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11. Outline

We let AG2 abbreviate the main paper “Identification- and singularity-robust inference
for moment condition models.” References to sections with section numbers less than
11 refer to sections of AG2. All theorems, lemmas, and equations with section numbers
less than 11 refer to results and equations in AG2.

We let SM abbreviate Supplemental Material. We let AG1 abbreviate the paper An-
drews and Guggenberger (2017). The SM to AG1 is given in Andrews and Guggenberger
(2014).

Section 12 provides further discussion of the literature related to AG2.
Section 13 extends the subvector tests in Section 9 to allow for the possibility that

ΩF =EFgig
′
i is singular.

Section 14 provides some miscellaneous backup material for AG2.
Section 15 introduces the SR-CQLRP test that applies when the moment functions

are of a multiplicative form, ui(θ)Zi, where ui(θ) is a scalar residual and Zi is a k-vector
of instrumental variables.

Sections 16 and 17 provide parts of the proofs of the asymptotic size results given in
Sections 6 and 15.

Section 18 generalizes the SR-AR, SR-CQLR, and SR-CQLRP tests from i.i.d. observa-
tions to strictly stationary strong mixing observations.
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Section 19 compares the test statistics and conditioning statistics of the SR-CQLR,
SR-CQLRP , and Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statis-
tic and conditioning statistic in the homoskedastic linear IV model with fixed (i.e., non-
random) IVs.

Section 20 provides finite-sample null rejection probability simulation results for the
SR-AR and SR-CQLR tests for cases where the variance matrix of the moment functions
is singular and near singular.

Section 21 provides finite-sample simulation results that illustrate that Kleibergen’s
CLR test with moment-variance weighting can have low power in certain linear IV mod-
els with a single right-hand side (rhs) endogenous variable, as the theoretical results in
Section 19 suggest.

Section 22 establishes some properties of the eigenvalue-adjustment procedure de-
fined in Section 5.1 and used in the definitions of the SR-CQLR and SR-CQLRP tests.

Section 23 defines a new SR-LM test.
The remainder of the SM provides the rest of the proofs of the results stated in AG2

and the SM. Section 24 proves Lemmas 16.2, 5.1, and 15.1. Section 25 proves Lemma 16.4
and Proposition 16.5. Section 26 proves Theorem 16.6. Section 27 proves Theorem 16.1
(using Theorem 16.6). Section 28 proves Theorems 7.1 and 15.3. Section 29 proves Lem-
mas 19.1, 19.2, and 19.3. Section 30 proves Theorem 18.1, which concerns the time series
results. Section 31 proves Theorems 9.1, 13.1, and 9.2, which concern the subvector in-
ference results.

For notational simplicity, throughout the SM, we often suppress the argument θ0 for
various quantities that depend on the null value θ0.

12. Further discussion of the related literature

The first paragraph of AG2 lists a number of models in which weak identification
may arise. Specific references are as follows. For new Keynesian Phillips curve mod-
els, see Dufour, Khalaf, and Kichian (2006), Nason and Smith (2008), and Kleibergen
and Mavroeidis (2009). For DSGE models, see Canova and Sala (2009), Iskrev (2010), Qu
and Tkachenko (2012), Dufour, Khalaf, and Kichian (2013), Guerron-Quintana, Inoue,
and Kilian (2013), Qu (2014), Schorfheide (2014), and I. Andrews and Mikusheva (2015,
2016). For the CCAPM, see Stock and Wright (2000), Neely, Roy, and Whiteman (2001),
Yogo (2004), Kleibergen (2005), Carroll, Slacalek, and Sommer (2011), and Gomes and
Paz (2013). For interest rate dynamics, see Jegannathan, Skoulakis, and Wang (2002) and
Grant (2013). For the BLP model, see Armstrong (2016). For the returns-to-schooling
wage equations, see Angrist and Krueger (1991, 1992) and Cruz and Moreira (2005).

For the time series models, see Hannan (1982), Teräsvirta (1994), Nelson and Startz
(2007), and Andrews and Cheng (2012, 2013b). For the selection model, see Puhani
(2000). For the mixing and regime switching models, see Cho and White (2007), Chen,
Ponomareva, and Tamer (2014), and references therein. For the nuisance parameter only
under the alternative models, see Davies (1977) and Andrews and Ploberger (1994).

Some asymptotic size results in the linear IV regression model with a single right-
hand side endogenous variable (i.e., p= 1) include the following. Mikusheva (2010) es-
tablished the correct asymptotic size of LM and CLR tests in the linear IV model when
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the errors are homoskedastic. Guggenberger (2012) established the correct asymptotic
size of heteroskedasticity-robust LM and CLR tests in a heteroskedastic linear IV model.

Subvector inference via the Bonferroni or Scheffé projection method, is discussed
in Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010),
Chaudhuri and Zivot (2011), and McCloskey (2017) for Bonferroni’s method, and Dufour
(1989) and Dufour and Jasiak (2001) for the projection method. Both methods are con-
servative, but Bonferroni’s method is found to work quite well by Chaudhuri et al. (2010)
and Chaudhuri and Zivot (2011).28

 Andrews (2017) provided subvector methods that are
closely related to the Bonferroni method but are not conservative asymptotically.

Other results in the literature on subvector inference include the following. Subvec-
tor inference in which nuisance parameters are profiled out is possible in the linear IV
regression model with homoskedastic errors using the AR test, but not the LM or CLR
tests; see Guggenberger, Kleibergen, Mavroeidis, and Chen (2012). Andrews and Cheng
(2012, 2013a, 2013b) provided subvector tests with correct asymptotic size based on ex-
tremum estimator objective functions. These subvector methods depend on the follow-
ing: (i) one has knowledge of the source of the potential lack of identification (i.e., which
subvectors play the roles of β, π, and ζ in their notation), (ii) there is only one source
of lack of identification, and (iii) the estimator objective function does not depend on
the weakly identified parameters π (in their notation) when β= 0, which rules out some
weak IVs models.29

 Cheng (2015) provided subvector inference in a nonlinear regres-
sion model with multiple nonlinear regressors, and hence, multiple potential sources of
lack of identification. I. Andrews and Mikusheva (2016) developed subvector inference
methods in a minimum distance context based on Anderson–Rubin-type statistics. Cox
(2017) provided subvector methods in a class of models that allows for multiple sources
of weak identification and includes factor models. I. Andrews and Mikusheva (2015)
provided conditions under which subvector inference is possible in exponential fam-
ily models (but the requisite conditions seem to be quite restrictive). I. Andrews (2018)
considered subvector inference in the context of a two-step procedure that determines
first whether one should use an identification-robust method or not.

Phillips (1989) and Choi and Phillips (1992) provided asymptotic and finite-sample
results for estimators and classical tests in simultaneous equations models that may
be unidentified or partially identified when p ≥ 1. However, their results do not cover
weak identification (of standard or nonstandard form) or identification-robust infer-
ence. Hillier (2009) provided exact finite-sample results for CLR tests in the linear model
under the assumption of homoskedastic normal errors and known covariance matrix.
Antoine and Renault (2009, 2010) considered GMM estimation under semi-strong and

28Cavanagh, Elliott, and Stock (1995) provided a refinement of Bonferroni’s method that is not conser-
vative, but it is much more intensive computationally. McCloskey (2017) also considered a refinement of
Bonferroni’s method.

29Montiel Olea (forthcoming) also provided some subvector analysis in the extremum estimator con-
text of Andrews and Cheng (2012). His efficient conditionally similar tests apply to the subvector (π�ζ) of
(β�π�ζ) (in Andrews and Cheng’s (2012) notation), where β is a parameter that determines the strength of
identification and is known to be strongly identified. The scope of this subvector analysis is analogous to
that of Stock and Wright (2000) and Kleibergen (2004).
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strong identification, but do not consider tests or CSs that are robust to weak identifica-
tion. Armstrong, Hong, and Nekipelov (2012) showed that standard Wald tests for mul-
tiple restrictions in some nonlinear IV models can exhibit size distortions when some
IVs are strongly identified and others are semi-strongly identified—not weakly identi-
fied. These results indicate that identification issues can be more severe in nonlinear
models than in linear models, which provides further motivation for the development
of identification-robust tests for nonlinear models.

13. Subvector SR tests for potentially singular moments variance matrices

Figure SM-1 provides additional power comparisons to those given in Section 9.4 for the
subvector null hypothesis in the endogenous probit model. Figure SM-1 provides results
for ρ= 0, whereas Figure 1 in Section 9.4 provides results for ρ= 0�9. See Section 9.4 for
a discussion of the results.

In the remainder of this section, we extend the subvector tests in Section 9 to
allow for the possibility that ΩF = EFgig

′
i is singular. We employ the definitions in

(10) and (11) with η in place of θ. That is, r̂n(θ�β) := rk(Ω̂n(θ�β)) and Ω̂n(θ�β) :=
ÂΩ
n (θ�β)Π̂n(θ�β)Â

Ω
n (θ�β)

′, where Π̂n(θ�β) is the k× k diagonal matrix with the eigen-
values of Ω̂n(θ�β) on the diagonal in nonincreasing order, and ÂΩ

n (θ�β) is a k × k

orthogonal matrix of eigenvectors corresponding to the eigenvalues in Π̂n(θ�β). We
partition ÂΩ

n (θ�β) according to whether the corresponding eigenvalues are positive
or zero: ÂΩ

n (θ�β) = [Ân(θ�β)� Â
⊥
n (θ�β)], where Ân(θ�β) ∈ Rk×̂rn(θ�β) and Â⊥

n (θ�β) ∈
Rk×(k−̂rn(θ�β)). The columns of Ân(θ�β) are eigenvectors of Ω̂n(θ�β) that correspond to
positive eigenvalues of Ω̂n(θ�β).

Analogously, consider the spectral decomposition for the population quantity, de-
fined in (4) with η in place of θ, that is, ΩF(θ�β)=AΩ

F (θ�β)ΠF(θ�β)A
Ω
F (θ�β)

′, and de-
fine rF(θ�β) := rk(ΩF(θ�β)). We partition AΩ

F (θ�β) as

AΩ
F (θ�β)= [AF(θ�β)�A

⊥
F (θ�β)

]
� where

AF(θ�β) ∈Rk×rF (θ�β)� A⊥
F (θ�β) ∈Rk×(k−rF (θ�β))�

(13.1)

and the columns of AF(θ�β) are eigenvectors of ΩF(θ�β) that correspond to positive
eigenvalues of ΩF(θ�β). Let Π1F(θ�β) denote the upper left rF(θ�β) × rF(θ�β) sub-
matrix of ΠF(θ�β). The matrix Π1F(θ�β) is diagonal with the positive eigenvalues of
ΩF(θ�β) on its diagonal in nonincreasing order. As above, we sometimes leave out the
argument θ and denote by Ω̂n(β) the matrix Ω̂n(θ0�β) and similarly for other expres-
sions.

Recall the definition following (42) of β̃n, the null-restricted first-stage GMM es-
timator. Analogously to the full vector SR test, the subvector SR test is defined using
the nonredundant moment functions. That is, rather than using the moment function
gi(θ�β), the test of the hypothesis in (38) is based on

gÂi(θ�β)= Ân(θ0� β̃n)
′gi(θ�β) ∈Rr̂n(θ0�β̃n)� (13.2)
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From now on, whenever a subindex Â appears on an object defined in Section 9.2, it
means that it is defined as in Section 9.2 but resulting from a moment condition model
defined in terms of the nonredundant moment conditions gÂi(θ�β). In particular,

Ω̂Ân(θ�β) := n−1
n∑
i=1

gÂi(θ�β)gÂi(θ�β)
′ − ĝÂn(θ�β)ĝÂn(θ�β)

′ ∈Rr̂n(θ0�β̃n)×̂rn(θ0�β̃n)�

ĝÂn(θ�β) := n−1
n∑
i=1

gÂi(θ�β)� and (13.3)

β̂Ân := arg min
β∈B

∥∥ϕ̂ÂnĝÂn(θ0�β)
∥∥2�

where ϕ̂Ân ∈Rr̂n(θ0�β̃n)×̂rn(θ0�β̃n) satisfies

ϕ̂′̂
An
ϕ̂Ân = Ω̂−1

Ân
(θ0� β̃n)� (13.4)

The subvector SR-AR and SR-CQLR test statistics, denoted by SR-ARSn(θ0� β̂Ân) and
SR-QLRSn(θ0� β̂Ân), respectively, are defined as the nonrobust tests are defined, but
based on the moment functions gÂi(θ�β) in place of gi(θ�β) and using the GMM es-
timator β̂Ân rather than β̂n to estimate the nuisance parameter β. When r̂n(θ0� β̃n) > 0,
the subvector SR-AR test at nominal size α ∈ (0�1) rejects if

SR-ARSn(θ0� β̂Ân) > χ
2
r̂n(θ0�β̃n)�1−α� (13.5)

The subvector SR-CQLR test at nominal size α ∈ (0�1) rejects if

SR-QLRSn(θ0� β̂Ân) > ĉrn(θ0�β̃n)�p

(
n1/2D̂∗̂

An
(θ0� β̂Ân)� J̃Ân(θ0� β̂Ân)�1 − α

)
� (13.6)

If r̂n(θ0� β̃n)= 0, then SR-ARSn(θ0� β̂Ân) and SR-QLRSn(θ0� β̂Ân) := 0 and χ2
r̂n(θ0�β̃n)�1−α

and ĉrn(θ0�β̃n)�p
(n1/2D̂∗̂

An
(θ0� β̂Ân)� J̃Ân(θ0� β̂Ân)�1−α) := 0 and the two tests do not reject

H0.
Next, we define the parameter spaces for the subvector SR-AR and SR-CQLR tests.

We denote the column and null spaces of a matrix by col(·) and N(·), respectively.
We impose the conditions in FS

AR�1 defined in (50) which guarantee consistency of

the preliminary estimator β̃n. The parameter space FS
AR�2 defined in (51) is modi-

fied in four ways: (i) the condition λmin(EFgig
′
i) ≥ δ is dropped, (ii) the condition

EF supβ∈B(β∗�ζ) ‖Π−1/2
1F (β)AF(β)

′(gi(β)−EFgi(β))‖2 ≤M is added, (iii) all of the remain-

ing conditions are formulated in terms of the moment functions Π−1/2
1F (θ0�β

∗)AF(θ0�

β∗)′gi(θ0�β), rather than gi(θ0�β), and (iv) the condition, for some ζ† > 0, N(ΩF(θ0�

β∗))=N(ΩF(θ0�β)) for all β ∈ B(β∗� ζ†), where β∗ denotes the true value of β, is added.

Call the resulting space FS�SR
AR�2 . We define the null parameter space for the subvector SR

AR test to be

FS�SR
AR := FS

AR�1 ∩FS�SR
AR�2 � (13.7)
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The null parameter space for the subvector SR-CQLR test, denoted by FS�SR, is defined as
FS is defined in (53) with the following modifications. First, FS

AR is replaced by FS�SR
AR , and

second, all of the remaining conditions are formulated in terms of the moment functions
Π

−1/2
1F (θ0�β

∗)AF(θ0�β
∗)′ × gi(θ0�β), rather than gi(θ0�β).

We can also construct confidence regions for θ with correct asymptotic confidence
size by inversion of the subvector SR-AR and SR-CQLR tests. The relevant parameter
spaces are given by

FS�SR
Θ�AR := {(F�β�θ0) : (F�β) ∈ FS�SR

AR (θ0)�θ0 ∈Θ} and

FS�SR
Θ := {(F�β�θ0) : (F�β) ∈ FS�SR(θ0)�θ0 ∈Θ}� (13.8)

respectively, where FS�SR
AR (θ0) and FS�SR(θ0) denote FS�SR

AR and FS�SR with the latter sets’
dependence on θ0 made explicit.

