mm(nﬁjq 175,}5"), respectively,
where ﬁn and D, are defined in (8) and (18) with § = 0y and Vbn is an estimator of the asymptotic variance
of 5,1 (after suitable normalization) and is defined in (19.12). Note that the second formula for rk,, is appro-
priate only for the case p =1, which is the case considered here. The estimators ﬁn and I7Dn are estimators
of the asymptotic variances of the sample moments and Jacobian, respectively, which leads to the MVW
and JVW terminology.

61The constant scale is the constant (Ly b, Xy bg)~! in Lemma 19.3(b) and (c).
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once from a N (0%, I};) distribution. The sample size n equals 1000. The hypotheses are
Hy:0=0and H; : 6 # 0. The tests have nominal size 0.05. The power results are based on
40,000 simulation repetitions and 1000 critical value repetitions and are size-corrected
(by adding nonnegative constants to the critical values of those tests that overreject un-
der the null). The reduced-form error variances and correlation are denoted by 3,11,
Sy», and p, respectively, and A := 7' Z' Z7r. The number of IVs is k. The MVW-CLR and
JVW-CLR tests employ the Robin and Smith (2000) rank statistic. Results are reported for
the tests discussed above, as well as Kleibergen’s LM test and the AR test.

Design 1 takes 311 = 1.0, 3p22 = 4.0, p = 0.5, 7 = 0.044, A =2.009, and k = 5. These
parameter values yield scale = 30.0, which results in the MVW-CLR test behaving like
Kleibergen’s LM test even though the LM test has low power in this scenario. Design 2
takes 311 = 3.0, 3y =0.1, p=0.95, 7 = 0.073, A = 4.995, and k = 10. These parameter
values yield scale = 0.0033, which results in the MVW-CLR test behaving like the AR test
even though the AR test has low power in this scenario.

The power functions of the tests are reported in Figure SM-2 (with #A!/? on the hor-
izontal axes with A1/2 fixed). Figure SM-2(a) shows that, for Design 1, the MVW-CLR and
LM tests have very similar power functions and both are substantially below the power
functions of the SR-CQLR, SR-CQLRp, JVW-CLR, and Mor-CLR tests, which have essen-
tially equal and optimal power. The AR test has high power, like that of the SR-CQLR,
SR-CQLRp, JVW-CLR, and Mor-CLR tests, for positive 0, and low power, like that of the
MVW-CLR and LM tests, for negative 6.

Figure SM-2(b) shows that, for Design 2, the MVW-CLR and AR tests have similar
power functions and both are substantially below the power functions of the SR-CQLR,
SR-CQLRp, JVW-CLR, Mor-CLR, and LM tests, which have essentially equal and optimal
power.

22. EIGENVALUE-ADJUSTMENT PROCEDURE

Eigenvalue adjustments are made to two sample matrices that appear in the SR-CQLR
and SR-CQLRp test statistics. These adjustments guarantee that the adjusted sample
matrices have minimum eigenvalues that are not too close to zero even if the corre-
sponding population matrices are singular or near singular. These adjustments improve
the asymptotic and finite-sample performance of the tests by improving their robust-
ness to singularities or near singularities.

The eigenvalue-adjustment procedure can be applied to any nonzero psd matrix
H e R%*du for some positive integer dy. Let & be a positive constant. Let Az A nAjy be
a spectral decomposition of H, where Ay = Diag{Apy1, ..., Agg,} € R4 %% is the diago-
nal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and
Ap is a corresponding orthogonal matrix of eigenvectors of H. The eigenvalue-adjusted
matrix H® € R *dn jg

H®:= AyAj; Ay, where

(22.1)
Af; = Diag{max{Ag1, Amax(H) €}, ..., max{Aga,, , Amax(H) €} }.

We have Apax(H) = Ag1, and Amax(H) > 0 provided the psd matrix H is nonzero.
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The following lemma provides some useful properties of this eigenvalue adjustment
procedure.

LEMMA 22.1. Let dy be a positive integer, let ¢ be a positive constant, and let H € R4
be a nonzero positive semi-definite nonrandom matrix. Then,

(@) (uniqueness) H¢, defined in (22.1), is uniquely defined. (i.e., every choice of spectral
decomposition of H yields the same matrix H®),

(b) (eigenvalue lower bound) Anin(H?®) > Amax(H)e,
(c) (condition number upper bound) Amax(H?®)/Amin(H?) <max{l1/e, 1},
(d) (scale equivariance) Forall ¢ > 0, (cH)® =cH?, and

(e) (continuity) HZ — H? for any sequence of psd matrices {H, € R4 *% : n > 1} that
satisfies H, — H.

CoMMENT. (i) The lower bound Amax(H)e for Apin (H?) given in Lemma 22.1(b) is pos-
itive provided H = 0% *dx

(ii) Lemma 22.1(c) shows that one can choose ¢ to control the condition number of
H¢. The latter is a common measure of how ill-conditioned a matrix is. If ¢ < 1, which is
a typical choice, then the upper bound is 1/¢. Note that H® = H iff Apin(H) > Amax(H) e
iff the condition number of H is less than or equal to 1/e.

(iii) Scale equivariance of (-)¢ established in Lemma 22.1(d) is an important property.
For example, one does not want the choice of measurements in $ or $1000 to affect in-
ference.

(iv) Continuity of (-)* established in Lemma 22.1(e) is an important property because
itimplies that for random matrices {H, : n > 1} for which H,, — , H, one has H;; — , H®.

Proor oF LEMMA 22.1. For notational simplicity, we drop the H subscript on Ay, Ag,
and Af;. We prove part (a) first. The eigenvectors of H® (= AA®A’) defined in (22) are
unique up to the choice of vectors that span the eigenspace that corresponds to any
eigenvalue. Suppose the j, ..., j + d eigenvalues of H are equal for some d >0 and 1 <
j <dy.We can write A = (A, Ay, A3), where A; € R4 *U=1 4, ¢ RIu>(d+D) and A3 e
R x(di=j=d 1n addition, H can be written as H = A, A A, where A, = (A1, Ay, A3),
the column space of A4,, equals that of 4,, and A, is an orthogonal matrix. As above,
H? = AA¢ A'. To establish part (a), if suffices to show that H¢ = 4, A% A/, or equivalently,
AN A E = AN ALE for any & € R9H

For any ¢ € R4 we can write £ = £ + &, where &; belongs to the column space of
A (and Ay, ) and &; is orthogonal to this column space. We have

AN A'E = AN®(Ay, Ay, A3) (€14 &2)
= AN (7Y, (Ap61) 0% 0) 4 AN (A1 £) 0T, (A382) )
= ANS(017Y, (Apé1)', 09 T=4Y (A4, Ag, A3)A*((A1&2)', 04, (A382)")

= Ay ALE1N5 + (A, A3 A ((A1&), (456)')
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= A2 Ay E105 + (A1, AL (418, (A56))
— AN AL, 22.2)

where A% € R@n—d-1)x(drn=d=1) i5 the diagonal matrix equal to A¢ with its j,...,j+d
rows and columns deleted, )\}? = max{Aj, Amax(H )&}, A; is the jth eigenvalue of A, the
second equality uses A} & =071, AL¢; = 0% ~i=4 and A,&, = 071, the third equality
holds because Aj = --- = A;; 4 implies that Af=-=A7 0 the fourth equality holds us-
ing the definition of A, the fifth equality holds because A, A, = A, A4, (since both
equal the projection matrix onto the column space of A, (and A,,)), and the last equal-
ity holds by reversing the steps in the previous equalities with A, = (A1, A2, A3) in
place of A = (A4, A;, A3). Because (22.2) holds for any matrix A,, defined as above and
any feasible j and d, part (a) holds.

To prove parts (b) and (c), we note that the eigenvalues of H?® are {max{Ag;j,
Amax(H)e} : j=1,...,dy} because H®* = AA*A’ and A is an orthogonal matrix. In
consequence, Anin(H?) > Amax(H )&, which establishes part (b). If Apin(H) > Amax(H)e,
then H® = H, Anax(H®)/Amin(H®) = Amax(H)/Anin(H) < 1/¢, and the result of part (c)
holds. Alternatively, if Apin(H) < Amax(H)e, then Apin(H?) = Amax(H)e. In addition, we
have Amax(H?) = max{Ag1, Amax(H) e} = Amax(H) x max({1, e} using A1 = Amax(H). Com-
bining these two results gives Amax(H?®)/Amin(H?®) = Amax(H) max{l, e}/ (Amax(H)&) =
max{1/e, 1}, where the second equality uses the assumption that H is nonzero, which
implies that Apmax(H) > 0. This gives the result of part (c).

We now prove part (d) and for clarity make the H subscripts on Ay and Ay explicit
in this paragraph. We have A,y = cAy and we can take 4.y = Ag by the definition of
eigenvalues and eigenvectors. This implies that A?;, = cAj, (using the definition of Aj,
in (22)) and (cH)® = Acy ALy ALy = cAg A Ay = cH?, which establishes part (d).

Now we prove part (e). Let 4,4, A4, be a spectral decomposition of H, for n > 1. Let
HE = A,A; A}, for n > 1, where A? is the diagonal matrix with jth diagonal element given
by )\ﬁj =max{A,;, Amax(Hy)e} and A,; is the jth largest eigenvalue of H,. (By part (a) of the
lemma, H} is invariant to the choice of eigenvector matrix A4, used in its definition.)

Given any subsequence {n,} of {n}, let {n,,} be a subsubsequence such that 4,, — A4
for some orthogonal matrix 4 that may depend on the subsubsequence {n,,}. (Such a
subsubsequence exists because the set of orthogonal dyy x dy matrices is compact.) By
assumption, H, — H.Thisimplies that A, — A, where A is the diagonal matrix of eigen-
values of H in nonincreasing order (by Elsner’s theorem, see Stewart (2001, Theorem 3.1,
pp. 37-38)). In turn, this gives A — A®, where A° is the diagonal matrix with jth diag-
onal element given by /\]8. =max{\;, Amax(H )&} and A; is the jth largest eigenvalue of H,
because Amax(-) is a continuous function (by Elsner’s theorem again). The previous re-
sults imply that Hy,, = Ay, An,, A, — AAA',H=AAA",H; = Ay, A, A, — AA*A',
and AA¢ A’ = H®. Because every subsequence {n;} of {n} has a subsubsequence {n,,} for
which H ny > HE, we obtain HS — H?, which completes the proof of part (e). O

nm

23. SINGULARITY-ROBUST LM TEST

SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-
AR and SR-CQLR tests and CSs. However, these procedures are only partially singularity
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robust; see the discussion below. In addition, LM tests have low power in some circum-
stances under weak identification.
The SR-LM test statistic is

P~ / i~
SR-LM,,(0) := ng 4,(0) Pﬁ;L/Z(O)ﬁAn(G)gAn(oL (23.1)

where Py, denotes the projection matrix onto the column space of the matrix M. For
testing Hy : 6 = 6y, the SR-LM test rejects the null hypothesis if

SR-LM,1(60) > Xamin(f, (60).p).1—ac (23.2)

where sznin{?n( 00), p)1—cx denotes the 1 — a quantile of a chi-squared distribution with
min{7,(6y), p} degrees of freedom. This test can be shown to have correct asymptotic
size and to be asymptotically similar for the parameter space ]_-lel\a/[, which is a general-
ization of the parameter space Fj in AG1 and has a similar (rather complicated) form to
Fo. It is defined as follows: for some 6; > 0,

min{rg, p}

SR .

Fim = U ]:LM/’ where
j=0

cy, .G*B: "3

Fingg i ={F e PR =8rand A, (W7 ) = 8y

(23.3)
Vé e RV with || ¢l =1},

Gi=M?ApG; e R™*P,  rp:=1k(Qp),  gf:=1II;;"Apgi € R,
V' = Epa;a, —Epa,-g;-”(EFgl’-‘g;-*)_lEFgfa; for any random vector a;,

fr}‘F is the jth largest singular value of ErGj for j = 1,..., min{rg, p}, 75, := 61, By is
a p x p orthogonal matrix of eigenvalues of (ErG}) (ErG?}) ordered so that the cor-
responding eigenvalues («jg, ..., K;F) are nonincreasing, Cy is a rp x rp orthogonal
matrix of eigenvalues of (ErG})(ErG})" ordered so that the corresponding eigenval-
ues (Kip, .. j F) are nonincreasing, By, : (BF], o p— j) for By, € RP*J and B}k _j€
RP*(p=)), and Ci=(Cf ;, Cp ) for Cj; € R'F*J and Ch R’FX(’F_/).62 63 See Sec-
tion 3 of AG1 for a discussion of the form of this parameter space and the quantities
upon which it depends. Note that ¥, is the expected outer-product matrix of the vector
of residuals, a; — Era; g’ (Ergrgl)~ 1g;.", from the L%(F) projections of a; onto the space
spanned by the components of g7, see AG1 for further discussion.

The conditions in ]—'ﬁ@[ (beyond those in F SRy are used to guarantee that the condi-
tioning matrix D 4, € R"*? has full rank min{7,, p} asymptotically with probability one

62The first min{rf, p} eigenvalues of (ErG}) (EFGY) and (EFG})(EFG})' are the same. If rp > p, the
remaining rr — p eigenvalues of (ErG})(ErG})’ are all zeros. If rr < p, the remaining p — rr eigenvalues of
(ErG}) (EFG?Y) are all zeros.

83The matrices B} and Cj are not necessarily uniquely defined, but this is not of consequence because
the A,_;(-) condition is invariant to the choice of B}, and Cj.
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(after pre- and post-multiplication by suitable matrices). AG1 shows that these condi-
tions are not redundant. Given the need for these conditions, the SR-LM test is not fully
singularity robust. The asymptotic size and similarity result for the SR-LM test stated
above can be proved using Theorem 4.1 of AG1 combined with the argument given in
Section 17 below. For brevity, we do not provide the details. Extensions of the asymp-
totic size and similarity results to SR-LM CSs are analogous to those for the SR-AR and
SR-CQLR CSs.

A theoretical advantage of the SR-AR and SR-CQLR tests and CSs considered in this
paper, relative to tests and CSs that make use of the LM statistic, is that they avoid the
complicated conditions that appear in ]:Ell\‘,[.

24. PrRooFs oF LEMMAS 16.2, 5.1, AND 15.1

LEMMA 16.2 oF AG2. Let D be a k x p matrix with the singular value decomposition
D = CYPB', where C is a k x k orthogonal matrix of eigenvectors of DD’, Bisa p x p
orthogonal matrix of eigenvectors of D'D, and Y is the k x p matrix with the min{k, p}
singular values {7; : j <min{k, p}} of D as its first min{k, p} diagonal elements and zeros
elsewhere, where 7; is nonincreasing in j. Then cy ,(D,1 —a) = ¢ ,(Y,1 - a).

PrOOF OF LEMMA 16.2. Define

Bt = [(ﬁ’ Oﬂ e R(PHDx(p+1) (24.1)

The matrix B* is orthogonal because B is, where B is as in the statement of the lemma.
The eigenvalues of (D, Z)'(D, Z) are solutions {k; : j < p+ 1} to

|(D,Z2)(D,Z)—kl,+1|=0 or
|BY(D, Z) (D, Z)Bt — kI 11| =0 or

|(DB, Z) (DB, Z) — kI p41| =0 or (24.2)
(CY,Z)CC(CY,Z)— klpi1|=0 or,

(Y, Z*) (Y, Z*) — kI 41| =0, where Z*:=C'Z ~ N (0%, I;),

the equivalence of the first and second lines holds because | A1 A;| = | 41| -|A3|, |1BT| =1,

and BB = 1,4, the equivalence of the second and third lines holds by matrix alge-

bra, the equivalence of the third and fourth lines holds because DB= CYB'B=CY and

CC’ = I, and the equivalence of the last two lines holds by CC’ = I}, and the definition

of Z*. Equation (24.2) implies that A, (D, Z)' (D, Z)) equals Ay ((Y, Z*)' (Y, Z*)). In
addition, Z'Z = Z* Z*. Hence,5%*

CLRt.,(D) = Z'Z — Amin((D, 2) (D, 2)) = Z¥ Z* = hin((Y> Z*) (Y, Z¥)).  (24.3)

64The quantity CLR, ,(D) is written in terms of (D, Z) in (24.3), whereas it is written in terms of (Z, D)
in (24). Both expressions give the same value.
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Since Z and Z* have the same distribution, CLRy ,(D) (= Z¥Z* — Aqin (Y, Z*)'(Y, Z¥)))
and CLR ,(Y) 1= Z'Z — Amin((Y, Z2)'(Y, Z)) have the same distribution and the same
1 — a quantile. That is, ¢ ,(D, 1 —a) = ¢, p(Y, 1 - a). O

LEMMA 5.1 or AG2. The statistics QLR,,, ck,p(nl/zl/)\;;, 1—a), D¥'D*, AR,, S, andL, are
invariant to the transformation (g;, G;) ~ (Mgi, MG;) Vi < n for any k x k nonsingular
matrix M. This transformation induces the following transformations: g,, ~ Mgy, Gy~
Man’ ﬁn WMﬁnM/» I/j'n “""Mj—;nM/ Vi<p ﬁn “’“)Mb\m I7n ~ (Ip+1 ®M)I7n(]p+1 ®M/):
and R, ~ (141 ® M)R,(I 41 ® M).

-~

ProoF oF LEMMA 5.1. We refer to the results of the lemma for g;, G;, ..., R, as equiv-

ariance results. The equlvarlance results are immediate for g;, G;, 2., @n, £,, and F]n
For D,, = (Dln, e, Dpn), we have

Dju:=Gjn—T1n00,' 8y~ MGy — MT;,,M'(MO,M') "' M3, =MD, (24.4)
forj=1,..., p. We have f; := (gl,vec(G )Y~ ((Mgl) vec(MG;) )/ = py1 ® M)f;. Us-
ing this, we obtain 7, = n=! Y0 (f; — ) (fi — f,,)’ > (Lpy1 ® M)V, Upt1 ® M’). Next,
we have R, := (B’ ® I;)Vu(B® Ik) ~ (B'® M)Vn(B ® M’) = (I +1 ®M)Rn(1 P+l QM)
using the equivariance result for Vn We have ngn = tr(R]L,n » 1)/k ~ tI'((MRjgnM ) x
(MOM) 1/ k = tr(MR;.EnM’M’ 10 IM~1y/k = zj,gn for j,¢=1,..., p + 1 using the
equivariance result for ﬁn. We have E,, =(0,1 p)(fﬁ)_l( 0,1,) ~ Zn using the invariance
result for fn We have 5*/5* = f}ﬂﬁ’ 6*15 ]’:1/2 Z}l/zﬁ’ M (MD,M)"'MD, El/z =
D¥ D%. This implies that  cx p(nl/ZD* 1 —a) ~ ¢, ,(n'/2D%, 1 — a) because ¢ p(nl/zﬁj,
1 — a) only depends on D* through D*’ D* by the comment to Lemma 16.2.
We have AR, := ng, '3, ~ ng, M'(MQ,M')"' Mg, = AR,. We have

QLR, := ARy — Amin(1(@ns DuLs*)' 2, (8, DaL,?))
> ARy, — Amin (n(M 80, MD,LY/?) (MO,M') "' (M3, MD,L)/?)) = QLR,, (24.5)

using the invariance of AR, and L, and the equivariance of the other statistics that ap-
pear. O

Lemwma 15.1. The statistics QLRp,,, ck,p(nl/zﬁj‘l, 1—a), 5Z’D AR, u* 2,1, and Ln are
invariant to the transformation (Z;, u}) ~ (M Z;, u?) Vi < n for any k x k nonsingular
matrix M. This tmnsformatzon znduces the followmg tmnsformatzons gi~ Mg;Vi<n,
G~ MG;Vi<n,g, ->Mg,,, G wMGn, Q wM!)nM an WMFJnM/ Vi< p, Dn
MDy, Zusie ~ Zusk M’ By o M7 B, Vo Uyt @ MYV ps1 @ M), and Ry~ (a1 ®
M)Rn(Ierl ® M/)~

Proor orF LEMMA 15.1. We refer to the results of the lemma for g;, G;, ..., R, as equiv-
ariance results. The equivariance results are immediate for g;, G;, g1, Gn, 24, Ij,, and
Znxk- For Dy = (D1y, ..., Dpp), we have D, ~ MDj, for j =1, ..., p by (24.4) above.

In addition, we have =, := (Z,, Zuk) "' Z, U* ~ (MZ), \ ZkM) "M Z, ,U* =

nxk
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M E,. We have @}, := 5,Z; ~ (M 5,YMZ; = @,. We have 7, := n"' ¥ [(u? —
Tn)(u ur) ® Z Z/] Y L =t ) (u) — m)/ QMZ,ZM = Upy1 @ M) x
v, (Ip+1 ® M’) using the invariance of u},. We have R, = (B'® Ik)V,,(B ® Ik) ~ (B'®
M)V (B® M’) =Up1 ® M)R Up1® M’) usmg the equ1var1ance result for V

We have 2,4,1 = tr(Rﬂn 01/ k ~ tr(MR oM"Y (MOM) Y/ k = tr(MR M x
M'~ 1!2 MYk = ]g,, for j,¢ =1, Ty A 1 using the equivariance result for ﬁn
We have L,:= (0, Ip) (30~ Leo, I,) ~ L, using the invariance result for En We have
D¥Dx .= LV*D, 0= 1DnL1/2 L}/ZD;M/(MQHM/) IMD,LY* = D¥D*. This implies
that~ck,p(n1/25;§~, 1—a)~ ck,p(n1/25;';, 1 — @) because ck,p(nl/zﬁj‘,, 1 — ) only depends
on D} through D}/ D? by the comment to Lemma 16.2.

We have AR, and QLRp,, are invariant by the argument in the paragraph above that
contains (24.5). O

25. PROOFS OF LEMMA 16.4 AND PROPOSITION 16.5

LEMMA 16.4. Suppose Assumption WU holds for some nonempty parameter space A, C
Awu. Under all sequences {\,, j, : n > 1} with A, , € Ay,

128, Dy — E, G, Wg,DyUr, Ty) = 4 (84> D, Ap),

where (a) (g, D) are defined in (16.21), (b) Zh is the nonrandom function of h and Dy,
defined in (16.24), (c) (Dy,, Ap) and g, are independent, and (d) under all subsequences
{wy} and all sequences {A,,, j : n > 1} with Ay, , € Ay, the convergence result above and
results of parts (a)—(c) hold with n replaced with w,.

Here and below, we use the following simplified notation:
D, :=Ef,G;, B, :=Bp,, C.:=Cp,,
B = (Bn,q> Bn,p—q)> Cn=(Cnq> Cnik—q)> (25.1)
W, = Wp,, Woy :=Wap,, U,:=Uf,, and U,,:=Usp,,

where g = g, is defined in (16.22), B, 4, € RP*9, B, p_4 € RP*(P=D, C, , € R¥*4, and
Chk—q € RF**=9 Let

Yy, q :=Diag{riF,, ..., 74r,} € R,
Yn,p—q = Diag{r(qH)Fn, ey TpFn} € R(p—q)x(p—q) if k > P
Yn,qu = Diag{T(q+1)Fn ey Tan} € RKk—x(k=q) jf < D,
Yoq 07 P=D (25.2)

Y, = 0(p—q)><q Yn,pfq c RkXP if k > D, and
0k—p)xq  lk=p)x(p=q)

Yoq 09xk=q) 09x(p—k)
ok—oxa y, k—q 0k—)x(p—k)

} e RF*P ifk < p.
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As defined, Y;, is the diagonal matrix of singular values of W, D, U,; see (16.15).
Proor oF LEMMA 16.4. The asymptotic distribution of n'/2(g,, Vec(ﬁn — Dy)) given in

Lemma 16.4 follows from the Lyapunov triangular-array multivariate CLT (using the mo-
ment restrictions in F) and the following:

" i
/ZVec(ﬁn — Dn) = nil/ZZvec(Gi _ Dn) _ Q 1 1/2§
i=1 1’—\:”"
=n"123" | vec(G; — D) — : Qg | +0p(1), (25.3)
= EFnG(sz

where the second equality holds by (i) the weak law of large numbers (WLLN) applied
ton ') Gyg, for j=1,...,p, n ' 3)_ vec(Gy), and n' Y}, geg), (i) EF,gi = 0F,
(iii) hs,g = 1lim Qp, is pd, and (iv) the CLT, which implies that n'/2g, = O, (1).

The limiting covariance matrix between nl/? Vec(ﬁn — D,) and n'/?g, is a zero ma-
trix because EF,[G;; — Er,G;j — (EF, nggjz)();n] gilg; = 0%k, where G;; denotes the jth
column of G;. By the CLT, the limiting variance matrix of n!/ 2vec(5,, — D,) equals
lim Varg, (vec(G;) — (EF, VGC(G[)gZ)QF 8i) = llmq)veC(G) CIDZGC(G"), see (16.20), and the
limit exists because (i) the components of (I)VBC(G ) are comprised of A4 r, and subma-
trices of As , and (ii) A, — hs for s =4,5. By the CLT, the limiting variance matrix of

n'/?g, equals lim Ef, ;g\ = hs .
The asymptotic distribution of n!/ 2 Wr, 13n Ur, T, is obtained as follows. Using (16.13)-
(16.15), the singular value decomposition of W,,D,U, is W;,D, U, = C,Y,,B,,. Using this,
we get

1 _
WnDnUan q CnY B/ Bn q Ci’l <0(p Z)X(]) Y

1
=C, <0<k—3>xq> =Cpyq, (25.4)

where the second equality uses B;, B, = I ,. Hence, we obtain

WuDnUnBuqYyh = WaDnUnB.g Yy + Wun /> (D — D) Un By g(n"/2Y,0.4) ™

= Cn,q+0p(1) —p h3,q=Ah,qa (25.5)
where the second equality uses (among other things) n'/27 iF, — oo forall j < g (by the

definition of g in (16.22)). The convergence in (25.5) holds by (16.19), (16.24), and (25.1),
and the last equality in (25.5) holds by the definition of Kh,q in (16.24).
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Using the singular value decomposition of W, D, U, again, we obtain: if k > p,

gx(p—=q)
n2W,D,UyBy, p—q = n'/*Cy Y, B, By p—g = n'/?C, Y, (O )

Ip—q
09x(P—) 07x(P—q)
=Cu| n'?Y, p—q | = h3 | Diaglhi g1, ..., h1,p)
0k=p)x(p—q) 0k—pP)x(p—q)
=h3hi ,_,» (25.6)

where the second equality uses B, B, = I, the third equality and the convergence hold
by (16.19) using the definitions in (16.24) and (25.2) with £ > p, and the last equality
holds by the definition of /47 g in (16.24) with k > p. Analogously, if k < p, we have

09x(P— 09x k=) 09x(p—k)
172 1/2
n'/ WaDnUnBp,p—q = n / C"Y”< I =G nl/2y, kg k=) x(p=k)

p—q
P 9% k=q) 09x(p=k) B
= , (25.7
: Diag{hi g1, ..., hig) 0k-DxP=h g 5D

where the third equality holds by (25.2) with £ < p and the last equality holds by the
definition of h{ —q in (16.24) with k < p.

Using (25.6), (25.7), and n'/2(g,, D, — D) — 4 (84, D), we get

n2WyDyUnBy g = n"*WuDnUpBy, p—gq + Wun"*(Dyy — Dy)UnBy p—q

—q h3hy ,_,+ h\Dphgihs, g =Ap, p—gs (25.8)

where By, ,—q — h2, p—g Wa — h71, and U, — hgy, and the last equality holds by the defi-
nition of Ah,p,q in (16.24).
Equations (25.5) and (25.8) combine to establish
nV2W,D,U, Ty = nV/*WyDyU,BuSy = (WuDypUyBy Yok, nV/*WyDyUpnBy, p—g)

n,q>

—q (Dp g, A, p—g) = A (25.9)

using the definition of S,, in (16.23). This completes the proof of the convergence result
of Lemma 16.4.

Parts (a) and (b) of the lemma hold by the definitions of (g, D) and A;,. The inde-
pendence of (Dy,, A;,) and g,, stated in part (c) of the lemma, holds by the independence
of g, and Dy, (which follows from (16.21)), and part (b) of the lemma. Part (d) is proved
by replacing n by w;, in the proofs above. O

ProposiITION 16.5. Suppose Assumption WU holds for some nonempty parameter space
Ay C Awy. Under all sequences (A, j, : n > 1} with A, , € A,,

(@) Kjp—>pocforallj<gq,
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P N N U

(b) the (ordered) vector of the smallest p — q eigenvalues of nU,, D, W, W, D,U,, that is,
(K(g+1yns - - - » Kpn)', converges in distribution to the (ordered) p — q vector of the eigenval-

- _
ues ofAh,p_thk,qhg,k_q X Ay pg € RP—0x(p=q)

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-
ma 16.4, and

(d) under all subsequences {w,} and all sequences {A,, j, : n > 1} with Ay, , € Ay, the
results in parts (a)-(c) hold with n replaced with w;,.

ProoOF oF ProprosiITION 16.5. For the case where k£ > p, Proposition 16.5 is the same as
Theorem 10.4(c)-(f) given in the SM to AG1, which is proved in Section 17 in the SM to
AGL. For brevity, we only describe the changes that need to be made to that proof to
cover the case where k < p. Note that the proof of Theorem 10.4(c)—(f) in AG1 is sim-
ilar to, but simpler than, the proof of Theorem 16.6, which is given in Section 26 be-
low.

In the second line of the proof of Lemma 17.1 in the SM to AG1, p needs to be re-
placed by min{k, p} three times.

In the fourth line of (17.3) in the SM to AG1, the k£ x p matrix that contains six sub-
matrices needs to be replaced by the following matrix when & < p:

{hg o +o(1) orix k=r) 07t X (p—k)
T

kxp
O(kfrf)xri> )(kfrf)x(kfrf) O(krf)x(pk):| €R ’ (25.10)

O(TrzF,, /Tran

where r{ is defined as in the proof of Lemma 17.1 in the SM to AGI.
In the first line of (17.22) in the SM to AG1, the k x (p — r;j_l) matrix that contains
three submatrices needs to be replaced by the following matrix when k < p:

|: Or;filx(k—r;il) Orgilx(p—k)

kx(p—rS_;)
O(k—rgl)X(P—k):| €R s (25.11)

Diag(7,,F,, - - » TkF, }/ TroF,

The limit of this matrix as n — oo equals the matrix given in the second line of (17.22)
that contains three submatrices. Thus, the limit of the matrix on the first line of (17.22)
is the same for the cases where k > p and k < p.