Note that condition (iv) of FS�SR
AR�2 can be restrictive. We now discuss a scenario in

which it holds. Consider the case where the moment functions are of the form

gi(θ�β)= ui(θ�β)Zi� (13.9)

whereZi is a vector of instrument variables, the residual ui(θ�β) is scalar,EFu2
i (θ0�β

∗) >
0, and EFu

2
i (θ0�β

∗)ZiZ′
i factors into EFu

2
i (θ0�β

∗)EFZiZ′
i. (Note that the latter condi-

tion is implied by conditional homoskedasticity: EF(u2
i (θ0�β

∗)|Zi) = σ2 a.s. for some
constant σ2 > 0.) Under these conditions, ΩF(θ0�β)= EFu

2
i (θ0�β)ZiZ

′
i −EFui(θ0�β)×

ZiEFui(θ0�β)Z
′
i, and ΩF(θ0�β

∗) = EFu
2
i (θ0�β

∗)EFZiZ′
i. If AFΠFA

′
F denotes a singu-

lar value decomposition of EFZiZ′
i with ΠF = Diag(Π1F�Π0F), where Π1F ∈ Rr con-

tains the nonzero eigenvalues and Π0F ∈ Rk−r contains the zero eigenvalues and
AF = (A1F�A0F) is a decomposition of the matrix of eigenvectors corresponding to
the nonzero/zero eigenvalues, respectively, then A0F = N(ΩF(θ0�β

∗)). It follows that
A′
FEFZiZ

′
iAF = Diag(Π1F�Π0F), and thus, in particular, EF(A′

FZi)
2
j = 0 for j = r +

1� � � � �k. Therefore, (A′
FZi)j = 0 a.s. for j = r + 1� � � � �k. But then A′

FΩF(θ0�β)AF =
EFu

2
i (θ0�β)A

′
FZiZ

′
iAF − EFui(θ0�β)A

′
FZi · EFui(θ0�β)Z

′
iAF , for any β ∈ B, equals a

block diagonal matrix with the lower right block equal to 0(k−r)×(k−r). This implies
ΩF(θ0�β)A0F = 0k×(k−r), which implies that N(ΩF(θ0�β

∗)) ⊂ N(ΩF(θ0�β)). Thus, in
the setup of (13.9), condition (iv) of FS�SR

AR�2 holds provided N(ΩF(θ0�β
∗)) is not a strict

subset of N(ΩF(θ0�β)).
Note that condition (iv) of FS�SR

AR�2 implies that rF(β) is constant for all β ∈ B(β∗� ζ†).
Furthermore, it implies that col(ΩF(θ0�β

∗))= col(ΩF(θ0�β)) for allβ ∈ B(β∗� ζ†), that is,
that col(AF(β

∗))= col(AF(β)) for all β ∈ B(β∗� ζ†). Therefore, without loss of generality,
under condition (iv) of FS�SR

AR�2 , we can take AF(β)=AF(β
∗) for all β ∈ B(β∗� ζ†), that is,

AF(β) does not depend on β for all β ∈ B(β∗� ζ†).
The asymptotic size and similarity results for the subvector SR-AR and SR-CQLR tests

are as follows.

Theorem 13.1. Suppose Assumption gB holds. The asymptotic sizes of the subvector
SR-AR and SR-CQLR tests defined in (13.5) and (13.6), respectively, equal their nomi-
nal size α ∈ (0�1) for the null parameter spaces FS�SR

AR and FS�SR, respectively. These tests
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are asymptotically similar (in a uniform sense) for the subsets of these parameter spaces
that exclude distributions F under which gi = 0k a.s. Analogous results hold for the corre-

sponding subvector SR-AR and SR-CQLR CSs for the parameter spaces FS�SR
Θ�AR and FS�SR

Θ .

Comment. Theorem 13.1 is proved in Section 31 below.

14. Miscellanei

14.1 Moore–Penrose expression for the SR-AR statistic

The expression for the SR-AR statistic given in (15) of AG2 holds by the following cal-
culations. For notational simplicity, we suppress the dependence of quantities on θ. We
have

SR-ARn = nĝ′
nÂn
(
Â′
nΩ̂nÂn

)−1
Â′
nĝn

= nĝ′
nÂn
(
Â′
n

[
Ân� Â

⊥
n

]
Π̂n
[
Ân� Â

⊥
n

]′
Ân
)−1

Â′
nĝn

= nĝ′
nÂnΠ̂

−1
1n Â

′
nĝn and

nĝ′
nΩ̂

+
n ĝn = nĝ′

n

[
Ân� Â

⊥
n

][ Π̂−1
1n 0̂rn×(k−̂rn)

0(k−̂rn)×̂rn 0(k−̂rn)(k−̂rn)

][
Ân� Â

⊥
n

]′
ĝn

= nĝ′
nÂnΠ̂

−1
1n Â

′
nĝn�

(14.1)

where the spectral decomposition of Ω̂n given in (10) and (11) is used once in each equa-
tion above. It is not the case that SR-ARn(θ) equals the rhs expression in (15) with prob-
ability one when Ω̂+

n (θ) is replaced by an arbitrary generalized inverse of Ω̂n(θ).
The expression for the SR-AR statistic given in (13) is preferable to the Moore–

Penrose expression in (15) for the derivation of the asymptotic results for the SR-AR test.

14.2 Computation implementation

The computation times given in Section 5.3 are for the model in Section 10 for the
country Australia, although the choice of country has very little effect on the times. The
computation times for the PI-CLC, MM1-SU, and MM2-SU tests depend greatly on the
choice of implementation parameters. For the PI-CLC test, these include (i) the number
of linear combination coefficients “a” considered in the search over [0�1], which we take
to be 100, (ii) the number of simulation repetitions used to determine the best choice of
“a,” which we take to be 2000, and (iii) the number of alternative parameter values con-
sidered in the search for the best “a,” which we take to be 41 for p= 1. For the MM1-SU
and MM2-SU tests, the implementation parameters include (i) the number of variables
in the discretization of the maximization problem, which we take to be 1000, and (ii) the
number of points used in the numerical approximations of the integrals h1 and h2 that
appear in the definitions of these tests, which we take to be 1000. The run-times for
the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical value
look up table for the PI-CLC test, that only need to be computed once when carrying
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out multiple tests. The computations are done in GAUSS using the lmpt application to
do the linear programming required by the MM1-SU and MM2-SU tests. Note that the
computation time for the SR-CQLR test could be reduced by using a look-up table for
the data-dependent critical values, which depend on p singular values. This would be
most useful when p= 2.

15. SR-CQLRP test

In this section, we define the SR-CQLRP test, which is quite similar to the SR-CQLR test,
but relies on gi(θ) having a product form. This form is

gi(θ)= ui(θ)Zi� (15.1)

where Zi is a k vector of IVs, ui(θ) is a scalar residual, and the (random) function ui(·)
is known. This is the case considered in Stock and Wright (2000). It covers many GMM
situations, but can be restrictive. For example, it rules out Hansen and Scheinkman’s
(1995) moment conditions for continuous-time Markov processes, the moment condi-
tions often used with dynamic panel models, for example, see Ahn and Schmidt (1995),
Arellano and Bover (1995), and Blundell and Bond (1995), and moment conditions of the
form gi(θ)= ui(θ)⊗Zi, where ui(θ) is a vector.

The SR-CQLRP test reduces asymptotically to Moreira’s (2003) CLR test in the ho-
moskedastic linear IV regression model with fixed IVs for sequences of distributions in
all identification categories. In contrast, the SR-CQLR test does so only under sequences
in the standard weak, semi-strong, and strong identification categories; see Section 6.2
for the definitions of these identification categories.

15.1 SR-CQLRP parameter space

When (15.1) holds, we define

uθi(θ) := ∂

∂θ
ui(θ) ∈Rp and

u∗
i (θ) :=

(
ui(θ)

uθi(θ)

)
∈Rp+1� and we have Gi(θ)=Ziuθi(θ)

′�30
(15.2)

The null parameter space for the SR-CQLRP test is

FSR
P := {F ∈ FSR :EF

∥∥Π−1/2
1F A′

FZi
∥∥4+γ ≤M�EF

∥∥u∗
i

∥∥2+γ ≤M� and

EF
∥∥Π−1/2

1F A′
FZi
∥∥2u2

i 1
(
u2
i > c
)≤ 1/2

}
� (15.3)

30As with G(Wi�θ) defined in (2), uθi(θ) need not be a vector of partial derivatives of ui(θ) for all sample
realizations of the observations. It could be the vector of partial derivatives of ui(θ) almost surely, rather
than for all Wi , which allows ui(θ) to have kinks, or a vector of finite differences of ui(θ). For the asymptotic
size results for the SR-CQLR2 test given below to hold, uθi(θ) can be any random p vector that satisfies the
conditions in FSR

2 (defined in (15.3)).
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for some γ > 0 and some M�c < ∞, where Π1F and AF are defined in Section 3.2. By
definition, FSR

P ⊂ FSR ⊂ FSR
AR.

The conditions in FSR
P are only marginally stronger than those in FSR, defined in (6).

A sufficient condition for the last condition in FSR
P to hold for some c <∞ is EFu4

i ≤M∗
for some sufficiently large M∗ < ∞ (using the first condition in FSR

P and the Cauchy–
Bunyakovsky–Schwarz inequality).

The conditions in FSR
P place no restrictions on the column rank or singular values

of EFGi. The conditions in FSR
P also place no restrictions on the variance matrix ΩF :=

EFgig
′
i of gi, such as λmin(ΩF) ≥ δ for some δ > 0 or λmin(ΩF) > 0. Hence, ΩF can be

singular.
In Section 3.2, it is noted that identification failure yields singularity of ΩF in

likelihood scenarios. It also does so in all quasi-likelihood scenarios when the quasi-
likelihood does not depend on some element(s) of θ (or some transformation(s) of
θ) for θ in a neighborhood of θ0.31 Another example where ΩF may be singular is
the following homoskedastic linear IV model: y1i = Y2iβ + Ui and Y2i = Z′

iπ + V2i,
where all quantities are scalars except Zi�π ∈ RdZ and θ = (β�π ′)′ ∈ R1+dZ . The cor-
responding reduced-form equations are y1i = Z′

iπβ + V1i and Y2i = Z′
iπ + V1i, where

V1i =Ui + V2iβ. We assume EUi = EV2i = 0, EUiZi = EV2iZi = 0dZ , and E(ViV ′
i |Zi)= ΣV

a.s. for Vi := (V1i� V2i)
′ and some 2 × 2 constant matrix ΣV . The moment conditions for

θ are gi(θ) = ((y1i − Z′
iπβ)Z

′
i� (Y2i − Z′

iπ)Z
′
i)

′ ∈ Rk, where k = 2dZ . The variance ma-
trix ΣV ⊗ EZiZ

′
i of gi(θ0)= (V1iZ

′
i� V2iZ

′
i)

′ is singular whenever the covariance between
the reduced-form errors V1i and V2i is one (or minus one) or EZiZ′

i is singular. In this
model, we are interested in joint inference concerning β and π. This is of interest when
one wants to see how the magnitude of π affects the range of plausible β values.

Section 3.2 and Grant (2013) note that ΩF can be singular in the model for inter-
est rate dynamics in Jegannathan, Skoulakis, and Wang (2002, Section 6.2) (JSW). JSW
considered five moment conditions and a four-dimensional parameter θ. The first four
moment functions in JSW are (a(b− ri)r

−2γ
i − γσ2r−1

i ,a(b− ri)r
−2γ+1
i − (γ− 1/2)σ2,(b−

ri)r
−a
i − (1/2)σ2r

2γ−a−1
i ,a(b− ri)r

−σ
i − (1/2)σ3r

2γ−σ−1
i )′, where θ = (a�b�σ�γ)′ and ri is

the interest rate. The second and third functions are equivalent if γ = (a+ 1)/2; the sec-
ond and fourth functions are equivalent if γ = (σ + 1)/2; and the third and fourth func-
tions are equivalent if σ = a. Hence, the variance matrix of the moment functions is
singular when one or more of these three restrictions on the parameters holds. When
any two of these restrictions hold, the parameter also is unidentified.

Next, we specify the parameter space for (F�θ) that is used with the SR-CQLRP CS.
It is denoted by FSR

Θ�P . For notational simplicity, the dependence of the parameter space

FSR
P in (15.3) on θ0 is suppressed. When dealing with the SR-CQLRP CS, rather than test,

we make the dependence explicit and write it as FSR
P (θ0). We define

FSR
Θ�P := {(F�θ0) : F ∈ FSR

P (θ0)�θ0 ∈Θ}� (15.4)

31In this case, the moment functions equal the quasi-score and some element(s) or linear combina-
tion(s) of elements of moment functions, equal zero a.s. at θ0 (because the quasi-score is of the form
gi(θ) = (∂/∂θ) log f (Wi�θ) for some density or conditional density f (Wi�θ)). This yields singularity of the
variance matrix of the moment functions and of the expected Jacobian of the moment functions.



12 Andrews and Guggenberger Supplementary Material

15.2 Definition of the SR-CQLRP test

First, we define the CQLRP test without the SR extension. It uses the statistics ĝn(θ),
Ω̂n(θ), ARn(θ), and D̂n(θ) (defined in (8), (9), and (18)). The CQLRP test also uses ana-
logues R̃n(θ) and Ṽn(θ) of R̂n(θ) and V̂n(θ) (defined in (19)), respectively, which are de-
fined as follows:

R̃n(θ) := (B(θ)′ ⊗ Ik
)
Ṽn(θ)
(
B(θ)⊗ Ik

) ∈R(p+1)k×(p+1)k� where

Ṽn(θ) := n−1
n∑
i=1

((
u∗
i (θ)− û∗

in(θ)
)(
u∗
i (θ)− û∗

in(θ)
)′)⊗ (ZiZ′

i

) ∈R(p+1)k×(p+1)k�

û∗
in(θ) := Ξ̃n(θ)

′Zi ∈Rp+1�

Ξ̃n(θ) := (Z′
n×kZn×k

)−1
Z′
n×kU

∗(θ) ∈Rk×(p+1)�

Zn×k := (Z1� � � � �Zn)
′ ∈Rn×k�

U∗(θ) := (u∗
1(θ)� � � � � u

∗
n(θ)
)′ ∈Rn×(p+1)� and

B(θ) :=
(

1 0′
p

−θ −Ip

)
∈R(p+1)×(p+1)�

(15.5)

where u∗
i (θ) := (ui(θ)�uθi(θ)

′)′ is defined in (15.2). Note that (i) Ṽn(θ) is an estimator of
the variance matrix of the moment functions and their vectorized derivatives, (ii) Ṽn(θ)
exploits the functional form of the moment conditions given in (15.1), (iii) Ṽn(θ) typically
is not of a Kronecker product form (because of the average over i = 1� � � � � n), and (iv)
û∗
in(θ) is the best linear predictor of u∗

i (θ) based on {Zi : n ≥ 1}. The estimators R̃n(θ),

Ṽn(θ), and Σ̃n(θ) (defined immediately below) are defined so that the SR-CQLRP test,
which employs them, is asymptotically equivalent to Moreira’s (2003) CLR test under all
strengths of identification in the homoskedastic linear IV model with fixed IVs and p rhs
endogenous variables for any p≥ 1; see Section 19 for details. The SR-CQLRP test differs
from the SR-CQLR test because Ṽn(θ) (and the statistics that depend on it) differs from
V̂n(θ) (and the statistics that depend on it).

We define Σ̃n(θ) ∈ R(p+1)×(p+1) just as Σ̂n(θ) is defined in (20) and (21), but with
R̃n(θ) in place of R̂n(θ). We define D̃∗

n(θ) just as D̂∗
n(θ) is defined in (23), but with Σ̃n(θ)

in place of Σ̂n(θ). That is,

D̃∗
n(θ) := Ω̂n(θ)

−1/2D̂n(θ)L̃
1/2
n (θ) ∈Rk×p� where

L̃n(θ) := (θ� Ip)
(
Σ̃εn(θ)

)−1
(θ� Ip)

′�
(15.6)

The estimator Σ̃n(θ) is an estimator of a matrix that could be singular or nearly singular
in some cases. For example, in the homoskedastic linear IV model (see Section 19.1 be-
low) Σ̃n(θ) is an estimator of the variance matrixΣV of the reduced-form errors when θ is
the true parameter, andΣV could be singular or nearly singular. In the definition of L̃n(θ)
above, we use an eigenvalue-adjusted version of Σ̃n(θ), denoted by Σ̃εn(θ), whose condi-
tion number (i.e., λmax(Σ̂n(θ))/λmin(Σ̂n(θ))) is bounded above by construction. Based on
the finite-sample simulations, we recommend using ε= 0�01.
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The QLRP statistic without the SR extension, denoted by QLRPn(θ), is defined just as
QLRn(θ) is defined in (23), but with D̃∗

n(θ) in place of D̂∗
n(θ). For α ∈ (0�1), the nominal

size α CQLRP test (without the SR extension) rejects H0 : θ= θ0 if

QLRPn(θ0) > ck�p
(
n1/2D̃∗

n(θ0)�1 − α
)
� (15.7)

where ck�p(·�1 − α) is defined in (24). The nominal size 100(1 − α)% CQLRP CS is
CSCQLRP�n := {θ0 ∈Θ : QLRPn(θ0)≤ ck�p(n

1/2D̃∗
n(θ0)�1 − α)}.

The CQLRP test statistic and critical value satisfy the following invariance properties.

Lemma 15.1. The statistics QLRPn, ck�p(n1/2D̃∗
n�1 − α), D̃∗′

n D̃
∗
n, ARn, û∗

in, Σ̃n, and L̃n are
invariant to the transformation (Zi�u

∗
i ) � (MZi�u

∗
i ) ∀i ≤ n for any k × k nonsingular

matrix M . This transformation induces the following transformations: gi �Mgi ∀i ≤ n,
Gi � MGi ∀i ≤ n, ĝn � Mĝn, Ĝn � MĜn, Ω̂n � MΩ̂nM

′, Γ̂jn � MΓ̂jnM
′ ∀j ≤ p, D̂n �

MD̂n, Zn×k �Zn×kM ′, Ξ̃n �M ′−1
Ξ̃n, Ṽn � (Ip+1 ⊗M)Ṽn(Ip+1 ⊗M ′), and R̃n � (Ip+1 ⊗

M)R̃n(Ip+1 ⊗M ′).

Comment. This lemma is important because it implies that one can obtain the cor-
rect asymptotic size of the CQLRP test defined above without assuming that λmin(ΩF)

is bounded away from zero. It suffices that ΩF is nonsingular. The reason is that (in the
proofs) one can transform the moments by gi �MFgi, where MFΩFM

′
F = Ik, such that

the transformed moments have a variance matrix whose eigenvalues are bounded away
from zero for some δ > 0 (since VarF(MFgi)= Ik) even if the original moments gi do not.

For the CQLRP test with the SR extension, we define D̂An(θ) as in (26). We let
ZAi(θ) := Ân(θ)

′Zi ∈Rr̂n(θ) and ZAn×k(θ) :=Zn×kÂn(θ) ∈Rn×̂rn(θ). We define

ṼAn(θ) := n−1
n∑
i=1

((
u∗
i (θ)− û∗

Ain(θ)
)(
u∗
i (θ)− û∗

Ain(θ)
)′)⊗ (ZAi(θ)ZAi(θ)′)

∈R(p+1)̂rn(θ)×(p+1)̂rn(θ)� where

û∗
Ain(θ) := Ξ̃An(θ)

′ZAi(θ) ∈Rp+1�

Ξ̃An(θ) := (ZAn×k(θ)′ZAn×k(θ))−1
ZAn×k(θ)′U∗(θ) ∈Rr̂n(θ)×(p+1)�

(15.8)

and r̂n(θ) and Ân(θ) are defined in (10) and (11), respectively. In addition, we define
R̃An(θ), Σ̃An(θ), L̃An(θ), D̃∗

An(θ), and Q̃An(θ) as R̂An(θ), Σ̂An(θ), L̂An(θ), D̂∗
An(θ), and

Q̂An(θ) are defined, respectively, in (27) and (28), but with ṼAn(θ) in place of V̂An(θ)
in the definition of R̃An(θ), with R̃An(θ) in place of R̂An(θ) in the definition of Σ̃An(θ),
and so on in the definitions of L̃An(θ), D̃∗

An(θ), and Q̃An(θ). We define the test statistic
SR-QLRPn(θ) as SR-QLRn(θ) is defined in (28), but with Q̃An(θ) in place of Q̂An(θ).

Given these definitions, the nominal size α SR-CQLRP test rejects H0 : θ= θ0 if

SR-QLRPn(θ0) > ĉrn(θ0)�p
(
n1/2D̃∗

An(θ0)�1 − α
)

or Â⊥
n (θ0)

′ĝn(θ0) �= 0k−̂rn(θ0)�32 (15.9)

32By definition, Â⊥
n (θ0)

′ĝn(θ0) �= 0k−̂rn(θ0) does not hold if r̂n(θ0)= k. If r̂n(θ0)= 0, then SR-QLRPn(θ0) :=
0 and χ2

r̂n(θ0)�1−α := 0. In this case, Â⊥
n (θ0)= Ik and the SR-CQLRP test rejects H0 if ĝn(θ0) �= 0k.
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The nominal size 100(1 −α)% SR-CQLRP CS is CSSR-CQLRP�n := {θ0 ∈Θ : SR-QLRPn(θ0)≤
ĉrn(θ0)�p(n

1/2D̃∗
An(θ0)�1 − α) and Â⊥

n (θ0)
′ĝn(θ0)= 0k−̂rn(θ0)}.33

Two simple examples where the extra rejection condition in (15.9) for the SR-CQLRP
test (and in (14) and (29) for the SR-AR and SR-CQLR tests, resp.) improves the power
of these tests are the following. First, suppose (X1i�X2i)

′ ∼ i.i.d. N(θ�ΩF), where θ =
(θ1� θ2)

′ ∈R2, ΩF is a 2 × 2 matrix of ones, and the moment functions are gi(θ)= (X1i −
θ1�X2i − θ2)

′. In this case, ΩF is singular, Ân(θ0)= (1�1)′ a.s., Â⊥
n (θ0)= (1�−1)′ a.s., the

SR-AR statistic is a quadratic form in Ân(θ0)
′ĝn(θ0) = X1n + X2n − (θ10 + θ20), where

Xmn = n−1∑n
i=1Xmi form= 1�2, andA⊥

n (θ0)
′ĝn(θ0)=X1n −X2n − (θ10 −θ20) a.s. If one

does not use the extra rejection condition, then the SR-AR test has no power against
alternatives θ= (θ1� θ2)

′ ( �= θ0) for which θ1 + θ2 = θ10 + θ20. The same is true for the SR-
CQLR and SR-CQLRP tests (because the SR-QLRn and SR-QLRPn test statistics depend
on the SR-ARn test statistic). However, when the extra rejection condition is utilized,
all θ ∈ R2 except those on the line θ1 − θ2 = θ10 − θ20 are rejected with probability one
(becauseX1n−X2n =EFX1i−EFX2i = θ1 −θ2 a.s.) and this includes all of the alternative
θ values for which θ1 + θ2 = θ10 + θ20.

Second, suppose Xi ∼ i.i.d. N(θ1� θ2), θ = (θ1� θ2)
′ ∈ R2, the moment functions are

gi(θ)= (Xi − θ1�X
2
i − θ2

1 − θ2)
′, and the null hypothesis is H0 : θ = (θ10� θ20)

′. Consider
alternative parameters of the form θ= (θ1�0)′. Under θ,Xi has variance zero,Xi =Xn =
θ1 a.s., X2

i =X2
n = θ2

1 a.s., where X2
n := n−1∑n

i=1X
2
i , ĝn(θ0) = (θ1 − θ10� θ

2
1 − θ2

10 − θ20)
′

a.s., Ω̂n(θ0)= ĝn(θ0)ĝn(θ0)
′ − ĝn(θ0)ĝn(θ0)

′ = 02×2 a.s. (provided Ω̂n(θ0) is defined as in
(8) with the sample means subtracted off), and r̂n(θ0) = 0 a.s. In consequence, if one
does not use the extra rejection condition, then the SR-AR, SR-CQLR, and SR-CQLRP
tests have no power against alternatives of the form θ= (θ1�0)′ (because, by definition,
the test statistics and critical values equal zero when r̂n(θ0) = 0). However, when the
extra rejection condition is utilized, all alternatives of the form θ = (θ1�0)′ are rejected
with probability one.34,35,36,37

33By definition, if r̂n(θ0)= k, the condition Â⊥
n (θ0)

′ĝn(θ0)= 0k−̂rn(θ0) holds.
34This holds because the extra rejection condition in this case leads one to reject H0 if Xn �= θ10 or X2

n −
θ2

10 − θ20 �= 0, which is equivalent a.s. to rejecting if θ1 �= θ10 or θ2
1 − θ2

10 − θ20 �= 0 (because Xn = θ1 a.s. and

X2
n = θ2

1 a.s. under θ), which in turn is equivalent to rejecting if θ �= θ0 (because if θ20 > 0 one or both of the
two conditions is violated when θ �= θ0 and if θ20 = 0, then θ �= θ0 only if θ1 �= θ10 since we are considering
the case where θ2 = 0).

35In this second example, suppose the null hypothesis is H0 : θ= (θ10�0)′. That is, θ20 = 0. Then the SR-
AR test rejects with probability zero under H0 and the test is not asymptotically similar. This holds because
ĝn(θ0)= (Xn−θ10�X2

n−θ2
10)

′ = (0�0)′ a.s., r̂n(θ0)= 0 a.s., SR-ARn(θ0)= χ2
r̂n(θ0)�1−α = 0 a.s. (because r̂n(θ0)=

0 a.s.), and the extra rejection condition leads one to reject H0 if Xn �= θ10 or X2
n − θ2

10 − θ20 �= 0, which is
equivalent to θ10 �= θ10 or θ2

10 − θ2
10 − θ20 �= 0 (because Xi = θ1 a.s.), which holds with probability zero.

As shown in Theorem 6.1, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null
distributions F for which the gi(θ0)= 0k a.s. under F , such as in the present example, from the parameter
space of null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.

36We thank Kirill Evdokimov for bringing these two examples to our attention.
37An alternative definition of the SR-AR test is obtained by altering its definition given in Section 4 as

follows. One omits the extra rejection condition given in (14), one defines the SR-AR statistic using a weight
matrix that is nonsingular by construction when Ω̂n(θ0) is singular, and one determines the critical value
by simulation of the appropriate quadratic form in mean zero normal variates when Ω̂n(θ0) is singular. For
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When the sample variance matrix is singular, an alternative to using the SR-ARn(θ0)

statistic is to arbitrarily delete some moment conditions. However, this typically leads
to different test results given the same data and can yield substantially different power
properties of the test depending on which moment conditions are deleted, which
is highly undesirable. The following simple example illustrates this. Suppose Wi =
(W1i�W2i�W3i)

′ has a normal distribution with mean vector (θ1� θ2� θ2)
′, all variances are

equal to one, the covariance betweenW1i andW2i equals one, (W1i�W2i) andW3i are inde-
pendent, g(Wi�θ)= (W1i − θ1�W2i − θ2�W3i − θ2)

′, and the null hypothesis is H0 : θ= θ0

for some θ0 = (θ01� θ02)
′ ∈ R2. The sample variance matrix is singular with probability

one. A nonsingular sample variance matrix can be obtained by deleting the first moment
condition or the second. If the first moment condition is deleted, the sample moments
evaluated at θ0 are (W n2 − θ02�W n3 − θ02)

′. If the second moment condition is deleted,
they are (W n1 − θ01�W n3 − θ02)

′. When θ1 − θ10 and θ2 − θ20 are not equal (where θ1

and θ2 denote the true values), these two sets of moment conditions are not the same.
Furthermore, it is clear that the power of the two tests based on these two sets of mo-
ment conditions is quite different because the first set of sample moments contains no
information about θ1, whereas the second set does.

15.3 Asymptotic size of the SR-CQLRP test

The correct asymptotic size and similarity results for the SR-CQLRP test are as follows.

Theorem 15.2. The asymptotic size of the SR-CQLRP test defined in (15.9) equals its
nominal size α ∈ (0�1) for the null parameter spaces FSR

P . Furthermore, this test is asymp-
totically similar (in a uniform sense) for the subset of this parameter space that excludes
distributions F under which gi = 0k a.s. Analogous results hold for the corresponding
SR-CQLRP CS for the parameter space FSR

Θ�P , defined in (15.4).

Comment. (i) For distributions F under which gi = 0k a.s., the SR-CQLRP test re-
jects the null hypothesis with probability zero when the null is true. Hence, asymptotic
similarity only holds when these distributions are excluded from the null parameter
spaces.

(ii) The proof of Theorem 15.2 is given in Sections 16, 17, and 25–27 below.

example, such a weight matrix can be constructed by adjusting the eigenvalues of Ω̂n(θ0) to be bounded
away from zero, and using its inverse.

However, this method has two drawbacks. First, it sacrifices power relative to the definition of the SR-AR
test in (14). The reason is that it does not rejectH0 with probability one when a violation of the nonstochas-
tic part of the moment conditions occurs. This can be seen in the example with identities in Section 4 and
the two examples given here.

Second, it cannot be used with the SR-CQLR and SR-CQLR2 tests introduced in Sections 5 and 15. The
reason is that these tests rely on the statistic D̂n(θ0), defined in (18), that employs Ω̂−1

n (θ0) and if Ω̂−1
n (θ0) is

replaced by a matrix that is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested
above, then one does not obtain asymptotic independence of ĝn(θ0) and D̂n(θ0) after suitable normaliza-
tion, which is needed to obtain the correct asymptotic size of the SR-CQLR and SR-CQLR2 tests.
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15.4 Asymptotic efficiency of the SR-CQLRP test under strong identification

Here, we show that the SR-CQLRP test is asymptotically efficient in a GMM sense un-
der strong and semi-strong identification (when the variance matrix of the moments
is nonsingular and the null parameter value is not on the boundary of the parameter
space).

Suppose k ≥ p. Let AF and Π1F be defined as in (4) and (5) and the paragraph fol-
lowing these equations with θ = θ0. Define λ∗

F , Λ∗
P , and {λ∗

n�h : n ≥ 1} as λF , ΛWU�P , and
{λn�h : n ≥ 1}, respectively, are defined in (16.16)–(16.18), but with gi and Gi replaced

by g∗
Fi :=Π

−1/2
1F A′

Fgi and G∗
Fi :=Π

−1/2
1F A′

FGi, with FP replaced by FSR
P in the definition

of FWU, and with WF (:= W1(W2F)) and UF (:= U1(U2F)) defined as in (16.11) with gi
and Gi replaced by g∗

Fi and G∗
Fi. In addition, we restrict {λ∗

n�h : n ≥ 1} to be a sequence
for which λmin(EFngig

′
i) > 0 for all n ≥ 1. By definition, a sequence {λ∗

n�h : n ≥ 1} is said

to exhibit strong or semi-strong identification if n1/2s∗pFn → ∞, where s∗pF denotes the

smallest singular value of EFG∗
Fi.

38

The LMn and LMGMM
n statistics are defined in (32). Let χ2

p�1−α denote the 1 −α quan-

tile of the χ2
p distribution. The critical value for the LMn and LMGMM

n tests is χ2
p�1−α.

Theorem 15.3. Suppose k ≥ p. For any sequence {λ∗
n�h : n ≥ 1} that exhibits strong or

semi-strong identification (i.e., for which n1/2s∗pFn → ∞) and for which λ∗
n�h ∈Λ∗

P ∀n≥ 1,
we have

(a) SR-QLRPn = QLRPn + op(1)= LMn + op(1)= LMGMM
n + op(1) and

(b) ck�p(n1/2D̃∗
n�1 − α)→p χ

2
p�1−α.

Comment. (i) Theorem 15.3 establishes the asymptotic efficiency (in a GMM sense)
of the SR-CQLRP test under strong and semi-strong identification. Theorem 15.3 pro-
vides asymptotic equivalence results under the null hypothesis, but by the definition of
contiguity, these asymptotic equivalence results also hold under contiguous local alter-
natives.

(ii) The proof of Theorem 15.3 is given in Section 28.

15.5 Summary comparison of CLR-type tests in Kleibergen (2005) and AG2

We briefly summarize some of the results in AG1 and AG2 concerning Kleibergen’s
(2005) moment-variance-weighted CLR (MVW-CLR) and Jacobian-variance-weighted
CLR (JVW-CLR) tests, the SR-CQLR test in AG2, and the SR-CQLRP test introduced
above. (i) The MVW-CLR test has correct asymptotic size for all p ≥ 1 (for the param-
eter space in AG1, which imposes nonsingularity of the variance matrix and some other

38The singular value s∗pF , defined here, equals spF , defined in Section 6.2, for all F with λmin(ΩF) > 0,

because in this case ΩF = AFΠ1FA
′
F , Ω−1/2

F = AFΠ
−1/2
1F A′

F , Ω−1/2
F EFGi = AFΠ

−1/2
1F A′

FEFGi = AFEFG
∗
Fi ,

and AF is an orthogonal k× k matrix. Since we consider sequences here with λmin(ΩFn)= λmin(EFngig
′
i) >

0 for all n ≥ 1, the definitions of strong and semi-strong identification used here and in Section 6.2 are
equivalent.
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conditions). (ii) The JVW-CLR test has correct asymptotic size for p = 1 (under simi-
lar conditions to the MVW-CLR test). (iii) For p ≥ 2, AG1 provides an expression for the
asymptotic size of the JWV-CLR test that depends on a vector of localization parameters.
It is unknown whether the asymptotic size exceeds the nominal size. (iv) The MVW-CLR
test is not asymptotically equivalent to Moreira’s (2003) CLR test in the homoskedastic
linear IV (HLIV) model for any p≥ 1. (v) The JVW-CLR test is asymptotically equivalent
to Moreira’s (2003) CLR test in the HLIV model for p= 1, but not for p ≥ 2. (vi) The SR-
CQLR test has correct asymptotic size for the parameter space FSR in Section 3.2, which
is larger than the parameter space in (i) and (ii). (vii) The SR-CQLRP test has correct
asymptotic size for the parameter space FSR

P (⊂ FSR). (viii) The SR-CQLR test is asymp-
totically equivalent to Moreira’s (2003) CLR test in the HLIV model for p= 1, but not for
p≥ 2, although the difference forp≥ 2 is only due to the difference between treating the
IVs as random, rather than fixed. (ix) The SR-CQLRP test is asymptotically equivalent to
Moreira’s (2003) CLR test in the HLIV model for all p≥ 1.