In the third line of (17.25) in the SM to AGI1, the second matrix that contains
three submatrices (which is a k x (p — rg) matrix) is the same as the matrix in the
first line of (17.22) in the SM to AGI1, but with rg in place of r;f_l (using rgq1 =
rg +1 and ry = r§—1 + 1). When k < p, this matrix needs to be changed just as
the matrix in the first line of (17.22) is changed in (25.11), but with rg in place of
re g

No other changes are needed. O

26. PROOF OF THEOREM 16.6

THEOREM 16.6. Suppose Assumption WU holds for some nonempty parameter space
Ay C Awy. Under all sequences (A, j, :n > 1} with A, , € Ay,

1 x —1/22 ~ —1/22
QLRwy,» = d 845,81 — Amin (A, p—g> hs,g/ &) 13.k—qM5 k—g(Bh.p—q> hS,g/ )
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and the convergence holds jointly with the convergence in Lemma 16.4 and Proposi-
tion 16.5. When q = p (which can only hold if k > p because q < min{k, p}), Zh,p_q
does not appear in the limit random variable and the limit random variable reduces to
(hs"lg/zgh)’hlphg,phs‘;/zgh ~ X%;- When q = k (which can only hold if k < p), the Apin(+)
expression does not appear in the limit random variable and the limit random vari-

able reduces to g, h;}ggh ~ )(i. When k < p and q < k, the Anin(-) expression equals zero

and the limit random variable reduces to g/hh; fggh ~ )(i. Under all subsequences {w;,}

and all sequences {\,,, j : n > 1} with Ay, 5 € Ay, the same results hold with n replaced
with wy,.

The proof of Theorem 16.6 uses the approach in Johansen (1991, pp. 1569-1571) and
Robin and Smith (2000, pp. 172-173). In these papers, asymptotic results are established
under a fixed true distribution under which certain population eigenvalues are either
positive or zero. Here, we need to deal with drifting sequences of distributions under
which these population eigenvalues may be positive or zero for any given n, but the
positive ones may drift to zero as n — oo, possibly at different rates. This complicates the
proof considerably. For example, the rate of convergence result of Lemma 26.1(b) below
is needed in the present context, but not in the fixed distribution scenario considered in
Johansen (1991) and Robin and Smith (2000).

The proof uses the notation given in (25.1) and (25.2) above. The following defini-
tions are used:

-~

Un 0p><1
lep 1

o~

B = (B W10, P c RO, [ } ¢ R,

U, or! 1 1 hg; 0P 1 1
U= |:0]x"p ) :| e R(PHHXx(p+D) hgl = g | e R(PHHXx(pt+D)

B, 07! Dx(p+1
B;’[ = [01:]7 1 :| eR(p+ )x(p+ )’

(26.1)

+_(p+ pt + (p+1) + (p+Dx(p+l—q)
B =(By B, . ,) forBj eRP™)*" and B, .,  eRPTPTD,
D:lr — (Dn,Ok) c ka(erl)’ Yn+ = (Yn,Ok) eka(pH)’

S;:=Diag{(n"?115,) 5 ..., (0 P7gr,) 1,0 1)

1
_ [ f:p 0P~ } ¢ RPHDX(pHD)
0 1 ’

where g,, and ﬁn are defined in (8) with 6 = 0y, 5n is defined in (18) with 6 = 6y, Wn, (7,,,
U, (:=Ufg,), and W, (:= Wf,) are defined in (16.4), hg; is defined in (16.24), B, (:= BF,)
is defined in (16.13), D,, is defined in (25.1), Y,, is defined in (25.2), and S,, is defined in
(16.23).

Let

?;l denote the jth eigenvalue of nU;'D'W/W, DU+, Vj=1,...,p+1, (26.2)
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ordered to be nonincreasing in j. We have5°

W,DU; = (W,D,Uy,, 02,"%g,) and

Amin (MWD Uy 0, %2,) (WD Usi, 25 °81)) = Amin (nU;F' DWW, D, U;F)  (26.3)

_
= Kp+om
The proof of Theorem 16.6 uses the following rate of convergence lemma, which is
analogous to Lemma 17.1 in Section 17 of the SM to AG1.

LEMMA 26.1. Suppose Assumption WU holds for some nonempty parameter space A, C
Awy. Under all sequences {Anpn:n =1} with A, € Ay for which q defined in (16.22) satis-

fies g > 1, we have (a) & KJ —pooforj=1,...,qand (b) ’E;l =0p((n'274p,)?) forallt < q
and j=q+1,..., p+ 1. Under all subsequences {w,} and all sequences {\,,  : n > 1}

with Ay, € Ay, the same result holds with n replaced with wy,.

12 =12
—p hS,g

(because £, .QFH — , 04k by the WLLN, 02, — hs ¢, and ks ¢ is pd). In consequence,

AR, —4 ghh5 g;,. Given this, the definition of QLR,, in (16.3) and (26.3), to prove the

convergence result in Theorem 16.6, it suffices to show that

PrOOF OF THEOREM 16.6. We have n'/?g, —, g, (by Lemma 16.4) and _(2

mm( U+D+/W WnD+U+)
4 Amin (A, p—g h;g gh)/h3,k7qhg,k_q(zh,p7qa hil I*g gn))- (26.4)

Now we establish (26.4). The eigenvalues {’:2;; :j < p+1}of nU}F DWW, D} U are
the ordered solutions to the determinantal equation |nU; D' W, W, D; U} — kI 411 =0
Equivalently, with probability that goes to one (wp — 1), they are the solutions to

|0} (k)| =0, where
QF (k) :=nSBYUY DWW, D UB} S+ (26.5)
~ 7] o~
— kSTBI UL (O) () U BESY

because |S;7| >0, |B;f| > 0, |U;f| > 0, and |l7+| > 0 wp — 1. Thus, Amin(nﬁj/ﬁ,j/ﬁ/,{ﬁ/n X
D;+U}) equals the smallest solution, %" » K pp1ynr 1O |Q;F (k)| =0 wp — 1. (For simplicity, we
omit the qualifier wp — 1 that applies to several statements below.)

We write Q;F (k) in partitioned form using

BiSt= (B+ Snqs B:{,pﬂ_q), where 266
Sn,q = Diag{(nl/zlen)_l, . (nl/ZTan)_l} e R1*1,

65In (26.3), we write (Wnﬁnﬁn, _Q g,,), whereas we write its analogue (!2 25 8n» D*) in (23) with its
columns in the reverse order. Both ways give the same value for the minimum eigenvalue of the inner
product of the matrix with itself, which is the statistic of interest. We use the order (Q v Zgn, Dy) in AG2
because it 1s con51stent with the order in Moreira (2003) and Andrews, Moreira, and Stock (2006). We use the
order (W D U,,, !2 125 gn) here (and elsewhere in the SM) because it has significant notational advantages

in the proofs, espec1ally in the proof of Theorem 16.6 in this section.
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The convergence result of Lemma 16.4 for nl/ZWnﬁn Uu,T, (= nl/ngﬁn U,B,S,) can be
written as

n'*W,DS U B} (Sn.q=n""*WyDyUnBn.qSn.q = p Bpq:=h3,q and

1/2 13} 1/2 N w-10-1/24
n'PW,DYUSB) =0 WD, W 0 ) U B 067

A Do15-1/2~
=n"2(WyDnUpBy, p—g WalW, ' 05, '%82)
~ —1/2—
—>d (Ah,pfq’hs,g 8n)»

where A, ; and A, ,_, are defined in (16.24), B, p_ is defined in (25.1), and the conver-
gence in distribution uses W}, W,;l —p I by (26.8).
We have

WW, >, I and THUH) ™ =, 1 (26.8)

because Wn — p h71 :=1im W, (by Assumption WU (a) and (c)), 17,‘{ -, hé”l :=lim U, (by
Assumption WU (b) and (c)), and /7 and hgl are pd (by the conditions in Fwy).
By (26.5)-(26.8), we have

Oy (k)

B { Ig+o0,(1) hg’qnl/zmﬁjUszpH_q +0,(1) }
- 1/2 / Y 1/2 Y 1215

n'2BY U DEWahs g +op(1) n'PBY L U DY W Wan' PDEUSBY L+ 0p(1)

2 1-
K Sn,q OqX(P+ ? K S”,ini_nS’hq S’l,qA;n where (26.9)
- (p+1—q)x - +/ + ’
U Ipi1-q Aann’q A3n

)

+ Airn A2+n ++ (R V(O gt

n = +/ =8,U, (Un) (Un) U, B, —Ipt1=0p(1)
A2n A3n

for A] e R1*4, A} € RI*(PF1=® and A} e R(PH1=0*(P+1=0) and the first equality uses

Ap,q = h3,4 and Z}LqZh,q = hé’thq =1imC;, ,Cn 4 =1, (by (16.14), (16.16), (16.19), and

(16.24)). Note that A;l and A;l (defined in (26.19) below) are not the same in general

for j =1, 2, 3 because their dimensions differ. For example, ATn € R7%4, whereas ;4\?” €

RIT*r f, where rf is defined as in the proof of Lemma 17.1 in the SM to AG1.
If =0, then B} =B nd

n,p+l—q @
nBY U+ Dy W05 UF BY
=nBf(U;)" T;) (B) B UL DY W (W, )
< (MW, ) (WD U BY) () (UF)0) B
—d (Bn,p—g> h;,;/zgh)/(xh,p—q’ hiz/zgh)’ (26.10)

where the convergence holds by (26.7) and (26.8) and Ay, p—q s defined as in (16.24) with
q = 0. The smallest eigenvalue of a matrix is a continuous function of the matrix (by El-
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sner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37-38)). Hence, the smallest eigen-
value of nB;}" U} D,;"W!W,D; U} B} converges in distribution to the smallest eigen-
value of Ay, p—g, b5 *81) 13 k—ghy 4o B p-g» b5 "8p) (Using hs gl = hahly =1
when ¢ = 0), which proves (26.4) when g = 0.

In the remainder of the proof of (26.4), we assume ¢ > 1, which is the remaining case
to be considered in the proof of (26.4). The formula for the determinant of a partitioned
matrix and (26.9) give

|0 (0] =[01,(0] -[Q3, ()|, where
Qf (k) =14+ 0p(1) — kS5 | — kSp.q A}, Sn.q,

Q;—n(K) = nl/ZB-i-/ U+/b\;|l—lw/,;%nl/2b\;ll- Ur-l‘rB-F

n,p+l—q=n n,p+1—q
+0,(1) = klpi1_g — kAT, (26.11)
—[n2B U DY Wihs g+ 0p(1) — kA3 S.q]

-1
X (Iq +o,(1) - KSiq — KSn,qATnSn,q)

x [Wy 0" PWDUSBY 4 0p(1) = kSuq A7, ],
none of the 0,(1) terms depend on «, and the equation in the first line holds provided
1, (1) is nonsingular.
By Lemma 26.1(b) (which applies for ¢ > 1), for j=¢+1,...,p + 1, and Afn =
0p(1) (by (26.9)), we have ?jns,%,q = 0p(1) and ’E;.';lquATnSn,q = 0p(1). Thus, for j
q+1,....,p+1,

01, (R =Ig+0p(1) =&}S; o =R} Snq AL Sng =g+ 0p(D). (26.12)

By (26.5) and (26.11), |Q,T(?j+n)| = |Q1+n(ﬁj+n)| . |Q§“n(?;;)| =0forj=1,...,p+1. By
(26.12), |Q1+n(7ej+n)| #0forj=qg+1,..., p+1wp— 1. Hence, wp — 1,

03,(®})| =0 forj=q+1,....,p+1. (26.13)

Now we plug in?;.; forj=q+1,..., p+1linto 0F (x) in (26.11) and use (26.12). We
have

er” (?j”) - nBZ/erlqu;/DI/MMD; UrerBrer,prq +o0p(1)
B [nl/zB:,/pH—qU:/B:/Wr:hlq +0p(D](Ig+0p(D))
x [y n'PWaDFUSBY L+ 0p(1)]

~+ +
- an[1p+1fq + A3,

(12
(” Bn,p+1—q

— A3 Snq(Ig +0p(D)( %,qnl/zWrz/D\Z UJB:ZPHW +0,(1))

U Dy Wyhs g+ 0,p(1) (I + 0p(1)Sn g A3,

+ 85, A3,8n.q(Ig +0p(1)SngA43,]- (26.14)
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The term in square brackets on the last three lines of (26.14) that multiplies e

jn
equals
Ipp1-g+o0p(D), (26.15)

because A, = 0,(1) (by (26.9), n'*W,D}UB, ., . = 0p(1) (by (26.7)), Suq =
o(1) (by the definitions of ¢ and S, , in (16.22) and (26.6), respectively, and £y ; :=
limn'?7;5,), A3, = op(1) (by (26.9)), and ¥}, 43S, ,,q(l + 0p(1)SnqA5, =

AR S2 AT+ ATKE Spq0p(DSnq A5 = 0p(1) (usmg KhSh g =op(l) and A7 =

2K jn=n,q 2K jn
op(1)).
Equations (26.14) and (26.15) give
05, (%}%,)
1/2 N 1/2
=n'?BY | UFDI Wil —hs gl Jn'*W,DFUSBY

+0P(1) jn[ p+1- q+0p(1)]

_ 1/2pt + D+ n2w, DUt Bt
=n / Bn pl- qU” /Dn/th3,k—qh3,k / WD U Bn p+l—q

+0p(1) =&} [Ipr1-g +0p(D)]

=MIP+1_q—Kj+n[1p+1_q+op(1)], (26.16)

where the second equality uses I = h3h} = h3,qh’3’q + h3,k,qh’3,k_q (because i3 =1im C,

is an orthogonal matrix) and the last line defines the (p + 1 — ¢) x (p + 1 — ¢) matrix
+
n,p+1—q°

Equations (26.13) and (26.16) imply that {?;;Z j=q+1,...,p+1}arethe p+1—¢
eigenvalues of the matrix

—1,2 12

(26.17)

Mr:r;Jrl q [1P+1—f1+0P(1)] M+ p+1— q[1p+1 q+0p(1)]

by pre- and post-multiplying the quantities in (26.16) by the rhs quantity [1,.1_, +
0,(1)]7Y2in (26.16). By (26.7),

++ ~ —1/2— y/ ~ —-1/2—
M, g (An, p—g> hs g &n) h3,k—qh/3,k—q(Ah,p—q’ hs g gh)- (26.18)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix
(by Elsner’s theorem; see Stewart (2001, Theorem 3.1, pp. 37-38)). By (26.18), the matrix
o converges in distribution. In consequence, by the CMT, the vector of eigenval-

n,p+l—q
ues of M:; L1 ViZ,, {’E;; j=q+1,...,p + 1}, converges in distribution to the vector of

eigenvalues of the limit matrix (Kh,p_q, h5 2 h) h3 k—q 3 e q(Ah p—q> h5 2 h) Hence,

Amin(nU' DY W) W,D;tUF), which equals the smallest eigenvalue, K+p o

in distribution to the smallest eigenvalue of (Zh,p,q,h;l,ﬂgh)’hg,,k,qhg k—q(Zh’P*LI’
hs. iy 2gh) which completes the proof of (26.4).

The previous paragraph proves Comment (v) to Theorem 16.6 for the smallest
p + 1 — q eigenvalues of n(W D,U,, .(2_1/2" Y (W,D,U,, .(2_1/2A ). In addition, by Lem-

converges
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ma 26.1(a), the largest g eigenvalues of this matrix diverge to infinity in probability,
which completes the proof of Comment (v) to Theorem 16.6.

When ¢ = p, the third and fourth lines in (26.7) become nl/ngW,ﬂQ
h;l,/ zgh, respectively, that is, n'/?W,D,U,B, ,—, and A »—q drop out (because

+pgt
Un n,p+l—q

1/2g and

= (0”,1) in this case). In consequence, the limit in (26. 18) becomes

(hs /Zgh) h3,k—q 3k thg gh,whlchhasa)(k distribution (becauseh g ~ N (0K,

Ik), h3 = (h3,4, h3,k—q) € Rk>k js an orthogonal matrix, and 3 x_, has k p columns
when g = p).

The convergence in Theorem 16.6 holds jointly with that in Lemma 16.4 and Propo-
sition 16.5 because the results in Proposition 16.5 and Theorem 16.6 just rely on the
convergence in distribution of nl/2 Wnﬁn U, T,, which is part of Lemma 16.4.

When g = &, the Apin () expression does not appear in the limit random variable in
the statement of Theorem 16.6 because, in the second line of (26.16) above, the term

— h3 ghs , equals 0%*k, which implies that M, pileg = = 0PF1=0x(p+1=0) 4 5 (1) and
M;;H . = 0PHI=Dx(PH1=0) o (1) — , 0PF1= 9 (p+i-g) in (26.17) and (26.18).

When k£ < p and g < k, the Apjy(-) expression (in the limit random variable in the
statement of Theorem 16.6) equals zero because hg’k_q(Zh,p_q, h;(lg/zgh) isa (k—q) x
(p + 1 — g) matrix, which has fewer rows than columns when k£ < p + 1.

The convergence in Theorem 16.6 holds for a subsequence {w, : n > 1} of {n} by the

same proof as given above with » replaced by w;,. d

ProoFr oF LEMMA 26.1. The proof of Lemma 26.1 is the same as the proof of Lemma 17.1
in Section 17 in the SM to AG1, but with p replaced by p + 1 (so p + 1 is always at least
two), with 7y 1), := 0, with kg,  := lim 7,4 1)F, /7pF, =0 (using 0/0 := 0), and with Dy,
U,, By, R Rjn» Any Dp, Un, hs1, Yn, By, 2, and B, ,_ o replaced by DJr U+ B,k AJr D,

Kjn?
Ut hi, Y, BJr <>,and BJr ro,respectlvely, where
1

81’ p+1—
;IJr_ ;l\;_n Ez_n o B+/U+/[/J\+ —1 ﬁJr —1U+B+_I 26.19
n = ;1\—&—/ ;1\+ _(n)(n)(n) (n) n Pn p+1s (26.19)
2n 3n

where an € RITXTT, :4\;”" e R X(pH1=r)) AJr € RPHI=x(p+1=r7) and r} is defined as in
the proof of Lemma 17.1 in the SM to AG1. Note that the quantities Ay, for ¢ = 1,2, 3,
which depend on A, (see (17.2) in the SM to AG1), differ between the two proofs (be-
cause A, differs from Zj). Similarly, the quantities g, (defined in (17.8) in the SM to
AG1), Egn(K) for ¢ =1,2,3 (defined in (17.9) in the SM to AG1), and ijn (defined in
(17.12) in the SM to AG1) differ between the two proofs (because the quantities on which
they depend differ between the two proofs).

The following quantities are the same in both proofs: {7z, : j < p}, q, {hej: ] <
p—1}, G, {rj: j < Gp}, {r 1 < Gyl h6 o Wn, W,, h71, C,, and hz. Note that the
first p singular values of W,D,U, (i.e., {ijn : j < p}) and the first p singular val-

ues of W, D;fU, are the same. This holds because g, = K;/ ?, where Kj, 1s the jth

eigenvalue of W,,D,,U, U, D, W!, W,D;*U;* = W, (D,, 0"\ U} = (W,,D,U,, 0X), and hence,
WD+U+U+’D+’W’ W.D,U,U, D, W,.
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The second equality in (17.3) in the SM to AG1, which states that W,,D,U,B;,, = C,, Yy,
is a key equality in the proof of Lemma 17.1 in the SM to AG1. The analogue in the proof
of the current lemma is

U,B, 0!
WuD;f U, B = (WyDy, 0F) {0{;; ) ]
= (WuDnUpnBy, 0F) = (C, Yy, 05) = C, Y. (26.20)

Hence, this part of the proof goes through when D,,, U,, By, and Y, are replaced by D;",
U, Bjf,and Y,}, respectively. O

27. PROOFS OF THE ASYMPTOTIC SIZE RESULTS

In this section, we prove Theorem 16.1, stated in Section 16.

Theorem 16.1 is proved first for the CQLR and CQLRp tests and CSs. For these test
results, we actually prove a more general result that applies to a CQLR test statistic that
is defined as the CQLR test statistic is defined in Section 5, but with the weight matrices
(_(2_1/ 2 LY 2) replaced by any matrices (Wn, Un) that satisfy Assumption WU for some
parameter space A, C Awy (stated in Section 16.5). Then we show that Assumption WU
holds for the parameter spaces Awy and Awy, p for the weight matrices employed by the
CQLR and CQLRp tests, respectively, defined in Sections 5 and 15. These results combine
to establish the CQLR and CQLRp test results of Theorem 16.1. The CQLR and CQLRp CS
results of Theorem 16.1 are proved analogously to those for the tests; see the Comment
to Proposition 16.3 for details.

In Section 27.6, we prove Theorem 16.1 for the AR test and CS.

27.1 Statement of results

A general QLRyyy; test statistic for testing Hy : 6 = 6 is defined in (16.3) as
QLRwy,, == ARy — Amin(nOwu.n), where

QWU,n = (Wnb\nﬁna \Q 1/2§n) (I’?nb\nﬁn ﬁ ) (27.1)

o~

“2
AR, is defined in (18), and the dependence of QLR,,, QWU,n; W,, Dy, Uy, 2, and 3, gn on
0o is suppressed for notational simplicity.
The general CQLRyy test rejects the null hypothesis if

QLRWU,n > Ck,p(nl/zﬁ/nﬁnﬁn> 1- 01), (27.2)

where ¢y p(D,1—a)is defined just below (24).
The correct asymptotic size of the general CQLR test is established using the follow-
ing theorem.

THEOREM 27.1. Suppose Assumption WU (defined in Section 16.5) holds for some
nonempty parameter space A, C Awy. Then the asymptotic null rejection probabilities
of the nominal size « CQLRyyy test based on (an, an) equal o under all subsequences
{w,} and all sequences (A, p :n> 1} with Ay, j € As.
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CoMMENT. (i) Theorem 27.1 and Proposition 16.3 imply that any nominal size « CQLR
test based on matrices (Wn, ﬁn) that satisfy Assumption WU for some parameter space
A, has correct asymptotic size « and is asymptotically similar (in a uniform sense) for
the parameter space A,.

(i) In Lemma 27.4 below, we show that the choice of matrices (Wn, 17,1) for the
CQLR and CQLRp tests (defined in Sections 5 and 15, resp.) satisfy Assumption WU
for the parameter spaces Awy and Awy, p (defined in (16.17)), respectively. In addition,
Lemma 27.4 shows that F ¢ Fwy and Fp C Fwy when §; and M; that appear in the def-
inition of Fyy are sufficiently small and large, respectively.%6 In consequence, the CQLR
and CQLRp tests have correct asymptotic size « and are asymptotically similar (in a uni-
form sense) for the parameter spaces F and Fp , respectively, as stated in Theorem 16.1.

The proof of Theorem 27.1 uses Proposition 16.5 and Theorem 16.6, as well as the
following lemmas.

Let {D¢ : n > 1} be a sequence of constant (i.e., nonrandom) k x p matrices. Here,
we determine the limit as n — oo of ¢; ,(Dy;, 1 — @) under certain assumptions on the
singular values of D¢.

LEMMA 27.2. Suppose {Ds, : n > 1} is a sequence of constant (i.e., nonrandom) k x p
matrices with singular values {T]?n > 0:j < min{k, p}} for n > 1 that satisfy (i) {ch.n >0:
j < min{k, p}} are nonincreasing in j for n > 1, (ii) TJC‘n — oo for j < q for some 0 < g <
min{k, p} and (iii) ch.n —>7¢ _<ooforj=q+1,...,min{k, p}. Then

Jjoo

ke, p(Dys 1 —a) = ¢ pg(t5, 1 — ),  where

o / i k, —
TS 1= (T(Cq_H) s Tingk, p) ) € Rmintk-pi=q,
Diag{rS h— _ ;
Y(rS) = <0<k—p){x<f£°—}q)) e R0 ifk > p,

Y(1s,) == (Diag{rS ), O(k_q)x(p_k)) e Rk=0x(r=d ifk < p,
¢k, p.q(75%> 1 — ) denotes the 1 — a quantile of

ACLRy  4(75) i= Z'Z — nin (Y (7%), 22) (Y (7%.), Z2)),  and

Z = <§1>~N(0k,1k) forZyeRY and Z,eRF 1.
2

CoMMENT. (i) The matrix Y'(75,) is the diagonal matrix containing the min{k, p} — g
finite limiting eigenvalues of D¢,. Note that Y'(75,) has only & — g rows, not & rows.

(i) If ¢ = p (which requires that k > p), then Y(r$,) has no columns,
ACLRy ,(75) = Z1 Zy ~ x5, and ¢ p (75, 1 — @) equals the 1 — « quantile of the x7,
distribution.

66Note that the set of distributions Fwy depends on the definitions of (Wr, Ur) (see (16.12)), and

(Wr, Ur) are defined differently for the QLR and QLR, statistics; see (16.6)-(16.8) and (16.9)—(16.11), re-
spectively. Hence, the set of distributions Fwy differs for the CQLR and CQLR, tests.
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(iii) If g = k (which requires that £ < p), then Y'(7$,) and Z, have no rows, the Apin(+)
expression in ACLRy ,, ,(75,) disappears, ACLRy , 4(75,) = Z'Z ~ Xi, and ¢ p 4(75, 1
a) is the 1 — a quantile of the 7 distribution.

(iv) If kK < p and g < k, then (Y (7$,), Z;) has fewer rows (k — ¢) than columns (p —
g+1) and, hence, the Ay (-) expression in ACLRy ,, ,(75,) equals zero, ACLRy j, 4(75,) =
Z'Z~ Xi, and ¢g p 4(75,, 1 — a) is the 1 — « quantile of the Xi distribution.

(v) The distribution function (df) of ACLRy , ,(7S,) is shown in Lemma 27.3 below
to be continuous and strictly increasing at its 1 — « quantile for all possible (k, p, g, 75,)
values, which is required in the proof of Lemma 27.2.

The following lemma proves that the df of ACLRy , ,(75,), defined in Lemma 27.2,
is continuous and strictly increasing at its 1 — @ quantile. This is a key lemma for show-
ing that the CQLR and CQLRp tests have correct asymptotic size and are asymptotically
similar.

LEmma 27.3. Let 5, and Y (75,) be defined as in Lemma 27.2. For all admissible inte-
gers (k, p,q) (i.e, k>1, p>1, and 0 < g < min{k, p}) and all min{k, p} — q (> 0) vec-
tors 75, with nonnegative elements in nonincreasing order, the df of ACLRy , ,(75,) =
Z'Z — Mnin((Y(7S), Z2)' (Y (7)), Z»)) is continuous and strictly increasing at its 1 — «
quantile ci p 4(75,,1 — a) for all a € (0, 1), where Z := (Z}, Z})' ~ N (0%, Iy) for Zy € R1
and Z, € Rk—4.

The next lemma verifies Assumption WU for the choices of (Wn, 17,1) that are used

to construct the CQLR and CQLRp tests. Part (a) of the lemma shows that Fwy, when
defined for (Wn, U ) as in the CQLR test, contains F for suitable choices of the constants
61 and M; that appear in the definition of Fwy. Part (b) of the lemma shows that the
parameter space Fwy, when defined for (Wn, (7,,) as in the CQLRp test, contains the
parameter space Fp for suitable constants 6; and M;.
LEMMA 27.4. (a) Suppose W,, Uy) = (2, 12 1/2) where 0, (= 0,(6y)) and L, (=
Ln(00)) are defined in (8) and (23) Then (1) Assumptlon WU holds for the parame-
ter space Awy with (Wz,l, U2n) (_Qn, (Qn,Rn)) for Rn defined in (19), Wi (W,) = _1/2
for Wa € R&5, U (Uap) = (60, 1p)(3°(QF, Rp)) ™! (60, Ip))'/? for Uar = (2F, Rp), =
lim I/VZFwn = limQFw, and hg = lim U2Fwn = lil‘n(()FWn, RFwn)’ where _QF = EFg,'g;, RF
is defined in (16.7), 3(QFp, RF) is defined in (16.8), and 3°(Qp, Rr) is defined given
3(QF, RF) by (22), and (ii) F = Fwu for 81 sufficiently small and M, sufficiently large
in the definition of Fwu, where F is defined in (16.1) and Fwy is defined in (16.12).

(b) Suppose g,(e) =u;(0)Z;, as in (15.1), and (W,,, U ) = (.(2_1/2 1/2), where () (=
.Q (6p)) andL (=L n(60)) are defined in (8) and (15 6), respectwely Then (i) Assumptzon
WU holds for the pammeter space Awy, p with (Wz,z, U2,1) = (Qn, (.(2,,, R ) forR defined
in (15.5), Wi(W2) = Wy /2 for Wy € RE*K, Uy (Uar) = (80, 1) (3 (Qr, Rp)) ™ (60, 1))
fOT UZF = (_QF,RF) h7 = lim I/VZF = hm.QFw", and hg = lim Uzpwn = hm(QFwn’RFwn)’

wn

where Qf := Erg;g, ZF =3(0F, RF) is defined in (16.11), gs(.(lp, ﬁF) is defined given
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3(0F, ﬁF) by (22), andﬁp is defined in (16.10), and (ii) Fp C Fwu for 61 sufficiently small
and M sufficiently large in the definition of Fwuy, where Fp is defined in (16.1) and Fwy
is defined in (16.12).

CoMMENT. Theorem 27.1, Lemma 27.4, and Proposition 16.3 combine to prove the
CQLR and CQLRp test results of Theorem 16.1, which state that the CQLR and CQLRp
tests have correct asymptotic size and are asymptotically similar (in a uniform sense) for
the parameter spaces F and Fp, respectively. As stated at the beginning of this section,
the proofs of the CQLR and CQLRp CS results of Theorem 16.1 are analogous to those
for the tests; see the Comment to Proposition 16.3, and hence, are not stated explicitly.

27.2 Proof of Theorem 27.1

Theorem 27.1 is stated in Section 27.1.
For notational simplicity, the proof below is given for the sequence {n}, rather than a
subsequence {wy : n > 1}. The same proof holds for any subsequence {w,, : n > 1}.