16. Tests without the singularity-robust extension

The next two sections and Sections 25–27 below are devoted to the proof of Theorems 6.1
and 15.2. The proof proceeds in two steps. First, in this section, we establish the correct
asymptotic size and asymptotic similarity of the tests and CSs without the SR extension
for parameter spaces of distributions that bound λmin(ΩF) away from zero. (These tests
are defined in (9), (25), and (15.7).) We provide parts of the proof of this result in this
section and other parts in Sections 25–27 below. Second, we extend the proof to the case
of the SR tests and CSs. We provide the proof of this extension in Section 17 below.

16.1 Asymptotic results for tests without the SR extension

For the AR, CQLR, and CQLRP tests without the SR extension, we consider the following
parameter spaces for the distribution F that generates the data under H0 : θ= θ0:

FAR := {F :EFgi = 0k�EF‖gi‖2+γ ≤M� and λmin
(
EFgig

′
i

)≥ δ
}
�

F := {F ∈ FAR :EF
∥∥vec(Gi)

∥∥2+γ ≤M
}
� and

FP := {F ∈ F :EF‖Zi‖4+γ ≤M�EF
∥∥u∗

i

∥∥2+γ ≤M�λmin
(
EFZiZ

′
i

)≥ δ
} (16.1)

for some γ�δ > 0 and M <∞. By definition, FP ⊂ F ⊂ FAR. The parameter spaces FAR,
F , and FP are used for the AR, CQLR, and CQLRP tests, respectively. For the corre-
sponding CSs, we use the parameter spaces: FΘ�AR := {(F�θ0) : F ∈ FAR(θ0)�θ0 ∈ Θ},
FΘ := {(F�θ0) : F ∈ F(θ0)�θ0 ∈ Θ}, and FΘ�P := {(F�θ0) : F ∈ FP(θ0)�θ0 ∈ Θ}, where
FAR(θ0), F(θ0), and FP(θ0) equal FAR, F , and FP , respectively, with their dependence
on θ0 made explicit.

Theorem 16.1. The AR, CQLR, and CQLRP tests (without the SR extensions), defined in
(9), (25), and (15.7), respectively, have asymptotic size equal to their nominal size α ∈ (0�1)
and are asymptotically similar (in a uniform sense) for the parameter spaces FAR, F , and
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FP , respectively. Analogous results hold for the corresponding AR, CQLR, and CQLRP CSs
for the parameter spaces FΘ�AR, FΘ, and FΘ�P , respectively.

Comment. (i) The first step of the proof of Theorems 6.1 and 15.2 is to prove Theo-
rem 16.1.

(ii) Theorem 16.1 holds for both k≥ p and k< p. Both cases are needed in the proof
of Theorems 6.1 and 15.2 (even if k≥ p in Theorems 6.1 and 15.2).

(iii) In Theorem 16.1, as in Theorems 6.1 and 15.2, we assume that the parameter
space being considered is nonempty.

(iv) The results of Theorem 6.1 still hold if the moment bounds in FAR, F , and
FP are weakened very slightly by, for example, replacing EF‖gi‖2+γ ≤ M in FAR by
EF‖gi‖21(‖gi‖ > j) ≤ εj for all integers j ≥ 1 for some εj > 0 (that does not depend on
F) for which εj → 0 as j → ∞. The latter conditions are weaker because, for any random
variable X and constants γ� j > 0, EX21(|X |̇ > j) ≤ E|X|2+γ/jγ . The latter conditions
allow for the application of Lindeberg’s triangular array central limit theorem for inde-
pendent random variables, for example, see Billingsley (1979, Theorem 27.2, p. 310), in
scenarios where the distribution F depends on n. For simplicity, we define the parame-
ter spaces as is.

Analogously, the results in Theorems 6.1 and 15.2 still hold if the moment bounds
in FSR

AR, FSR, and FSR
P are weakened very slightly by, for example, replacing

EF‖Π−1/2
1F A′

Fgi‖2+γ ≤M in FSR
AR by EF‖Π−1/2

1F A′
Fgi‖21(‖Π−1/2

1F A′
Fgi‖> j)≤ εj for all inte-

gers j ≥ 1 for some εj > 0 (that does not depend on F) for which εj → 0 as j → ∞.
The following lemma shows that the critical value function ck�p(D�1 − α) depends

on D only through its singular values.

Lemma 16.2. Let D be a k×p matrix with the singular value decomposition D= CΥB′,
where C is a k × k orthogonal matrix of eigenvectors of DD′, B is a p × p orthogonal
matrix of eigenvectors ofD′D, andΥ is the k×pmatrix with the min{k�p} singular values
{τj : j ≤ min{k�p}} ofD as its first min{k�p} diagonal elements and zeros elsewhere, where
τj is nonincreasing in j. Then ck�p(D�1 − α)= ck�p(Υ�1 − α).

Comment. A consequence of Lemma 16.2 is that the critical value ck�p(n1/2D̂∗
n(θ0)�1 −

α) of the CQLR test depends on D̂∗
n(θ0) only through D̂∗

n(θ0)
′D̂∗

n(θ0) (because when

k ≥ p, the p singular values of n1/2D̂∗
n(θ0) equal the square roots of the eigenvalues of

nD̂∗
n(θ0)

′D̂∗
n(θ0) and, when k < p, ck�p(D�1 − α) is the 1 − α quantile of the χ2

k distribu-
tion which does not depend on D).

16.2 Uniformity framework

The proofs of Theorems 6.1, 15.2, and 16.1 use Corollary 2.1(c) in Andrews, Cheng, and
Guggenberger (2019) (ACG), which provides general sufficient conditions for the correct
asymptotic size and (uniform) asymptotic similarity of a sequence of tests.
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Now we state Corollary 2.1(c) of ACG. Let {φn : n≥ 1} be a sequence of tests of some
null hypothesis whose null distributions are indexed by a parameter λ with parame-
ter space Λ. Let RPn(λ) denote the null rejection probability of φn under λ. For a finite
nonnegative integer J, let {hn(λ) = (h1n(λ)� � � � �hJn(λ))

′ ∈ RJ : n ≥ 1} be a sequence of
functions on Λ. Define

H := {h ∈ (R∪ {±∞})J : hwn(λwn)→ h for some subsequence {wn}
of {n} and some sequence {λwn ∈Λ : n≥ 1}}� (16.2)

Assumption B∗ . For any subsequence {wn} of {n} and any sequence {λwn ∈Λ : n≥ 1} for
which hwn(λwn)→ h ∈H, RPwn(λwn)→ α for some α ∈ (0�1).

Proposition 16.3 (ACG, Corollary 2.1(c)). Under Assumption B∗, the tests {φn : n ≥ 1}
have asymptotic size α and are asymptotically similar (in a uniform sense).
That is, AsySz := lim supn→∞ supλ∈Λ RPn(λ) = α and lim infn→∞ infλ∈Λ RPn(λ) =
lim supn→∞ supλ∈Λ RPn(λ).

Comment. (i) By Comment 4 to Theorem 2.1 of ACG, Proposition 16.3 provides asymp-
totic size and similarity results for nominal 1 − α CSs, rather than tests, by defining λ as
one would for a test, but having it depend also on the parameter that is restricted by
the null hypothesis, by enlarging the parameter space Λ correspondingly (so it includes
all possible values of the parameter that is restricted by the null hypothesis), and by re-
placing (a) φn by a CS based on a sample of size n, (b) α by 1 − α, (c) RPn(λ) by CPn(λ),
where CPn(λ) denotes the coverage probability of the CS under λ when the sample size
is n, and (d) the first lim supn→∞ supλ∈Λ that appears by lim infn→∞ infλ∈Λ. In the present
case, where the null hypotheses are of the form H0 : θ = θ0 for some θ0 ∈ Θ, to estab-
lish the asymptotic size of CSs, the parameter θ0 is taken to be a subvector of λ and Λ is
specified so that the value of this subvector ranges over Θ.

(ii) In the application of Proposition 16.3 to prove Theorems 6.1, 15.2, and 16.1,
one takes Λ to be a one-to-one transformation of FAR, F , or FP for tests, and one
takes Λ to be a one-to-one transformation of FΘ�AR, FΘ, or FΘ�P for CSs. With these
changes, the proofs for tests and CSs are the same. In consequence, we provide explicit
proofs for tests only and obtain the proofs for CSs by analogous applications of Propo-
sition 16.3.

(iii) We prove the test results in Theorems 16.1 and 15.2 using Proposition 16.3
by verifying Assumption B∗ for a suitable choice of λ, hn(λ), and Λ. The verifica-
tion of Assumption B∗ is quite easy for the AR test. It is given in Section 27.6. The
verifications of Assumption B∗ for the CQLR and CQLRP tests are much more diffi-
cult. In the remainder of this Section 16, we provide some key results that are used
in doing so. (These results are used only for the CQLR and CQLRP tests, not the
AR test.) The complete verifications for the CQLR and CQLRP tests are given in Sec-
tion 27.
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16.3 General weight matrices Ŵn and Ûn

As above, for notational simplicity, we suppress the dependence on θ0 of many quanti-
ties, such as gi,Gi, uθi,B, and fi, as well as the quantities VF ,RF ,ΞF , ṼF , and R̃F , that are
introduced below. To provide asymptotic results for the CQLR and CQLRP tests simulta-
neously, we prove asymptotic results for a QLR test statistic and a conditioning statistic
that depend on general random weight matrices Ŵn ∈ Rk×k and Ûn ∈ Rp×p. In particu-
lar, we consider statistics of the form ŴnD̂nÛn and functions of this statistic, where D̂n is
defined in (18). Let39

QLRWU�n := ARn − λmin(nQ̂WU�n)� where

Q̂WU�n := (ŴnD̂nÛn� Ω̂
−1/2
n ĝn

)′(
ŴnD̂nÛn� Ω̂

−1/2
n ĝn

) ∈R(p+1)×(p+1)�
(16.3)

The definitions of the random weight matrices Ŵn and Ûn depend upon the statistic
that is of interest. They are taken to be of the form

Ŵn :=W1(Ŵ2n) ∈Rk×k and Ûn :=U1(Û2n) ∈Rp×p� (16.4)

where Ŵ2n and Û2n are random finite-dimensional quantities, such as matrices, and
W1(·) and U1(·) are nonrandom functions that are assumed below to be continuous
on certain sets. The estimators Ŵ2n and Û2n have corresponding population quantities

W2F and U2F , respectively. Thus, the population quantities corresponding to Ŵn and Ûn
are

WF :=W1(W2F) and UF :=U1(U2F)� (16.5)

respectively.

Example 1. For the CQLR test,

Ŵn := Ω̂
−1/2
n and Ûn := L̂

1/2
n := ((θ0� Ip)

(
Σ̂εn
)−1

(θ0� Ip)
′)1/2� (16.6)

where Ω̂n is defined in (8) and Σ̂n is defined in (20) and (21).
The population analogues of V̂n and R̂n, defined in (19), are

VF := EF(fi −EFfi)(fi −EFfi)
′ ∈R(p+1)k×(p+1)k and

RF := (B′ ⊗ Ik
)
VF(B⊗ Ik) ∈R(p+1)k×(p+1)k�

(16.7)

39The definition of Q̂W Un in (16.3) writes the λmin(·) quantity in terms of (ŴnD̂nÛn� Ω̂
−1/2
n ĝn), whereas

(23) writes the λmin(·) quantity in terms of (Ω̂−1/2
n ĝn� D̂

∗
n), which has the Ω̂−1/2

n ĝn vector as the first column
rather than the last column. The ordering of the columns does not affect the value of the λmin(·) quantity.
We use the order (Ω̂−1/2

n ĝn� D̂
∗
n) in (23) because it is consistent with the order in Moreira (2003) and An-

drews, Moreira, and Stock (2006, 2008). We use the order (ŴnD̂nÛn� Ω̂
−1/2
n ĝn) here because it has significant

notational advantages in the proof of Theorem 16.6 below, which is given in Section 26.
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In this case,

Ŵ2n := Ω̂n� W2F :=ΩF := EFgig
′
i� W1(W2F) :=W

−1/2
2F �

U1(U2F) := ((θ0� Ip)
(
Σε(ΩF�RF)

)−1
(θ0� Ip)

′)1/2�
Û2n := (Ω̂n� R̂n)� U2F := (ΩF�RF)� and

Σj�(ΩF�RF)= tr
(
R′
j�FΩ

−1
F

)
/k

(16.8)

for j� � = 1� � � � �p + 1, where Σj�(ΩF�RF) ∈ R(p+1)×(p+1) denotes the (j� �) element

Σ(ΩF�RF), Σ(ΩF�RF) is defined to minimize ‖(Ip+1 ⊗ Ω
−1/2
F )[Σ ⊗ ΩF − RF ](Ip+1 ⊗

Ω
−1/2
F )‖ over symmetric pd matrices Σ ∈ R(p+1)×(p+1) (analogously to the definition of

Σ̂n in (20)), the last equality in (16.8) holds by the same argument as used to obtain (21),
Σε(ΩF�RF) is defined given Σ(ΩF�RF) by (22), and Rj�F denotes the (j� �) k×k subma-
trix of RF .40

Example 2. For the CQLRP test, one takes Ŵn, Ŵ2n,W2F ,W1(·), andU1(·) as in Example 1
and

Ûn := L̃
1/2
n := ((θ0� Ip)

(
Σ̃εn
)−1

(θ0� Ip)
′)1/2� (16.9)

where Σ̃n = Σ̃n(θ0) is defined just above (15.5) and Σ̃εn is defined given Σ̃n by (22).
The population analogues of Ṽn and R̃n, defined in (15.5), are

ṼF := EFfif
′
i −EF

(
(gi�Gi)

′ΞF ⊗ZiZ
′
i

)−EF
(
Ξ′
F(gi�Gi)⊗ZiZ

′
i

)
+EF
(
Ξ′
FZiZ

′
iΞF ⊗ZiZ

′
i

)
∈R(p+1)k×(p+1)k and

R̃F := (B′ ⊗ Ik
)
ṼF (B⊗ Ik) ∈R(p+1)k×(p+1)k� where

ΞF := (EFZiZ′
i

)−1
EF(gi�Gi) ∈Rk×(p+1)� fi :=

(
g′
i� vec(Gi)

′)′ ∈R(p+1)k�

(16.10)

and B= B(θ0) is defined in (19).
For the CQLRP test,

Û2n := (Ω̂n� R̃n)� U2F := (ΩF� R̃F)� and

Σj�(ΩF� R̃F)= tr
(
R̃′
j�FΩ

−1
F

)
/k�

(16.11)

for j� � = 1� � � � �p + 1, where Σj�(ΩF� R̃F) ∈ R(p+1)×(p+1) denotes the (j� �) element

Σ(ΩF� R̃F), Σ(ΩF� R̃F) is defined to minimize ‖(Ip+1 ⊗ Ω
−1/2
F )[Σ ⊗ ΩF − R̃F ](Ip+1 ⊗

Ω
−1/2
F )‖ over symmetric pd matrices Σ ∈ R(p+1)×(p+1) (analogously to the definition of

Σ̂n(θ) in (20)), the last equality in (16.11) holds by the same argument as used to obtain
(21), Σε(ΩF� R̃F) is defined given Σ(ΩF� R̃F) by (22), and R̃j�F denotes the (j� �) k × k

submatrix of R̃F .