Proor orF THEOREM 27.1. Let

— Z ns s g, ~1/2—
Zy= (J‘l) = (h/ 34 Z"g’m_ = Iyhs 78, ~ N (0%, Ii), (27.3)
3,k—q"%5,g 8h

where Z;; € R and Z;, € R¥~7 and the distributional result holds because g;, ~
N (0%, hs ¢) (by (16.21)) and hyhs = 1im C},C, = I. Note that Zj, and (Dj,, A;) are inde-

pendent because g;, and (Dy,, Zh) are independent (by Lemma 16.4(c)).
By Theorem 16.6,

QLRWU,n —d glhhsilggh - )‘min((Kh,p—qa hg’lg/zgh)/h&k—qh%,k_q(Kh,p—q’ h;’}g/zgh))
= 7;17;, - )\min((hg’k_qxh,p_q, 7h2)/(h’3,k_qZh,p_q, 7;,2)) =: QLRh, (27.4)

where the equality uses h3h} = lim C,C;, = I;. When g = p, the term Kh, p—q does not
appear and QLR), := Z, Zj, — Z)pZnr = Zy Zp1 .-

Let {7, : j < min{k, p}} denote the min(k, p} singular values of n'/2W,D,, U, in non-
increasing order. They equal the vector of square roots of the first min{k, p} eigenvalues

P i D U

of nU, D, W, W,,D, U, in nonincreasing order. Define

= (i o) € RMMEP), where 075

o~

Tn = (/7'\1na ceey ?qn)/ €R? and ?[Z]n = (?(qul)m ceey ?min{k,p}n)/ € len{k,p}—q.

By Proposition 16.5(a) and (b), 7, — , oo for j < ¢ (or, equivalently Diag_l{’ﬂl]n} -
09%9) and

T2In —>d T[2)h> (27.6)

where 7, = ’K‘]léz for j < q and 7pyy;, is the vector of square roots of the first min{k, p} — g

. - - . . .
eigenvalues of A, , .13 x_oh} kgD p—q € RP~9*(P=@ in nonincreasing order. (When



Supplementary Material Identification and singularity robust inference 71

g = min{k, p}, no vector 73, appears.) By an almost sure representation argument,
for example, see Pollard (1990, Theorem 9.4, p. 45), there exists a probability space,

say (2, 70, P%), and random variables (QLRY, 7Y QLRh, (o) defined on it such that
(QLRY, 7Y has the same distribution as (QLRwy , 7)) forall n > 1, (QLRh, [2]h)/ has

n’n

the same distribution as (QLRh, T h) ,and

QLR QLR,
Diag ' {7} | = | 04 | as., 27.7)
=20 =0
[21n T21h

where 7 T[ e Rmintk.p}=q et

~ Diag{7"} o Diag(7,}
0. kx . kx :
Y, = <O(k—p)xnp eRP and Y, := ok-Pxp eR**P ifk>p and

—~ (27.8)
Y, := (Diag{7)},0"*P~0)) e RF*P and
Y, := (Diag{7,}, OkX(P*k)) e RF*P ifk < p.

The distributions of ?O and Y, are the same. The matrix ?0 has singular values given
by the vector 70 T, (= (7-1 P ,"?nm{ k. pin ) ) whose first g elements all diverge to 1nﬁn1ty a.s.

and whose last min{k, p} — ¢ elements written as the subvector 7" [, Converge to 7

[2]n [21h
a.s. Hence, for some set C € FY with P'(w € C) = 1, we have 7", 9,(@) — oo for j < g and
(@) = 7- oy (@), where Tjn(w), [2]n(“’)' T[Z]h(a)), and Y,?(w) denote the realizations

of the random quantities ?On, T and Y, respectively, when o occurs. Thus, using

21’ T[z]h'
Lemma 27.2 with D¢ = Y%(w) and 7, = T([)z]h(a)), we have

ek, p(Y(@), 1= @) > cx p g (T (@), 1—a) forallw e Cwith PP(weC)=1, (27.9)

where ¢, 4(-, 1 — ) is defined in Lemma 27.2. When g = min{k, p}, no vector F?z]h(w)
appears and by Comments (ii) and (iii) to Lemma 27.2 ¢, q(??z] p(@), 1 —a) equals the
1 — @ quantile of the Xmm{ k.p) distribution.

Almost sure convergence implies convergence in distribution, so (27.7) and (27.9)
also hold (jointly) with convergence in distribution in place of convergence a.s. These
convergence in distribution results, coupled with the equality of the distributions of

(QLRY, Y?) and (QLRyy_,, Y») for all n > 1 and of (QLR), 7,) and (QLR,, 7,,)', yield
the following convergence result:

QLRwy QLRwy, QLR
Ll W ) <o) erio
k,p(l/l w.,D,U,, 0() Ck p( ns a) Ck,p,q(T[Z]/b a)

where the first equality holds using Lemma 16.2.
Equation (27.10) and the continuous mapping theorem give

P(QLRyy., > ¢k, p(n'/*WyDpUp, 1 — a)) — P(QLR;, > ¢k, p.o(Ti2is 1 — @) (27.11)
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provided P(mh = Ck,p,q(Ti21n> 1 — @)) = 0. The latter holds because P(ﬁh =
k, p,q(T21n> 1 — @)|Dy) = 0 a.s. In turn, the latter holds because, conditional on Dy, the
df of QLR is continuous at its 1 — & quantile (by Lemma 27.3, where QLR,, conditional
on D, and ACLRy, p,q(fgo), which appears in Lemma 27.3, have the same structure with
the former being based on hg’ e th, p—q» Which is nonrandom conditional on D, and
the latter being based on Y (7<), which is nonrandom, and the former only depends on
h, k_th, p—q through its singular values (see (24.3)) and ¢, 4(Tj214, 1 — @)) is a constant

(because 7z);, is random only through Dy).
By the same argument as in the proof of Lemma 16.2,

K, pq(Trag, 1 — ) = ck,p,q(hg,quxh,p_q, 1-a), (27.12)

where (with some abuse of notation) ¢, (A k_th, p—q» 1 — ) denotes the 1 — « quan-
tile of Z'Z — )\mm((hg’k_qﬁh’p_q, zz)/(hg,k_qxh,,,_q, Z»)) for Z as in Lemma 27.2, be-
cause 7py, € RP~ are the singular values of 4y Ay g € RE~9*P=9 and Y ()
(which appears in ACLR , (T211) = Z'Z — Amin (Y (T210), Z2) (Y (T210)5 £2))) is the
(k — q) x (p — q) matrix with 7[3;;, on the main diagonal and zeros elsewhere.

Thus, we have

P(QLRh > Ck,p,q(?[2]h7 1 — C!))
=P(QLR;, > Ck,p,q(hé,k—qxh,p—w 1-a))
= EP(QLR), > Ck,p,q(hé,k—qxh,p—q’ 1—a)[Ap, p—q)

where the second equality holds by the law of iterated expectations and the third equal-

ity holds because, conditional on Ay, g, ¢k, p,q(1s _,Ap, p-q, 1 — @) is the 1 — a quantile

of QLR,, (by the definitions of Ck,p,q(+» 1 — @) in Lemma 27.2 and QLR;, in (27.4)) and the
df of QLR;, is continuous at its 1 — @ quantile (see the explanation following (27.11)). O

27.3 Proofof Lemma 27.2

Lemma 27.2 is stated in Section 27.1.
The proof of Lemma 27.2 uses the following two lemmas. Let {T]C-n : j <min{k, p}} be
the singular values of D¢, as in Lemma 27.2. Define

Diag{7{ ,..., 7¢ .
Ye :=( f)(;’ip)xp ””}> eR**P ifk>p and

(27.14)
Y: .= (Diag{7{,,...,7¢,} ka(p*k)) e RF*Pifk < p.

LemmMma 27.5. Suppose the scalar constants {ch.n > 0:j < min{k, p}} for n > 1 satisfy
() {T]C'n > 0:j <min{k, p}} are nonincreasing in j for n > 1, (ii) ch.n — oo for j < q for some

1 < g < min{k, p}, (iii) T]C-n — 7-]‘.'00 <oo forj=gq+1,...,min{k, p}, and (iv) when p > 2,
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T(Cj+l)n/7;~n — hg’j for some hg,j € [0,1] for all j < min{k, p} — 1. Let Y be defined as in
(27.14). Let {K].Zn :j < p+1} denote the p + 1 eigenvalues of (Y, Z)' (Y, Z), ordered to be
nonincreasing in j, where Z ~ N (0K, I). Then,

(@) K]-Zn — oo Vj < q for all realizations of Z and

(b) KjZn =o((1§ )Vt <gandVj=q+1,..., p+1 forall realizations of Z.

CoMMENT. Lemma 27.5 only applies when ¢ > 1, whereas Lemma 27.2 applies when
q=0.

LEMMA 27.6. Let {F}(x):n> 1} and F*(x) bedf’son R and let a € (0, 1) be given. Suppose
@) F;i(x) — F*(x) for all continuity points x of F*(x) and (ii) F*(ge + &) > 1 — a for all
e > 0, where qo = inf{x : F*(x) > 1 — o} is the 1 — a quantile of F*(x). Then the 1 — «
quantile of F}(x), viz., g, :=inf{x : F(x) > 1 — a}, satisfies g, — goo.

CoMmMENT. Condition (ii) of Lemma 27.6 requires that F*(x) is increasing at its 1 — «
quantile.

PROOF OF LEMMA 27.2. By Lemma 16.2, ¢ ,(Dj, 1 — @) = cx (Y}, 1 — ), where Y is
defined in (27.14). Hence, it suffices to show that cx , (Y, 1 —a) = ¢, 4(75,1 — ). To
prove the latter, it suffices to show that for any subsequence {w;} of {n} there exists a
subsubsequence {uy} such that ¢ , (Y , 1 —a) = ¢k, p,q(75, 1 — @). When p > 2, given
{wy,}, we select a subsubsequence {u,} for which T(Cj+1)un/T]c'un — hg,]. for some constant
hg,j €[0,1] for all j =1,..., min{k, p} — 1 (where 0/0 := 0). We can select a subsubse-
quence with this property because every sequence of numbers in [0, 1] has a convergent
subsequence by the compactness of [0, 1].

For notational simplicity, when p > 2, we prove the full sequence result that

ke, p(Yi, 1 —a) = ¢k p¢(15,, 1 — ) under the assumption that
i1/ 5 — hG; forall j <min{k, p} —1 (27.15)

(as well as the other assumptions on the singular values stated in the theorem).%” The
same argument holds with » replaced by u,, below, which is the result that is needed
to complete the proof. When p = 1, we prove the full sequence result that ¢, (Y, 1 —
@) = Ck, p,q(T5, 1 — a) without the condition in (27.15) (which is meaningless in this
case because there is only one value T;Mn, namely 77, , for each n). In this case, too, the
same argument holds with » replaced by u, below, which is the result that is needed to
complete the proof. We treat the cases p > 2 and p = 1 simultaneously from here on.
First, we show that
CLRy , (YY) := Z'Z — hnin (S, Z) (Y, 2))
oo

— Z'Z — Anin((Y(7%), Z2) (Y (7). Z2)) := ACLRy. , 4(7%,) (27.16)

67The condition in (27.15) is required by Lemma 27.5, which is used in the proof of Lemma 27.2 below.
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for all realizations of Z. If g = 0, then (27.16) holds because Y;{ — Y (75,) (by the defini-
tion of Y in (27.14), the definition of Y'(7$,) in the statement of the Lemma 27.2, and
assumption (iii) of Lemma 27.2) and the minimum eigenvalue of a matrix is a continu-
ous function of the matrix (by Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37—

38)).

Now, we establish (27.16) when ¢ > 1. The (ordered) eigenvalues {KjZn cj<p+1}of

(Y$, Z2)(Yf, Z) are solutions to
0. 2) (Y52 Z) = lpa| =0 or
|05 (k)| =0, where
QS (k) = SE(YE, Z) (YE, Z)SS — k(SS)*  and

8¢ :=Diag{(75,) ..o, (75) L., 1
e R(p+Dx(p+1)

Define
. -1 ]
S,Chq = Dlag{(Tfn) Yoy (Tf]n) } € R7%1,
We have
C 4 C Il] c C 0q><(p+1—q)
(V5. 2)85 = | (%5 2) | yopiiLormg ) Shar (G- 2) |
p+l—q
= (Ik.g» Yo p—g» Z) € R+ where
1 k
Tea = (o<k—3>xq) € R,
09x(P=q)
Y, = Diag{7({, 1),s > Tpu} | e RF*P=9 ifk > p, and
0k—p)x(p=q)
09x k=) 09x(p=k)
ve = onioiy | € RFXPTDifk < p.
mp=q (Dlag{T(CqH)”, 7 L ok (Pl

By (27.17) and (27.19), we have

c _ Ifl Il/c,q(er,p—q’ Z)
Qn(K) - c / c / c
(Yn’p_q, Z) Iy 4 (Yn,p_q, Z) (Yn,p_q, Z)
[ (S¢ q)2 OqX(p+1—q)}
—K ’ .

-
o q)xq Ip+17q

(27.17)

(27.18)

(27.19)

(27.20)
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By the formula for the determinant of a partitioned inverse,

, Where

10500 =251 (0] |05 20)

06 (k) :=1Ig — K(S5,,)* € R*Y and

C )= (Y5 0 Z) (Y pgr Z) — Kl pi1—g (27.21)

21
- (Yli,pfq’ Z)/Ikvq(lq - K(Sz,q) ) I/;,q(Y;,P*Q’ Z)
e RWpH1=x(p+l-q)

Forj=q+1,..., p+ 1, wehave
¢ (kZ) =1 — k2 (S5 )" = 1q— Diag{kZ (7¢,) % .. k5 (15,) T} =1 +o(1) (27.22)

for all realizations of Z, where the last equality holds by Lemma 27.5 (which applies for
g > 1). This implies that |Q;,1(szn)| #0forj=qg+1,..., p+ 1for nlarge. Hence, for n
large,

0%, (k%) =0 forj=q+1,....,p+1. (27.23)

We write

09xk=q) Kex(k
Iy =g g, Ik k—q), Where Iy j_, = I € Rk* (k=) (27.24)
—-q

and Iy , is defined in (27.19).58
Forj=¢q+1,..., p+1,wehave

Z,Z(szn) = (er,pfq’ Z)/(er,pfq’ Z) - KjZnIP+1—q
= (Y5 p—gs 2) Tig (g + o) (Vs g Z)
= (Yr(t:,p—q’ Z)/Ik,k—qléc,qu(yri,p—q’ Z) +o(l) - KjZnIP+1*q

R Z
=My 1og— Kindpri—g (27.25)

where the first equality holds by (27.22) and the definition of QZ ,(k)in (27.21) and the
second equality holds because Iy = (Ix ¢, Ik, k—q) Uk, g Ik, k—q) = Lk, q1}, gt Iy k—q
and Yy p—g =0) by its definition in (27.19) and the condition (iii) of Lemma 27.2 on
{T]C.n j=q+1,...,min{k, p}} forn > 1.

Equations (27.23) and (27.25) imply that {KjZn j=q+1,...,p+1}arethe p+1—gq

eigenvalues of the matrix M¢ By the definition of Y} in (27.19) and the condi-

n,p+1—q° »P—q

68There is some abuse of notation here because Iy 4 does not equal Iy x_, evenif g equals k — q.
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tions of the lemma on {T]C.n :j=q+1,...,min{k, p}} for n > 1, we have
. 09%(P=a) ' / 09%(P=q)
Mn,p+17q_) Y(’Tgo) ,Z Ik,k—qlk,qu Y(’Tgo) ,Z
= (Y(r%), 22) (Y(7%.), Z2) (27.26)

for all realizations of Z, where the equality uses the definitions of Y(7¢,) and Z; in the
statement of the lemma.

The vector of (ordered) eigenvalues of a matrix is a continuous function of the
matrix (by Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37-38)). Hence, by
(27.26), the eigenvalues {K j=q+1,...,p+ 1} of MC _q converge (for all re-
alizations of Z) to the vector of elgenvalues of (Y(75,), Z2) (Y(T ), Zz) In conse-
quence, the smallest eigenvalue K (of both My and (Y$, Z2)(Yf, Z)) satis-
fies

(p+)n n,p+1—q

Amin (Y5> 2) (Vi 2)) = w00 = Amin (Y (75), 22) (Y (75)- 22)). (27.27)

where the equality holds by the definition of K( (pom in (27.17). This establishes (27.16).
Now we use (27.16) to establish that ¢ , (Y, 1—a) — ci, p,q(75,, 1 —a), which proves
the lemma. Let

Fi_p.g.r, () = P(ACLRy (7<) < x). (27.28)

By (27.16), for any x € R that is a continuity point of Fy , , -< (x), we have
1(CLRg, ,(Y¢) < x) — 1(ACLRy , 4(75,) <x) a.s. (27.29)
Equation (27.29) and the bounded convergence theorem give
P(CLRy (YY) <x) = P(ACLRy , 4(75) < X) = Fi_p 4.2, (X). (27.30)

Now Lemma 27.6 gives the desired result, because (27.30) verifies assumption (i) of
Lemma 27.6 and the df of ACLRy j 4(75,) is strictly increasing at its 1 — a quantile (by
Lemma 27.3), which verifies assumption (ii) of Lemma 27.6. O

ProoFr oF LEMMA 27.5. The proof is similar to the proof of Lemma 17.1 given in Sec-
tion 17 in the SM of AG1. But there are enough differences that we provide a proof.

By the definition of ¢ (> 1) in the statement of Lemma 27.5, hg g =0 if ¢ < min{k, p}.
If g =min{k, p}, then hg q is not defined in the statement of Lemma 27.5 and we define it
here to equal zero. If h" > 0, then {7- :n>1}and {T(]+])n n > 1} are of the same order
of magnitude, that is, O < lim 7¢ i+1n /¢ in = 1. We group the first g values of 7¢ Tin into groups
that have the same order of magnitude within each group. Let G (€ {1, . ..,q}) denote
the number of groups. Note that G equals the number of values in {Ag ;, ..., hg 4 that
equal zero. Let ry and ry denote the indices of the first and last values in the gth group,
respectively, forg=1,..., G. Thus, r; = 1, rg = rg11 — 1, where by definition rg+1 = g +1,
and r;; = gq. By definition, the 7]‘.'” values in the gth group, which have the gth largest
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order ofmagnitude are {TC n>1},..., {ngn :n > 1}. By construction, hg’j >0forallje
{rg,....,rg—1}forg=1,..., G. (The reason is: if hg,j is equal to zero for some j <rg — 1,
then {77, :n>1}is of srnaller order of magnitude than {ngn :n > 1}, which contradicts
the definition of rg.) Also by construction, lim ch., o/ ch.n =0 for any (j, j') in groups (g, g'),
respectively, with g < g’.

The (ordered) eigenvalues {K jn < p+1Yof(YE, Z)' (YS, Z) are solutions to the de-
terminantal equation (Y, Z) (Y, Z) — kl 11| = 0. Equlvalently, they are solutions to

(76 ) (S, Z2) (YE, Z) = (76,) Kl pyt| = 0. (27.31)

Thus, {(Tf]n)_zszn :j < p+1}solve

|(7) 2 (YE, Z2) (YE, Z) = ikl it | = 0, (27.32)
Let
hccc:—Dlag{l he G he o, l_[h € RIT*M, (27.33)

When k£ > p, we have

(75n)” (V5. 2)

rin
e e +o(l) 07 x(g=rf) 0 x(p—a) 0(1/75]’1)4“

_ 0(61 rxry O(szn/q.fln)(q*’f)x(q*’f) 0q—)x(p—q) 0(1/7. )(‘I*’T)XI
oP—Dxrf 0P~ x(g=rf) 0(1/Tfln)(P*q)X(p*q) (1/Tc (p—q)x1
0k=p)xr{ 0k=p)x(q—rf) 0k—p)x(p—q) o(1 /Tfm)(k‘p)“

_>[ e.re i) ] (27.34)
ok—rDxrf  gk=rp)x(p+1-rf) |7 :

where O(d,,)*** denotes a diagonal s x s matrix whose elements are O(d,,) for some scalar
constants {d, : n > 1} O(d y$*1 denotes a s vector whose elements are O(d,), the equal-
ity uses Tjn/Trln l(T(E_H)n/’Tln) = ]_[] ! hC ,+o()forj= ., 1{ (which holds by
the definition of h°,z) and 7}, /77, = O(Trzn/Trln) forj=r,....q (because (T i=4q}
are nonincreasing in j), and the convergence uses 7y, — oo (by assumption (ii) of the
lemma since r; < ¢) and 77, /77, — 0 (by the definition of ;).

When k < p, (27.34) holds but with the rows dimensions of the submatrices in the
second line changed by replacing p — g by k — g and k — p by p — k four times each.

Equation (27.34) yields

cc \2 rEx (p+1—r¢
(¢ )_Z(Yﬁ,z)’(Y;,Z)a[ (h@rf,) . o . 1 } (27.35)

nn O(p+1fri)xri O(p+lfri)x(p+17ri)

The vector of eigenvalues of a matrix is a continuous function of the matrix (by
Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37-38)). Hence, by (27.32) and
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(27.35), the first r{ eigenvalues of (Tfln)_z(Y,f, Z)(Yf, Z), that is, {(frfln)‘zszn cj=rih
satisfy

ri—1
=) -2
((75,n) Klzn,...,(Tfln) K,Zf )~ (1 he1> hg 1P l_[ hs @> and so (27.36)

Z : c
Ky, —~oo Vj=1,...,r

because ’Trln — oo (since r; < q) and hg , > O forall £ € {1,...,r{ — 1} (as noted above).
By the same argument, the last p + 1 — r{ eigenvalues of (77, n)‘z(Y,f, Z)(Y§, Z), that s,
{6,072 Z cj=r{+1,..., p+1}, satisfy

(16,) kb0 Vi=r{+1,... p+1 (27.37)

nn

Next, the equality in (27.34) gives

(75a) (Y5, 2) (¥, 2)

(hg,crf) +o(1) orix@—rp o' x(P—a) O(I/Tf]n)’f“

I e e (e B e L Y I C b
olp—a)yxry olP—a)x(q—ry) o(1/(r ”n) )(P—q)X(p—q) (1/( rln) )(p—q)xl
01/ O/ (35,)") T o)) 0(1/(75,,)")""

(27.38)

Equation (27.38) holds when k£ > p and k£ < p (because the column dimensions of the
submatrices in the second line of (27.34) are the same when k > p and k < p).

Define I}, j, to be the (p 4+ 1) x (jo — ji) matrix that consists of the j; +1,..., >
columns of 7,1 for 0 < j; < j» < p + 1. We can write

Ie )
. +1
Ip+1 = (IO,rlc, Irf,p+1)a where IO,rlc = (0(p+1—1rf)><rlc> e RPYDx and

(27.39)
0rf><(p+1—rlc) .
o= ( Loy, SR
1
In consequence, we have
(V5. 2) = (V5 2l (V5 D)l pi) and
(27.40)

-2
Qz = (Tfln) I(/),r]c(Yif’ Z)/(er’ Z)IrfaPJr] = O(szn/Tf]n),

where the last equality uses the expressions in the first row of the matrix on the rhs of
(27.38) and 0(1/7,1n) = 0(7-,2”/1-,1,,) (because 7-,2” — 00).
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; 2.7 .
Asin (27.32), {(frfm) Ky J=Pp + 1} solve

0

[(76) (05, 2) (Y5, Z) = Kl pad|

(r50) "I}, (Vs 2) (Y, Z) 1o g — Kl

(77n) I; (V2 (V. D)oy
(750) T e (Vi 2) (Y, Z) s i

(Tfln)_z 1,p+1(YC z)(Yy, )I,c pr1 — Kl i1

= 1(750) Lo e (Y552 2) (Y5 Z) o = L]
2
< |(75) 1 re p+l(YC ) (s, Z) ¢, psr = Kl pa1rg
—0¢((1¢,)” Iévrlf(Y,f, Z) (Y5, Z)Io,pe — KI,]C)*Q;L (27.41)

where the third equality uses the standard formula for the determinant of a partitioned
matrix, the definition of ¢¢ in (27.40), and the result given in (27.42) below that the ma-
trix which is inverted that appears in the last line of (27.41) is nonsingular for « equal to
any solution (Tfln)‘ZKjZn to the first equality in (27.41) for j=r{ +1,..., p+ 1.

Now we show that, for j =r{ +1,..., p+1, G 2K - cannot solve the determinan-

tal equation |(7¢ 21’ C( < 2)(YS, D), o= Kl e | = 0 for n sufficiently large, where

rn
this determinant is the ﬁrst multiplicand on the rhs of (27.41). Hence, {(Trln) 2y ]n =
r{ +1,..., p+ 1} must solve the determinantal equation based on the second multipli-
cand on the rhs of (27.41) for n sufficiently large. For j=r{ +1,..., p+ 1, we have

(760) T e (V5 2) (Vi Z) o5 — (76,) el = () + 0 (D), (27.42)

rnn nn

where the equality holds by (27.35) and (27.37). Equation (27.42) and )\min((hCC c) )>0
(which follows from the definition of h“ < in (27.33) and the fact that hc > 0 for all
1

jefl,. — 1}) establish the desired result.
Forj = rlc+1, ..., p+1, plugging (7-,1”) —2xZ

Ko into the second multiplicand on the rhs
of (27.41) and using (27.40) and (27.42) gives

_2 2 _
0= |(7'fln) ’1 il (YS, ) (Y, Z)I,]c,p_H +0((szn/rfln) )— (Tfln) K Ip+1 e c|. (27.43)
Thus, {(Tfm)_zszn j=r{+1,..., p+1} solve

0= |(Tf1ﬂ) I; p+1(YC Z)/(er’ Z)Irf,P‘H + 0(<szn/7f1ﬂ)2> - KIP+1—’f|' (27.44)

Or equivalently, multiplying through by (7,,,/7¢,,) 72, {(75,,)~ 2KjZn j=ri+ 1., p+ 1)
solve

0=(75) L i (Vs 2) (Y Z) g pit +0(1) = kl i1 e (27.45)
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by the same argument as in (27.31) and (27.32).

Now, we repeat the argument from (27.32) to (27.45) with the expression in (27.45)
replacing that in (27.32) and with IP“*’f’ T,Czn, wa rs —r{, p+1—r5 and hgf’rg =
Diag(L #1011 -0 1]

Tow 'y p+1—rf, and hg,crf’
placed by the matrices Irf,rf and 1,5, p+1- This argument gives

rg—l
Z:rlc+1
respectively. In addition, Io,rlc and Irf,p+1 in (27.41) are re-

C_,.C c_.cy .
hg ) € R2—D>*(3=r1) in place of Ipits Tom

Kh o0 Vj=ry,...,r5 and (rS,) kh=o(l) Vi=ri+1,...,p+1. (27.46)

jn rn jn =
Repeating the argument G — 2 more times yields

zZ . c
Kiy — 00 Vi=1,...,r; and

5 (27.47)
(7¢,) k%2 =o(1) Vi=rg+1,...,p+1,Vg=1,...,G.

rgn jn =

Note that “repeating the argument G — 2 more times” is justified by an induction argu-
ment that is analogous to that given in the proof of Lemma 17.1 given in Section 17 in
the SM of AG1.

Because rJC = g, the first result in (27.47) proves part (a) of the lemma.

The second result in (27.47) with g = G implies: forall j=¢g¢+1,..., p+1,

)
(76,,) Kh=o(1) (27.48)

because r, = q. Either rg =rg; = q or rg < rg; = q. In the former case, (Tf]n)_szZn =o(1)
forj=qg+1,..., p+1by(27.47). In the latter case, we have

C

r 7€ -1
lim =" = lim Tf;’” =[] #,; >0 (27.49)
rgn rgn

j=r

where the inequality holds because hg,j >0 forall j € {rG,...,r; — 1}, as noted at the
beginning of the proof. Hence, in this case too, (Tgn)*2KjZn =ol)forj=qg+1,...,p+
1 by (27.48) and (27.49). Because T;n > Tgn for all j < g, this establishes part (b) of the
lemma. O

PRrROOF OF LEMMA 27.6. For ¢ > 0, such that g £ ¢ are continuity points of F*(x), we
have

Fi(goo— &) > F*(qoo —€) <1 —a and

(27.50)

Fi(gqo+€) = F'(goo+&)>1—a
by assumptions (i) and (ii) of the lemma and F*(g« — €) < 1 — a by the definition of
gs- The first line of (27.50) implies that g, > g, — ¢ for all n large. (If not, there exists
an infinite subsequence {w,} of {n} for which ¢, < geoc —eforallrn>1and 1 — a <
Fy, (qu,) < Fy (goo — &) > F*(gec — &) < 1 — a, which is a contradiction). The second
line of (27.50) implies that ¢, < g + ¢ for all n large. There exists a sequence {g; > 0:
k > 1} for which &, — 0 and g~ £ ¢ are continuity points of F*(x) for all kK > 1. Hence,
qn = Goo- O
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27.4 Proofof Lemma 27.3

Lemma 27.3 is stated in Section 27.1.

Proor oF LEMMA 27.3. We prove the lemma by proving it separately for four cases:
) g=>1, ({) k£ < p, (i) Tfnin{k ploo = 0, where Tgﬂin{k Dloo denotes the min{k, p}th (and
hence, last and smallest) element of 75, and (iv) g =0, k > p, and fr;’m > (. First, sup-

pose g > 1. Then

ACLRy , 4(7%) = Z'Z — hnin (Y (%), Z2) (Y (7%, Z2))
= Z\Z1+ Z5Zs — i (Y (%), 22) (Y (7S.), Z2))  (27.51)

and ACLRy , ,(75,) is the convolution of a Xfl distribution (since Z]Z; ~ Xfl) and an-

other distribution. Consider the distribution of X + Y, where X is a random variable
with an absolutely continuous distribution and X and Y are independent. Let B be a
(measurable) subset of R with Lebesgue measure zero. Then

P(X+YeB)=/P(X+yeB|Y=y)dPy(y):/P(XeB—y)dPy(y)=0, (27.52)

where Py denotes the distribution of Y, the first equality holds by the law of iterated
expectations, the second equality holds by the independence of X and Y, and the last
equality holds because X is absolutely continuous and the Lebesgue measure of B — y
equals zero. Applying (27.52) to (27.51) with X = Z/ Z;, we conclude that ACLRy p, ,(75,)
is absolutely continuous, and hence, its df is continuous at its 1 — « quantile for all « €
(0, 1).

Next, we consider the df of X + Y, where X has support R; and X and Y are inde-
pendent. Let ¢ denote the 1 — « quantile of X + Y for a« € (0, 1), and let cy denote the
1 — a quantile of Y. Since X >0 a.s., cy < c¢. Hence, forall ¢ > 0,

P(Y<c+e)P(Y<cy+e)>1—a>0. (27.53)

For ¢ > 0, we have
P(X+Ye€lc,c+el) =/P(X+ye [c,c+€llY =y)dPy(y)

= /P(X €le—y,c—y+el)dPy(y) >0, (27.54)

where the first equality holds by the law of iterated expectations, the second equality
holds by the independence of X and Y, and the inequality holds because P(X € [c —
y,c—y+e])>0forall y <c+ e (because the supportof X is Ry)and P(Y <c+¢) >0
by (27.53). Equation (27.54) implies that the df of X + Y is strictly increasing at its 1 — «
quantile.

For the case when ¢ > 1, we apply the result of the previous paragraph with
ACLRy p 4(15) = X + Y and Z]Z; = X. This implies that the df of ACLRy , ,(75) is
strictly increasing at its 1 — « quantile when g > 1.
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Second, suppose k < p. Then (Y(7<,), Z2) (Y(7S,), Z3) € RP~4tD*(p=4+D) js gsingu-
lar because (Y(7$,), Z,) € Rk=9*(p=a+D and k — g < p — q + 1. Hence, Anin((Y(7<,),
25) (Y (15, Z2)) =0, ACLRy , o(15) =Z'Z ~ X%’ ACLRy, p 4(75,) is absolutely continu-
ous, and the df of ACLRy ,, ,(75,) is continuous and strictly increasing at its 1 —a quantile
forall a € (0,1).

Third, suppose 70,4 1o = 0. Then, Amin((Y(75), Z2)'(Y(75), Z2)) = 0,
ACLRy  4(1$) = Z'Z ~ x%, ACLRy ,, 4(7$,) is absolutely continuous, and the df of
ACLRy, , 4(75,) is continuous and strictly increasing at its 1 — « quantile for all « € (0, 1).

Fourth, suppose ¢ =0, k > p, and Tfm > 0. In this case, Z; = Z (because g =0) and
Y(7¢,) = (D, 0P*k=P)y where D := Diag{r<,} is a pd diagonal p x p matrix (because
T > 0). Wewrite Z = (Z;, Z))' (~ N (0%, I)), where Z, € RP and Z;, € R*~P and Zj, has
a positive number of elements (because k > p). Let ACLR abbreviate ACLRy , ,(75,). In
the present case, we have

p z\{ p z
! a a

! 2
=, e)0e=1\&2) \Z,D Z'Z | \&

= sup  [(1—&)(Z,Zp + Z,Z,) — €\D*&1 —26:Z,D&1],  (27.55)
§=(£,86) 1€1=1

where &1 € R?, & € R, and & &1 + f% =1.
We define the following nonstochastic function:

ACLR(zg, w):=  sup  [(1-&)(w+2,24) — &|D*E —262,DE]  (27.56)
£=(£1,6)1€1=1

for z, € R? and w € R,. Note that ACLR = ACLR(Z,, Z; Z},).

We show below that the function ACLR(z,, w) is (i) nonnegative, (ii) strictly increas-
ing in w on Ry Vz, # 07, and (iii) continuous in (z,, w) on R? x R, and ACLR(z,, »)
satisfies (iv) limy,_ oo ACLR(z,4, ®) = 00. In consequence, Yz, # 07, ACLR(z,, w) has a
continuous, strictly-increasing inverse function in its second argument with domain
[ACLR(z,,0), 00) C R, which we denote by ACLR™!(z,, x).%° Using this, we have: for
all x > ACLR(z,,0) and z, # 07,

ACLR(z,, w) <x iff o <ACLR !(z,, x), (27.57)

where the condition x > ACLR(z,, 0) ensures that x is in the domain of ACLR’l(za, ).
Now, we show that for all xg € R and z, # 07,

lim P(ACLR (z4, Z} Zp) < x) = P(ACLR (24, Z} Zp) < Xo). (27.58)

X—>X(

89properties (i), (iii), and (iv) determine the domain of ACLR™(z,, x) for its second argument.
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To prove (27.58), first consider the case xy > ACLR(z,, 0) (= 0) and z, # 07. In this case,
we have

lim P(ACLR(zq, Z,Zp) <x) = lim P(Z,Zy < ACLR™"(z4, x))
0

X—>X0

= P(Z},Zy < ACLR™!(z4, x0)), (27.59)

where the first equality holds by (27.57) and the second equality holds by the continuity
of the df of the Xi—p random variable Z;} Zp, and the continuity of ACLR !(z,, x) at Xg.
Hence, (27.58) holds when xy > ACLR(z,, 0).

Next, consider the case xo < ACLR(z,4, 0) and z, # 0. We have

P(ACLR (24, Z} Zp) < x¢) < P(ACLR (24, Z}, Zy) < ACLR(z,, 0)) =0, (27.60)

where the equality holds because ACLR(z,, x) is increasing in x on Ry by property (ii)
and Z;Zb > 0 a.s. For x sufficiently close to xgy, x < ACLR(z,,0) and by the same ar-
gument as in (27.60), we obtain P(ACLR(z,, Z;,Zb) < x) = 0. Thus, (27.58) holds for
xo < ACLR(z,4, 0).

Finally, consider the case xg = ACLR(z,,0) and z, # 0P. In this case, (27.58) holds
for sequences of values x that strictly decline to x( by the same argument as for the first
case where xy > ACLR(z,4, 0). Next, consider a sequence that strictly increases to x,. We
have P(ACLR(z,, Z; Zp) < x) =0 Vx < x( by the same argument as given for the second
case where xy < ACLR(z,, 0). In addition, we have

P(ACLR (24, Z}, Zp) < x0) = P(ACLR (24, Z}, Zp) < ACLR (2, 0))
<P(Z,Z,<0)=0, (27.61)

where the inequality holds because ACLR(z,, x) is strictly increasing on for z, # 0” by
property (ii). This completes the proof of (27.58).
Using (27.58), we establish the continuity of the df of ACLR on R. For any x( € R, we
have
lim P(ACLR < x) = lim P(ACLR(Z,, Z,Z) < x)

X— X X—> X0

lim [ P(ACLR(z4, Z,Zp) < x)dFz,(z4)

X—>X(

/ P(ACLR(zq, Z}, Zp) < x0) dFz,(24)
— P(ACLR < x), (27.62)

where Fz, (-) denotes the df of Z,, the first and last equalities hold because ACLR =
ACLR(Z,, Z;Zb), the second equality uses the independence of Z, and Z,, and the
third equality holds by the bounded convergence theorem using (27.58) and P(Z, #
07) = 1. Equation (27.62) shows that the df of ACLR is continuous on R.

Next, we show that the df of ACLR is strictly increasing at all x > 0. Because the df
of ACLR is continuous on R and equals 0 for x < 0 (because ACLR > 0 by property (i)),



84 Andrews and Guggenberger Supplementary Material

the 1 — a quantile of ACLR is positive. Hence, the former property implies that the df of
ACLR is strictly increasing at its 1 — « quantile, as stated in the lemma.
For x > ACLR(z,4,0), 6 >0, and z, # 07, we have

P(ACLR(z4, Z,Zp) € [x, x + 8])
=P(Z;,Zy € [ACLR™!(z4, x), ACLR ! (24, x + 8)]) > 0, (27.63)

where the equality holds by (27.57) and the inequality holds because ACLR™!(z,, x) is
strictly increasing in x for x in [ACLR(z,, 0), co) when z, # 07 and Z;)Zb has a Xi_ »
distribution, which is absolutely continuous.

The function ACLR(z,,0) is continuous at all z, € R? (by property (iii)) and
ACLR(0%,0) =0 (by a simple calculation using (27.56)). In consequence, for any x > 0,
there exists a vector z; € R and a constant ¢ > 0 such that ACLR(z,,0) < x for all
z4 € B(z%, ), where B(z}, ¢) denotes a ball centered at z; with radius ¢ > 0. Using this,
we have: for any x > 0 and é > 0,

P(ACLR € [x, x + 8]) = [P(ACLR(za, Z,Zp) € [x, x + 81) dFz,(z4)
> / P(ACLR(z4, Z}, Zp) € [x, x + 81) dFz,(z4) > 0, (27.64)
B(z%,2)

where the equality uses the independence of Z, and Z, the first inequality holds be-
cause B(z}, ¢) C R and the integrand is nonnegative, and the second inequality holds
because P(Z, € B(z},)) > 0 (since Z, ~ N(07,1,) and B(z}, ¢) is a ball with posi-
tive radius) and the integrand is positive for z, € B(z}, ¢) by (27.63) using the fact that
x > ACLR(z,, 0) forall z, € B(z};, ) by the definition of B(z}, ¢). Equation (27.64) shows
that the df of ACLR is strictly increasing at all x > 0, and hence, at its 1 — « quantile which
is positive.

It remains to verify properties (i)—(iv) of the function ACLR(z,, w), which are stated
above. The function ACLR(z,, ») is seen to be nonnegative by replacing the supremum
in (27.56) by & = (07, 1)’. Hence, property (i) holds. The function ACLR(z,, w) can be
written as

(27.65)

D* D
ACLR(Za, w)=w-+ Z;Za — Amin ( “ )

/ /
z,D z,zg4+ w

by analogous calculations to those in (27.55). The minimum eigenvalue is a continuous
function of a matrix is a continuous function of its elements by Elsner’s theorem; see
Stewart (2001, Theorem 3.1, pp. 37-38). Hence, ACLR(z,, w) is continuous in (z,, ) €
R? x R4 and property (iii) holds.

For any 522 € [0, 1) and &,q € R? such that g;lgﬂ =1- 532, we have

ACLR(zg, 0) > (1 — &5) (0 + 2,z4) — €1 D*E,q — 26,02, D — 00 as w — 00, (27.66)
where the inequality holds by replacing the supremum over ¢ in (27.56) by the same

expression evaluated at &, = (£, £,0)" and the divergence to infinity uses 1 — fiz > 0.
Hence, property (iv) holds.



Supplementary Material Identification and singularity robust inference 85

It remains to verify property (ii), which states that ACLR(z,, w) is strictly increasing
inwon Ry Vz, #0P. For w € Ry, let &, = (&), §,2) (for £,1 € RP and §,2 € R) be such
that | £, || =1 and

ACLR(z4, w) = (1 - fiz)(w + Z;Za) - f;lsza}l - szZZ;Dgwl- (27.67)

Such a vector ¢, exists because the supremum in (27.56) is the supremum of a contin-
uous function over a compact set and, hence, the supremum is attained at some vector
&, (Note that &, typically depends on z, as well as w.) Using (27.67), we obtain: for all
§>0,if &2, <1,

ACLR(zg, 0) < (1= €2,) (w0 + 8 + 2, 20) — £,1D* €01 — 26027, D 1
< sup [(1— &) (w+8+2,z,) — & D*& —262,Dé]
E=(£],€):1€1I=1
= ACLR(z4, w + 8). (27.68)

Equation (27.68) shows that ACLR(z,, w) is strictly increasing at w provided giz <1.

Next, we show that giz =1 only if z, = 0P. By (27.56) and (27.67), £, maximizes the
rhs expression in (27.56) over ¢ € RP*! subject to & & + & = 1. The Lagrangian for the
optimization problem is

(1 - 8)(w + 2yz4) — & D& — 2622, DE1 + y(1 — & — £,£1), (27.69)

where y € R is the Lagrange multiplier. The first-order conditions of the Lagrangian with
respect to {1, evaluated at the solution (¢! ;, £.,2)" and the corresponding Lagrange mul-
tiplier, say vy, are

—2D%*é,1 = 2¢,2Dz4 — 2Y0é1 = 0F. (27.70)

The solution is £,,; = 07 (which is an interior point of the set {£ : ||£1]| < 1}) onlyif €0 =
0 or z, = 0P (because D is a pd diagonal matrix). Thus, giz =1-¢ 6,1 =1onlyif z, =
07. This concludes the proof of property (iv). O

27.5 Proofof Lemma 27.4

Lemma 27.4 is stated in Section 27.1.
For notational simplicity, the following proof is for the sequence {n}, rather than a
subsequence {w, : n > 1}. The same proof holds for any subsequence {w, : n > 1}.

ProOF OF LEMMA 27.4. We prove part (a) (i) first. We have

n

Wan=n"">"(gi8} — EF,8i8}) — 8n8y + Er,8i8; — p hs ¢ (27.71)
i=1

where the convergence holds by the WLLN (using the moment conditions in F), Ef, g; =
0%, and A7,F, = War, = QF, := EF, g8, — hs ¢ (by the definition of the sequence {A,, j, :
n > 1}). Hence, Assumption WU (a) holds for the parameter space Awy with /7 = hs 4.
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Next, we establish Assumption WU (b) for the parameter space Awy. Using the defi-
nition ofI’/\,Z (= I’/\,,(OO)) in (19), we have

Va=n""3" fif! = fufu = Er, fif{ = (Er, f)(Er, f) + 0p(1) (27.72)

i=1

by the WLLN’s (using the moment conditions in 7). In consequence, we have

Ry = (B'® It)(Er, fif| — (B, ) (Er, f])) (B® Ir) + 0,(1)
—p Ry = (B ® I)[hs — vec((0%, ha)) vec((0F, ha)) |(B@ Ir),  (27.73)

where B = B(6)) is defined in (19), the convergence uses the definitions of A4 r and A5
in (16.16), and the definition of {A, , : n > 1} in (16.18).
This yields

17211 = (ﬁn; R\n) —>p (hS,g, Ry) = hg, (27.74)

which verifies Assumption WU (b) for the parameter space Awy for part (a) of the lemma.

Now we establish Assumption WU(c) for the parameter space Awy for part (a) of the
lemma. We take W, (which appears in the statement of Assumption WU(c)) to be the
space of psd k x k matrices and U/, (which also appears in Assumption WU(c)) to be the
space of nonzero psd matrices (£2, R) for 2 € R*** and R € R/P+Dkx(p+Dk By the def-
inition of W, Ws, € W, a.s. We have War € W, VF € Fywy because Wap = Ergig; is psd.
We have Usr € U, VF € Fwy because Usr = (2F, RF), 2 := Erg;g; is psd and nonzero
(by the last condition in F, even if that condition is weaken to /\maX(Engg;.) > §) and
Rp:=(B' ® I} )Vr(B ® I}) is psd and nonzero because B is nonsingular and Vr (defined
in (16.7)) is nonzero by the argument given in the paragraph containing (27.77) below. By
their definitions, £, and R,, are psd. In addition, they are nonzero wp — 1 by (27.74) and
the result just established that the two matrices that comprise #g are nonzero. Hence,
(ﬁn, ﬁn) el wp — 1.

The function Wy (W5) = WZ_l/ ? is continuous at W, = h7 on W, because Ayin(h7) >0
(given that 47 =lim Ef, g;g; and Apin(E Fg,-g;) > & by the last condition in F).

The function U (-) defined in (16.8) is well-defined in a neighborhood of /g and con-
tinuous at 4g provided all psd matrices 2 € R**% and R € R(P+Dkx(p+Dk with (Q, R)
in a neighborhood of &g :=lim(£2F,, Rf,) are such that 3°((2, R) is nonsingular, where
3(, R) is defined in the paragraph containing (16.8) with ({2, R) in place of (2r, Rr)
and 34((, R) is defined given 3({2, R) by (22). Lemma 22.1(b) shows that 3¢({2, R) is
nonsingular provided Amax(3(£2, R)) > 0. We have

Amax(2(2, R)) > max 3;(2, R) = max tr(()_l/szj.(Z_l/z)/k
j<p+1 j=p+l1

> max Amax(27V2R;Q71%)/k

j<p+1
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r0-1/2 -1/2
A 0 A ||Q,]/2)\||2/k

= jrsnpa-‘,)-(l )\;ﬁ}\lle H-Q_l/zf\” Ji Hn_uz/\” .
> max Amax(Rjj)Amin(271)/k > 0, (27.75)
Jj=<p+1

where 3;;({2, R) denotes the (j, j) element of 3({2, R), Rj; denotes the (j, j) k x k sub-
matrix of R, the first inequality holds by the definition of Amax(+), the first equality holds
by (21) with (£2, R) in place of (ﬁn(e), ﬁn(e)), the second inequality holds because the
trace of a psd matrix equals the sum of its eigenvalues by a spectral decomposition, the
third inequality holds by the definition of Ani,(-), and the last inequality holds because
the conditions in 7 imply that Amin(271) = 1/Amax(2) > 0 for 2 in some neighborhood
of limQp, (because Amax(2r) = sup/\eRk:”)\H:lE}:()\’gi)2 < Er|gil?* < M¥C*+Y) < oo for
all F € F using the Cauchy-Bunyakovsky-Schwarz inequality) and infre 7 Amax(RF) > 0,
which we show below, implies that Ay (Rj;) > 0 for some j < p + 1.
To establish Assumption WU(c) for part (a) of the lemma, it remains to show that

inf Amax(Rp) > 0. (27.76)
FeF

We show that the last condition in F, that is, infre 7 Amin(Ergig;) > 0 implies (27.76). In
fact, the last condition in F is very much stronger than is needed to get (27.76). (The full
strength of the last condition in F is used in the proof of Lemma 16.4 (see Section 25)
because 2, /? enters the definition of D, and 0, — QF, — p 05k where Qf = Ergig|.)
We show that (27.76) holds provided infrc 7 Amax(EFgig;) > 0.

Let x* € Rtk be such that ||x*|| = 1 and Amax(Vr) = x* Vex*. Let x' = (B I) 1 x*.
Then we have

Amax(RF) 1= /\max((B/®Ik)VF(B®Ik)) = sup XI(B/®Ik)VF(B®1k)x

xeR(P+DE: | x|=1
> x"(B @ [)Vr(BR L)x" - |xf| 7 = x*Vex*/(x* (B I;) " V(B® I) ' x¥)

> Amax (V) /Amax((B® I) ™V (B® I1) 1) = K Amax(VF), (27.77)

where K := 1/ Anmax (B I)"V(B®I;)~!) is positive and does not depend on F (because
B and B ® I are nonsingular and do not depend on F for B = B(6)) defined in (19)).
Next, infre 7 Amax(VF) > infreF Amax(EFgig;) > 6 because Erg;g; is the upper left p x p
submatrix of Iz, which implies that Amax(Vr) > Amax(EFgig)), and Amax(Ergig;) > 8 by
the last condition in F. This completes the verification (27.76) and the verification of
Assumption WU(c) in part (a) of the lemma.

Now we prove part (a)(ii). It suffices to show that 7 C Fwuy for 6; sufficiently small
and M, sufficiently large because Fwy C F by the definition of Fyy. We need to show
that the four conditions in the definition of Fyy in (16.12) hold.
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() We show that infre z Amin(Wr) > 0, where Wi := Wy (War) := 0,/ .= (Epgig)) ™/
(by (16.5), (16.8), and (16.11)). The inequality EF||gl~||2+7 <M 1n]-'1mphes Amin(WE) > 81
for &, sufficiently small (because the latter holds if Amax(Wy 2) < 61_2 and WF_2 =0f =
Ergig;.

(I) We show that sup 7 [|Wr|| < oo, where Wr := Wi (Wap) := 0,"/% := (Epgig)) =1/
(by (16.5) and (16.8)). We have infrc r Ain (2F) > 0 (by the last condition in F).

(IIT) We show that infpe 7 Apin(Ur) > 0, where in the present case Ur := U1 (Uyf) =
(60, 1p)(3%)" 4600, 1,))? and 3 := 3(Qp,Rp) has (j,¢) element equal to
tr(RJeFﬂgl)/k (by (16.8)). We have supp. r [|RF || = supp. 7 | (B’ ® I )Varp(fi)(B® Ii) || <
oo (where the inequality uses the condition EF||(g;.,vec(Gi)/)/||2+7 <M in F). In
addition, infrcr Amin(2r) > 0 (by the last condition in F). The latter results imply
that supy. 7 | 2F|l < oo (because Xy minimizes |(/p+1 ® .(2;1/2)[2 ® 2r — Rplp41 ®
();1/ 2)||, see the paragraph containing (16.8)). This implies that supp.r |25 < oo.
In addition, 3 is nonsingular VF € F (because infrec r Amin(2r) > 0 by the proof of
result (IV) below). The last two results imply the desired result infrcr Apin(Ur) =
infrer Amin((80, 1p)(25)71(80,15))1/?) > 0 (because A := (6, 1p) € RP*(PHD has full
row rank p and Amin(Ur) = infycreaj=1 A A(Z5) VAL > infregpaj=1(A'A) (35) 71 x
(A'N)/IA'N? x infreraj=1 [ AA? = Amin((35) ™D Amin (A A') > §; for some §, > 0 that

does not depend on F).

(IV) We show that supg. 7 [|Ur|| < oo, where Ur is defined in (III) immediately above.
By the same calculations as in (27.75) (which use (27.76)) with 3f and (2F, RF) in place
of 3(£2, R) and ({2, R), respectively, we have infrcr, Amax(ZF) > 0. The latter implies
infre 7, Amin(2%) > 0 by Lemma 22.1(b). In turn, the latter implies the desired result

supper, IUFIl = supper, (B0, ) x (357160, 1,))2] < oo

This completes the proof of part (a)(ii).

Now, we prove part (b)(i) of the lemma. Assumption WU (a) holds for the parameter
space Awuy,p with h7 = hs ¢ by the same argument as for part (a)(i).

Next, we verify Assumption WU(b) for the parameter space Awy,p for Usp =
(Qn, Ry). Using the definition of V;, (= V,(60)) in (15.5), we have

n
Vao=n"Y (uju}' ® Z,Z)) —12 ' ® ZiZ) - —IZ uin, @ ZiZ))
i=1

N (@ un e z,2)). (27.78)

l}’l tn
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We have

n

n_lz( uiuf’ ® Z;Z}) = Er, fif{ + 0op(1),
i—1

I

_ 1 _
n:(n IZ;ka"Xk) IZ/ka)k
= (Er, Z:Z) "Er, Zii? + 0,(1)

n—1 ot
=(Er,ZiZ)) Er,(gi,G) +0p,(1) =1 EF, 4+ 0p(1),

n (27.79)
n (@l ® ZiZ)) = *12 (E1Ziu ® Z,7)

= Er, (5% (8, G) ® ZiZ]) + 0p(1), and

_1 A*A*/®ZZ/ —IZ Z’:n®ZZ)

mn-in

—EF,!(MF Z; Zl‘—’Fn ® Z,'Zl{) +o,(1),

where the first line holds by the WLLN’s (since ufu}’ ® Z; Z; = f; f! for f; defined in (16.10)
and using the moment conditions in F), the second line holds by the WLLN'’s (using the
conditions in 7 and Fp ), Slutsky’s theorem, and Z;u}" = (g;, G;), the fourth line holds by
the WLLN’s (using Er(([|(gi» Gl - 1 Zi|H'™*) < (Erll(gi, G)IPTY?EF| Zi| *T)1? < o0
for y > 0 by the Cauchy-Bunyakovsky-Schwarz inequality and the moment conditions
in F and Fp) and the result of the second and third lines, and the fifth line holds by the
WLLN’s (using the moment conditions in F and Fp ) and the result of the second and
third lines.

Equations (16.10) (which defines I7F) with F = F,, (27.78), and (27.79) combine to
give

Vi — Vi, — 0. (27.80)

Using the definitions of R, and R (in (15.5) and (16.10)), (27.71), (27.80), and A7 :=
lim Wap, = lim 2, yield

(2, Ry) =, lim(Qf,, RE,) =: hg. (27.81)

This establishes Assumption WU (b) for the parameter space Awy,p for part (b) of the
lemma.

Assumption WU(c) holds for the parameter space Awy,p, with W, and U, defined
as above, by the argument given above to verify Assumption WU(c) in part (a) of the
lemma plus the inequality infpcr )\max(ﬁF) > 0. The latter holds by the same argu-
ment as used above to show infrec r Amax(RF) > 0 (which is given in the paragraph
containing (27.77) and the paragraph following it), but with (i) ﬁp in place of Rp
and (ii) infpcr Amax(l7p) > 0, rather than infrcr Amax(Vr) > 0, holding. Condition (ii)
holds because infp¢ AmaX(I7F) > infreF Amax(EFgig;) > 0 because I7p can be written as
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Ep(uf — EpZi)(uf — EZ) ® Z;Z, the first element of 5, Z; is zero (because Zr :=
(EFZiZ))~ 1EF(g,, G; ), see (16.10), and Erg; = 0%), the first element of u¥ — 54, Z; = u;
(because u} = (u;, up;)"), the upper left k x k submatrix of VF equals EFMZZ Z = EFg,gl,
and so, )\max(VF) > Amax(EFgig;), and infre 7 Amax(Ergig;) > 0 is implied by the last con-
dition in F. This completes the verification of Assumption WU(c) in part (b) of the
lemma.

Now, we prove part (b)(ii) of the lemma. We need to show that the four conditions in
the definition of 7wy in (16.12) hold for all F € Fp , for some §; sufficiently small and
some M sufficiently large.

(I) & (I1) We have infre 7, Amin(Wr) > 0 and supgper, IWFIl < 00 by the proofs of (I) and
(IT) for part (a)(ii) of the lemma and Fp C F.

(IIT) We show that infre 7, Amin(Ur) > 0, where in the present case Ur := Uy (Uzr) :=
((60, Ip)(3°(Q2F, Rr))~ (6o, Ip)’)l/2 and 3(Qr,Rr) has (j,£) element equal to
tr(RjeF.le)/k (by (16.11)). The inequalities Er || Z;|*"" < M, Ep|l(g, vec(G)) |I*+Y <
M, and Ain(EFZ;Z}) > & imply that SupFe]—'P(”:F” + EFfif/Il + \EF(ERZ/ZIEF ®
Z,Z)H\ + |EF(gi, GEF ® Z;Zl|l) < oo, where S is defined in (16.10) (us1ng the
Cauchy- Bunyakovsky Schwarz 1nequa11ty) This, in turn, implies that SUPFeFp Vel <

00, supzcr, IRF| < 00, SUPFeFy ISEll < oo, SUPpe 1321 < 00, and Amin(Lp) > 8, for

some &, > 0, where VF and Rp are_ defined in (16.10), EF =
Z(.QF,RF), Lr = (6o, p)(EF) 1(60,1,), and (EF) I exists by (IV) below (and
mm(LF) > 8, holds because_A := (6,1,) € RP*P*D has full row rank p and
Amin(LF) = infycrrgaj=1 A 1{{(2 )LA'N = infycgpag=1 (ALY (28) LA /IIA N <
inf)erp.a)=1 ||A/)\||2 = Amm((?) 1))\mm(AA ) > &, for some &, > 0 that does not de-
pend on F). Finally, mm(L F) > 6, implies the desired result that A, (Ur) > 61 for some
61 > 0 (because Uy := F )

(IV) We show that sup 7 IUF| < oo, where Uy is as in (IIT) immediately above. The
proof is the same as the proof of (IV) for part (a)(ii) of the lemma given above, but with
ﬁF in place of Rr and with the verification that infpc /\max(ﬁF) > 0 given in the the
verification of Assumption WU(c) above.

Results (I)-(IV) establish the result of part (b)(ii) of the lemma. O

27.6 Proof of Theorem 16.1 for the Anderson—-Rubin test and CS

ProoOF OF THEOREM 16.1 FOR AR TEST AND CS. We prove the AR test results of Theo-
rem 16.1 by applying Proposition 16.3 with

A=Ap:=FEFrgigi, hy(A):=A, and A:={r:A=ApforsomeF € Fag}. (27.82)

We define the parameter space H as in (16.2). For notational simplicity, we verify As-
sumption B* used in Proposition 16.3 for a sequence {),, € A : n > 1} for which 4,,(A,) —
h € H, rather than a subsequence {A,,, € A : n > 1} for some subsequence {w,} of {n}.
The same argument as given below applies with a subsequence {A,,, : n > 1}. For the
sequence {A, € A :n > 1}, we have

/\Fn — h:= limEan[gE. (27.83)
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The k x k matrix & is pd because Amin(EF,gig;) = 6 > 0 forall n > 1 (by the last condition
in Far) and lim Ay (EF, g:€;) = Amin(h) (because the minimum eigenvalue of a matrix is
a continuous function of the matrix).

By the multivariate central limit theorem for triangular arrays of row-wise i.i.d. ran-
dom vectors with mean 0%, variance A F, that satisfies A, — £, and uniformly bounded
2 4+ y moments, we have

28, —ah'?Z, where Z ~N(0%, I). (27.84)

We have

n
Qy=n""Y (g8} — Er,8&}) — 88y + Er,8ig; —>ph and Q' —>,h”',  (27.85)
i=1

where the equality holds by definition of 0, in (8), the first convergence result uses
(27.83), (27.84), and the WLLN’s for triangular arrays of row-wise i.i.d. random vectors
with expectation that converges to /, and uniformly bounded 1+ y/2 moments, and the
second convergence result holds by Slutsky’s theorem because # is pd.

Equations (27.84) and (27.85) give

ARy, := 18,02, 8y —a Z WP W P2 =2/ 7 ~ X2 (27.86)
In turn, (27.86) gives
Pr, (AR, > X7 1_o) = P(ZZ> X1 o) = (27.87)

where the equality holds because Xi |_q 1s the 1 — & quantile of Z’'Z. Equation (27.87)
verifies Assumption B* and the proof of the AR test results of Theorem 16.1 is com-

plete.
The proof of the AR CS results of Theorem 16.1 is analogous to those for the tests;
see the Comment to Proposition 16.3. O

28. PROOFS OF THEOREMS 7.1 AND 15.3

Suppose k > p. Let Ar and 11, be defined as in (4) and (5) and the paragraph following
these equations with 6 = 6. Define A%, A*, and {A} pinz 1} as Ar, Awy, and {An B
n > 1}, respectively, are defined in (16. 16) (16.18), but with gi and G; replaced by g7, :
I, 1/2A’ rgiand G, = H_l/zA/ r»Gi, with F replaced by FSR and with Wr (:= W, (sz))
and Ur (= U1(U2F)) deﬁned as in (16.8) with g; and G; replaced by g7, and G%;.
addition, we restrict {/\* :n > 1} to be a sequence for which Ani,(EF,g:g;) > 0 for all
n> 1. Let (s} Foee F ) denote the singular values of ErG7;. Under these conditions,
Af, = A2 I, = HFn, Wi, = (115> Al Qp, A, IT /)72 = I, and n'/2s% . — oo iff
l/25 pFy — OQ.