40Note that W1(W2F ) and U1(U2F ) in (16.8) define the functions W1(·) and U1(·) for any conformable
arguments, such as Ŵ2n and Û2n, not just for W2F and U2F .
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We provide results for distributions F in the following set of null distributions:

FWU := {F ∈ F : λmin(WF)≥ δ1�λmin(UF)≥ δ1�‖WF‖ ≤M1� and ‖UF‖ ≤M1
}

(16.12)

for some constants δ1 > 0 and M1 <∞, where F is defined in (16.1).
For the CQLR test, which uses the definitions in (16.6)–(16.8), we show that F ⊂ FWU

for δ1 > 0 sufficiently small and M1 < ∞ sufficiently large; see Lemma 27.4(a). Hence,
uniform results over FWU for this test imply uniform results over F .

For the CQLRP test, which uses the definitions in (16.9)–(16.11), we show that FP ⊂
FWU for δ1 > 0 sufficiently small and M1 < ∞ sufficiently large, where F is defined in
(16.1); see Lemma 27.4(b) in Section 27.1. Hence, uniform results over FP ∩ FWU for
arbitrary δ1 > 0 and M1 <∞ for this test imply uniform results over FP .

16.4 Uniformity reparametrization

To apply Proposition 16.3, we reparametrize the null distribution F to a vector λ. The
vector λ is chosen such that for a subvector of λ convergence of a drifting subsequence
of the subvector (after suitable renormalization) yields convergence in distribution of
the test statistic and convergence in distribution of the critical value in the case of the
CQLR tests. In this section, we define λ for the CQLR and CQLRP tests. The same defini-
tion is used for both tests. The (much simpler) definition of λ for the AR test is given in
Section 27.6 below.

The vector λ depends on the following quantities. Let

BF denote a p×p orthogonal matrix of eigenvectors of

U ′
F(EFGi)

′W ′
FWF(EFGi)UF (16.13)

ordered so that the corresponding eigenvalues (κ1F� � � � �κpF) are nonincreasing. The
matrix BF is such that the columns of WF(EFGi)UFBF are orthogonal. Let

CF denote a k× k orthogonal matrix of eigenvectors of

WF(EFGi)UFU
′
F(EFGi)

′W ′
F �

41 (16.14)

The corresponding eigenvalues are (κ1F� � � � �κkF) ∈Rk. Let

(τ1F� � � � � τmin{k�p}F) denote the min{k�p} singular values of WF(EFGi)UF� (16.15)

which are nonnegative, ordered so that τjF is nonincreasing. (Some of these singular
values may be zero.) As is well known, the squares of the min{k�p} singular values of a
k×pmatrixA equal the min{k�p} largest eigenvalues ofA′A andAA′. In consequence,
κjF = τ2

jF for j = 1� � � � �min{k�p}. In addition, κjF = 0 for j = min{k�p}+1� � � � �max{k�p}.

41The matrices BF and CF are not uniquely defined. We let BF denote one choice of the matrix of eigen-
vectors of U ′

F (EFGi)
′W ′

FWF(EFGi)UF and analogously for CF .
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Define the elements of λ to be42,43

λ1�F := (τ1F� � � � � τmin{k�p}F)′ ∈Rmin{k�p}�

λ2�F := BF ∈Rp×p�

λ3�F := CF ∈Rk×k�

λ4�F := EFGi ∈Rk×p�

λ5�F := EF

(
gi

vec(Gi)

)(
gi

vec(Gi)

)′
∈R(p+1)k×(p+1)k�

λ6�F = (λ6�1F� � � � �λ6�(min{k�p}−1)F)
′ :=
(
τ2F

τ1F
� � � � �

τmin{k�p}F
τ(min{k�p}−1)F

)′

∈ [0�1]min{k�p}−1� where 0/0 := 0�

λ7�F :=W2F�

λ8�F :=U2F�

λ9�F := F� and

λ= λF := (λ1�F � � � � � λ9�F )�

(16.16)

The dimensions of W2F and U2F depend on the choices of Ŵn = W1(Ŵ2n) and Ûn =
U1(Û2n). We let λ5�gF denote the upper left k × k submatrix of λ5�F� Thus, λ5�gF =
EFgig

′
i = ΩF . We consider two parameter spaces for λ: ΛWU and ΛWU�P , which corre-

spond to FWU and FWU ∩FP , respectively, where FP and FWU are defined in (16.1) and
(16.12), respectively. The space ΛWU is used for the CQLR test. The space ΛWU�P is used
for the CQLRP test.44 The parameter spaces ΛWU and ΛWU�P and the function hn(λ) are
defined by

ΛWU := {λ : λ= (λ1�F � � � � � λ9�F ) for some F ∈ FWU
}
�

ΛWU�P := {λ : λ= (λ1�F � � � � � λ9�F ) for some F ∈ FWU ∩FP
}
� and (16.17)

hn(λ) := (n1/2λ1�F �λ2�F �λ3�F �λ4�F �λ5�F �λ6�F �λ7�F �λ8�F
)
�

By the definition of F , ΛWU and ΛWU�P index distributions that satisfy the null hy-
pothesis H0 : θ = θ0. The dimension J of hn(λ) equals the number of elements in
(λ1�F � � � � � λ8�F ). Redundant elements in (λ1�F � � � � λ8�F ), such as the redundant off-
diagonal elements of the symmetric matrix λ5�F , are not needed, but do not cause any
problem.

We define λ and hn(λ) as in (16.16) and (16.17) because, as shown below, the asymp-
totic distributions of the test statistics under a sequence {Fn : n≥ 1} for which hn(λFn)→

42For simplicity, when writing λ= (λ1�F � � � � � λ9�F ), we allow the elements to be scalars, vectors, matrices,
and distributions and likewise in similar expressions.

43If p= 1, no vector λ6�F appears in λ because λ1�F only contains a single element.
44Note that the parameter λ has different meanings for the CQLR and CQLRP tests becauseU2F is differ-

ent for the two tests.
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h ∈H depend on the behavior of limn1/2λ1�Fn , as well as limλm�Fn for m= 2� � � � �8. Note
that λ1�F measures the strength of identification.

For notational convenience,

{λn�h : n≥ 1} denotes a sequence {λn ∈ΛWU : n≥ 1} for which hn(λn)→ h ∈H (16.18)

forH defined in (16.2) withΛ equal toΛWU.45 By the definitions ofΛWU and FWU, {λn�h :
n≥ 1} is a sequence of distributions that satisfies the null hypothesis H0 : θ= θ0.

We decompose h (defined by (16.2), (16.16), and (16.17)) analogously to the de-
composition of the first eight components of λ: h = (h1� � � � �h8), where λm�F and hm
have the same dimensions for m = 1� � � � �8. We further decompose the vector h1 as
h1 = (h1�1� � � � �h1�min{k�p})′, where the elements of h1 could equal ∞. We decompose h6
as h6 = (h6�1� � � � �h6�min{k�p}−1)

′. In addition, we let h5�g denote the upper left k× k sub-
matrix of h5. In consequence, under a sequence {λn�h : n≥ 1}, we have

n1/2τjFn → h1�j ≥ 0 ∀j ≤ min{k�p}�
λm�Fn → hm ∀m= 2� � � � �8�

λ5�gFn =ΩFn =EFngig
′
i → h5�g� and

λ6�jFn → h6�j ∀j = 1� � � � �min{k�p} − 1�

(16.19)

By the conditions in F , defined in (16.1), h5�g is pd.

16.5 Assumption WU

We assume that the random weight matrices Ŵn = W1(Ŵ2n) and Ûn = U1(Û2n) defined
in (16.4) satisfy the following assumption that depends on a suitably chosen parameter
space Λ∗ (⊂ΛWU), such as ΛWU or ΛWU�P .

Assumption WU for the parameter space Λ∗ ⊂ ΛWU. Under all subsequences {wn}
and all sequences {λwn�h : n≥ 1} with λwn�h ∈Λ∗,

(a) Ŵ2wn →p h7 (:= limW2Fwn ),

(b) Û2wn →p h8 (:= limU2Fwn ), and

(c) W1(·) is a continuous function at h7 on some set W2 that contains {λ7�F (=W2F : λ=
(λ1�F � � � � � λ9�F ) ∈Λ∗} and contains Ŵ2wn wp → 1 andU1(·) is a continuous function at h8
on some set U2 that contains {λ8�F (= U2F) : λ= (λ1�F � � � � � λ9�F ) ∈ Λ∗} and contains Û2wn
wp → 1.

In Assumption WU and elsewhere below, “all sequences {λwn�h : n ≥ 1}” means “all
sequences {λwn�h : n ≥ 1} for any h ∈ H,” where H is defined in (16.2) with Λ equal to
ΛWU, and likewise with n in place of wn.

Assumption WU for the parameter spacesΛWU andΛWU�P is verified in Lemma 27.4
in Section 27 below for the CQLR and CQLRP tests, respectively.

45Analogously, for any subsequence {wn : n ≥ 1}, {λwn�h : n ≥ 1} denotes a sequence {λwn ∈ Λ : n ≥ 1} for
which hwn(λwn)→ h ∈H.
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16.6 Asymptotic distributions

This section provides the asymptotic distributions of QLR and QLRP test statistics and
corresponding conditioning statistics. These statistics are used in the proof of Theo-
rem 16.1 to verify Assumption B∗ of Proposition 16.3.

For any F ∈ F , define

�
vec(Gi)
F := VarF

(
vec(Gi)− (EF vec(G�)g

′
�

)
Ω−1
F gi
)

and

�
vec(Gi)
h := lim�

vec(Gi)
Fwn

(16.20)

whenever the limit exists, where the distributions {Fwn : n ≥ 1} correspond to {λwn�h :
n ≥ 1} for any subsequence {wn : n ≥ 1}. The assumptions allow �

vec(Gi)
h to be singu-

lar.
By the CLT and some straightforward calculations, the joint asymptotic distribution

of n1/2(ĝ′
n� vec(D̂n −EFnGi)

′)′ under {λn�h : n≥ 1} is given by(
gh

vec(Dh)

)
∼N

(
0(p+1)k�

(
h5�g 0k×pk

0pk×k �
vec(Gi)
h

))
� (16.21)

where gh ∈Rk and Dh ∈Rk×p are independent by the definition of D̂n; see Lemma 16.4
below.46

To determine the asymptotic distributions of the QLRn and QLRPn statistics (de-
fined in (23) and just below (15.6)) and the conditional critical value of the CQLR and
CQLRP tests (defined in (24), (25), and (15.7)), we need to determine the asymptotic
distribution of WFnD̂nUFn without recentering by EFnGi. To do so, we post-multiply
WFnD̂nUFn first by BFn and then by a nonrandom diagonal matrix Sn ∈Rp×p (which may
depend on Fn and h). The matrix Sn rescales the columns ofWFnD̂nUFnBFn to ensure that
n1/2WFnD̂nUFnBFnSn converges in distribution to a (possibly) random matrix that is finite
a.s. and not a.s. zero.

The following is an important definition for the scaling matrix Sn and asymp-
totic distributions given below. Consider a sequence {λn�h : n ≥ 1}. Let q = qh (∈
{0� � � � �min{k�p}}) be such that

h1�j = ∞ for 1 ≤ j ≤ qh and h1�j <∞ for qh + 1 ≤ j ≤ min{k�p}� (16.22)

where h1�j := limn1/2τjFn ≥ 0 for j = 1� � � � �min{k�p} by (16.19) and the distributions
{Fn : n ≥ 1} correspond to {λn�h : n ≥ 1} defined in (16.18). This value q exists be-
cause {h1�j : j ≤ min{k�p}} are nonincreasing in j (since {τjF : j ≤ min{k�p}} are non-
increasing in j, as defined in (16.15)). Note that q is the number of singular values of
WFn(EFnGi)UFn that diverge to infinity when multiplied by n1/2. Heuristically, q is the

46If one eliminates the λmin(EFgig
′
i) ≥ δ condition in F and one defines D̂n in (18) with Ω̂n replaced by

the eigenvalue-adjusted matrix Ω̂ε
n for some ε > 0, then the asymptotic distribution in (16.21) still holds, but

without the independence of gh and Dh. However, this independence is key. Without it, the conditioning
argument that is used to establish the correct asymptotic size of the CQLR and CQLR2 tests does not go
through. Thus, we define D̂n in (18) using Ω̂n, not Ω̂ε

n.
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maximum number of parameters, or one-to-one transformations of the parameters,
that are strongly or semi-strongly identified. (That is, one could partition θ, or a one-
to-one transformation of θ, into subvectors of dimension q and p − q such that if the
p− q subvector was known, and hence, was no longer part of the parameter, then the
q subvector would be strongly or semi-strongly identified in the sense used in this pa-
per.)

Let

Sn := Diag
{(
n1/2τ1Fn

)−1
� � � � �
(
n1/2τqFn

)−1
�1� � � � �1

} ∈Rp×p and

Tn := BFnSn ∈Rp×p�
(16.23)

where q = qh is defined in (16.22). Note that Sn is well-defined for n large, because
n1/2τjFn → ∞ for all j ≤ q.

The asymptotic distribution of D̂n after suitable rotations and rescaling, but without
recentering (by subtracting EFGi), depends on the following quantities. We partition h2
and h3 and define  h as follows:

h2 = (h2�q�h2�p−q)� h3 = (h3�q�h3�k−q)�

h�
1�p−q :=

⎡⎢⎣ 0q×(p−q)
Diag{h1�q+1� � � � �h1�p}

0(k−p)×(p−q)

⎤⎥⎦ ∈Rk×(p−q) if k≥ p�

h�
1�p−q :=

[
0q×(k−q) 0q×(p−k)

Diag{h1�q+1� � � � �h1�k} 0(k−q)×(p−k)

]
∈Rk×(p−q) if k< p�

 h = ( h�q� h�p−q) ∈Rk×p�  h�q := h3�q�

 h�p−q := h3h
�
1�p−q + h71Dhh81h2�p−q�

h71 :=W1(h7)� and h81 :=U1(h8)�

(16.24)

where h2�q ∈ Rp×q, h2�p−q ∈ Rp×(p−q), h3�q ∈ Rk×q, h3�k−q ∈ Rk×(k−q),  h�q ∈ Rk×q,

 h�p−q ∈Rk×(p−q), h71 ∈Rk×k, and h81 ∈Rp×p.47 Note that when Assumption WU holds
h71 = limWFn = limW1(W2Fn) and h81 = limUFn = limU1(U2Fn) under {λn�h : n≥ 1}.

The following lemma allows for k≥ p and k< p. For the case where k≥ p, it appears
in the SM to AG1 as Lemma 10.3.

Lemma 16.4. Suppose Assumption WU holds for some nonempty parameter space Λ∗ ⊂
ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

n1/2(ĝn� D̂n −EFnGi�WFnD̂nUFnTn)→d (gh�Dh� h)�

where (a) (gh�Dh) are defined in (16.21), (b)  h is the nonrandom function of h and Dh

defined in (16.24), (c) (Dh� h) and gh are independent, and (d) under all subsequences

47There is some abuse of notation here. For example, h2�q and h2�p−q denote different matrices even if
p− q happens to equal q.
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{wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ∗, the convergence result above and
the results of parts (a)–(c) hold with n replaced with wn.

Comment. (i) Lemma 16.4(c) is a key property that leads to the correct asymptotic size
of the CQLR and CQLRP tests.

(ii) Lemma 10.3 in the SM to AG1 contains a part (part (d)), which does not appear
in Lemma 16.4. It states that  h has full column rank a.s. under some additional con-
ditions. For Kleibergen’s (2005) LM statistic and Kleibergen’s (2005) CLR statistics that
employ it, which are considered in AG1, one needs the (possibly) random limit matrix
of n1/2WFnD̂nUFnBFnSn, namely,  h, to have full column rank with probability one, in or-
der to apply the continuous mapping theorem (CMT), which is used to determine the
asymptotic distribution of the test statistics. To obtain this full column rank property,
AG1 restricts the parameter space for the tests based on aforementioned statistics to be
a subset F0 of F , where F0 is defined in Section 3 of AG1. In contrast, the QLRn and
QLRPn statistics considered here do not depend on Kleibergen’s LM statistic and do not
require the asymptotic distribution of n1/2WFnD̂nUFnBFnSn to have full column rank a.s.
In consequence, it is not necessary to restrict the parameter space from F to F0 when
considering these statistics.

Let

κ̂jn denote the jth eigenvalue of nÛ ′
nD̂

′
nŴ

′
nŴnD̂nÛn� ∀j = 1� � � � �p� (16.25)

ordered to be nonincreasing in j. The jth singular value of n1/2ŴnD̂nÛn equals κ̂1/2
jn for

j = 1� � � � �min{k�p}.
The following proposition, combined with Lemma 16.2, is used to determine the

asymptotic behavior of the data-dependent conditional critical values of the CQLR and
CQLRP tests. The proposition is the same as Theorem 10.4(c)–(f) in the SM to AG1, ex-
cept that it is extended to cover the case k < p, not just k ≥ p. For brevity, the proof of
the proposition given in Section 25 below just describes the changes needed to the proof
of Theorem 10.4(c)–(f) in the SM to AG1 in order to cover the case k < p. The proof of
Theorem 10.4(c)–(f) in the SM to AG1 is similar to, but simpler than, the proof of Theo-
rem 16.6 below, which is given in Section 26.

Proposition 16.5. Suppose Assumption WU holds for some nonempty parameter space
Λ∗ ⊂ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

(a) κ̂jn →p ∞ for all j ≤ q,

(b) the (ordered) vector of the smallest p− q eigenvalues of nÛ ′
nD̂

′
nŴ

′
nŴnD̂nÛn, that is,

(̂κ(q+1)n� � � � � κ̂pn)
′, converges in distribution to the (ordered) p− q vector of the eigenval-

ues of  
′
h�p−qh3�k−qh′

3�k−q × h�p−q ∈R(p−q)×(p−q),
(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-

ma 16.4, and
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(d) under all subsequences {wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ∗, the
results in parts (a)–(c) hold with n replaced with wn.

Comment. Proposition 16.5(a) and (b) with Ŵn = Ω̂
−1/2
n and Ûn = L̂

1/2
n is used to de-

termine the asymptotic behavior of the critical value function for the CQLR test, which
depends on n1/2D̂∗

n defined in (23); see the proof of Theorem 27.1 in Section 27.2. Propo-

sition 16.5(a) and (b) with Ŵn = Ω̂
−1/2
n and Ûn = L̃

1/2
n is used to determine the asymptotic

behavior of the critical value function for the CQLRP test, which depends on n1/2D̃∗
n de-

fined in (15.6); see the proof of Theorem 27.1 in Section 27.2.

The next theorem provides the asymptotic distribution of the general QLRWU�n

statistic defined in (16.3) and, as special cases, those of the QLRn and QLRPn statistics.

Theorem 16.6. Suppose Assumption WU holds for some nonempty parameter space
Λ∗ ⊂ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

QLRWU�n →d g
′
hh

−1
5�ggh − λmin

((
 h�p−q�h

−1/2
5�g gh

)′
h3�k−qh′

3�k−q
(
 h�p−q�h

−1/2
5�g gh

))
and the convergence holds jointly with the convergence in Lemma 16.4 and Proposi-
tion 16.5. When q = p (which can only hold if k ≥ p because q ≤ min{k�p}),  h�p−q
does not appear in the limit random variable and the limit random variable reduces to
(h

−1/2
5�g gh)

′h3�ph
′
3�ph

−1/2
5�g gh ∼ χ2

p. When q = k (which can only hold if k ≤ p), the λmin(·)
expression does not appear in the limit random variable and the limit random variable
reduces to g′

hh
−1
5�ggh ∼ χ2

k. When k ≤ p and q < k, the λmin(·) expression equals zero and

the limit random variable reduces to g′
hh

−1
5�ggh ∼ χ2

k. Under all subsequences {wn} and all

sequences {λwn�h : n≥ 1} with λwn�h ∈Λ∗, the same results hold with n replaced with wn.

Comment. (i) Theorem 16.6 gives the asymptotic distributions of the QLRn and QLRPn
statistics (defined by (23) and (15.6), resp.) once it is verified that the choices of (Ŵn� Ûn)

for these statistics satisfy Assumption WU for the parameter spaces ΛWU and ΛWU�P ,
respectively. The latter is done in Lemma 27.4 in Section 27.1.

(ii) When q = p, the parameter θ0 is strongly or semi-strongly identified and Theo-
rem 16.6 shows that the QLRWU�n statistic has a χ2

p asymptotic null distribution.

(iii) When k= p, Theorem 16.6 shows that the QLRWU�n statistic has a χ2
k asymptotic

null distribution regardless of the strength of identification.

(iv) When k < p, θ is necessarily unidentified and Theorem 16.6 shows that the
asymptotic null distribution of QLRWU�n is χ2

k.

(v) The proof of Theorem 16.6 given in Section 26 also shows that the largest q eigen-
values of n(ŴnD̂nÛn� Ω̂

−1/2
n ĝn)

′(ŴnD̂nÛn� Ω̂
−1/2
n ĝn) diverge to infinity in probability and

the (ordered) vector of the smallest p+ 1 −q eigenvalues of this matrix converges in dis-
tribution to the (ordered) vector of thep+1−q eigenvalues of ( h�p−q�h

−1/2
5�g gh)

′h3�k−q×
h′

3�k−q( h�p−q�h
−1/2
5�g gh).
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Propositions 16.3 and 16.5 and Theorem 16.6 are used to prove Theorem 16.1. The
proof is given in Section 27 below. Note, however, that the proof is not a straightforward
implication of these results. The proof also requires (i) determining the behavior of the
conditional critical value function ck�p(D�1 − α), defined in the paragraph containing
(24), for sequences of nonrandom k×pmatrices {Dn : n≥ 1} whose singular values may
converge or diverge to infinity at any rates, (ii) showing that the distribution function of
the asymptotic distribution of theQLRWU�n statistic, conditional on the asymptotic ver-
sion of the conditioning statistic, is continuous and strictly increasing at its 1 − α quan-
tile for all possible (k�p�q) values and all possible limits of the scaled population singu-
lar values {n1/2τjFn : n≥ 1} for j = 1� � � � �min{k�p}, and (iii) establishing that Assumption
WU holds for the CQLR and CQLRP tests. These results are established in Lemmas 27.2,
27.3, and 27.4, respectively, in Section 27.

17. Singularity-robust tests

In this section, we prove the main Theorems 6.1 and 15.2 for the SR-AR, SR-CQLR, and
SR-CQLRP tests using Theorem 16.1 for the tests without the SR extension. These tests,
defined in (14), (29), and (15.9), depend on the random variable r̂n(θ) and random ma-
trices Ân(θ) and Â⊥

n (θ), defined in (10) and (11). First, in the following lemma, we show
that with probability that goes to one as n→ ∞ (wp → 1), the SR test statistics and data-
dependent critical values are the same as when the nonrandom and rescaled population
quantities rF(θ) andΠ−1/2

1F (θ)AF(θ)
′ are used to define these statistics, rather than r̂n(θ)

and Ân(θ)
′, where rF(θ), AF(θ), and Π1F(θ) are defined as in (4) and (5). The lemma

also shows that the extra rejection condition in (14), (29), and (15.9) fails to hold wp → 1
under all sequences of null distributions.

In the following lemma, θ0n is the true value that may vary with n (which is needed
for the CS results) and col(·) denotes the column space of a matrix.

Lemma 17.1. For any sequence {(Fn�θ0n) ∈ FSR
Θ�AR : n ≥ 1}, (a) r̂n(θ0n)= rFn(θ0n) wp → 1,

(b) col(Ân(θ0n)) = col(AFn(θ0n)) wp → 1, (c) the statistics SR-ARn(θ0n), SR-QLRn(θ0n),

SR-QLRPn(θ0n), ĉrn(θ0n)�p(n
1/2D̂∗

An(θ0n)�1 −α), and ĉrn(θ0n)�p(n
1/2D̃∗

An(θ0n)�1 −α) are in-

variant wp → 1 to the replacement of r̂n(θ0n) and Ân(θ0n)
′ by rFn(θ0n) and Π−1/2

1Fn
(θ0n)×

AFn(θ0n)
′, respectively, and (d) Â⊥

n (θ0n)
′ĝn(θ0n) = 0k−̂rn(θ0n) wp → 1, where this equality

is defined to hold when r̂n(θ0n)= k.

Comment. 1. We now provide an example that appears to be a counterexample to
the claim that r̂n = r wp → 1. We show that it is not a counterexample because the
distributions considered violate the moment bound in FSR

AR in (6). Suppose k = 1 and
gi = 1, −1, and 0 with probabilities pn/2, pn/2, and 1 −pn, respectively, under Fn, where
pn = c/n for some 0< c <∞. Then EFngi = 0, as is required, and rk(ΩFn)= rk(EFng

2
i )=

rk(pn)= 1. We have Ω̂n = 0 if gi = 0 ∀i ≤ n. The latter holds with probability (1 − pn)
n =

(1 − c/n)n → e−c > 0 as n→ ∞. In consequence, PFn(rk(Ω̂n)= rk(ΩFn))= PFn(rk(Ω̂n)=
1) ≤ 1 − PFn(gi = 0 ∀i ≤ n) → 1 − e−c < 1, which is inconsistent with the claim that
r̂n = r wp → 1. However, the distributions {Fn : n≥ 1} in this example violate the moment
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bound EF‖Π−1/2
1F A′

Fgi‖2+γ ≤M in FSR
AR, so there is no inconsistency with the claim. This

holds because for these distributions EFn‖Π−1/2
1Fn

A′
Fn
gi‖2+γ = EFn |Var−1/2

Fn
(gi)gi|2+γ =

p
−(2+γ)/2
n EFn |gi| = p

−γ/2
n → ∞ as n → ∞, where the second equality uses |gi| equals 0

or 1 and the third equality uses EFn |gi| = pn.

2. The example in the previous comment is extreme. A simple version of a more

typical example where singularity and near singularity may occur is the case where

Wi ∼ iid N(θ�ΩF) for θ ∈ Rk, ΩF ∈ Rk×k, g(Wi�θ) := Wi − θ, ΩF has spectral decompo-

sition AFΠFA
′
F , and some eigenvalues of ΩF may be close to zero or equal to zero. In

this case, Π−1/2
F A′

Fgi is a vector of independent standard normal random variables and

the moment conditions in FSR
AR and FSR hold immediately. In this case, the conditions

in FSR
AR and FSR are mild moment conditions that allow one to obtain asymptotic results

without the normality assumption.

Proof of Lemma 17.1. For notational simplicity, we suppress the dependence of var-

ious quantities on θ0n. By considering subsequences, it suffices to consider the case

where rFn = r for all n≥ 1 for some r ∈ {0�1� � � � �k}.

First, we establish part (a). We have r̂n ≤ r a.s. for all n ≥ 1 because for any con-

stant vector λ ∈ Rk for which λ′ΩFnλ = 0, we have λ′gi = 0 a.s. [Fn] and λ′Ω̂nλ =
n−1∑n

i=1(λ
′gi)2 − (λ′ĝn)2 = 0 a.s. [Fn], where a.s. [Fn] means “with probability one under

Fn.” This completes the proof of part (a) when r = 0. Hence, for the rest of the proof of

part (a), we assume r > 0.

We have r̂n := rk(Ω̂n) ≥ rk(Π−1/2
1Fn

A′
Fn
Ω̂nAFnΠ

−1/2
1Fn

) because Ω̂n is k× k, AFnΠ
−1/2
1Fn

is

k× r, and 1 ≤ r ≤ k. In addition, we have

Π
−1/2
1Fn

A′
Fn
Ω̂nAFnΠ

−1/2
1Fn

= n−1
n∑
i=1

(
Π

−1/2
1Fn

A′
Fn
gi
)(
Π

−1/2
1Fn

A′
Fn
gi
)′

−
(
n−1

n∑
i=1

Π
−1/2
1Fn

A′
Fn
gi

)(
n−1

n∑
i=1

Π
−1/2
1Fn

A′
Fn
gi

)′
�

EFn
(
Π

−1/2
1Fn

A′
Fn
gi
)(
Π

−1/2
1Fn

A′
Fn
gi
)′

=Π
−1/2
1Fn

A′
Fn
ΩFnAFnΠ

−1/2
1Fn

=Π
−1/2
1Fn

A′
Fn
AΩ
Fn
ΠFnA

Ω′
Fn
AFnΠ

−1/2
1Fn

= Ir�

(17.1)

and EFnΠ
−1/2
1Fn

A′
Fn
gi = 0r , where the second last equality in (17.1) holds by the spec-

tral decomposition in (4) and the last equality in (17.1) holds by the definitions of AΩ
F ,

AF , and Π1F in (4) and (5). By (17.1), the moment conditions in FSR, and the weak

law of large numbers for L1+γ/2-bounded i.i.d. random variables for γ > 0, we obtain
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Π
−1/2
1Fn

A′
Fn
Ω̂nAFnΠ

−1/2
1Fn

→p Ir . In consequence, rk(Π−1/2
1Fn

A′
Fn
Ω̂nAFnΠ

−1/2
1Fn

) ≥ r wp → 1,

which concludes the proof that r̂n = r wp → 1.48

Next, we prove part (b). Let N(·) denote the null space of a matrix. We have

λ ∈N(ΩFn) =⇒ λ′ΩFnλ= 0 =⇒ VarFn
(
λ′gi
)= 0

=⇒ λ′gi = 0 a.s. [Fn] =⇒ Ω̂nλ= 0 a.s. [Fn]
=⇒ λ ∈N(Ω̂n) a.s. [Fn]� (17.2)

That is, N(ΩFn) ⊂ N(Ω̂n) a.s. [Fn]. This and rk(ΩFn) = rk(Ω̂n) wp → 1 imply that
N(ΩFn) = N(Ω̂n) wp → 1 (because if N(Ω̂n) is strictly larger than N(ΩFn) then the di-
mension and rank of Ω̂n must exceed the dimension and rank ofN(ΩFn), which is a con-
tradiction). In turn, N(ΩFn) = N(Ω̂n) wp → 1 implies that col(Ân) = col(AFn) wp → 1,
which proves part (b).

To prove part (c), it suffices to consider the case where r ≥ 1 because the test statistics
and their critical values are all equal to zero by definition when r̂n = 0 and r̂n = 0 wp → 1
when r = 0 by part (a). Part (b) of the lemma implies that there exists a random r × r

nonsingular matrix M̂n such that

Ân =AFnΠ
−1/2
1Fn

M̂n wp → 1� (17.3)

because Π1Fn is nonsingular (since it is a diagonal matrix with the positive eigenval-
ues of ΩFn on its diagonal by its definition following (5)). Equation (17.3) and r̂n = r

wp → 1 imply that the statistics SR-ARn, SR-QLRn, SR-QLRPn, ĉrn�p(n
1/2D̂∗

An�1 − α), and
ĉrn�p(n

1/2D̃∗
An�1 − α) are invariant wp → 1 to the replacement of r̂n and Â′

n by r and

M̂ ′
nΠ

−1/2
1Fn

A′
Fn

, respectively. Now we apply the invariance results of Lemmas 5.1 and 15.1

with (k�gi�Gi) replaced by (r�Π−1/2
1Fn

A′
Fn
gi�Π

−1/2
1Fn

A′
Fn
Gi) and withM equal to M̂ ′

n. These

results imply that the previous five statistics when based on r and Π
−1/2
1Fn

A′
Fn
gi are in-

variant to the multiplication of the moments Π−1/2
1Fn

A′
Fn
gi by the nonsingular matrix M̂ ′

n.
Thus, these five statistics, defined as in Sections 5.2 and 15, are invariant wp → 1 to the
replacement of r̂n and Â′

n by r and Π−1/2
1Fn

A′
Fn

, respectively.

Lastly, we prove part (d). The equality (Â⊥
n )

′ĝn = 0k−̂rn holds by definition when r̂n =
k (see the statement of Lemma 17.1(d)) and r̂n = r wp → 1. Hence, it suffices to consider
the case where r ∈ {0� � � � �k− 1}. For all n≥ 1, we have EFn(A

⊥
Fn
)′ĝn = 0k−r and

nVarFn
((
A⊥
Fn

)′
ĝn
)= (A⊥

Fn

)′
ΩFnA

⊥
Fn

= (A⊥
Fn

)′
AΩ
Fn
ΠFn

(
AΩ
Fn

)′
A⊥
Fn

= 0(k−r)×(k−r)� (17.4)

48We now provide an example that appears to be a counterexample to the claim that r̂n = r wp → 1. We
show that it is not a counterexample because the distributions considered violate the moment bound in
FSR

AR. Suppose k= 1 and gi = 1, −1, and 0 with probabilities pn/2, pn/2, and 1 − pn, respectively, under Fn,
where pn = c/n for some 0 < c <∞. Then EFngi = 0, as is required, and rk(ΩFn)= rk(EFng

2
i )= rk(pn)= 1.

We have Ω̂n = 0 if gi = 0 ∀i≤ n. The latter holds with probability (1 −pn)
n = (1 − c/n)n → e−c > 0 as n→ ∞.