TueEOREM 7.1 OF AG2. Supposek > p. For any sequence {X’; , : n > 1} that exhibits strong
or semi-strong identification (i.e., for which n'/ zs}", F, — 00) and for which A}, , € A*Vn =1
for the SR-CQLR test statistic and critical value, we have
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(@ SR-QLR, =QLR, +0,(1) =LM, +0,(1) = LMS™M + 0,,(1) and

(b) ek, p(n' 2D, 1—a) > p X2 |-
TueoREM 15.3. Suppose k > p. For any sequence {)\” , : n > 1} that exhibits strong or
semi-strong identification (i.e., for which nl/zs;Fn — 00) and for which A, €ApYR=1,
we have

(@ SR-QLRp, =QLRp, +0,(1) =LM, +0,(1) = LMSMM 1 0 ,(1) and

(b) cx,p(n' 2D}, 1—a) —>p X2 |,

The proofs of Theorems 7.1 and 15.3 use the following lemma that concerns the
QLRyyy , statistic, which is based on general weight matrices W, and U, (see (16.3)), and
considers sequences of distributions F in F or Fp , rather than sequences in 7SR or ]—'f,R.
Given the result of this lemma, we obtain the results of Theorems 7.1 and 15.3 using an
argument that is similar to that employed in Section 17, combined with the verification
of Assumption WU for the parameter spaces Awy and Awy, p for the CQLR and CQLRp
tests, respectively, that is given in Lemma 27.4 in Section 27.

For the weight matrix W, € Rkxk, Kleibergen’s LM statistic and the standard GMM
LM statistic are defined by

LMn(W;z):zngnQ l/szA a5 1/2§n and

N n . (28.1)
LMW, =g, 00, Py, 6, 08,

respectively, where G, is the sample Jacobian defined in (8) with 6 = 6. In Lemma 28.1,
we show that when n!/27 pF, = 00, the QLRyyy , statistic is asymptotically equivalent to
the LM,,(W,,) and LMS’MM(W,,) statistics.

The condition n'/?7,, — co corresponds to strong or semi-strong identification in
the present context. This holds because, for F € Fyy, the smallest and largest singu-
lar values of Wr(ErG;)UF (i.e., Tminik, pjr and 71r) are related to those of Q;l/zEFG,-,
denoted (as in Section 6.2 of AG2) by smink, pjr and sir, via cisjp < 7jp < ¢z5;F for
j=min{k, p} and j = 1 for some constants 0 < ¢; < ¢; < oo. This result uses the condition
Amin(2F) > 8 > 0 in Fwy. (See Section 10.3 in the SM to AG1 for the argument used to
prove this result.) In consequence, when k > p, the standard weak, nonstandard weak,
semi-strong, and strong identification categories defined in Section 6.2 are unchanged
if s, is replaced by 7, in their definitions for j =1, p.

LeMmma 28.1. Suppose k > p and Assumption WU holds for some nonempty parameter
space A, C Awy. Under all sequences {\,, j, : n > 1} with A, j, € A, for which n'/?
00, we have

TF—>

(a) QLRWU,IZ — LMn(Wn) + op(l) = LMS’MM(@) + Op(l) and
(b) Ck,p(fll/zﬁ\/nﬁnﬁn, l-—a)—)p X?),l—a'
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CoMMENT. The choice of the weight matrix U, that appears in the definition of
the QLRyyy,, statistic, defined in (16.3), does not affect the asymptotic distribution
of QLRyy , statistic under strong or semi-strong identification. This holds because
QLRWU » is within o, (1) of LM statistics that project onto the matrices W,D,U, and
WnG Un, but such statistics do not depend on Un because PWD 0, = PWD and
Py &0, = Pi,g, when U,isa nonsingular p x p matrix. In consequence, the LM statis-
tics that appear in Lemma 28.1 (and are defined in (28.1)) do not depend on Un.

PRrROOFS OF THEOREM 7.1 OF AG2 AND THEOREM 15.3. By the second last paragraph of
Section 5.2, SR-QLR,,(6g) = QLR,(6p) wp — 1 under any sequence {F;, € FSR.p>1)
with rf, (6p) = k for n large. By the same argument as given there, SR-QLRp,(6g) =
QLRp,(6p) wp — 1 under any sequence {F, € ]-'IS;R :n > 1} with rg, (6p) = k for n large.
This establishes the first equality in part (a) of Theorems 7.1 and 15.3 because by as-
sumption Apin(EF,gig;) > 0 for all n > 1 (see the paragraphs preceding Theorems 7.1
and 15.3).

Assumption WU for the parameter spaces Awy and Awy, p is verified in Lemma 27.4
in Section 27 for the CQLR and CQLRp tests, respectively. Hence, Lemma 28.1 im-
plies that under sequences {A,; : n > 1} we have QLR, = LM (.(2 1/2) + 0p(1) =
LMSMM(@\;UZ) + 0,(1) and likewise for QLRp,, where QLR, and QLRp, are de-
fined in (23) and in the paragraph containing (15.7), respectively, and LMn(ﬁ;l/ %)
and LMSMM(@\;U 2) are defined in (28.1) with 1717,, = ﬁ;l/ 2 In addition, Lemma 28.1
implies that ck’p(nl/zﬁj;, 1—a)—, X?;,l_a and ¢ ,(n'2D%, 1 — @) —, X?),l—a' Note
that all of these results are for sequences of distributions F in F or Fp, not FSR or
FoR.

Next, we employ a similar argument to that in (17.5)—-(17.7) of Section 17. Specifically,
we apply the version of Lemma 28.1 described in the previous paragraph with gy, :=
I, 1/2A’ r&i and G, := H_MA’ G, in place of g; and G; to the QLR,, and QLRp, test
StatlStICS and their correspondlng critical values. We have n!/2s* 1/2 7
00, where s; r denotes the smallest singular value of ErGy; and 77, is defined to be
the smallest singular value of (Ergk,;g5.)"V/?(Ep G Ur = (1 1/ZA’ wQpApIl 1/2) 172
(EFGH)Up = (ErG?)Ur. In consequence, the COIldlthIl n1/21- pF, — 00 of Lemma 28.1

holds for the transformed variables g7, ; and G7. ;, thatis, n 127 ; r, — o°. In the present

F—>001ffn TR,

case, {II Y ZA/ : n > 1} are nonsingular k£ x k matrices by the assumption that

Amin(EF, glgl) =0 for all n > 1 (as specified in the paragraphs preceding Theorems
7.1 and 15.3). In consequence, by Lemmas 5.1 and 15.1, the QLR, and QLRp, test
statistics and their corresponding critical values are exactly the same when based on
gr; and G%; as when based on g; and G;. By the definitions of FSR and ]-'I§R, the
transformed variables g and G7, satisfy the conditions in 7 and Fp; see (17.6) and
(17.7). In particular, Ergy,;g5; = Ik and Anin(EFZy;Z3;) > 1/(2¢) > 0, where Zj,; :=
I, Fl/ ZA%ZL- and c is as in the definition of F3! in (15.3). In addition, the LM, and
LMSMM gtatistics are exactly the same when based on g}, and G%; as when based

Fi
on g; and G;. (This holds because, for any k& x k nonsingular matrix M,



94 Andrews and Guggenberger Supplementary Material

such as M = Hl_Fl/zA/F, we have LM, := ng,0Q.'D,[D,Q;'D,1"'D,2;'%,
= ng M'(MQ,M')"'\MD,[D,M' (M2,M")"'MD,1"'DM'(MQ,M’)~'g, and likewise
for LM$MM.) Using these results, the version of Lemma 28.1 described in the previous
paragraph applied to the transformed variables gy, and G, establishes the second and
third equalities of part (a) of Theorems 7.1 and 15.3 and part (b) of Theorems 7.1 and
15.3. O

Proor oF LEMMaA 28.1. We start by proving the first result of part (a) of the lemma. We
have n!/27,5, — oo iff ¢ = p (by the definition of ¢ in (16.22)). Hence, by assumption,

= p. Given this, an(K) (defined in (26.11) in the proof of Theorem 16.6) is a scalar. In
consequence, (26.13) and (26.16) with j = p + 1 give

|Q2n( (p+1)n)| = |Mn+,p+1fq (p+1)n(1 + Op(l))’ and, hence,

?zrpﬂ)n My (T op(D)
= ("B} USDI'W,)
x h3 —gh, k_q(,11/2W,,D+U+B;p+1 2 (1+0p(D) +o0p(D) (28.2)
( 1/2?0 1/2W 1/W/)
X 3 g g (0P W, 02 80) (L4 0, (1) + 0,(1)
= ng 0, Phy g a3 qﬂ V2, +0,(1),
where k‘zrp 41y, 18 defined in (26.2), the equality on the third line holds by the defi-
nition of M: pil—g in (26.16), the equality on the fourth line holds by lines two and

three of (26.7) because when ¢ = p the third line of (26.7) becomes n'/2W, W10, '/*%,,
that is, nl/ngﬁnU,,Bn, p—q drops out, as noted near the end of the proof of Theo-
rem 16.6, and the last equality holds because W,,Wn‘l = I + 0,(1) by Assumption WU
and n'/20,'%g, = 0,(1).

Next, we have

QLRWU,n =AR, — )\min(nQWU,n)

- AR" (17+1)n
= g0y P (I — ha kghy )0 80+ 0,p(1)
= ngnﬂ_l/zhs,qhé 0,78, + 0p(1), (28.3)

where the first equality holds by the definition of QLRyyy , in (16.3), the second equality
holds by the definition of k ( bt n in (26.2), the third equality holds by (28.2) and the
definition AR,, := ngnﬂ 1%, in (9), and the last equality holds because 43 = (43 g M3.k—q)
isa k x k orthogonal matrix.
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When g = p, by Lemma 16.4, we have

nY2W,D,U, Ty —q Ay =h3,, andso o8
nl/zﬁ/nb\nUnTn —p h3,q7 .

where the equality holds by the definition of A;, in (16.24) when g = p and the second
convergence uses W,,I/Vn_1 = I + 0,(1) by Assumption WU. In consequence,

Py b, =Puri,p,u,1, = Py, +0p(1) = h3 ghy ,+0p(1) and (28.5)
QLRyy., = LM, (W) + 0, (1),

where the first equality holds because n!/2U, T, is nonsingular wp — 1 by Assumption
WU and post-multiplication by a nonsingular matrix does not affect the resulting pro-
jection matrix, the second equality holds by (28.4), the third equality holds because
h’ h3 q = 1q (since h3 = (h3 4, h3 k—4) is an orthogonal matrix), and the second line

holds by the first line, (28.3), n'/20,, /%5, = O, (1), and the definition of LM, (W,) in
(28.1).
As in (25.5) in Section 25 with G, in place of D,,, we have

_ _ -1
WnGnUnBu,q Yy s = WaDpUnBn Yy b + Wan'/* (G — D) UpBp,q(n'? Y, q)

= Cpq+0p(1) =) h3 4, (28.6)

where D, := Ef,G;, the second equality uses (among other things) nl/ ZT]'F" — oo for
all j < g (by the definition of ¢ in (16.22)). The convergence in (28.6) holds by (16.19),
(16.24), and (25.1). Using (28.6) in place of the first line of (28.4), the proof of QLRywy , =
LMGMM(Wn) + 0p(1) is the same as that given for QLRyy , = LMn(Wn) + 0p(1). This
completes the proof of part (a) of Lemma 28.1.

By (27.10) in the proof of Theorem 27.1, we have

Ck’p(n“zﬁ;nﬁnﬁn, 1-— a) —>d Ck,p,q(T21hs 1 — @) and 28.)
k,p.q(Tr2an, 1 —a) = Xf,,l_a when g = p,

where the second line of (28.7) holds by the sentence following (27.9). This proves part
(b) of Lemma 28.1 because convergence in distribution to a constant is equivalent to
convergence in probability to the same constant. O

29. Proors orF LEMMAS 19.1, 19.2, AND 19.3
29.1 Proofof Lemma 19.1

LEMMA 19.1. Suppose Assumption HLIV holds. Under the null hypothesis Hy : 6 =
0o, for any sequence of reduced- form parameters {m, € I : n > 1} and any p > 1, we
have: (a) R, — 3y ® Kz, (b) 0, — p (b,Sybo)Kz, where by := (1,—6}), (c) S
(bySybo) ™'y, () 35— (B Sybo) ™ Sy, (€) n205 78 =50+ 0,(1), and () n'/2D; =
~Ux +0,(INT Uy +0p(1) + 0p(1).
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In this section, we suppress the dependence of various quantities on 6, for nota-
tional 51mphc1ty Thus, 8= gl(Oo) Gi:=Gi(6y) = (Gi1,...,Gjp) € R¥*P, and similarly
forg,, Gn,ﬁ,B D,,, an,ﬂ R D andL

The proof of Lemma 19.1 uses the following lemmas. Define

A= S)B by2y2c0, -, bpSypr1co ¢ R(P+Dxp
0 I, ,
B:= L 0} e R(PHHX(p+D)
—00 —1,
co:=(bpZvbo) ' boi=(1,-6f)', (29.1)
(CV1seens Sypi1) i= 3y e RPTDX(PHD - gnd

Lyo:=(60,15)3,"' (60, 1,) € RP*P.
As defined in (19.4), Ay := (6o, 1)) € Rp+Dxp
LEMMA 29.1. AjLyo = —Ap.

CoMMENT. Some calculations show that the columns of 4j and A are all orthogonal
to by. Also, A and Ay both have full column rank p. Hence, the columns of 4§ and Ay
span the same space in RPt!. It is for this reason that there exists a p x p positive definite
matrix L = Ly that solves AL = —Ay.

LEMMA 29.2. Suppose Assumption HLIV holds. Under Hy, we have (a) n'/’g, —,
N(OF, bySyby - Kz), (b) n' YL 1(Gyg; — EGyg)) = op(1) Vj < p, (©) Gp = Op(D),
(d) n~' 31 (gig; — Egig)) = 0p(1), and (€) Gy —n~' Y1 EG; = Op(n~1/2),

ProoFr oF LEmMA 19.1. To prove part (a), we determine the probability limit of 17,1
defined in (15.5). By (15.5) and (19.1)—(19.3), in the linear IV regression model with
reduced-form parameter 7, we have

wi = ui(60) =y1i — Y5;,00,  Eu;=0,
upi=—Yoj=—m,Zi —Vai,  Eugi=-m,Z,

. Uuj Uuj = Uuj — k kx(p+1)
ur = = =5 7.+ ,  where 5, = (0%, —m,) € R**\PT1),
! <M9i> (_YZi) e <—V2i> n=( ) (29.2)

Eu}=5,Z;,u} Eu}‘:( ”’) BV, w,-Eu'=(5,-5,'Z, and

1243 l

U= (u},...,u}) = ZyxkZn+VB, whereV :=(,...,V,) e R*PHD

n

and B := B(6,) is defined in (15.5).
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Next, we have
| 71 L d
—Fn= (Z;sznxk) Z;kaU* —&n
_ 1 _ _
= (12 Zuxk) nZ, VB =0,(n"1?), (29.3)

where the first equality holds by the definition of ,:': n in (15.5), the second equality uses
the last line of (29.2), and the third equality holds by Assumption HLIV(c) (specifically,
n1Z . Zuyxx — Kz and Kz is pd) and by n=1/2Z/ V' = 0,(1) (which holds because
EZ .V =0and the variance of the (j, ¢) element of n =122/ Visn='Y7, ZZ%EVZ% —
K Z;;E V < oo using Assumption HLIV(c), where K z;; denotes the (j, j) element of Kz,
for all j §k,£§p+1).
By the definition of I/, in (15.5) and simple algebra, we have

n
Vo=t Y [ (uf =) (uf ~5,) ® ZiZ]
i=1

n
=n1 Y () — Eup) (uf - Euf)' ® ZiZ]]
i=1

12 (uf — Eu}) ® Z;Z]]
_12 uj — Eu?) — Eu* ) ® ZiZ]

n
+n71 > [(@, — Eu}) (@, — Eu}) ® Z,Z)). (29.4)
Using the third line of (29.2), the fourth summand on the rhs of (29.4) equals
n! Z E—ENZiZ(E, - Ey ® Z,Z)). (29.5)

The elements of the fourth summand on the rhs of (29.4) are each 0, (1) because each is
bounded by O,(n"Hn=t Y"1 11Z;]|* using (29.3) and n= ! Y7 1Zi1* <~ V30 1 Zi)1* x
L(Zill > D+ 1<n 37 11Zi)1° + 1 = o(n) by Assumption HLIV(c).

Using the third line of (29.2), the second summand on the rhs of (29.4) (excluding
the minus sign) equals

n
n 'Y [(Bn—E0)'ZiV/B® ZiZ]]. (29.6)

The elements of the second summand on the rhs of (29.4) are each 0,(1) because z n—
=, = Op(nfl/z) by (29.3) and for any j, j», j3 < k and £ < p we have n! Y 121112112 X

Ve, = 172 i i i i i 2,-15n 72 2 _
Zij;Vie = 0p(n'/) because its mean is zero and its variance is EV;n™" ) " 1le121]2le3
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o(n) by Assumption HLIV(c). By the same argument, the elements of the third summand
on the rhs of (29.4) are each 0, (1).
In consequence, we have

n
Vi = n 'Y [BVV/B® Z;Z]]+0p(1)
i=1

n n

i=1 i=1

—,B3yB®Ky, (29.7)

where the first equality holds using (29.4), the argument in the two paragraphs follow-
ing (29.4), and the third line of (29.2), the second equality holds by adding and subtract-
ing the same quantity, and the convergence holds by Assumption HLIV(c) (specifically,
n1 Y im1ZiZ; — Kz) and because the first summand on the second line is 0, (1) (which
holds because it has mean zero and each of its elements has variance that is bounded by
O(n2 Yy 1 ZilI*) = o(1), where the latter equality holds by the calculations following
(29.5)).
Equation (29.7) gives

Ry:=(B @I)VW(BRIx) =, 3y @Kz (29.8)

because BB =BB=1 p+1. Hence, part (a) holds.
To prove part (b), we have

n n n
Qp=n"">"gigi—8nBy=n""> Egigi+n"'> (28— Egig}) + Op(n")
i=1 i=1 i=1

n
=n'Y " Z,ZJEu} + 0,(1) >, (by2vbo)K 7z, (29.9)
i=1

where the first equality holds by the definition in (8), second equality uses n'/?g, = 0,(1)
by Lemma 29.2(a), the third equality holds by Lemma 29.2(d), and the convergence
holds by Assumption HLIV(c) and because Eu% = E(Vi’bo)2 = b3y by by Assumption
HLIV(b).

Part (c) holds because

1 1

gj(n =tI‘(R]gn )/k %ptr(EV]ng(b EVb()) Zl)/k ZZV]'@(bszbo)_ R (29.10)

where ZJgn and 3y, denote the (j,¢) elements of Zn and 3y, respectively, R ]gn de-
notes the (j, £) submatrix of Rn of dlmensmn k x k, and the convergence holds because
R,g,, —p2yyuKzforjt=1,...,p+1and (2 — p (b2 by)K z by parts (a) and (b) of the
lemma. ~

Part (d) holds because 37 —, ((b{)ZVbO)_lzy)‘9 by part (c) of the lemma and
Lemma 22.1(e), ((bE)ZVbo)_IZV)‘9 = (bézybo)_lif, by Lemma 22.1(d), and 3§, = 3y by
Assumption HLIV(e) and Comment (ii) to Lemma 22.1).
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We prove part (f) next. We have

n n 1
nlz Y= (nl D Zilvi = Yy00) +n71 Y ZiY3,00,n71 ) ZiY2i>
i=1 i=1

i=1
TP N BN 10, N
= (&n — Gnby, —Gpn) = (§n, Gn) 0 ; = (g, Gn)B, (29.11)
—00 —I,

where the expressions for g,, and 6,1 use (19.3). Using (29.11) and the definition of Ly
in (29.1), the statistic 7, defined in (19.4) can be written as

T” = (Z;zka”Xk)

=120 Z)  Zuei) @0 Gu)BS; ALy (29.12)

12, 1/2

Za Y3y Ao (453 A0)

Note that, using the definitions of B and Ly in (29.1) and A4 in (19.4), the rhs expression
for T, equals the expression in (19.4).

Now we simplify the statistic Dn = (D1n, .. Dpn), where Dm = G]n F],,() g, for
j=1,..., p, by replacing F,n and 0, by their probablhty limits plus 0,(1) terms. Let
Ty = (Tipy .-, Tpn) € Rkxp. Forj=1,..., p, we have

n n n
T i=n="Y (Gyj = Giwgi=n"" Y EGygi+n~" Y (Gygi — EGyg}) — G,
i=1 i=1 i=1

n n
=n! ZEGijg;' +op()=—n"" ZEZ"YzijZ’{ui +op(h)
i=1 =1

n n
= pn! Z Z,Z/EV3iViby+n~! Z Z:Z(Zimjn)Eui + 0, (1)
i=1 i=1

n
= —n! Zz,-z; Vir1bo +0p(1), (29.13)

where g; = Z;(y1;— YZ/i 0o) = Z;u; by (19.3), the third equality holds by Lemma 29.2(a)—(c),
the fourth equality holds by (19.3) with 6 = 6y, the fifth equality uses Yy;; = Z!m;, + V2j;
and u; = V;by, and the sixth equality holds because EV; = 0 by Assumption HLIV(b),
= Vi/bo, and EV = (2[/1, ey 2Vp+1) = EV;V;/
Equations (29.9) and (29.13) give

o~

_~ -~ _ _lA -_—
Djn=Gjn = Tjn0; '8 =Gjn + 3yj1bo(b)Svbo) ~ 8n+0p(n~'?) and

R _ ~ ~ =~ [2),bocos - -,
Dn ::(Dln,...,Dpn)z(gnaGﬂ)( V2 0%0

v/
2Vp+1b0C0> +o, (n—l/z)
IP

(29.14)
= "ab0COy -y Sy 1D
=(§n,Gn)BEI;1 <2VB (EVZ 0€0> Ia EVp-i-l OC(l)) +0p(7l_1/2)
p

= (&, Gu) B3, Af + 0, (n71/?),
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where the second equality on the first line uses g, = O p(n‘l/ 2) by Lemma 29.2(a), the
second line uses ¢y = (bgzybo)_l, the second last equality holds because B~! = B, and
the last equality holds by the definition of Aj in (29.1).

Now, we have

1/2D* = nl/ZQ 1/2D L1/2

(bo3vbo) (I + 0p (D) (171 Z,y Zunk) ™0 (@0, G ) B3 A

x (bySrbo) PLYZ (I, + 0,p(1) + 0,(1)

_ —-1/2 —~ N _ —1/2
—(Ik+0,()) (07 Z, o Zuk) 202 @ Gu)BS  AgLy > (1, + 0,5 (1))
+0p(1)

—(Ix + 0p()Tu(Ip 4+ 0p(1)) + 0,(1), (29.15)

where the first equality holds by the definition of 5;‘, in (23), the second equality holds
by (29.14), ﬁn —p (by2ybo)Kz (which holds by part (b) of the lemma), and L,:=
(6, Ip)(g,‘i)*1 (60, 1) — p (by3ybo) Ly (which holds because S;i - (b{)Eng)”ZV by
part (d) of the lemma), for Ly := (6, IP)EI}1 (6o, 1,) defined in (29.1), the third equality
holds by Lemma 29.1, and the last equality holds by (29.12). This completes the proof of
part (f).

Lastly, we prove part (e). The statistic S, satisfies

12, 1/2

E" = (ankZ”Xk)

" ~172
/2 (n—1 3 Z,-Z,/) Sn(b)Sybp)
i=1

= n'20,"%0 + 0, (1), (29.16)

Z, Ybo(bySybo)”

where the first equality holds by the definition of S, in (19.4), the second equality
holds because Y/by = u;, and the third equality holds by (29.9) and n'/%g, = O,(1) by
Lemma 29.2(a). This proves part (e). O

PRrROOF OF LEMMA 29.1. By premultiplying by BEI}l, the equation AjLy (= — Ay is seen
to be equivalent to

b{)EVZCO,---abE)ZVp-HCO . _1 96 _ -1 0o” 1 06
( I Lyg= BEV I =\ 6 I ZV I, . (29.17)

The last p rows of these p + 1 equations are
Lyo= (60, 1,)3," (60,1, (29.18)

which hold by the definition of L in (29.1).
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Substituting in the definition of Ly, the first row of the equations in (29.17) is
(b()ZVzco, vy b{)EVpHco)(Go, Ip)E;l (60,1,) = (—1, O”’)Z;l (60,1p)". (29.19)

Equation (29.19) holds by the following argument. Write 3y := (3y, 3},,) for 3}, €
R(P+D*P_Then b 3%,00 = —by 3y by + by 3y1, since by := (1, —6,)". The left-hand side
of (29.19) equals

(béZ;zﬂoco, bbzyzco, cees béZVp+160)2;1(00, Ip)/
= ((=by=vbo + bySv1)co, bySvaco, - -, bySypr1c0) 2y (B0, I )
= (—1 + b62{/1€0, b62V2C0, ceey b6£Vp+1CO)2[;1(00a Ip)/, (29.20)

where the second equality uses the definition of ¢y in (29.1).
Hence, the difference between the left-hand side (lhs) and the rhs of (29.19) equals

_ 1 (6
(b62V1C0, cees béZVlcho)ZVl(Oo, Ip)/ = COb62V2V1 <[O> = 0; (29.21)
p

using b6 =(1, —06). Thus, (29.19) holds, which completes the proof. O

ProoF OF LEMMA 29.2. Part (a) holds by the CLT of Eicker (1963, Theorem 3) and the
Cramér-Wold device under Assumptions HLIV(a)-(c) because nl/ 2§n =n1 Zf’zl Ziu;
is an average of i.i.d. mean-zero finite-variance random variables u; with nonrandom
weights Z;.

To show part (b), we write

n
n) (Giigi— EGisg))
i=1

n
=—n"' )y ZiZ{(Yaijui — EYaju;)
i=1

n n
=-n"! Z ZiZ;(Z;an)ui —nt Z Z,‘Z;(Vzl‘jui — E/VjJrlb()), (29.22)
i=1 i=1

where the first equality holds because g; = Z;u; and G;; = —Z;Y»;;, the second equality
holds because Y;; = Z/mj, + Va;; and EVy;u; = EV5;iV/ by = 2}/j+1b0. Both summands
on the rhs have mean zero. The (£1, ¢;) element of the first summand has variance
equal to n=2Y" (Zi, Ziv, Z\mjn)* x Var(u;), which converges to zero for all ¢1,¢, < k
because n~' Y1 |Zil|° = o(n), Var(u;) = bySyby < oo, and sup;_, - | mjull < oo by
Assumption HLIV(b)-(d). The (£1, ¢;) element of the second summand has variance
equal to n2 >y Zizzl Z?ZZVar(VZijul-), which converges to zero for all ¢4, ¢, < k because
n=1 Y1 1 Zill® = o(n) and Var(Vajju;) < E(VaijV;bo)* < byboE||Vill* < oo by Assumptions
HLIV(b)—(c). This establishes part (b).
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For part (c), we have
A n n
=—n"! ZZ,YZL —n 'Y " ZiZjmy—n7' Y 2V, (29.23)

The first term on the rhs is O(1) by Assumption HLIV(c)-(d). The second term on the
rhs is OP(n_l/z) (= 0p(1)) because it has mean zero and its (¢, j) element for £ < k and
j < phasvariance n =2y} | ZﬁfZVj* j+» where 3y« = < oo is the (j*, j*) element of 3} and
J=j+Landn ' Y0 Z2 Sy — Kz40 3y j+, where K 74 < oo is the (¢, ¢) element of
K 7. Hence, the rhs is O, (1), which establishes part (c).

To prove part (d), we have

1Z 8i8; — E£gig;) 122 Z{(u? — Eu?) -, 0, (29.24)
i=1 i=1

where the convergence holds because the rhs of the equality has mean zero and

its (¢1,¢») element has variance equal to n~! times n~! Z?:l(ZlZKlZIZZZVar((Vi’bO)z) <
nl Yy I Z*EIVilI*1boll* < oo by Assumption HLIV(b)—(c) forall ¢1, ¢, < k. This proves
part (d).

Part (e) holds by the following argument:

n
—n’lZEG,-z *122(1@ EYy) = 1221/21 »(n712),  (29.25)
| i=1

where the last equality holds by the argument following (29.23). O

29.2 Proofof Lemma 19.2

LeMMA 19.2. Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesis H, :
0 = 6y and any p > 1, we have: (a) R, - R(my), (b) 3, —p (b{ 2y bo)~ 13y, (© 28 —p
(b),Sybo) 'Sy, and (d) n'/2D; = —(I; + op(l))Tn(L_l/le/z + 0,(1)) + 0,(1), where
Lyo:= (80, 1,)3," (60, 1,) € RP*P and Ly := (60, 1,)3;,} (80, 1,) € RP*P.

Proor orF LEMMA 19.2. To prove part (a), we determine the probability limit of f/\n de-
fined in (19), where f; = (Zju;, —vec(Z;Y},)") by (19.1) and (19.3). For {,(7) defined in
(19.6), we can write

nir—ntr’>

Ln(mmy) =n~" Z Z*7Z*. where
n
Z¥, :=vec (z,-zgwn -n'Y 77, wn> (29.26)

= (m, —n]z " ® Zy)Zo € RFP
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and the second equality in the second line follows from vec(ABC) = (C' ® A)vec(B).
We have

I//\n = n71 Z(fl _ n*l ZEﬂ) (fl _ I’l71 ZEfZ)
_ (ﬁ —n! ZEﬁ) (ﬁ ] ZEfz>
=1 =1
_ 1 . Ziu; Ziu; /
=n ; (—VeC(Zin/,-) - ) (—vec(z Vi) -z, ) +o0,(1)
_1 " ' , 0k><k kakp
Z (( V21> ( VZ;) & ZzZ) (Okpxk Lo ()
! n Ziu; - Ziu; ’
Z <_Vec ZiVy, )) ( ) Z( ) <_VeC(ZiV2/i)> +op(1)
(1 -6 1 -6 » / obxk  gkxkp
- ((01’ —1,,) 3y <0p _ p) ) ( ZZZ) <0k,,xk () +0,(1)

0k><k kakp

= (B3vB)® ( 1222) (Okpxk g(m))Jrop(l), (29.27)

where the second equality holds using Eu; =0, EVy; = 0P, Yy, = m,Z; + Va,
vec(Z;Y;, — n Y, EZ,Y},) = vec(Z;V),) + Z7,, and Lemma 29.2(a) and (e) because
fo—nl Y1 Efe =8, Vec(an —n! Ze:l EGy)"), the third equality holds by (29.26)
and simple rearrangement, the fourth equality holds because (i) the first summand on
the rhs of the fourth equality is the mean of the first summand on the lhs of the fourth
equality using u; = (1, —6;,)V;, (ii) the variance of each element of the lhs matrix is o(1)
because E||V;||* < oo and n~! Yy 1Z:iI* = o(n) by Assumption HLIV(b)-(c) (because
T Y NZt < P I ZAMIAZil > D + 1 < a7 Y 11ZiI° 4+ 1 = o(n) using As-
sumption HLIV(c)), (iii) ¢, (7,) — () by Assumption HLIV2(a)-(b), and (iv) the third
and fourth summands on the lhs of the fourth equality have zero means and the vari-
ance of each element of these summands is o(1) (because each variance is bounded
by n 2 X I ZENPNZil? < lmalP (02 0y 1 Zil® + 2072 300 I Zill*n P 305 1 Zell* +
n 2 Y N ZiP (T 1 Ze1))?) = o(1), using (| Zy 1 < Imall (N Zill* + n= ' S0y 1Zell?),
sup ¢ llmall < oo, and E||V;|* < oo by Assumption HLIV(b)-(d)), and the fifth equality
holds by the definition of B in (19).