In consequence, PFn(rk(Ω̂n)= rk(ΩFn))= PFn(rk(Ω̂n)= 1) ≤ 1 − PFn(gi = 0 ∀i ≤ n)→ 1 − e−c < 1, which is
inconsistent with the claim that r̂n = r wp → 1. However, the distributions {Fn : n≥ 1} in this example violate
the moment bound EF‖Π−1/2

1F A′
Fgi‖2+γ ≤M in FSR

AR, so there is no inconsistency with the claim. This holds

because for these distributions EFn‖Π−1/2
1Fn

A′
Fn
gi‖2+γ = EFn |Var−1/2

Fn
(gi)gi|2+γ = p

−(2+γ)/2
n EFn |gi| = p

−γ/2
n →

∞ as n→ ∞, where the second equality uses |gi| equals 0 or 1 and the third equality uses EFn |gi| = pn.
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where the second equality uses the spectral decomposition in (4) and the last equality
usesAΩ

n = [AF�A
⊥
F ], see (5). In consequence, (A⊥

Fn
)′ĝn = 0k−r a.s. This and and the result

of part (b) that col(Â⊥
n )= col(A⊥

Fn
) wp → 1 establish part (d).

Given Lemma 17.1(d), the extra rejection conditions in the SR-AR, SR-CQLR, and
SR-CQLRP tests and CSs (i.e., the second conditions in (14), (16), (29), (15.9), and in the
SR-CQLR and SR-CQLRP CS definitions following (29) and (15.9)) can be ignored when
computing the asymptotic size properties of these tests and CSs (because the condi-
tion fails to hold for each test wp → 1 under any sequence of null hypothesis values for
any sequence of distributions in the null hypotheses, and the condition holds for each
CS wp → 1 under any sequence of true values θ0n for any sequence of distributions for
which the moment conditions hold at θ0n).

Given Lemma 17.1(c), the asymptotic size properties of the SR-AR, SR-CQLR, and
SR-CQLRP tests and CSs can be determined by the analogous tests and CSs that are
based on rFn(θ0) and Π−1/2

1Fn
(θ0)AFn(θ0)

′ (for fixed θ0 with tests and for any θ0 ∈Θ with

CSs). For the tests, we do so by partitioning FSR
AR, FSR, and FSR

P into k sets based on
the value of rk(ΩF(θ0)) and establishing the correct asymptotic size and asymptotic
similarity of the analogous tests separately for each parameter space. That is, we write
FSR

AR = ⋃k
r=0 FSR

AR[r], where FSR
AR[r] := {F ∈ FSR

AR : rk(ΩF(θ0)) = r}, and establish the de-

sired results for FSR
AR[r] separately for each r. Analogously, we write FSR =⋃k

r=0 FSR
[r] and

FSR
P =⋃k

r=0 FSR
P[r], where FSR

[r] := FSR
AR[r] ∩ FSR and FSR

P[r] := FSR
AR[r] ∩ FSR

P . Note that we do

not need to consider the parameter space FSR
AR[r] for r = 0 for the SR-AR test when deter-

mining the asymptotic size of the SR-AR test because the test fails to reject H0 wp → 1
based on the first condition in (14) when r = 0 (since the test statistic and critical value
equal zero by definition when r̂n = 0 and r̂n = r = 0 wp → 1 by Lemma 17.1(a)). In addi-
tion, we do not need to consider the parameter space FSR

AR[r] for r = 0 for the SR-AR test
when determining the asymptotic similarity of the test because such distributions are
excluded from the parameter space FSR

AR by the statement of Theorem 6.1. Analogous ar-
guments regarding the parameter spaces corresponding to r = 0 apply to the other tests
and CSs. Hence, from here on, we assume r ∈ {1� � � � �k}.

For given r = rk(ΩF(θ0)), the moment conditions and Jacobian are

g∗
Fi :=Π

−1/2
1F A′

Fgi and G∗
Fi :=Π

−1/2
1F A′

FGi� (17.5)

where AF ∈ Rk×r , Π1F ∈ Rr×r , and dependence on θ0 is suppressed for notational sim-
plicity. Given the conditions in FSR, we have

EF
∥∥g∗

Fi

∥∥2+γ = EF
∥∥Π−1/2

1F A′
Fgi
∥∥2+γ ≤M�

EF
∥∥vec
(
G∗
Fi

)∥∥2+γ = EF
∥∥vec
(
Π

−1/2
1F A′

FGi

)∥∥2+γ ≤M� (17.6)

λmin
(
EFg

∗
Fig

∗′
Fi

) = λmin
(
Π

−1/2
1F A′

FΩFAFΠ
−1/2
1F

)= λmin(Ir)= 1�

and EFg∗
Fi = 0r , where the second equality in the third line of (17.6) holds by the spec-

tral decomposition in (4) and the partition AΩ
F = [AF�A

⊥
F ] in (5). Thus, F ∈ FSR[r] implies



Supplementary Material Identification and singularity robust inference 33

that F ∈ F with δ ≤ 1, when F is defined with (g∗
Fi�G

∗
Fi) in place of (gi�Gi), where the

definition of F in (16.1) is extended to allow gi and Gi to depend on F . Now we apply
Theorem 16.1 with (g∗

Fi�G
∗
Fi) and r in place of (gi�Gi) and k and with δ ≤ 1, to obtain

the correct asymptotic size and asymptotic similarity of the SR-CQLR test for the param-
eter space FSR

[r] for r = 1� � � � �k. This requires that Theorem 16.1 holds for k < p, which it
does. The fact that g∗

Fi and G∗
Fi depend on F , whereas gi and Gi do not, does not cause

a problem, because the proof of Theorem 16.1 goes through as is if gi and Gi depend
on F . This establishes the results of Theorem 6.1 for the SR-CQLR test. The proof for the
SR-CQLR CS is essentially the same, but with θ0 taking any value in Θ and with FSR

Θ and
FΘ, defined in (7) and just below (16.1), in place of FSR and F , respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLR test and CS,
but with vec(G∗

Fi) deleted in (17.6) and with the subscript AR added to the parameter
spaces that appear.

Next, we consider the SR-CQLRP test. When the moment functions satisfy (15.1),
that is, gi = uiZi, we define Z∗

Fi :=Π
−1/2
1F A′

FZi, g
∗
Fi = uiZ

∗
Fi, and G∗

Fi =Z∗
Fiu

′
θi, where uθi

is defined in (15.2) and the dependence of various quantities on θ0 is suppressed. In this
case, by the conditions in FSR

P , the IVs Z∗
Fi satisfy EF‖Z∗

Fi‖4+γ = EF‖Π−1/2
1F A′

FZi‖4+γ ≤
M and EF‖u∗

i ‖2+γ ≤ M , where u∗
i := (ui�u

′
θi)

′. Next, we show that λmin(EFZ
∗
FiZ

∗′
Fi) is

bounded away from zero for F ∈ FSR
P[r]. We have

λmin
(
EFZ

∗
FiZ

∗′
Fi

)
= λmin

(
EFΠ

−1/2
1F A′

FZiZ
′
iAFΠ

−1/2
1F

)
= inf
λ∈Rr :‖λ‖=1

[
EF
(
λ′Π−1/2

1F A′
FZi
)21
(
u2
i ≤ c
)+EF

(
λ′Π−1/2

1F A′
FZi
)21
(
u2
i > c
)]

≥ inf
λ∈Rr :‖λ‖=1

[
c−1EF

(
λ′Π−1/2

1F A′
FZi
)2
u2
i 1
(
u2
i ≤ c
)]

= c−1 inf
λ∈Rr :‖λ‖=1

[
EF
(
λ′Π−1/2

1F A′
FZi
)2
u2
i −EF

(
λ′Π−1/2

1F A′
FZi
)2
u2
i 1
(
u2
i > c
)]

≥ c−1
[
λmin
(
Π

−1/2
1F A′

FΩFAFΠ
−1/2
1F

)− sup
λ∈Rr :‖λ‖=1

EF
(
λ′Π−1/2

1F A′
FZi
)2
u2
i 1
(
u2
i > c
)]

≥ c−1[1 −EF
∥∥Π−1/2

1F A′
FZi
∥∥2u2

i 1
(
u2
i > c
)]

≥ 1/(2c)� (17.7)

where the second inequality uses gi = Ziui and ΩF := EFgig
′
i, the third inequality

holds by Π−1/2
1F A′

FΩFAFΠ
−1/2
1F = Ir (using (4) and (5)) and by the Cauchy–Bunyakovsky–

Schwarz inequality applied to λ′Π−1/2
1F A′

FZi, and the last inequality holds by the condi-

tion EF‖Π−1/2
1F A′

FZi‖2u2
i × 1(u2

i > c)≤ 1/2 in FSR
P .

The moment bounds above and (17.7) establish that F ∈ FSR
P[r] implies that F ∈ FP

for δ ≤ min{1�1/(2c)}, when FP is defined with (g∗
Fi�G

∗
Fi) in place of (gi�Gi), where the

definition of FP in (16.1) is taken to allow gi and Gi to depend on F .49 Now we apply

49We require δ ≤ min{1�1/(2c)}, rather than δ ≤ 1/(2c), because λmin(EFg
∗
Fig

∗′
Fi) = 1 by (17.6) and F (⊂

FAR) requires λmin(EFg
∗
Fig

∗′
Fi)≥ δ.
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Theorem 16.1 with (g∗
Fi�G

∗
Fi) and r in place of (gi�Gi) and k and δ ≤ min{1�1/(2c)} to

obtain the correct asymptotic size and asymptotic similarity of the CQLRP test based on
(g∗
Fi�G

∗
Fi) and r for the parameter space FSR

P[r] for r = 1� � � � �k. As noted above, the depen-
dence of g∗

Fi andG∗
Fi on F does not cause a problem in the application of Theorem 16.1.

This establishes the results of Theorem 15.2 for the SR-CQLRP test by the argument given
above.50 The proof for the SR-CQLRP CS is essentially the same, but with θ0 taking any
value in Θ and with FSR

Θ�P and FΘ�2, defined in (7) and just below (16.1), in place of FSR
P

and FP , respectively.
This completes the proof of Theorems 6.1 and 15.2 given Theorem 16.1.

18. Time series observations

In this section, we define the SR-AR, SR-CQLR, and SR-CQLRP tests for observations
that are strictly stationary strong mixing. We also generalize the asymptotic size results
of Theorems 6.1 and 15.2 from i.i.d. observations to strictly stationary strong mixing
observations. In the time series case, F denotes the distribution of the stationary infinite
sequence {Wi : i= � � � �0�1� � � � }.51

We define

VF�n(θ) := VarF

(
n−1/2

n∑
i=1

(
gi(θ)

vec
(
Gi(θ)

))) �
ΩF�n(θ) := VarF

(
n−1/2

n∑
i=1

gi(θ)

)
� and rF�n(θ) := rk

(
ΩF�n(θ)

)
�

(18.1)

Note that VF�n(θ),ΩF�n(θ), and rF�n(θ) depend on n in the time series case, but not in the
i.i.d. case. We define AF�n(θ) and Π1F�n(θ) as AF(θ) and Π1F(θ) are defined in (4), (5),
and the paragraph following (5), but with ΩF�n(θ) in place of ΩF(θ).

For the SR-AR test, the parameter space of time series distributions F for the null
hypothesis H0 : θ= θ0 is taken to be

FSR
TS�AR :=

{
F : {Wi : i= � � � �0�1� � � � } are stationary and strong mixing under F with

strong mixing numbers
{
αF(m) :m≥ 1

}
that satisfy αF(m)≤ Cm−d�

EFgi = 0k� and sup
n≥1

EF
∥∥Π−1/2

1F�n A
′
F�ngi
∥∥2+γ ≤M

}
(18.2)

for some γ > 0, d > (2 + γ)/γ, and C�M < ∞, where the dependence of gi, Π1F�n,
and AF�n on θ0 is suppressed. For CSs, we use the corresponding parameter space

50The fact thatZ∗
Fi depends on θ0 throughΠ−1/2

1F (θ0)AF(θ0)
′ and thatG∗

Fi(θ0) �= (∂/∂θ′)g∗
Fi(θ0) (because

(∂/∂θ′)Z∗
Fi is ignored in the specification of G∗

Fi(θ0)) does not affect the application of Theorem 16.1. The
reason is that the proof of this theorem goes through even if Zi depends on θ0 and for any Gi(θ0) that
satisfies the conditions in FP , not just for Gi(θ0) := (∂/∂θ′)gi(θ0).

51Asymptotics under drifting sequences of true distributions {Fn : n≥ 1} are used to establish the correct
asymptotic size of the SR-AR, SR-CQLR, and SR-CQLRP tests and CSs. Under such sequences, the observa-
tions form a triangular array of row-wise strictly stationary observations.
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FSR
TS�Θ�AR := {(F�θ0) : F ∈ FSR

TS�AR(θ0)�θ0 ∈ Θ}, where FSR
TS�AR(θ0) denotes FSR

TS�AR with its

dependence on θ0 made explicit. The moment conditions in FSR
TS�AR are placed on the

normalized moment functionsΠ−1/2
1F�n A

′
F�ngi that satisfy VarF(n−1/2∑n

i=1Π
−1/2
1F�n A

′
F�ngi)=

Ik for all n≥ 1.
For the SR-CQLR and SR-CQLRP tests, we use the null parameter spaces FSR

TS and
FSR

TS�P , respectively, which are defined as FSR and FSR
P are defined in (6) and (15.3), but

with (i) FSR
TS�AR in place of FSR

AR, (ii) AF and Π1F replaced by AF�n and Π1F�n, respectively,

and (iii) supn≥1 added before the quantities FSR and FSR
P that depend onAF�n andΠ1F�n.

For SR-CQLR and SR-CQLRP CSs, we use the parameter spaces FSR
TS�Θ and FSR

TS�Θ�P , re-

spectively, which are defined as FSR
TS�Θ�AR is defined, but with FSR

TS (θ0) and FSR
TS�P(θ0) in

place of FSR
TS�AR(θ0), where FSR

TS (θ0) and FSR
TS�P(θ0) denote FSR

TS and FSR
TS�P with their de-

pendence on θ0 made explicit.
The SR-CQLR and SR-CQLRP test statistics depend on some estimators V̂n (= V̂n(θ0))

of VF�n. The SR-AR test statistic only depends on an estimator Ω̂n (= Ω̂n(θ0)) of the sub-
matrix ΩF�n of VF�n. For the SR-AR, SR-CQLR, and SR-CQLRP tests, these estimators
are heteroskedasticity and autocorrelation consistent (HAC) variance matrix estimators
based on {gi − ĝn : i ≤ n}, {fi − f̂n : i ≤ n} (defined in (19)), and {(u∗

i − û∗
in) ⊗ Zi : i ≤ n}

(defined in (15.5)), respectively. There are a number of HAC estimators available in the
literature, for example, see Newey and West (1987) and Andrews (1991).

We say that V̂n is equivariant if the replacement of gi and Gi by A′gi and A′Gi, re-
spectively, in the definition of V̂n transforms V̂n into (Ip+1 ⊗ A′)V̂n(Ip+1 ⊗ A), for any
matrixA ∈Rr×k with full row rank r ≤ k for any r = {1� � � � �k}. Equivariance of Ω̂n means
that the replacement of gi by A′gi transforms Ω̂n into A′Ω̂nA. Equivariance holds quite
generally for HAC estimators in the literature.

We write the (p+ 1)k× (p+ 1)k matrix V̂n in terms of its k× k submatrices:

V̂n =

⎡⎢⎢⎢⎢⎣
Ω̂n Γ̂ ′

1n · · · Γ̂ ′
pn

Γ̂1n V̂G11n · · · V̂ ′
Gp1n

���
���

� � �
���

Γ̂pn V̂Gp1n · · · V̂Gppn

⎤⎥⎥⎥⎥⎦ � (18.3)

We define r̂n (= r̂n(θ0)) and Ân (= Ân(θ0)) as in (10) and (11) with θ = θ0, but with Ω̂n

defined in (18.3), rather than in (8).
The asymptotic size and similarity properties of the tests considered here are the

same for any consistent HAC estimator. Hence, for generality, we do not specify a partic-
ular estimator V̂n (or Ω̂n). Rather, we state results that hold for any estimator V̂n (or Ω̂n)
that satisfies one the following assumptions when the null value θ0 is the true value. The
following assumptions are used with the SR-CQLR test and CS, respectively.

Assumption SR-V. (a) [Ip+1 ⊗ (Π
−1/2
1Fn�n

(θ0)A
′
Fn�n

(θ0))][V̂n(θ0) − VFn�n(θ0)][Ip+1 ⊗
(AFn�n(θ0)Π

−1/2
1Fn�n

(θ0))] →p 0(p+1)k×(p+1)k under {Fn : n ≥ 1} for any sequence {Fn ∈ FSR
TS :

n≥ 1} for which VFn�n(θ0)→ V for some matrix V and rFn�n(θ0)= r for all n large, for any
r ∈ {1� � � � �k}.
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(b) V̂n(θ0) is equivariant.