Using the definitions of ﬁn in (19) and R(m,) in (19.7), part (a) of the lemma follows
from (29.27).

Next, we prove part (b). We have

Ejm = tr(R;Zn A,:l)/k - tr(Rjg(W*)/(bézybo)_llﬁgl)/k =: (bf)EVbo)_lzv*j(, (29.28)
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where 3 jen and Xy, denote the (j, £) elements of 2n and 3y, respectlvely, e and

Rj¢(m,) denote the (j, £) submatrices of dimension k x k of qu and R(,), respectively,
the convergence holds by part (a) of the lemma and Lemma 19.1(b), and the last equality
holds by the definition of 3y, je in (19.8). Equation (29.28) establishes part (b).

Part (c) holds because part (b) of the lemma and Lemma 22.1(e) imply that 28 —>p
((b/ Syby) 13y,)¢, Lemma 22.1(d) implies that ((b/ Syby) 13,08 = (b/ Sybg)~ 12V*’
and Assumption HLIV2(c) implies that 3¢, = 3y,.

To prove part (d), we have

nl/Z’D\*

1/20 1/2D L1/2

~1/2

:((b/EngKZ) KY 4 0,(0) (07 Z)  Zuk) ™ 2n"2 (@, Ga)BS ASLY2

X ( (bOEVboLV*) + Op(l)) +o,(1)

—(1k+op<1>)(n—12/xkznxk) a2 (@, Gu)BY, ALy

x (Lo > L2+ 0,p(1)) + 0 (1)

— (I + 0p (D) To(Lyg *LyJZ + 0,p(1) + 0,(1), (29.29)

where the first equality holds by the definition of D* in (23), the second equahty
holds by (i) (29.14), (ii) the result of part (c) of the lemma that 23 —p (by2ybo)~ I3y,
(iii) the result of Lemma 19.1(b) that !2 —>p (b’ Svbg)Kz, (iv) nlenXanxk — K7 by
Assumption HLIV(c), (v) Ln = (00,11;)(2,‘3) 1(90,11))/ as defined in (23) with 6 = 6y,
and (vi) Z,, —p by2yboLy for Ly, defined in part (d) of the lemma, the third equal-
ity holds by Lemma 29.1, and the last equality holds by (29.12). This completes the proof

of part (d). O

29.3 Proof of Lemma 19.3
LEMMA 19.3. Suppose Assumption HLIV holds and p = 1. Under the null hypothe-
sis Hy : 6 = 6y, for any sequence of reduced-form parameters {m, € Il : n > 1}, we
have: (a) tki,(00) = T,k + LyoK; " Gu(m)K 5" + 0,(D171 T, - (14 0,(1) + 0,(D),
(b) rko,(69) = T;,Tn(LVObE)EVbO)_l -(1+0p(1))+0p(1), where Ly := (6p, )3, (69, 1) €

_ 2..2\2
R, and (c) Lyoby2yby = M, where ¢* := Var(Vs;)/Var(Vy;) > 0 and p =

c2(1-p?)
Corr(V1;, V2;) € (=1, 1).
When p =1, we write
’ 0'12 po1072 2%2
Sy =EVV/ =3y, 3p2) = poro 2 e R°* (29.30)
102 2

for 31, 3y, € R?, using the definition in (19.2).
The proof of Lemma 19.3 uses the following lemma.
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2 1040202
LEMMA 29.3. Under the conditions of Lemma 19.3, (@) Lyy = 0120"[;(—17;)002 > 0,
P
(b) bySy by = a7 — 20ppa 02 + 0303, and (c) Lyo(o5 — (b)Zy2)*(bySyby)~H) = 1.
ProoFr oF LEMMA 19.3. We prove part (b) first. By (29.9) and (29.14),
n1/2§;1/213
=n'2(1 D) (17 ZL 4 Zusck) > @ G) B3 A (b Sybo) ™ 1
= kT op( ))( nxk nxk) (&n, Gn) v 0( 0=V 0) +op(1)
_ 12, ~ =~ _ _ —-1/2
= (L + 0,(D) (0 Z} 1 Zuk)~* @y Gu)BS  AgLy b (b 2vrbo) ™
+0p(1)
—(Ii + 0, (D) Tu(LyobySrbo) > + 0,(1), (29.31)

where the second equality holds by Lemma 29.1 and the third equality holds by (29.12).

Because T L+ op(l))Tn = Tn +o,(D T,|?%, the result of part (b) follows.
Next, we prove part (a). We have

n 'Y (Gi—Ga)(Gi =G

i=1

n n n /
=n'3" (Gi —n! ZE@) (Gi —n! ZEGK>
i=1 =1 =1

. n . n !
- <Gn —n! ZEGi) (Gn —n! ZEGi)
i=1

i=1

n n
=n! Z(—Z,zgwn — ZiVyi+n7' Y ZgZéﬂ'n)
i=1

=1

n /
X (—Z,»Z,fw,, —ZVai+nt Zgzgw,,> +0,(1)
=1

n n
=~ Y ZVa(ZiVa) + 207 Y (ZiZjma) (ZiVa)
i=1 =1

n n /
- 2<n—1 Z Zzzgwn> <n—1 Z Z,-Vy)
=1 =1
+ () +0p(1)
=n"'Z)  Zuxk 03 + En(m0) + 0p(1), (29.32)

where the first equality holds by algebra, the second equality holds by Lemma 29.2(e),
Gi=—2;Y5, Y2i = Z;m, + V2, and so0 Yy; — EY»; = 13;, the third equality holds by multi-
plying out the terms on the lhs of the third equality and using the definition of ¢, () in
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(19.15), the first summand on the lhs of the fourth equality equals the first summand on
the rhs of the fourth equality plus 0,(1) by the same argument as for Lemma 29.2(d)
with V2 in place of u? and o3 := EV;} in place of Eu?, the second summand on the
lhs of the fourth equality is 0, (1) because it has mean zero and its elements have vari-
ances that are bounded by 406312 3" | Z;||® sup ;7 |||, which is o(1) by Assumption
HLIV(c)-(d), and the third summand on the lhs of the fourth equality is 0, (1) because
n~ 130\ ZZ,m, = O(1) by Assumption HLIV(c) and (d) and n=! 3°}_, Z;V5; = 0,,(1) by
the argument following (29.23).
Combining (29.9), (29.13), (29.32) and the definition of I7Dn in (19.14), we obtain

Vpn =n~" ZZ,'Z;-(O‘ZZ - (bf)zvz)z(bf)ZVbo)_l) + {n(mn) + 0, (1)
im1

=KzLy+ () + 0p(1), (29.33)

where the second equality holds by Lemma 29.3(c) and Assumption HLIV(c).
Next, we have

124

1/2
n1/2( 1Z/><an><k) D, L/

_ — ~ A 2
=n"2(n71Z), Zuek) @ GBI ALYE + 0,(1)

_ -1/2
=112, Zui)

(&, G)B3;  AgLy > + 0,(1) = =T+ 0,(1),  (29.34)
where the first equality holds by (29.14), the second equality holds by Lemma 29.1, and
the third equality holds by (29.12).

Using (29.33), we obtain

S5—=1/21 — —-1/2 N
nl/ZVD”/ D, = [KZLV(l) + &n(mn) + Op(l)] / nl/an

125 o —1/2

— —[KzLyb + ta(mn) + 0,(D]) (07 2Ly Zok) P Tl

~1/2

+o,(1)

—[KzLyy + &a(mn) + 0p (D] K TouLyg* (14 0,(1)) + 0,(1), (29.35)

where the second equality holds using (29.34) and Assumption HLIV(c), the third equal-
ity holds by Assumption HLIV(c) and some calculations. Using this, we obtain

rky, = nD/ V D

= T, K2 [KzLyb + Lu(mn) + 0p (D] K Tl (14 0p(1) + 0,(1)

V2 4 0,(D] 7 Ta(14 0p(1) +0p(1), (29.36)

= Tn [Ik + LVOKgl/zgn(ﬂ'n)Kg

where the last equality holds by some algebra. This proves part (a) of the lemma.
Part (c) of the lemma follows from Lemma 29.3(a) and (b) by substituting in ¢? =
620'12 u
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ProoFr oF LEMMA 29.3. Part (a) holds by the following calculations:

-1
2
o o110 6
Lyg:= (90,1)< rop b 2) ( 0)
po1on o5 1

1 o2 —paron\ [ 6y
= ————-(0p, 1) 2
0'120'22(1 — pz) —poion 0'12 1

_ 0'12 —20ppoioy + 0%0'22

(29.37)
aioy(1-p?)
We have Ly > 0 because 3y is pd by Assumption HLIV(b) and (6, 1) # 0,.
Part (b) holds by the first of the following two calculations:
2
b62yb0 = (1, —0p) < 71 p0-120-2> (—10 ) = 0'12 —26ppoion + 0(2)0'22 and
po102 ) 0 (29.38)

bySy2 = (1, —09) (pa102, 03) = poyoy — By

Using (29.38), we obtain

2 e \2( 1 (po102 — 6003)°
oy — (by2v2)" (by3vbo) =05 —

0'12 —20ppoioy + 050’22

2
0'120'22 — 200p0'10'é5 + 9%0’3 - (p0'10'2 - 000'22)

0'12 —20ppoioy + 030’22

2 2 2
_ aio;y(1-p%) _ 71
=7 0 5 =Ly (29.39)
1 opo10) + 005

which proves part (c). O

30. PrRooOF OF THEOREM 18.1

In Sections 16 and 17, we establish Theorems 6.1 and 15.2 by first establishing Theo-
rem 16.1, which concerns non-SR versions of the AR, CQLR, and CQLRp tests and em-
ploys the parameter spaces Fag, F, and Fp , rather than 758, 758, and F5R. We prove
Theorem 18.1 here using the same two-step approach.

In the time series context, the non-SR version of the AR statistic is defined as in (9)
based on {f; — fAn ;i < n}, but with ﬁn defined in (18.3) and Assumption {2 below, rather
than in (8), and the critical value is Xi,l—a‘ The non-SR QLR time series test statistic and
conditional critical value are defined as in Section 5.1, but with I’/\n and ﬁn defined in
(18.3) and Assumption V below based on {f; — f,; ;i < n}, in place of 12, and ﬁn defined
in (19) and (8), respectively. The non-SR QLRp time series test statistic and conditional
critical value are defined as in Section 15, but with Izq and ﬁn defined in (18.3) and As-
sumption Vp below based on {(u] — #,) ® Z; : i < n}, rather than in (15.5) and (8), re-
spectively.
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For the (non-SR) AR, (non-SR) CQLR and (non-SR) CQLRp tests in the time series
context, we use the following parameter spaces. We define

FTS AR := {F {W;:i=---,0,1,...} are stationary and strong mixing under F with
strong mixing numbers {ar(m) : m > 1} that satisfy ar(m) < cm™¢,

Epgi =0% Epllgi|*™ < M, and Amin(2F) > 8} (30.1)

for some vy,6 >0,d > (2+ v)/y, and C, M < oo, where (2 is defined in (18.4). We de-
fine Frs and Frs p as F and Fp are defined in (16.1), respectively, but with Frs ag in
place of Far. For CSs, we use the corresponding parameter spaces Frs @ ar := {(F, 6p) :
F € Frs,ar(00), 0p € O}, Frs.0 :={(F, 0y) : F € Frs(by), 6 € O}, and Frs g, p :={(F, Op) :
F e fTS,p(Oo), 0y € @}, where ]:TS,AR(OO); Frs(6p), and ]:TS,P(OO) denote ]:TS,AR’ Frs, and
Frs,p, respectively, with their dependence on 6y made explicit.

For the (non-SR) CQLR test and CS in the time series context, we use the following
assumptions.

AssUMPTION V. V,,(60) — Vi, (6p) — , 0PTDEx+DK ynder (F, - n > 1) for any sequence
{Fy € Frs,p : n > 1} for which Vg, (6y) — V for some matrix V whose upper left k x k
submatrix (2 is pd.

AsSUMPTION V-CS. V,(80n) — Vi, (80n) — p 0PTVRXHDE ynder ((F,, 6g,) - n > 1} for
any sequence {(Fy, 6o,) € F1s,0,p : n > 1} for which Vf,(6o,) — V for some matrix V
whose upper left k x k submatrix  is pd.

For the (non-SR) CQLRp test and CS, we use Assumptions Vp and Vp-CS, which are
defined to be the same as Assumptions V and V-CS, respectively, but with Frs p and
]:TS,@,P in place of fTS and -FTS,@-

For the (non-SR) AR test and CS, we use Assumptions (2 and (2-CS, which are defined
as follows.

AssuMPTION 2. Q,(60) — 2F, ,(60) = , 5% under {F,, : n > 1} for any sequence {F, <
F1s.AR : n > 1} for which QF, ,(69) — (2 for some pd matrix () and rr, ,(6p) =r for all n
large, foranyrefl,..., k}.

Assumption (2-CS is the same as Assumption (2, but with 6y, and Frs ¢ ar in place
of 0o and -FTS,AR'

For the time series case, the asymptotic size and similarity results for the non-SR
tests and CSs are as follows.

THEOREM 30.1. Suppose the AR, CQLR, and CQLRp tests are defined as above, the param-
eter spaces for F are Fis ar, Frs, and Frs,p, respectively (defined in the paragraph con-
taining (30.1)), and the corresponding Assumption (2, V, or Vp holds for each test. Then
these tests have asymptotic sizes equal to their nominal size a € (0, 1) and are asymptot-
ically similar (in a uniform sense). Analogous results hold for the AR, CQLR, and CQLRp
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CSs for the parameter spaces F1s o Ar, F1s,0, and Frs @, p, respectively, provided the cor-
responding Assumption (2-CS, V-CS, or Vp-CS holds for each CS, rather than Assumption
0,V,orVp.

The proof of Theorem 18.1 uses Theorem 30.1 and the following lemma.

LEMMA 30.2. Suppose{X;:i=---,0,1,...}isastrictly stationary sequence of mean zero,
square integrable, strong mixing random variables. Then Var(X,) =0 for any n > 1 im-
plies that X; =0 a.s., where X, :==n"' Y"1, X;

ProoF oF THEOREM 18.1. The proof of Theorem 18.1 using Theorem 30.1 is essentially
the same as the proof (given in Section 17) of Theorems 6.1 and 15.2 using Theorem 16.1
and Lemma 17.1. Thus, we need an analogue of Lemma 17.1 to hold in the time series
case. The proof of Lemma 17.1 (given in Section 17) goes through in the time series case,
except for the following:

() in the proof of 7, < r (=rf,) a.s. Vn > 1 we replace the statement “for any con-
stant vector A € R* for which NQp A =0, we have X'g; = 0 a.s. [F,] and )\/ﬁn)\ =
n1 2721(/\/‘57,-)2 — (X2x)? =0 a.s. [F,]” by the statement “for any constant vector A €
R¥ for which A'Qp, A = 0, we have A'g; = 0 a.s. [F,] by Lemma 30.2 (with X; = \'g))
and in consequence A’ﬁnA =0 a.s. [F,] by Assumption SR-V(c), SR-V-CS(c), SR-Vp(c),
SR-Vp-CS(c), SR-£2(c), or SR-2-CS(c).”

(i) in the proof of 7, > r a.s. Vn > 1 we have 11, 1/2/1’ .Q nAfp, 11, 12 —p I, with Iy,
and Ap, replaced by IIyf, , and Af, ,, respectlvely, by Assumptlon SR-V(a) or SR-V-

CS(a), rather than by the definition of (2,, combined with a WLLN for i.i.d. random vari-
ables,

(iii) in (17.2), the second implication holds by Lemma 30.2 (with X; = A’g;) and the
fourth implication holds by Assumption SR-V(c), SR-V-CS(c), SR-Vp(c), SR-Vp-CS(c), SR-
(c), or SR-2-CS(c), and

(iv) the results of Lemmas 5.1 and 15.1, which are used in the proof of Lemma 17.1,
holds using the equivariance condition in Assumption SR-V(b), SR-V-CS(b), SR-Vp (b),
SR-Vp-CS(b), SR-02(b), or SR-2-CS(b).

Proor oF THEOREM 30.1. The proof is essentially the same as the proof of Theo-
rem 16.1 (given in Section 27) and the proofs of Lemma 16.4 and Proposition 16.5 (given
in Section 25 above and Section 17 in the SM of AG1, resp.) for the i.i.d. case, but with
some modifications. The modifications are the first, second, third, and fifth modifica-
tions stated in the proof of Theorem 7.1 in AG1, which is given in Section 20 in the
SM to AG1. Briefly, these modifications involve: (i) the definition of As g, (ii) justifying
the convergence in probability of 0, and the positive definiteness of its limit by As-
sumption V, V-CS, Vp, Vp-CS, 0, or 2-CS, rather than by the WLLN for i.i.d. random
variables, (iii) justifying the convergence in probability of E’n (= fjn(ﬂo)) by Assumption
V, V-CS, Vp, or Vp-CS, rather than by the WLLN for i.i.d. random variables, and (iv) us-
ing the WLLN and CLT for triangular arrays of strong mixing random vectors given in
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Lemma 20.1 in the SM of AG1, rather than the WLLN and CLT for i.i.d. random vectors.
For more details on the modifications, see Section 20 in the SM to AG1. These modifica-
tions affect the proof of Lemma 16.4. No modifications are needed elsewhere. O

PrROOF OF LEMMA 30.2. Suppose Var(X,) = 0. Then X, equals a constant a.s. Be-
cause EX, = 0, the constant equals zero. Thus, Y% ; X; = 0 a.s. By strict stationarity,
Yo Xitsn =0a.s.and 27:21 Xi+sn = 0a.s. forall integers s > 0. Taking differences yields
X14sn = X14nysn forall s > 0. That is, X| = X, forall s > 1.

Let A be any Borel set in R. By the strong mixing property, we have

&:=|P(X1€A,X14€ A) —P(X| € AP(X 144 € A)|

<ax(sn)—>0 ass— oo, (30.2)

where ay (m) denotes the strong mixing number of {X;:i=---,0, 1, ...} for time period
separations of size m > 1. We have

&=|P(X1€ A)—P(X; € A)*|=P(X1 € A)(1 - P(X; € A)), (30.3)

where the first equality holds because X = X, a.s. and by strict stationarity. Because
& — 0as s — oo by (30.2) and &5 does not depend on s by (30.3), we have & = 0. That is,
P(X; € A) equals zero or one (using (30.3)) for all Borel sets 4, and hence, X; equals a
constant a.s. Because EX; = 0, the constant equals zero. O

31. ProorF oF THEOREMS 9.1, 13.1, AND 9.2
31.1 Proofof Theorem 9.1

To prove Theorem 9.1, we use the same proof structure as for the full vector test. Like the
proof for the full vector test, the proof of Theorem 9.1 is based on a number of interme-
diate lemmas, propositions, and theorems. A key change is that the role of ExG; € R¥*P
in the full vector case is played by O}, (Ergig) /2 ErG; € Rk=9)%P in the subvector case,
where O € R, defined below, is such that Mg, o o) -1/2£,.G,, = OrOf- In this sense,
the role of k is replaced by k — b.

The proof of the full vector case is given for a general CQLR test that employs weight-
ing matrices W, and U, that satisfy a certain high level condition Assumption WU. In
particular, Wn and 17,1 converge to certain matrices Wr, and Uf,, respectively. We fol-
low that structure and prove the result of the theorem for a general CQLR test. How-
ever, for the subvector test, the weighting matrices W, and Wr, are set equal to the
identity matrix and, therefore, do not appear in the high level Assumption WUS, which
adapts Assumption WU from the full vector test. We verify Assumption WU® for the spe-
cific choice of weighting matrix U, employed in the subvector CQLR test (47), which is
17,1 = E}/z(eo, En), in Lemma 31.9 below.



Supplementary Material Identification and singularity robust inference 111
A general QLRyy; subvector test statistic is defined as
QLR{yy., :=ARS (80, Bn) — Amin(nésm ,), where
Obvu. = (3 2@ DaUs, 3, (ﬁ)gn(ﬁ))’ (31.1)
x Mg, ) (0 2 D@ U, B ()8 ()

for n := (0}, ﬁ;l)’, and U, := Ul(szn) is defined as in (16.4). Here, we keep the WU no-
tation from the full vector test, even though no W -type matrix affects the statistic. The
population counterpart U := Uy (Upf) of 0, , is defined asin (16.5). The general CQLR\SNU
test rejects the null hypothesis if

QLR > ¢k, p (20, > @)D () U, Tu(@), 1 — ), (31.2)

where ¢ (D, J, 1 — ) is defined in (48).”

The proof for the subvector test result is based on working out the asymptotic null
rejection probabilities along certain drifting sequences of parameters {/\S :n > 1} that
we introduce below (31.15). The notation involving A and 4 in (16.16) and (16 19) for the
full vector case has to be adapted to the subvector case. The argument 6 in the notation
for expressions for full vector inference is replaced throughout by the argument (6, 8*).
For example, in /\f, r = EFrGi, G; abbreviates G;(6y, 8*), rather than G;(6y) as in the full
vector case. In addition, relative to A, j for the full vector case, )\i , contains several ad-
ditional components, such as /\i 0,8, = ErGiosp forj=1,..., pand ’\iﬁjﬁ’,F :=ErGig,p
forj=1,...,b.

Construction of bases Of, and (N)Fn for the spaces spanned by the eigenvectors correspond-
ing to the eigenvalue 1 of two projection matrices For a proj ection matrix, the eigenval-
ues are 0 or 1. When der1v1ng the asymptotlc distribution of Qn(()o, Bn) in (47), which is
part of the test statistic QLR (6o, Bn), it is helpful to factor M5 7, () into a product OF,, O’

where OF,, € Rk*(k=b) contains a basis for the space of eigenvectors spanned by the
eigenvalue 1 of the projection matrix My .. Given this factorization, we consider the

quantities (0/ / (M)gn(m), O’ D* »(n)), which puts us into the framework used in the
proof for the full vector test. Note that in general, eigenvectors are not continuous func-
tions of a matrix. However, in the case of a projection matrix, the eigenvalues are well
separated and eigenvectors that are continuous can be explicitly constructed.

We now outline this construction. First, given a sequence of nonstochastic matrices
{Jn € RK*P - p > 1} that satisfy J, — J with J of full column rank b, we construct matrices

70The reason (2, /2 is used in the definitions of QLR (6, B,) in (47) and QLR€VU’ ,» rather than 012 s
that we prove the subvector results using the proof of the full vector result with W, Wr,, and D, € Rk*p
replaced by Iy, I, and 0’ (0, % (89, Bn)Dn (80, Bn) € R&~D%P, respectively, where O/ € Rk=b)xk defined
below, is such that 5F,,0 7, = M7 008 FOT the full vector results, the difference between W, and WE, can
be handled easily because W,,WF; [N p I (asin (26.8)). But, in the subvector case, the same strategy cannot
be applied to 6;1/2(00, Bn) and (EF, g,-g;)‘l/z, because of the factor 55% that precedes 651/2(00, Bn) in the
definition of 55% ﬁ;l/ 2(90, En)ﬁn(eo, E,,), which is the subvector equivalent to 5n.
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0, and O € R**k=b) such that M;, = 0,0, M; = O0’, and O, — O. To do so, note first
that for any O’ € R*~ >k having rows that contain an orthonormal basis of eigenvec-
tors of the eigenvalue 1, we have M; = OO'. A basis of eigenvectors of the eigenvalue
0 is given by the columns of J. Therefore, the space of eigenvectors corresponding to
the eigenvalue 1 is given by span(J)*, the orthogonal complement of span(J). We have
span(J)t = N(J").

There are T := (’;) different sets of b rows from the set of k rows of J € R**?. Given
that J has full column rank, there is at least one choice of b rows of J that form a basis of
R’ For notational simplicity, assume that the first 5 columns of J’ form a basis of R.7!
Decompose J' = (J1,J}) with J| € R®*® and J, = (ji, ..., jk—p) € R”X(k‘b) js € R for
s=1,..., k—b.Itfollows that aba51s of N(J') is given by the vectors (—j;J 1 ,ep) € Rk for

s=1,..., k — b, where e; denotes the sth coordinate vector in R¥~?. This holds because
J <_(J1_1)/js) = (/1.73) <_(J1_1)/js) =0’ fors=1,...,k—b. (31.3)
e Cs
Let Q' € Rk—P)*k be a matrix whose sth row is given by
(=it e) (31.4)
fors=1,...,k —b.Define
=ouy =(00) 0. (31.5)

The matrix OO’ is symmetric and idempotent, and hence, is a projection matrix. Since
the rows of Q' are orthogonal to the rows of J/, OO’ projects onto the space orthogonal
to the columns of J. That is, OO’ = M;. When we want to emphasize which choice of
the t=1,..., T sets of b columns from the set of k£ columns of J’ is used in the above
construction of O’ = O(J)’ we add an additional subindex and write

=0;(J) (31.6)

instead.
Use analogous notation for J, = (J;,7,5), /1, = (1, -+ jutk—p)), the matrix Q;, €
RK=b1xk whose sth row is given by (—j,J. !, €}), and O, = O(J,)" = (Q,0n)~"/2Q,,.

Then 0,0, = M;,, OO' = My, and O,, — O’ as desired, where the convergence follows
directly from J,, — J. Again, when we want to emphasize which set of b columns of J}, is
used in the construction, we write

0, =0,(J,) (31.7)

instead.
Under sequences {/\fl n€ AS :n > 1} (defined below), this construction is applied to

—-1/2
Jn = (EF,8i8;) / EFr,Gig (31.8)

711f that is not the case and the first b columns do not form a basis, simply adapt the notation in what
follows so that the b columns of J’ that are referred to, do indeed form a basis of R”.
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and the matrix O, just constructed also is sometimes denoted by Of,. Under the se-
quence {)\ﬁ’h € A% :n > 1}, it follows that J,, converges to the matrix J;, := (hs ¢)~1/2hy g
defined below.

Asin (31.5), for given F € FS,

Oy =0y, =O0((Ergig) " *ErGip) (31.9)

denotes a basis of the space of eigenvectors for the eigenvalue 1 for M Ergig)~"2ErGig
using the construction outlined above for any choice r =1, ..., T of any b columns of
((Ergig)~Y?ErGg) that form a basis of R.

Under sequences {)\i € AS :n > 1}, Lemma 31.5 below implies that f,,(eo, En) -
J, € Rkxb converges in probability to zero and J, = (Eanig;)‘l/ZEpnGiB — Jy =
(hs,¢)~'/2hy g. In addition, J, has full column rank b for all n sufficiently large, under
the restrictions in F5. Therefore, JN,,(OO, En) has full column rank b wp — 1. For any b
columns indexed by t = 1,..., T of J; that form a basis of R’ and apply the above con-
struction with this choice of columns to both J,,(6y, 8,)" and J}, to obtain

O =O0(Tu(80, Bn)) € R&Pk and 0} =00, (31.10)

using the notation in (31.5). Given that JN,,(OO, En) —Jp—=p 0kxb it follows that 5%" —
0. — O(k—b)xk
F, P .

Definition of{)\ﬁ n € AS :n>1} As described above, each ¢ = 1,..., T indexes a set
of b columns of ((Engg;)_l/ZEFG,‘B)/. Forany ¢t =1,..., T for which the b columns of
((Engg;.)‘l/ 2EFG,-B)’ form a basis of R?, consider a singular value decomposition of
O}t(Engg;)‘l/z(EFGi)UF e Rk=b)xp_More precisely, let Br = Br; denote a p x p or-
thogonal matrix of eigenvectors of

“12 “12
Up(ErGi) (EFgig;) / Or:Or,(Ergig;) PErG,Ur (31.11)

ordered so that the corresponding eigenvalues (k1fy, ..., kpF,) are nonincreasing. Let
Cr = Cpy denote a (k — b) x (k — b) orthogonal matrix of eigenvectors of

—-1/2 -1/2
Oy (Ergigl) " (ErGnUFU(ErGy) (Ergig)) ™ Or. (31.12)
The corresponding eigenvalues are (kigy, ..., Kk_pFz)-
Let (T1F¢s -+ » Tmin{k—b, p)F¢) denote the min{k — b, p} singular values of
/ o\ 1/2 )
w(Ergig))” ' “(ErG)Up, (31.13)

which are nonnegative and ordered so that 7, is nonincreasing in j. For all other # =
1,..., T (for which the b columns of ((Epg,-g;)*l/zEFGiﬁ)’ indexed by ¢ do not form a
basis of R?), define (7if;, -++» Tmin{k—b, pjFt) 10 be a vector of minus ones and Br, and
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Cr; to be identity matrices in RP*? and R*~0x(k=b) ' respectively. (This definition is
arbitrary and could be replaced by other choices.)
Define the elements of AS to be

A} p = (T1FLs - Tmin(k—b, p)F1> - - > TIFT - - Tmin{k—b, p)FT)
¢ RTminlk=b.p)
A3 p = (Br1, ..., Bpr) € RPXTP,
M = (Cr1, ..., Cpr) € RE=DXTh=b),
X} pi=ErGi e R,
/\4S,ﬁ’F =ErGjge Rk*P,
)‘ie,-ﬁ,F '=ErGigp € Rt forj=1,..., p,

A3 ppr = ErGigip e ROV forj=1,....b,

N —E 8i 8i R(P+Dkx(p+Dk
5.F F (Vec(G,-)> (Vec(G,-) € ’

X g, ri=ErGiggi e RF forj=1,....b,

(31.14)

Ag,lj,F =Ergigij&; € Rk forj=1,...,k,

s .
Ao = (A6, 1F15 - - -5 A6, (min{k—b, p)—1)F15 - =+ » A6, IFT> - - - » A6, (min{k—b, p}—)FT)’
. (TZFl Tmin{k—b, p}F1 TOFT Tmin{k—b, p}FT )’
T1F1 T(min{k—b, p}—1)F1 TIFT T(min{k—b, p}—1)FT

€ [0, 1) (mintk—b.p}=1)
)\g’F = Uy,
’\g,F =F,
/\fO’F := Varp(g;, vec(G;)', vec(g,-g})/, vec(GB,-)/)/,

A =g i= (A o os A p)s

where 0/0 := 0 for the components of Ag  and A% is the vector that collects all the above
terms in one vector. As mentioned above, there is no weighting matrix W, for the sub-
vector test and therefore, no )\‘79 F component appears. For j =1, ..., b, we denote the jth

€ RF*P by A3 € R, Let

N
column of A 4B F

4.B.F

AS:={)\ISP:FG}'S}, and
S 1/2,8 S S S S S S BL.15)
hn()‘ ) = (” / M ps Ay g A3 s Ag o -5 Ag s AS,F”\l(),F)'
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Let {)\i n€ AS :n > 1} denote a sequence {)\;3; € AS : n > 1} for which hn()\ﬁ) —heH,
for H asin (16.2).7> Denote by h4 g, ha,0.8) ha,p;p, hs5,Ggr and hs G, the limits of /\iB’Fn’
Ay 0,6,y Ai:BjB,Fn’ /\g,Gan, and AS ;. under the sequence (A3 , : n > 1}, respectively, and
analogously for other expressions, where by A3, and A3 ;» we denote the lower left
and lower right submatrices of /\L;  of dimensions RPkxk and RPkxPk,

Consider a sequence {)\i p -1 > 1} and let the distributions {F, : n > 1} corre-
spond to {Ai,h :n > 1} Beca’use under {Afz,h n > 1}, (Eanig;)‘l/zEFnGiB converges
to a full column rank matrix, there exists a smallest index * € {1,..., T} such that
for all n sufficiently large the b columns of ((Er,gig})~'/?EF,Gig)’ indexed by r* form
a basis of R, and by definition of {)\ih tn > 1), nV2 (g Tmingk—b, p)Fart) —

(A1,1¢%5 s A1 mink—b, pjr<)- Note that #* depends on the sequence {)\ﬁ n € AS :n>1}). We

S
1,F’

(31.14) because this ensures the convergence of nl/2z F,t*» BE,r, and Cr s for the value
t* just defined.

In what follows, with slight abuse of notation, we leave out the index ¢* from the
notation.

Asin (16.22), let qS = qi (e {0, ..., min{k — b, p}}) be such that

include 7z, B, and Cp; for all t = 1,..., T in the definition of A} ,, A3 ;, and A3 ; in

hj=oco forl<j<gq, and hj;<oco forg;+1<j<min{k—b,p}, (31.16)

where hy j :=limn'/27;p, > 0for j=1,..., min{k — b, p}.
Define ]-"&,U as Fwu in (16.12) with F replaced by F5 and W replaced by I. Define

Ay as Awy in (16.17) with Fyy replaced by Fiyy.

AssUMPTION WUS FOR THE PARAMETER SPACE AS C A{yy. Under all subsequences {w),)
and all sequences {Ai}mh :n> 1} with /\i)mh € AS,
@ U, —p hg (=1limUsp, ) and

(b) Ui() is a continuous function at hg on some set U, that contains {)\g’F(: Usp): \S e
A;S} and contains Uy, wp — 1.

As in (16.23), let (and recall again that we leave out the index #* from the notation)

Sy :=Diag{(n'?r15,) ..., (n'/?r “'1,...,1}eRP? and
n g{(n'*71r,) (n*74sp,) } -
T, =B, S, € RP*P.

The random function CLRy, p(D,J) in (48) that generates the conditional critical
value of the CLR subvector test can be expressed as follows. Suppose M; = O0’, for O

7?Regarding the notation, it would be more consistent to put a superscript S on all of the expressions
involving i. However, this would introduce too much clutter, so we do not do so.
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defined in (31.5). Then we can write

CLRk, (D, J) := Z'M;Z — Amin((Z, D) M;(Z, D))
= (0'2)0'Z — \uin((0'Z,0'D)'(0'Z, 0'D))
= Z'Z - Ain((Z, 0'D) (Z,0'D)),
~ CLRy_p, ,(O'D, 0%*=0>%) = CLR;_,, ,(O'D), (31.18)

where Z ~ N(0K, 1), Z :=O0'Z ~ N(0OK= I, _}), “~” denotes “has the same distribution
as,” and CLR,_j, ,(O'D) is the expression from the full vector test defined in (24).

We now state the intermediate lemmas, propositions, and theorems upon which the
proof of Theorem 9.1 is based. Using them, the proof of Theorem 9.1 follows the same
lines as the proof of Theorem 16.1 for the full vector case.

By Lemma 16.2, the 1 — & quantile ¢;_p, ,(O'D, 1 — &) of CLR,_;, ,(O'D) depends on
O’'D only through the singular values of O’D. By (31.18), that immediately implies the
following analogue to Lemma 16.2.

LeMmMA 31.1. Let D and J be k x p and k x b matrices, respectively, where J has full col-
umn rank b. Let CY B’ denote a singular value decomposition of O'D € Rk=)*P where
Y contains the singular values in nonincreasing order and O’ = O(J)' is defined in (31.5).
Then cy,,(D,J, 1 — a) depends on D and J only through Y and

ck p(D, T, 1 —a) =cp_p p (Y, 087001 o) =¢; 4 (Y, 1—a).

Just like the full vector test in Lemma 5.1, the subvector CQLR test is invariant to
nonsingular transformations of the moment functions. We suppress the dependence on
0o of the statistics in the following lemma.

LemwmaA 31.2. Given the preliminary estimator En of B%, the statistics ARﬁ(En), QLRﬁ(En),

n

B\n, Ck,p(nl/zb\;t(ﬁn)a zz(ﬁn), 1-a), D\Z/(B\n)Mﬂl(ﬁn)BZ(ﬁn)) gn(ﬁn)/ﬁrjl/z(ﬁn)an(En) X
ﬁ;(ﬁn), fn(ﬁn), and En(ﬁn) are invariant to the transformation (g;(B),Gi(B)) ~
(Mgi(B), MG(B)) Vi < n for any k x k nonsingular matrix M. This transformation in-
duces the following transformations: 2u(Bn) ~ MZn(Bn), én(ﬁn) ~ M&,,(En),
Gpn(Bn) ~ MGpa(Bn), Tjn(Bn) ~ MTjn(Ba)M' ¥j = p, Du(Bn) ~> MDy(Bn), Qu(Br) ~
MOu(BIM', D(Bn) ~» MQu(Bi)M', Va(Bn) ~ (p1 ® M)Va(Bu) x (Ips1 ® M), and
Rn(Bn) ~ (Ip+1 ®M)Rn(Bn)(Ip+1 QM.

The proof of the lemma is straightforward for all quantities except ¢, ,(n!/ 2D*(Bw),
J2(Bn), 1 — ). Using Lemma 31.1, this quantity depends on n'/2D*(8,,) and J,,(B,) only
through the nonzero singular values of O(fn( En))’nl/ 25;;( En), which equal the square
roots of the nonzero eigenvalues of n'/2D*(B,,)’M 7 En)”l/ 2D*(Bn). But, the latter quan-
tity is invariant to the transformation (g;(8), Gi(B)) ~ (Mgi(B), MG;(B)).
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The derivation in (31.18) immediately implies an analogue of the result in
Lemma 27.2. Let ¢x_p p 4(75,, 1 — @) denote the 1 — a quantile of

ACLRk—b,p,q(Tgo) = Z/Z — /\min((Y(Tgo): 72)/(Y(Tgo), 72)), where

Z:= <%1> ~N(0*°,I;_,) forZ;eR?and Z, e RF-074,
2

¢ . (.C c ! min{k—b, p}—q
Too = (T(q+1)oo’ e 1-min{k—b,p}oo) €R ’

Diag{ ¢
V()= <0(k—b—gp{) fp}—m) € RUbm(p=®) ifk—b>p, and

(31.19)

Y(75,) := (Diag{rS ), O(k*b*q)x(p*k*b))
e Rk=b=x(P=0) iff _p < p.

Lemwma 31.3. Suppose {(D¢, J5) : n > 1} is a sequence of constant (i.e., nonrandom) k x
p and k x b matrices, respectively, such that Oy Dy, (for O,Oy/ = M;c and Oy, defined in
(31.5)) has singular values {’ch-n > 0:j <min{k — b, p}} for n > 1 that satisfy (i) {ch.n >0:
Jj <min{k — b, p}} are nonincreasing in j for n > 1, (ii) TJ‘fn — oo for j < g for some( < g <
min{k — b, p} and (iii) Tj‘.'n — Tj‘foo <ooforj=q+1,...,min{k — b, p}. Then

ck,p(D, T 1 — ) = ck_p p.g(5, 1 — ).

n>vn’

The next lemma is a restatement of Lemma 27.3 with & replaced by k — b.

LeMmwmA 31.4. For all admissible integers (k — b, p,q) (i.e, k—b>1,p>1,and0<qg <
min{k — b, p}) and all min{k — b, p} — q (= 0) vectors 75, with nonnegative elements in
nonincreasing order, the df of ACLR_,  o(75,) := Z'7 = Anin(Y(7), Z2) (Y (7%.), Z2))
is continuous and strictly increasing at its 1 — a quantile cx_p, p (75,1 — @) forall a €
(0,1), where Z := (Z, Z5)' ~ N(Ok=0,I;,_}) for Z, € RY and Z, € R*"~4 and ¢, and
Y (&) are defined in (31.19).

The next lemma is an important ingredient in the proof of Theorem 9.1 because it
provides the asymptotic distributions of key quantities. It is the analogue and extension
of Lemma 16.4 for the subvector test. We now introduce some notation that is used in
the lemma.

By the Lyapunov CLT, under sequences {)\i’ n€ AS :n > 1}, we have

~12 vee(Gj)
" ; vec(gig; — 2n)

vec(Gg; — EnGg;)
_ . (31.20)
—q Ly ~N(0%, hyg), where
L= () Lo Ly L) forg, e RS, Ly e R, Ly 5e R¥,Lj4e R,

G = Vec;,lp(zh) € Rkxp,
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d* = k + kp + k? + kb, and the function Vec,:1 (+) is the inverse of the vec(-) function
for k x p matrices. (Thus, the domain of vec, ( -) consists of kp-vectors and its range
consists of k x p matrices.) As defined in (31.20), gy, is the same as in (16.21) for the full
vector case.

The asymptotic distributions of (i) n'/2(B, — B%), (i) n'/2g.(By), (iii) n/2 x
vec(Dy(Bn) — Dn), where Dy := E,Gi, () n'/2(2,(Bn) — @), and (v) n'/2(Gigyn(Bn) —
E,Gig,) are given by

) —1 2 1 —1/2 —-1,,-1/2 -1/2—

S —1/2—
(i) gy: _th o 1/2h4,,3h5,g gn>

(iii) VCC(Eh) := (vec(Gp) — h5,Ggh5_}g§h) +vec(hy,0,8Bn> - - » ha,0,8B1)
- hs,Gghg,lgM,ﬁﬁh,

(iv) 32 :=(%....% ), and (31.21)

V) Eh = (5271, . -,Ei,b) where
%y ;= Lins = hs3jh5 g8
+ [Urs,p1js o hs gy, ) + ((hs, gy - (s g,)) = his 3.3 ha ] B
forj=1,...,k,

Ei,j = Zj,h,4 — hS,thf,_,lggh + (h473jﬁ — hsﬁjh;,lgh;;’ﬁ)ﬁh forj=1,...,b,

Ljn3,LjnaeRF denote the (j — Dk +1,..., jk components of L, 3 and Ly, 4, respec-
tively, and (ks g,); € R¥ denotes the jth colgmn of (hs g,) € RF** fors=1,...,b.731f
no preliminary estimator appears, that is, 8, = B;, then the quantities in (31.21) re-
duce to those in the full vector case. In particular, Eh = 0°, gi =gy, and vec(ﬁi) =
vec(Gy) — h5,Ggh5_71g§h =vec(Dy,).

Consider the function that maps vec(¢) onto vec(¢~'/?), where ¢ € R**K is pos-
itive definite. Let ¢, € R¥*xk* denote the matrix of partial derivatives of that map-
ping evaluated at vec(hs ). Consider the function that maps vec(J) for J € Rk*P onto
vee((—j1(D~L e, ..., (—jék_b)(Jl)*l, ¢,_,)) € RK:=b) as defined in (31.4) and (31.5).
Denote by B), € RK(k=b)xkb the matrix of partial derivatives of that mapping evaluated at
Vec(h_1/2h4 B)-

The asymptotic distributions of (vi) n/2(," 2(3 )y — ;Y% wii) n
(Tn(Bn) — Q5P EnG i), i) n'/2(0, — Oy), (ix) n'/2(0,02 1/2(,8,,)D (Bn)—0,0,'°D)y),

12

73See (31.45)—(31.46) for (i), (31.48) for (ii), (31.52) for (iii), (31.54) for (iv), and (31.55) for (v).



Supplementary Material Identification and singularity robust inference 119

%) nl/zO’ 0 2 (Bu)Du(Bn) x UpByS, are given by

(vi) Vec,:,lk (en Vec(%i)) ,

(vii) Ei = ho 1/292 +vec, k(qohvec(%h))}u B

wiid)  vecy ), (Buvec(@y)),
(ix) xn :zvec]:’lk_b(ﬁhvec( i)) h—l/zh4

- o (31.22)
+0O(hs 1/2h4,ﬁ) vec (@ vee(52;)) ha

+0(h /*ha.p) b5 /* D,
- — —S
) By = (B g5: B pgs)s  Where Ry s i=hy 5 € RETDXT

Ah ,P— qS = h3h S +Xhh81h2,p_qs € R(k—b)X(p—qS),

1,p—q

andh{ s € R(k=b)x(p=¢*) is defined as in (16.24) with k — b and ¢° in place of k and g,

respectively.”*

LEMMA 31.5. Suppose Assumptions gB and WU hold for some nonempty parameter
space A3 C Ajyy. Under all sequences (A3 , € AS :n > 1},
(@ n'2(Bu—B) = Bn
= o~ -172
() Ju(Bn) —p hS,g h4,p,
(c)

gn(oo»ﬁn gi

1/2 Dn(OOaBn)_EFG Ny D,
0(003611) Eanlgl Qi ’
Gpn(60, Bn) — EF,Gig [

where (B, 52, 7, 07) and g5 are independent,
(d) for 5/Fn defined in (31.10),

200 (3" (00, Ba)Du( 00, Br)UE, T 4 & € RED*P,

where (B),, 52, 7, 0% Zi) and g, are independent, and

(e) under all subsequences {w,} and all sequences {A,,, j : n > 1} with Ay, ) € Af , the
convergence results in parts (a)-(d) hold with n replaced with w,,.

74See (31.56) for (vi), (31.57) for (vii), (31.59) for (viii), (31.64) for (ix), and (31.60), (31.61), and (31.65) for
(x). Recall again that we leave out a subindex #* from certain expressions.
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Lemma 31.5 is proved in Section 31.2 below. Note that in order to obtain consis-
tency of the first step estimator 3, we only need to impose the conditions in ng,l'
In particular, for consistency of 3, the variance matrix 2, is allowed to be rank de-
ficient. Lemma 31.5(b) and (c) implies Theorem 9.1 for the subvector AR test. This holds
because ARS > (6o, Bn) is a quadratic form in My (60 Bn ) (00, ,Bn)nl/zgn(eo, B,) which

hslg g, Because h h4 ,p has full column rank

converges in distribution to M, 12 ha,
5.8

b, the desired result follows.

An analogue of Proposition 16.5 holds where W, Wr,, and D, € Rk*P are replaced
by Iy, I, and 5/ 2280, Br)Dn (60, Br) € Rk=D*P | respectively. In particular, ® Kjn is
defined as the jth eigenvalue of

n(Of, > (60, B)Du(80, Bn)Un) O, 3" (60, Bu)D(60, Bu) Un. (31.23)

Recall the following notation as for the full vector test, Br, = (Bg, ,s,Bp, ,—45), CF, =
(Cr,.q5 CFp k—b—g5) with BF”’qs € RPXqS’ Br, p—gs € Rpx(p—qs), Cr,.q5 € R(k_b)xqs, and
Cr, k—b—qs € Rk=b)x(k=b=4¢*) and corresponding decompositions for the limiting matri-
ces hy = (hz’qs, hz’p,qs) and h3 = (h3’qs, h3,k7b7qs)' Recall that we leave out a subindex
t* from certain expressions.

PROPOSITION 31.6. Suppose Assumption WUS holds for some nonempty parameter
space AS C Af,VU. Under all sequences {)\i :n > 1) with A3 mh € AS,

(@) Kjn—>pooforall j< qS,

(b) (’E(qs +1)n’ ..., Kpn)' converges in distribution to the (ordered) p — qS vector of the

) S S
(p—q°)x(p—q°)
3,k—b— Ah,p—qs €R ’

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-
ma 31.5, and

ezgenvaluesofAhp @SN3 k—p—gs

(d) under all subsequences {w,} and all sequences {)\fv pin= 1} with Afvn n € Af , the
results in parts (a)-(c) hold with n replaced with w,,.

An analogue of Theorem 16.6 holds for QLR;QNUM =ARS (6, By) — /\min(n’Q\évU,n), de-
fined in (31.1). For 7 := (6, En), wp — 1, we can write

O%vu.n = (0 3, > @) Du(@) Uy, Of, B @)En(W))

x (O, 33" *(@ D) Un, O, O @)En (D)) (31.24)
by again replacing 1717,,, W, ﬁ;”zgn, and 5n € Rkxp by Iy, I, 5},’16;1/2(?})3\”(?}‘), and
O, (60, Bn)~Y2D, (60, Bn) € Rk=2)%P respectively. This implies that the role of k is
played by £ — b. Note that by Lemma 31.5(b) and (c) and (31.59) below, which implies
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O, = O0(Ju(60, Bn)) = O(h3 >y g)', we have

205, 0,2 8a (@) —~a O3, *ha p) 38}
- 0(h‘1/2h4 g)'M W, hsi,zgh
= O(h5 *hap) hs P8y ~ N(05P, Ip),  (31.25)

1/2—

usmggh = hY 1/2 th gy 00" = M 1/2 ,andO/Ozlk_b.

Sgh

THEOREM 31.7. Suppose Assumption WUS holds for some nonempty parameter space
AS € Ay Under all sequences {AS , :n> 1} with A3 , € AS,

— 5
QLR{yy., —a lln — Amin (A%, p—g5> lh)/h3,k—b—q5h/3,k_b_qs (A, p—gs>1n)), where

Iy = O(h3 *hap)'h5 8,

Ki, p—gs 1S defined in (31.22), and the convergence holds jointly with the convergence in
Lemma 31.5 and Proposition 31.6. When q° = p (which can only hold ifk —b > p because

. ) . .. . ..
qS <min{k — b, p}), Ah,p_qs does not appear in the limit random variable and the limit
random variable reduces to

lyha, ph'y )ln~ x
When q° = k — b (which can only hold ifk — b < p), the Ayin(+) expression does not appear
in the limit random variable and the limit random variable reduces to

Ly~ X3, (31.26)

When k —b < p and ¢5 < k — b, the Apin(-) expression equals zero and the limit ran-
dom variable reduces to the one in (31.26). Under all subsequences {w,} and all sequences
{Aﬁ}n L in =1} with )\in , € AS, the same results hold with n replaced with wy.

The following lemma, which the proof of Theorem 31.7 relies on, adapts Lemma 26.1
from the full vector test and Lemma 17.1 in AG1. Define

Y, qs 04 x(P=4")
Y, = | or-axd’ Yoo | €RED*P ifk—b>p, and
O(k—b—p)xqs O(k—b—P)X(P_qS)
- ' ' 31.27
Vg  00xkbod) o rtx (kb o
Yo o= _O(kfbqu)xqs Yn,kfbqu 0(k—b=4%)x(p—(k—b))

e Rk=D>xp iff — b < p,
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asin (25.2), butwith 715, /+, ..., 7pF,~ and ¢% in placeof 7if,, ..., 7,F, and g, respectively.
Define

~ ~ 1 2 —1 2~

Dy == (O, 05" (80, Bu)Du (80, Br), Op;, 2 /?8y) € RE-D*(P D),

n

1
[ ?n 0P } c R(PHDX(pH1)
0*>p 1 ’

n:

(
77 x1
O+ .= [ Up 0P } c R(PHDX(pH1) Ut —
. | ,

1 1
hsi 0P } c RPHUX(p+D)  pt [ By, 07% } ¢ RIPHDX(p+D)
1 b b

lep 1

BT ..Bt ) fOI‘B+ eR(P+1)><L] andB+ GR(p+1)X(p+1 7 ) (31.28)
n,q5> “n,p+1—¢5 . pt1—gS

D+ — ( W, )Q_l/an,Ok) eR(k b)x(lH-l) Y,j' . (Yn,Ok_b) eR(k_b)X(pﬂ),

S, :=Diag{(n 27 )_1,...,(nl/ZquFn)_l,l,...,l}

|: ; :| e R(p+Dx(p+1)
0P ’

with J,, defined in (31.8). Let
K}, denote the jth eigenvalue of nU'DYDYUF, Vi=1,...,p+1, (31.29)
ordered to be nonincreasing in ;.

LEMMA 31.8. Suppose Assumption WUS holds for some nonempty parameter space AS c
Afyy. Under all sequences {AS , :n > 1} with A5 , € AS for which ¢35 satisfies ¢5 > 1,

we have (a) 75;:1 —pooforj=1,...,q° and (b) ’rE;rn = 0,((n"?1y,)?) for all ¢ < ¢° and
j=q¢%+1,..., p+ 1. Under all subsequences {w,} and all sequences {)\ﬁ)n p o> 1} with

/\S € A3, the same result holds with n replaced with wy,.

The proof of Lemma 17.1, with analogous modifications that were made in order to
prove Lemma 26.1, applies to prove Lemma 31.8. For example, the equivalent of (17.3)
of AGlis

71, DI U B =7, DFUSBY + (n n'21,5,) " n"/*(D) - D} )U B
=14 (0Un)' 2> DyUuBy, 0570) + 0, ((n! Prr) )
=7, 5 CY, 4+ 0p((n' Prnr) )
he . Orfx(p+17rf) (31.30)

6
Ul ,  where

-, h
p"3 O(k —b—ry)xry O(k—b—rf)x(p-i-l—rf)

<O
=1

hg,rf = Diag{l, h6’1, h6’1h6,2, ey l_[ h@g
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and the second equality uses nl/z(ﬁj — D;f) = 0,(1), which holds by (31.62) below and
Lemma 31.5(b). Note that here, unlike in the fourth line of (17.3) of AG1, no 0,(1) term
arises. Also recall again that we leave out the subindex * from the notation, for example,
inhgjforj=1,...,r7 — 1

As mentioned above, the proof of Theorem 9.1 now follows the same lines as the
proof of Theorem 16.1 for the full vector case. The roles of k, h;lg/ zgh, n'2W,D,U,, and

Z/h,p_qh&k_qhg e th = in the proof of Theorem 16.1 are played by k — b, I;, (defined in
Theorem 31.7), n'/20}, 0"/ (89, Bn) x Du(80, Bn)Un, and Ahp I3 ebogsHy s >

=S
Aj, p—gs» Tespectively. By Lemma 31.1, the almost sure representation argument used in
the proof of the full vector result, and Lemma 31.3, we have

¢k, p (245,260, Ba)Dn(80, Ba) Uns (80, B), 1 = )
= Ck—b,p(?ny O(k—b)x()’ 1- a)
=k, p(Yn, 1 - @)
)
= kb p.gs (M 4 gsBhpgs> 1 — ), (31.31)

—1/2

where Y denotes the matrix of singular values ofnl/zO’ (6o, Bn)Dn(Og, B,,)Un, de-

fined asin (27.8), Cr—b, p,q5 > 1 —«) is defined in (31.19) (and Ck—b, p, qs(h3 b quh P—g5>
1 — ) uses the notation in (27.12)), and the convergence in (31.31) is joint with the con-
vergence in Theorem 31.7.

To conclude the proof of Theorem 9.1, we state the equivalent of Lemma 27.4 for
the subvector case, which verifies that Assumption WUS holds when ﬁn is defined
as L%, where L, := (69, 1,)(35(60, Bn))~"'(60,1,) € RP*P is defined in (47). Further-
more, the following lemma shows that FS = 58 where FS is defined in (53) and
]-'\fVU is defined just below (31.16). Recall the definition X, (2, Rr) := tr(R}(F_le)/k
for the (j, £)-th component of 3, where Qf := Erg;g;, Vr := Er(f; — Erfi)(fi — Erfi) €
R(P+Dkx(p+Dk Ry .— (B' @ I} )Vr(B® I},) € RPHDkx(p+Dk jn (16.7). Also, recall the def-
inition of R, (6y, Bn) := (B' ® I;)Vy(60, Bn)(B ® Ix), which is given by (19) with (6o, Bx)
in place of 6.

LEMMA 31.9. (a) Assumption WUS holds with Uy = (ﬁ,,(oo, B, R,(6y, Bn)),
U1(Uar) = Ui (2, RF) = (00, Ip)(3*(2F, RF)) (00, 1,))'/? defined in (16.8), and hs =
lim Usp,, =1im(QF, , RF,, ), under any sequence (A, j € A:E :n>1}, and

(b) FS = ]'—\Lfvu for 81 sufficiently small and M, sufficiently large in the definition of
R

The proof of Lemma 31.9 follows the same lines as the proof of Lemma 27.4. As in
(27.73), we have

V60, Bn) = EF, fif| — (EF, f)(EF, f) + 0,(1) (31.32)
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and

Ru(60, Bn) = (B ® Ik)(EF, fif| — (Ep, f)(EF, f))(B® Ix) + 0 (1)
— p Ry = (B' & Iy)[ s — vec((0, ha)) vec((0%, ha)) J(B® I}), (31.33)

where the convergence holds by results stated (or proved exactly as) in the proof of
Lemma 31.5(b) below. This implies that Assumption WU5(a) holds, namely, ﬁan -
Uar,, = (D, (80, Bn), Ru, (80, Bn)) — (2F,, . RF,,) = 0p(1). Assumption WU* (b) holds
by the same argument as the one for the full vector case that starts in the paragraph
containing (27.75). This establishes Lemma 31.9(a).

Lemma 31.9(b) holds by the same argument as the one for the full vector case that
starts after the paragraph that contains (27.77).

31.2 Proofof Lemma 31.5

Throughout the proof, we use the shorthand notation g;(8) = gi(6y, 8) and g,(B) =

n! >, gi(6o, B) and write g; for g;(B*), where B* is the true value of B, and anal-
ogously for other expressions, for example, we write Dn(B) for Dn(eo, B) and G; for
Gi(6g, B*). Furthermore, to simplify notation, we replace subscripts F, by n, for exam-
ple, we write E,, rather than Ef, .

Proor oF LEMMA 31.5(a). Given {/\fl,h :n > 1}, let F,, and B} denote the distribution
of W; and the true parameter 8 when the sample size is n. Let Q,,( B) = 18,(B)|I> and
0,(B) = |IE,gi(B)|?>, where a subscript # on E or P denotes expectation or probability
under F,,, respectively. The following proof adapts the standard proof for consistency of
extremum estimators to the case of drifting DGP’s {)\ﬁ’ pin=>1h

(al). We first show consistency of the first-step estimator, that is, En —-Br—=p 0% un-
der {)\‘27 pin> 1}. Let & > 0. By the identifiability condition in ‘FgR,l in (50), there exists
&, > 0 such that g € B\B(B};, e) implies Q,(B) > é.. Thus,

Pu(|Bu— By > ) = Pn( € B\B(B;, ¢))
(Qn(Bn) = On(Bn) + On(Bn) = 8:)
Pu(Qn(Bn) — On(Bn) + On(B) = 8.)

<Zsup|Qn(.3) —0u(P)| =8 )

n

— 0,

where the second inequality holds because O, (+) is minimized by B, the third inequality
holds because Q,(B8};) =0, and the convergence result holds, because, as we show now,

SUPgep 1Qn(B) — Qn(B) —p 0.
For 86 > 0, define

(31.34)

Yis:=sup sup |gi(B')— g
BeB B'eB(B.5)
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whose distribution depends on F,,. By Assumption gB, g;(-) is uniformly continuous on
B and therefore Y;5 — 0 a.s. [u] as 6 — 0. Furthermore, £,Y;s <2E, supgep lIgi(B) Il < oo,
where the latter inequality holds by the conditions in ]-‘[fR,l. Therefore, by the domi-
nated convergence theorem (DCT) it follows that £,Y;s — 0 as 6 — 0. Let f,, denote the
Radon-Nikodym derivative of F, wrt u and note that by assumption f,, < M. We have
sup, E,Yis =sup, E,fYis <E,MY;s — 0asé— 0.

By Assumption gB, B is compact. Therefore, for 6 > 0 there is a finite cover of B by
balls of radius 6 centered at some points 8, j =1, ..., Js, thatis, B C Uj‘il B(Bj, ). Let

Hu(B) =8n(B) — Engi(B)- (31.35)

Because ]-'ij | imposes supg.p EFlIgi(B) |'+7 < M, a Lyapunov-type WLLN implies that
for any fixed 8 € B we have H,(8) — 0% as n — oo. It then follows that for & > 0 we have

Py (sup| Ha(B)] > 22)
BeB

<Py max  sup |[Hu(B) — Ha(Bp| + | Ha(B))] > 22)
Jj=1,..., Js BEB(B/,S)

< P,,(sup sup  |Hn(B') — Ha(B)| > 8) +Pn(_

max |Ha(B))|>2),  (3136)
BeB B'eB(B,5) Jj=1,....Js

where the first inequality holds by the triangle inequality.
For the first summand in (31.36), we have the following bound:

Pu(sup sup |Hu(B) ~ Hu(B)| > )
BeB B'eB(B,H)

1 n
sPn(; Y (Yis + EnYis) > s>

i=1

1 n
<En > (Yis+EnYis)/e
i=1

=2E,Yis/e, (31.37)

where the first inequality holds by the triangle inequality and the second inequality
holds by Markov’s inequality. Because, as shown above, sup, E,Y;s — 0 as 6 — 0, for
given v > 0 there is 6, > 0 such that 2E,Y;s/e < v/2 for all n and for all 6 < §,. Be-
cause Hy,(B) —, 0, we can find a finite ns5, € N such that for all n > ns, we have
Pp(max;=1,.. 5, 1Hi(BpI > &) <v/2. This proves

Pu(sup| Ha(B)] > 26) — 0 (31.38)
BeB

as n — oo. By the reverse triangle inequality, we then obtain the desired supg.p 10.(B) —
On(B)|—p0asn— oo.
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(a2). Next, we show consistency of En Let {8, — ,B,JQ : n > 1} be any nonstochas-
tic sequence that converges to 0°. We can write E,g;(B,) — Engi(BL) =E,h, for h, =
(gi(Bn) — gi(Bz))fn. Because f,, <M and g;(-) is uniformly continuous on B by Assump-
tion gB, it follows that 4, — 0% a.s. [u]. Furthermore, E, h, <2ME, supgep lIgi(B)1 < oo
by the conditions in F ;fR. Therefore, by the DCT, E, h, — 0k,

Define E, gi( En) =E,gi(B)] SRy That is, the expectation is taken first treatin~g B as
nonrandom, and then the resulting expression is evaluated at the random vector j,,. For
any given ¢ > 0,

18:B) | < [80(Bn) — Engi(Bn)| + | Engi(Bn) — Engi(BL) |
< sup [&u(B) = Engi(B)| +o0p(D)
BeB(B;;,€)
=o0,(1), (31.39)

where the first inequality holds by the triangle inequality, the second inequality holds
wp — 1 because S, — Bi — » 0° and E, h, — 0%, and the equality holds by (31.38).

Furthermore, n~! Z;’:lgi(ﬁn)g,-(ﬁn)/ — Engig; —p 0%k This result is proved as in
(31.39), by establishing a UWLLN on B(g}, ¢) for nl >, gi()gi(-) and by showing that
Eyhy — 05K for hy = (gi(Bn)gi(Bn) — 8i(BY)gi(BY)) fx when B, — B}, converges to 0°.
The latter follows as above from the DCT using E,, SUPgep(g:, &) 18i(B) I < oo by the con-
ditions in F, ASR' The former follows using the same proof as for (31.38) noting that by the
conditions in ]—'ASR we have E,, SUPge BB, &) lgi(B)? < oo and SUPgeR(gE, &) Erlgi(B)|*tY
is uniformly bounded. We have therefore shown that (&,8,) ! — E,g:g, — p 0°*k, where
@, ¢n is defined in (42). Because F, ;ER imposes Anin(EFgig;) > 6, it follows that

P ~1
@,0n— (Engigl) —p 0Fk. (31.40)
The remainder of the consistency proof is analogous to the proof in part (al), but

Witl}\@n(ﬁ) = [|8x8n(B)|I* and Qu(B) := ||(Engigé)*”zEngi(B)llz- To establish a UWLLN
for Q,,(B), note that

sup ”angn(ﬁ) - (Engig;)i]/zEngi(B)”

BeB(B;;,€)

<1l sup  [Bu(B) — Engi(B)| + |@n — (Engig) ™ *| sup |Engi(B)|
BeB(B;;,¢) eB(B;,€)

=o0,(1), (31.41)

where the inequality uses the triangle inequality and the equality uses (31.38), (31.40),
the assumption that supgcpg: ) IIExgi(B)| is uniformly bounded by a finite num-
ber, and that [|@,|| = O(1) because Anin(Engig;) > 6. Equation (31.41) implies that
SUPgen(gs.e) |On(B) — On(B)] = 0,(1).

(a3). Now, we derive the limiting distribution of B, under {)\fl’ p 1> 1}. As above,
Q,,(,B) := | ®n8n(B)|?. Because B3 is bounded away from the boundary of B, ﬁn —-Bh—p
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b, and g;(-) € C2(B( Br, 19)) the followmg FOC holds wp — 1 and element-by-element
mean-value expansions of -2 75 9n( B) exist:

J > 2 * &2 + *
= 55 QB = 50 n(B) + == 0n(B) (Br — B})» (31.42)

B B’

where the mean-value B; lies on the segment joining B, and B (and hence satisfies
Bn — .82 —>p Ob)-

Form, j=1,...,b, we have
B n!
BQn(B) [ Z aﬁ,g,w)} ;glus) and
[&B&B Qn(B)} = *Z—gl([s)’anann—lZ—g,(B) (31.43)

2

-1 . 4 . 1~ o~ —1] : .
+n ;&Bmaﬁjglw) @,onn gg,w).

By the argument in (31.39), n ' /", gi(B;;) — » 0¥ under {AS , : n > 1}. Furthermore,
ol ) J k
Z 58 (BY) Engg8i—p0 (31.44)
i

under {)\fl - 1> 1}, The latter holds by the argument in (31.39) with gi(ﬁn) replaced
by %gi(ﬁj) and using the assumptions supgcps: o) E,|Gig(B)|I'T” and

Eusupgepps. o) |Gig(B)| are uniformly bounded in FS. In addition, n~! >y (wi—zﬁj X

gi(B) = 0,(1) (again by an argument as in (31 39) with g;(3,) replaced by ﬁgi B

and using the fact that SUPgep( gz, )En||&ﬁ 7B; gi(B)|I'*Y and E 1 SUPgep(ps, 19) ”ﬁBm&B/

gi(B)|l are uniformly bounded by the conditions in FS). It follows that WQ” B -
By —p 0% under {Ai,h :n > 1}, where B}, := E,,G;.B(Eng,-g;)_lEnG,-B.
Because /\min(Bj;) is bounded away from zero (since Tmin(E,G;g) > 6 for F, € F9), it

follows that (B;}) is invertible wp — 1. This and (31.42) give

(9/3(7;3' On

12 (B BY) = — (B + 0p (1) Vi~ 752n(87). (31.45)
From above, we have
J
22 0,(B%) = (ExGig) (Engig)) 'n Ung B2) +0,(1). (31.46)

9P

i=1

By the CLT result in (31.20), n='/23"" | g;(B%) —4 g,- Combining the previous results
and using the definition of the vector 4, we obtain the result of Lemma 31.5(a). O



128 Andrews and Guggenberger Supplementary Material

ProoF oF LEMMA 31.5(b). Using Lemma 31.5(a) or the same argument employed mul-
tiple times in the proof of Lemma 31.5(a), we have: n~! Z, 1gl(Bn) - 0", n1x

Z, 1gz(Bn)g1](Bn Engzgz] _>p r n 121 1g1(,8n)gy(ﬁn)gt(3n)/ 53],1 Oka

0 (Bw) — (Engig) ™ —p 0°%, n YL Gig(Bu) — A, —p 05, and n! x
Y1 Gig,(Bu)gi(Bn) = X5 g, — p 0K, Therefore, ,(Bn) — p hs,g» Gpn(Bn) > p ha,p,
and f;q(ﬁn) —p h;1g/2h4,5. O

PROOF OF I;EMMA 31.5(c). We derive the limit distributions of (i) g,,(ﬁ,,), (ii) ﬁn(ﬁn) —
EnG, (iii) 2,00, Bn) — Engig)» and (iv) Gpu (60, Bn) — EnGig under {AS , :n> 1} in (c1)-
(c4) below, respectively.

(c1). We have

28, (Bn) = n'?8u(B) + Gpn(B)n"* (Bn — B})
= (It — (EnGig) B: " (EnGip) (Engigl) " )n'/*8n(B2) + 0,(1), (31.47)

where the first equality uses a mean-value expansion with 8; on the segment joining B
and B} and the second equality holds by (31.45) and (31.46). Therefore,

V28, (Ba) > a B = h! th_l/z s, g (31.48)

Note that the assumption of strong identification of 8, namely 7in(ErGig) > 6 in F s,
implies that /4 g has full column rank b.

(c2). Recall the definition of fjn(-) forj=1,..., pin (18). Under sequences {)‘i,h n>
1}, we have

(I, B - Ty (B)) 25 (Bn) — (EnGing)) s - (EaGipg})) 2" >0, (31.49)

which is established analogously to the results in (31.40) and (31.44), using the uniform
finite bounds on supg.p(gs o) Enll (55 8i(B)&ii(BI' and Eysupgepgs o) | (55 8i(B)) X
gij(B)lforj=1,...,kin F5.

Using g;(-) € C2(B(B*, D)), by afecond-order Taylor expansion of §n(ﬁn) about B}
and a mean-value expansion of G;(,) (as in (31.47)), we obtain

Y2vec(Du(Bn) — Dn)
" EnGﬁlgé
=n*1/22 vec(G; — E,G;) — : 0 'gi
i=1 EnGépgz
+vec((EnGiop)n'">(Bu = BY): -+ (EnGio,p)n'(Bu = B7))
EnGllgé

- : Q7 | (EnGip)n'? (B — BS) + 0p(1), (31.50)
EnGepgy
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where E,G;g, = E;G;g; for any observation indices ¢, i > 1 by stationarity. The terms
on the rhs of the first line of (31.50) consist of the term D,, = E,,G; and the first term
of the expansions of G( En) and g;( En), respectively, replacing sample averages by ex-
pectations as in (31.49). The term in the second line comes from the second term of the
expansion of Gi(En). For this, we use

Go,pn(B}) — EnGig;p —p 00 forj=1,....p (31.51)

for any sequence B; such that B — B; —, 0. The latter is established (as in sev-
. . 2

eral places above)zusmg the assumptions that SUPgep( gz, ”)E””#ﬂﬁ gi(BI* and

Eusupgepgs o) |l #ﬁﬁ, gi(B)| are uniformly bounded in 7 S. The first term of the third line

comes from the second term of the expansion of g;( En) and using (31.44) and (31.49).
The o,(1) term contains the errors caused by the approximations in (31.49) and (31.51)
and from the third term of the expansion of g;(8,) (which is indeed o,(1) given the

moment bounds in FS on #Z&gi(ﬁ)).
Equation (31.50), combined with Lemma 31.5(a), (31.20), (31.14), and the paragraph
containing (31.16), give

/2vec(Du(Bn) — D)
-4 VCC(Bi)
= (vec(G) — hs,(;ghgiggh) +vec(ha,p,6Bhs - - » h4,9pﬁﬁh)

—1 -
- h5,Ggh5,gh4,BBh. (31.52)
Note that gﬁ and B, are independent because
-1/2— =
COV(Mh;;/ZM,B hs {8 Br)

=M, iz, (b2 p)[(h5 " hap) (5 hap)] " =062, (31.53)
g s
Next, we establish that gfl and 5‘2 (defined in (31.21)) are independent. The last two

summands that make up 5‘2 are independent of gfl because gi and B, are independent.
Regarding the first summand, recall that from (31.20) we know that vec(G,,) and g, are
jointly normally distributed and because cov(g}, vec(Gj) — h5,Ggh5_,1g§h) = 0k*Pk it fol-
lows that vec(Gy,) — h5,Ggh5_’i,§h and gi are independent.

(c3). Next, we derive the asymptotic distribution of 2,(Bn). Let jell,. k} By a
mean-value expansion, for some vectors 8, and Bn on the line segment joining Bn and
B%, under {/\i’h € AS : n > 1}, we have

nY2[00(Bn) — Q]

n
/2 [”1 > gigii - an}
i=1
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et S Gtpirenten) +aten) (400 ) |- )

— (B2, B [1?80 + Gig(Bh)n 2 (Bu — BE)] + 0p(1)
—)dTKZ .

J
:=Ljp3— h5,3,jh5_,lg§h
+ [(hs,pyjs - hs gy )+ ((hs, )i ooy (s g,)5) — h5,3,jh;}g,h4,3)]ﬁh, (31.54)

where L; , 3 € R denotes the (j — 1)k + 1, ..., jk components of L, 3, (hs,p); € R¥ de-
notes the jth column of (45 g,)" € Rkxk forl=1,...,b,and the convergence result holds
by the moment restrictions in the parameter space, WLLN’s, (31.20), and part (a) of the
lemma. Equation (31.54) yields n'/2(02,,(Bn) — 2,) =4 7 = (%i,l’ e, ?i’k).

By definition, 7 ; is a nonrandom function of L; 5 — hs3 ;5 &, and Bj. By
(31.53), B;, and gi are independent. In addition, fj,h,3 — h5,jh5_’i,§h and g, are inde-
pendent, because they are jointly normal with a zero covariance matrix. Therefore,

Zj n3—hs jhilggh and gﬁ (= h5 th 1/2 h5 g h) are independent. This shows that

%S zgh 1reees ?z ) and gi are 1ndependent.
Equation (31.54) yields n1/2(§jn(ﬁn) —0jy) —q ?fl, as desired.
(c4). Asin (31.54), for j e {1,..., b}, under {A3 , € A5 : n > 1}, we have

nl/z[éﬁjn(ﬁn) - EnGiBj]

n n
/2 [ﬂ_l > Gigin— EnGiBj] +n71> " Gigp(B)n'*(Bn — B)
i=1

i=1
- F]n(ﬁn)ﬁn(ﬁn [nl/zgn + GiB (Bi)nwz(ﬁn - B;:)]
—4 Ei,j = Zj,h,4 — hS,thS_,ggh + (h4’gj3 — hs’gjh;§h4,g)3h, (31.55)

where L; , 4 € R¥ denotes the (j — 1)k + 1, ..., jk components of L 4. Equation (31.55)
and 0 := (5}9,,1 s Ei,b) yield n'/2(G g, (Bn) — EyGig;) —a 05, as desired.

By the same argument as for ?rfl above, Efl = (5}3,1’ e, E‘fl’ ) and gfl are indepen-
dent. O
PROOF OF LEMMA 31. 5(d) First, we obtain the asymptotic distributions of _(2 172
Tu(Bn), and O, = Oy (J4(Bn)).

Consider the function that maps vec(¢) onto vec(¢~'/2), where ¢ € Rkxk s positive
definite. Denote by @, € R¥*xk* the matrix of partial derivatives of that mapping evalu-
ated at vec(hs g). By n2(Qju(Bn) — Qjn) =4 32, which holds by part (c) of the lemma
(and is proved in (31.54)), and the delta method, we have

(BYI))

1/2[ 1/2(,3;1 1/2] _)dveclzylk(ahvec(ffi)). (3156)
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The asymptotic distribution J ( Bn) = _1/ 2( Bn)GB,,( ,8,,) is obtained as follows:
n!2[Tu(B) — 2 P EnGii]
=0, 2B P[Gpn(Bn) = EaGpi] +n" [0 (Bo) — 2 | EGoi
— Eﬁ = ho 1/292 +vec, k(thVCC(%h))fM B> (31.57)

where the convergence uses (31.56) and n'/2(G g, (By) — E,Gig,) —a 07, which holds by
part (c) of the lemma (and is proved in (31.55)).

Assume wlog that the first b columns of (h;lg/ 2h4’ g) are linearly independent.”
Then, by (31.4) and (31.5), we have

On=00n) = (=i Un) ™€) s oos (=g Un) s €4 )") and

~ ~ - o~ ~ - (31.58)
On=00w) = (=i €) s oo (= Ty Tn) s ) )

where again J;, = (J/,,J/,) with J/, € R®>** and J/, = (ju1, - .-, juk—p) € RO**D), j € R
for/=1,...,k — b, and analogously for J;,. J. Consider the function that maps vec(J)
for J € R¥*b onto vec(O(J)) € R¥*=b) where O(J) is defined by (31.4) and (31.5). De-
note by B), € RK(k=b)xkb the matrix of partial derivatives of that mapping evaluated at
Vec(h;i,/ 2h4, g)- Then, by the delta method,

n'/2(On — Op) > avecy (B vec(@y)) (31.59)

and the asymptotic distribution is independent of gfl.

Given the asymptotlc distributions of 2}, l 2( B,) and O,, the asymptotic distribution

of n'/20/,0) 0, %(B)Dp(Bn)UnT, is obtained as follows. We write this matrix in terms of
two subrnatnces.

n 20,0, > (B)Du(Bn) UnBySn

= (0,2, (Bn)Du(Bn)UnB, 5Y,, ks, "2, 02, > (Bu)Du(Bi)UnB,, _5)-  (31.60)

Consider the first component on the rhs of (31.60). By definition, the singular value
decomposition of O;l();l/ 2Dn U, is C,Y,,B,, and, as in the proof of the full vector case
preceding (25.5), we have 0;1(2,;1/ D, UnB,, 4 YH_;S = C, 4s- Hence, we obtain

0/ 1/2(,8n)Dn(Bn)Un n N Y_ q5
= OZle/anUan,qu,;]S
" nl/z(O/ 1/2(Bn)Dn(Bn) —0 Q_l/an) Uan’qS (l’ll/ZYn’qS)_l

51f the first b columns of (h_l,/ 2h4 .p) arelinearly dependent, O, and O, are given by analogous formulas
involving R,=E, G’ .(2_1/2 =(R,R),) and R, (,B,, = (R
of (h h4 g).

R '2) just based on a different set of b columns

nl? nl’
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=C, g5 +0p(1)

> By g5 1= Dy g5 € RETDXE (31.61)

where the second equahty uses n'/2(0, 0 1/Z(IB,Z)D (Bn) — 0,0,'*D,) = 0,(1) and

n'/2zj, — oo forall j < ¢° (by the definition of ¢° in (31.16)). The convergence in (31.61)

holds by (31.14) and (31.15), and the last equality in (31.61) holds by definition. To see
that the O, (1) result holds, we write

1203 > Br)Da(B) — 02, " EG)
= 0,43, (B (Du(Bn) — ExGi) + O,n" (052 (By) = 0 *)EnGi
+n'2(0, - 0,)2,' *E,G:. e
The O, (1) result then holds by (31.52), (31.56), (31.59), O, = O(1), £2;,'/> = O(1), and
D, =0().

Next, consider with the second component on the rhs of (31.60). As in (25.6) and
(25.7), we have

n'20,0,"*D,U,B,, ,_ s — h3hS (31.63)

1,p—q5
By (31.52), (31.56), and (31.59), we have

n"2(0,0,""* (Bu)Du(Bn) — 0,2, "*D,y)
=120 — 0@ *(Bn) Dn(Bn) + O (2, (B) — 2,/*) D (B)
+ 0,0, 02 (Dy(By) — Dy)
—>d Xh
:=VCC]:71k_b(Eh vee(ws)) ks, 1/2h4
+O(h5*ha. g) vec | (@y vee(52})) ha + O (5 *ha g) b5/ Dy (31.64)

Using (31.63) and (31.64), we obtain

20,0, (Bu)Dn(Bn)UnB, s

=n'20,0," > DU, B, ,_ s

—1 2 = A —-1/2
+n(0, 03, (Bi)Du(Bu) — 0,2 * D) UnB,, s
—4 Zh,pqu = h3h<1>,p7q5 + XhhSIhz,p_qS € R(k_b)x(p_qs), (31.65)

where e hz,p_qs, Uy, — hg, and U, = U1 (Uy,) — Uy (hg) =: hgy, using the def-

initions in (16.4), (16.5), and (16.24). Combining (31.60), (31.61), and (31.65) gives the
desired asymptotic result because Ki = (Ki’ oy Z,S,, p—gs) by (31.22).
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We have (8, 52, ?2, Ei, Kf,) is independent of gi because K}i is a nonrandom func-

tion of 4 and (ﬁi,%i,ﬁi), see (31.22), and (Eh,ﬁf,,%i,ﬁi) is independent of g; by
Lemma 31.5(c). O

Proor oF LEMmMA 31.5(g). The proofs of parts (a)—(d) of the lemma go through when »
is replaced by w;,. O

31.3 Proofof Theorem 13.1

The proof of Theorem 13.1 is a combination of the following lemma and the correct
asymptotic size results for the subvector AR and CQLR tests given in Theorem 9.1.

In the following lemma, 6y, is the true value that may vary with n. For notational
simplicity, we suppress the dependence of various quantities on 6y,,.

LEmma 31.10. Suppose Assumption gB holds. Then, for any sequence {(Fy,, B}, 60,) €
Fom:n =1} @ Fa(Ba) = r5,(Bn) = r5,(B5) Wp — 1, (b) col(An(Bn)) = col(AF, (Bn)) =
col(Ar,(B:)) wp — 1, and (c) given the first-stage estimator [,, the statistics
SR-ARS(B5,), SR-QLRS(B7,), X raa G B2 DG (Ba)s T 3a(B4,)s 1 — @) are

invariant wp — 1 to the replacement of?n(ﬁ,,) and Zn(ﬁn)’ by rr, (B;) and Hf;n/z(/s;‘l) X

AF, (B3, respectively.
ProOF OF LEMMA 31.10. First, we establish part (a). For any 8 € B(8}, ¢),

AeN(p,(B) = Ae (] N(@Qr ()

BeB(B5,¢)
= sup NQp,(B)A=0
BeB(B}¢)
= sup Varg, (X' gi(B)) =0
BeB(B}e)
= sup |N'gi(B) — Er,N'gi(B)|=0 as.[F,]
BeB(B}.¢)
=  sup N2,(B)A=0 as.[Fy]
BeB(B}.¢)
—  VBeB(BL 8), 2u(B)A=0as. [Fy]
= Ae [ N(@2u(B)as. [Ful, (31.66)
BeB(B;.2)

S,SR
]:AR,Z :

ma 31.5, under sequences {(F,, B, 6p,) € f}?)’i% :n > 1}, we have that En —Bu—p 0’
Thus, wp — 1 it follows that 3, € B(8%, ). Thus, from (31.66), N (25, (Bx)) € N(2,(Bn))
wp — 1and7,(Bn) <rg,(Bn) wp — 1.

where the first implication holds by condition (iv) of From the proof of Lem-



134 Andrews and Guggenberger Supplementary Material

Next, we prove 7, ( En) >rF,( En) wp — 1. By considering subsequences, it suffices to
consider the case where rr, (B:) =r foralln > 1 for some r € {0, 1, ..., k}. We have

u(B) = tk(2n(B)) = 1k (I 2> (Bu) AF, (Bu) @u(Bu) A, (BT > (Bn))  (31.67)

because (2 (Bn) is k x k, the matrix AFH(B,Z)H_M(B,,) is k x r wp — 1 by condition
T S}; and consistency of ,, and wlog 1 < r < k. (If r = 0, then the desired in-
equality 7, ( En) >0=rf,( En) holds trivially wp — 1, where the equality holds by con-
dition (iv) of f/ff{s’g and consistency of En).) From condition (iv) of F liRSl;, it follows that
AFf,(B) = Ar,(B) and therefore Af, (B8) does not depend on g for all B € B(B}, ¢). For

B € B(B},, ), we therefore write A, for Af, (B) to simplify notation. Furthermore,

@iv) of

11,,%(B) A, 0u(B) A, 1T, (B)

*1ZH‘1/2(B)A’ (8i(B) — Er,8i(B))(8:(B) — Er,8:(B)) Ar, 1111 *(B)
[ —IZH 5 (B AL, (8i(B) — Eani(B)):|

x [n‘l > (8i(B) — Er,8i(B)) A, 11 _I/Z(B)} (31.68)

i=1

By construction and using condition (iv) of F; ing, we have, for all B € B(B}, ¢),

11,,%(B) Af, (8i(B) — EF,8i(B)) (8i(B) — EF,8i(B)) Ar,IT;;/*(B) =

By the uniform moment bound in ]—'0 AR, namely, Ef SUPgep(p-, 8) IIHI_F1 Z(B)AF(B)/

(gi(B)—Ergi(B)|? <M and continuity of (g;(8) — Er,8i(B)) Ar,I1 an (B) as a function
of B (which holds by Elsner’s theorem and Assumption gB), it follows from a uniform
weak law of large numbers for L!*?/2-bounded i.i.d. random variables for y > 0 that the
expressions in the second and third lines of (31.68) converge in probability to I, and 0"*",
respectively, uniformly over 8 € B(B*, ¢). This implies that

11,2 (Bu) Ar, (Bn) Dn(Bn) Ar, (Bu) T3> (B) = p I

This establishes that rn(ﬁn) > r wp — 1 and, therefore, rn(ﬁn =r and N(QFn(En)) =
N (Q (Bn)) wp — 1, which proves (a). In turn, the latter implies that col(AF, (Bn)) =
col(An( ,8,1)) wp — 1, which also proves part (b).

To prove part (c), it suffices to consider the case where r > 1 because the test statistics
and their critical values are all equal to zero by definition when7,( ,En) =0and7,( En) =0
wp — 1 when r = 0 by part (a). Part (b) of the lemma implies that there exists a random
r x r nonsingular matrix M, such that

An(Bn) = A, (By)IT . (B) My wp — 1, (31.69)
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because I1,, Fl,,/ 2( B) is nonsingular (since by its definition it is a diagonal matrix with the
positive eigenvalues of Q2F (B}) on its diagonal.) Equation (31.69) and 7;,( Bn) =rwp —
l\impAly that thAe statistics SR—AR,SI(,BZn), SR—QLRE(B%), X%(En),l—a’ c7n(5n),1i(”1/2 X
D% (B4,)>J 3,(B4,), 1 — a), are invariant wp — 1 to the replacement of 7,,(B,) and

A (Bn) by r and Apn(,B*)H_l/Z(B*)M,,, respectively. Now we apply the invariance
results of Lemma 31.2 with (k, g;(B), Gi(B)) replaced by (r, 11, 1/2(,8*)Apn(,B*)’g,-(,B),

1/ 2(,Bn)AFn(B,Z) Gi(B)) and with M equal to M/ These results imply that the pre-

1/2(['5’”)A1cn(Bn) gi(B) are invariant to the

multiplication of the moments IT (B:)AF,(B}) gi(B) by the nonsingular matrix M !
Thus, the statistics, defined as in Secuon 5.2, are invariant wp — 1 to the replacement of
7u(Bn) and A (Bn) by r and H_l/ (B:)AF,(BY), respectively, which proves part (c). O

vious four statistics when based on r and H
—1/2

31.4 Proof of Theorem 9.2

PROOF OF THEOREM 9.2. By Lemma 31.10(a) and (b) and 75 ¢ F3i" (because F5 im-

poses Amin(Ergig;) > 8, where }'AQRSR is defined in (52)), we have rn(Bn) = an(En) =
re,(B%) and col(A,(Bn) = col(Af, (Bn)) = col(Ag,(BX) wp — 1. Also, given
Amin(EF,gig;) = 8, it follows that the orthogonal matrix Af,(B;) is in Rk*k_Given that
the statistics QLRS (Br) and Ck,p (n!/ 2D*(Bn) Jn(Bn) 1 — «) are invariant to nonsingu-
lar transformations by Lemma 31.2, the definition of the subvector SR test in (13.2),
combined with the prev1ous two statements imply that SR- QLRS (6o, B An) = QLRS ( n) +
op(l) Because rn(,Bn) = k wp — 1, it follows that Ch (00, B, p(n 2D* (90, ,BAn),
JAn(GO, BAn),l @) = ck,p (nl/ZD;’;(n),Jn(n),l — a) wp — 1, where the latter critical
value is the one for the subvector CQLR test without singularity robustness; see (48).
This proves the first equalities in parts (a) and (b).

We now proceed as in the proof of Theorem 7.1. We replace W, Wk, 2, 1 2§n,
and D, € Rk*p by the corresponding quantities Iy, I, 5’Fn§;1/ 2(ﬁ)jg?,l(n), and
5} Q,()~12D, (7)) € Rk=b)xP  respectively. Note that ¢5 = p under {Afz,h :n>1}. The
analogue to (28.2) with qS = p therefore states that

<p+1)n—ngn(n)!2 V20, b3 - phi k- p5p . (MEn(M) +0p(1). (31.70)

In addition, the analogue to (28.3) with qS = p states that

QLR , = 18, (D2 2 Op, 3 phty 05, B> (@8u() + 0, (1), 31.71)
where QLR\‘E\,U = ARS () — min(nQ\‘SNU ,) is defined below Proposition 31.6 and

equals QLRS(n) when Un is taken to be Ll/z(n) Equation (31.61) implies that h3 , =

O’ 1/Z(n)D (mU,B, pY_ + 0,(1). Because U, B, pY is an invertible matrix, it

follows that Py, , = Po’ <125)5,7) T op(1). Therefore, us1ng hg,ph&p =1I,, it follows
that

QLR = 8D *Or, Py O 03 @8 +0p(1).  (B1.72)

(D@
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By (31.48), 2, *(@M)n'g.(7) = My, b3 /*n'?8,(00, ) + 0p(1), where J, =
he 1/2h43 Also, Of, = O(Jy) + 0,(1) and O, 1/2(1;)5n(’ﬁ)=]9h+0p(1), where Jy, =

5,[1’,/ h4 and J;, has full column rank p. Thus, we obtain

QLRS (@) = n'*gu (00, B3) 15,

gn(OO ,B )

where the second equality uses O(J,)0(J) = M;, = M}h My,.
From the above, it also follows that

Mj,0U)Po,y 1, OUn) My, 5_;/ n2g, (80, BL) +0p(1)

mPMJ Tnhs g Y2125, (80, BE) + 0, (1), (31.73)

—1 2 o~
/ (MJhP[Jgh]h]MJh)h n28,(60, BE) +0p(1)  (31.74)

LM, = n'/%g, (60, B}) hs
using h;’;/zann(ﬁ) —p Uon 1 Il = [h 1/2 h;lg/2h4,3] and [Jgy, : J;] has full column
rank p + b.

Next, we have

Mj, Puygy0,0Miy, ZMJhP[MJhlehIJh]MJh =M, (PMJhJeh + Py )M, = PMJhJeh’ (3L.75)

where the first equality holds because [/, : /5] and [M}, Jy;, : J;] span the same space,
the second equality holds because Mj, Jy;, and J;, are orthogonal, and the last equality
holds because Py, My, = 0¥k and Pyy, 104 M, = Py, 1,,- EQuations (31.73)~(31.75) com-
bine to show that QLRi(ﬁ) =LM’ 40 p(1), which establishes the second equality of part
(a).

By (31.31), ck,p(n' 2D} (@), Ju(), 1 = @)+ 0p(1) = p oy p g5 (Hy - o
«), where Chb, p,gs (1 —a) is defined in (31.19) (and uses the notation in (27.12)). In

~
sBn,p—gs: 1=

C e =S
the present case, ¢° = p, which implies that A, p—gs has no columns, ACLRy p, ,(75) =
_S .
Z\Zy ~ Xp’ and ¢ p, q(h3 kobgs * Ah’p,qS, 1 — a) equals the 1 — @ quantile of the X%

distribution. Hence, the convergence result in part (b) holds. O
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