(c) λ′gi(θ0)= 0 a.s. [F ] implies that λ′Ω̂n(θ0)λ= 0 a.s. [F ] for all λ ∈Rk and F ∈ FSR
TS .

For SR-CQLR CSs, we use the following assumption that allows both the null param-
eter θ0n, as well as the distribution Fn, to drift with n.

Assumption SR-V-CS. (a) [Ip+1 ⊗ (Π
−1/2
1Fn�n

(θ0n)A
′
Fn�n

(θ0n))][V̂n(θ0n) − VFn�n(θ0n)] ×
[Ip+1 ⊗ (AFn�n(θ0n)Π

−1/2
1Fn�n

(θ0n))] →p 0(p+1)k×(p+1)k under {Fn : n ≥ 1} for any sequence

{(Fn�θ0n) ∈ FSR
TS�Θ : n≥ 1} for which VFn�n(θ0n)→ V for some matrix V and rFn�n(θ0n)= r

for all n large, for any r ∈ {1� � � � �k}.

(b) V̂n(θ0) is equivariant for all θ0 ∈Θ.

(c) λ′gi(θ0)= 0 a.s. [F ] implies that λ′Ω̂n(θ0)λ= 0 a.s. [F ] for all λ ∈ Rk and (F�θ0) ∈
FSR

TS�Θ.

Assumptions SR-V(a) and SR-V-CS(a) require the HAC estimator based on the nor-
malized moments and Jacobian (i.e., Π−1/2

1Fn�n
(θ0n)A

′
Fn�n

(θ0n)gi(θ0n) and Π
−1/2
1Fn�n

(θ0n)×
A′
Fn�n

(θ0n)Gi(θ0n), resp.) to be consistent. This can be verified using standard methods.
For typical HAC estimators, equivariance and Assumptions SR-V(c) and SR-V-CS(c) can
be shown easily.

For the SR-CQLRP test and CS, we use Assumptions SR-VP and SR-VP-CS, which are
defined as Assumptions SR-V and SR-V-CS are defined, respectively, but with FSR

TS�P and

FSR
TS�Θ�P in place of FSR

TS and FSR
TS�Θ.

For the SR-AR test and CS, we use Assumptions SR-Ω and SR-Ω-CS, which are de-
fined as Assumptions SR-V and SR-V-CS are defined, respectively, but with (i) Assump-
tion SR-Ω(a) being: Π−1/2

1Fn�n
(θ0)A

′
Fn�n

(θ0))[Ω̂n(θ0) − ΩFn�n(θ0)]AFn�n(θ0)Π
−1/2
1Fn�n

(θ0) →p

0k×k under {Fn : n ≥ 1} for any sequence {Fn ∈ FSR
TS�AR : n ≥ 1} for which ΩFn�n(θ0)→ Ω

for some matrix Ω and rFn�n(θ0)= r for all n large, for any r ∈ {1� � � � �k}, (ii) Assumption
SR-Ω-CS(a) being as in (i), but with θ0n and FSR

TS�Θ�AR in place of θ0 and FSR
TS�AR, (iii) Ω̂n(θ0)

in place of V̂n(θ0) in part (b) of each assumption, and (iv) FSR
TS�AR in place of FSR

TS in part
(c) of each assumption.

Now we define the SR-AR, SR-CQLR, and SR-CQLRP tests in the time series context.
The definitions are the same as in the i.i.d. context given in Sections 4, 5, and 15 with the
following changes. For all three tests, r̂n and Â⊥

n in the condition Â⊥′
n ĝn �= 0k−̂rn in (14) are

defined as in (10) and (11), but with Ω̂n defined to satisfy Assumption SR-Ω, rather than
being defined in (8). The SR-AR statistic is defined as in Section 4, but with Ω̂n defined to
satisfy Assumption SR-Ω. This affects the definitions of r̂n and Ân, given in (10) and (11).
With these changes, the critical value for the SR-AR test in the time series case is defined
in the same way as in the i.i.d. case.

In the time series case, the SR-QLR statistic is defined as in Section 5, but with V̂n and
Ω̂n defined to satisfy Assumption SR-V and (18.3) based on {fi − f̂n : i≤ n}, in place of V̂n
and Ω̂n defined in (19) and (8), respectively. This affects the definitions of R̂n, Σ̂n, L̂n, D̂∗

n,
r̂n, Ân, and SR-ARn (which appears in (23)). Given the previous changes, the definition
of the SR-CQLR critical value is unchanged.
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In the time series case, the SR-CQLRP statistic is defined as in Section 15, but with V̂n
and Ω̂n defined to satisfy Assumption SR-VP and (18.3) based on {(u∗

i − û∗
in)⊗Zi : i≤ n},

rather than in (15.5) and (8), respectively. In turn, this affects the definitions of R̃n, Σ̃n,
L̃n, D̃∗

n, Q̃n, r̂n, Ân, and SR-ARn. Given the changes described above, the definition of the
SR-CQLRP critical value is unchanged.

In the time series context,

VF := lim VarF

(
n−1/2

n∑
i=1

(
gi

vec(Gi)

))

=
∞∑

m=−∞
EF

(
gi

vec(Gi −EFGi)

)(
gi−m

vec(Gi−m −EFGi−m)

)′
and (18.4)

ΩF :=
∞∑

m=−∞
EFgig

′
i−m�

where the dependence of various quantities on the null value θ0 is suppressed for nota-
tional simplicity. The second equality holds for F ∈ FSR

TS�P .52

For the time series case, the asymptotic size and similarity results for the tests de-
scribed above are as follows.

Theorem 18.1. Suppose the SR-AR, SR-CQLR, and SR-CQLRP tests are defined as in this
section, the null parameter spaces for F are FSR

TS�AR, FSR
TS , and FSR

TS�P , respectively, and the
corresponding Assumption SR-Ω, SR-V, or SR-VP holds for each test. Then these tests have
asymptotic sizes equal to their nominal size α ∈ (0�1). These tests also are asymptotically
similar (in a uniform sense) for the subsets of these parameter spaces that exclude distri-
butions F under which gi = 0k a.s. Analogous results hold for the SR-AR, SR-CQLR, and
SR-CQLRP CSs for the parameter spaces FSR

TS�Θ�AR, FSR
TS�Θ, and FSR

TS�Θ�P , respectively, pro-
vided the corresponding Assumption SR-Ω-CS, SR-V-CS, or SR-VP-CS holds for each CS,
rather than Assumption SR-Ω, SR-V, or SR-VP .

19. SR-CQLR , SR-CQLRP , and Kleibergen’s nonlinear CLR tests in the

homoskedastic linear IV model

It is desirable for tests to reduce asymptotically to Moreira’s (2003) CLR test in the
homoskedastic linear IV regression model with fixed (i.e., nonrandom) IVs when
p = 1, where p is the number of endogenous rhs variables, which equals the dimen-
sion of θ. The reason is that the latter test has been shown to have some (approximate)
optimality properties under normality of the errors; see Andrews, Moreira, and Stock
(2006, 2008) and Chernozhukov, Hansen, and Jansson (2009), and Andrews, Marmer,
and Yu (2019).53

In this section, we show that the components of the SR-QLRP statistic and its corre-
sponding conditioning matrix are asymptotically equivalent to those of Moreira’s (2003)

52This is shown in the proof of Lemma 20.1 in Section 20 in the SM to AG1.
53Whether this also holds for p≥ 2 is an open question.
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LR statistic and its conditioning statistic, respectively, in the homoskedastic linear IV
model with k≥ p fixed (i.e., nonrandom) IVs and nonsingular moments variance matrix
(whether or not the errors are Gaussian). This holds for all values of p≥ 1.

We also show that the same is true for the SR-QLR statistic and its conditioning ma-
trix in some, but not in all cases (where the cases depend on the behavior of the reduced-
form parameter matrixπ ∈Rk×p as n→ ∞). Nevertheless, whenp= 1, the SR-CQLR test
and Moreira’s (2003) CLR test are asymptotically equivalent. When p ≥ 2, for the cases
where asymptotic equivalence of these tests does not hold, the difference is due only
to the IVs being fixed, whereas the SR-QLR statistic and its conditioning matrix are de-
signed (essentially) for random IVs.

We also evaluate the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the
homoskedastic linear IV model with fixed IVs. Kleibergen’s tests depend on the choice
of a weight matrix for the conditioning statistic (which enters both the CLR test statistic
and the critical value function). We find that when p = 1 Kleibergen’s CLR test statistic
and conditioning statistic reduce asymptotically to those of Moreira (2003) when one
employs the Jacobian-variance weighted conditioning statistic suggested by Kleibergen
(2005, 2007) and Smith (2007). However, they do not when one employs the moments-
variance weighted conditioning statistic suggested by Newey and Windmeijer (2009)
and Guggenberger, Ramalho, and Smith (2012). Notably, the scale of the scalar condi-
tioning statistic can differ from the desired value of one by a factor that can be arbitrar-
ily close to zero or infinity (depending on the value of the reduced-form error matrix ΣV
and null hypothesis value θ0); see Lemma 19.3 and Comment (iv) following it. Kleiber-
gen’s nonlinear CLR tests depend on the form of a rank statistic. Whenp≥ 2, we find that
no choice of rank statistic makes Kleibergen’s CLR test statistic and conditioning statistic
reduce asymptotically to those of Moreira (2003) (when Jacobian- or moments-variance
weighting is employed).

Section 21 below provides finite-sample simulation results that illustrate the re-
sults of the previous paragraph for Kleibergen’s CLR test with moment-variance weight-
ing.

19.1 Normal linear IV model with p≥ 1 endogenous variables

Here, we define the CLR test of Moreira (2003) in the homoskedastic Gaussian linear
(HGL) IV model with p ≥ 1 endogenous regressor variables and k ≥ p fixed (i.e., non-
random) IVs. The linear IV regression model is

y1i = Y ′
2iθ+ ui and

Y2i = π′Zi + V2i�
(19.1)

where y1i ∈ R and Y2i ∈ Rp are endogenous variables, Zi ∈ Rk for k ≥ p is a vector of
fixed IVs, and π ∈ Rk×p is an unknown unrestricted parameter matrix. In terms of its
reduced-form equations, the model is

y1i =Z′
iπθ+ V1i� Y2i = π′Zi + V2i� Vi :=

(
V1i� V

′
2i
)′
�

V1i = ui + V ′
2iθ� and ΣV := EViV

′
i �

(19.2)
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For simplicity, no exogenous variables are included in the structural equation. The
reduced-form errors are Vi ∈ Rp+1. In the HGL model, Vi ∼N(0p+1�ΣV ) for some posi-
tive definite (p+ 1)× (p+ 1) matrix ΣV .

The IV moment functions and their derivatives with respect to θ are

g(Wi�θ)=Zi
(
y1i −Y ′

2iθ
)

and

G(Wi�θ)= −ZiY ′
2i� where Wi :=

(
y1i�Y

′
2i�Z

′
i

)′
�

(19.3)

Moreira (2003, p. 1033) shows that the LR statistic for testing H0 : θ= θ0 against H1 :
θ �= θ0 in the HGL model in (19.1)–(19.2) when ΣV is known is

LRHGL�n := S
′
nSn − λmin

(
(Sn�Tn)

′(Sn�Tn)
)
� where

Sn := (Z′
n×kZn×k

)−1/2
Z′
n×kYb0

(
b′

0ΣV b0
)−1/2

= (n−1Z′
n×kZn×k

)−1/2
n1/2ĝn

(
b′

0ΣV b0
)−1/2 ∈Rk�

Tn := (Z′
n×kZn×k

)−1/2
Z′
n×kYΣ

−1
V A0
(
A′

0Σ
−1
V A0
)−1/2

= −(n−1Z′
n×kZn×k

)−1/2
n1/2(Ĝnθ0 − ĝn� Ĝn)Σ

−1
V A0
(
A′

0Σ
−1
V A0
)−1/2

∈Rk×p�

Zn×k := (Z1� � � � �Zn)
′ ∈Rn×k� Y := (Y1� � � � �Yn)

′ ∈Rn×(p+1)�

Yi :=
(
y1i�Y

′
2i
)′ ∈Rp+1� b0 := (1�−θ′

0
)′ ∈Rp+1�

ĝn := n−1
n∑
i=1

g(Wi�θ0)� A0 := (θ0� Ip)
′ ∈R(p+1)×p�

Ĝn := n−1
n∑
i=1

G(Wi�θ0)�

(19.4)

λmin(·) denotes the smallest eigenvalue of a matrix, and the second equality for Tn holds
by (29.12) in the SM.54 Note that (Sn�Tn) is a (conveniently transformed) sufficient
statistic for (θ�π) under normality of Vi, known variance matrix ΣV , and fixed IVs.

Moreira’s (2003) CLR test uses the LRHGL�n statistic and a conditional critical value
that depends on the k × p matrix Tn through the conditional critical value function
ck�p(·�1 − α) defined in (24). For α ∈ (0�1), Moreira’s CLR test with nominal level α re-
jects H0 if

LRHGL�n > ck�p(Tn�1 − α)� (19.5)

When ΣV is unknown, Moreira (2003) replaces ΣV by a consistent estimator.
Moreira’s (2003) CLR test is similar with finite-sample size α in the HGL model with

known ΣV . Intuitively, the strength of the IVs affects the null distribution of the test

54We let Zn×k (rather than Z) denote (Z1� � � � �Zn)
′, because we use Z to denote a k vector of standard

normals below.
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statistic LRHGL�n and the critical value ck�p(Tn�1 − α) adjusts accordingly to yield a test
with size α using the dependence of the null distribution of Tn on the strength of the IVs.
Whenp= 1, this test has been shown to have some (approximate) asymptotic optimality
properties; see Andrews, Moreira, and Stock (2006, 2008), Chernozhukov, Hansen, and
Jansson (2009), and Andrews, Marmer, and Yu (2019).

Forp≥ 2, the asymptotic properties of Moreira’s CLR test, such as its asymptotic size
and similarity, are not available in the literature. The results for the SR-CQLRP test, spe-
cialized to the linear IV model (with or without Gaussianity, homoskedasticity, and/or
independence of the errors), fill this gap.

19.2 Homoskedastic linear IV model

The model we consider in the remainder of this section is the homoskedastic linear
IV model introduced in Section 19.1 but without the assumption of normality of the
reduced-form errors Vi. Specifically, we use the following assumption.

Assumption HLIV. (a) {Vi ∈ Rp+1 : i ≥ 1} are i.i.d., {Zi ∈ Rk : i ≥ 1} are fixed, not ran-
dom, and k≥ p.

(b) EVi = 0, ΣV := EViV
′
i is pd, and E‖Vi‖4 <∞.55

(c) n−1∑n
i=1ZiZ

′
i → KZ for some pd matrix KZ ∈ Rk×k, n−1∑n

i=1 ‖Zi‖6 = o(n), and
supi≤n(c′Zi)2/

∑n
i=1(c

′Zi)2 → 0 ∀c �= 0k.

(d) supπ∈Π ‖π‖<∞, where Π is the parameter space for π.

(e) λmax(ΣV )/λmin(ΣV ) ≤ 1/ε for ε > 0 as in the definition of the SR-QLR or SR-QLRP
statistic.

Here, HLIV abbreviates “homoskedastic linear IV model.” Assumption HLIV(b) spec-
ifies that the reduced-form errors are homoskedastic (because their variance matrix
does not depend on i orZi). Assumptions HLIV(c) and (d) are used to obtain a weak law
of large numbers (WLLN) and central limit theorem (CLT) for certain quantities under
drifting sequences of reduced-form parameters {πn : n≥ 1}. These assumptions are not
very restrictive. Note that Assumptions HLIV(a)–(c) imply that the variance matrix of the
sample moments is pd. This implies that r̂n(= r̂n(θ0))= kwp → 1 (by Lemma 19.1(b) be-
low) and no SR adjustment of the SR-CQLR tests occurs (wp → 1). Assumption HLIV(e)
guarantees that the eigenvalue adjustment used in the definition of the SR-QLR statis-
tics does not have any effect asymptotically. One could analyze the properties of the
SR-CQLR tests when this condition is eliminated. One would still obtain asymptotic null
rejection probabilities equal to α, but the eigenvalue adjustment would render the SR-
CQLR tests to behave somewhat differently than Moreira’s CLR test, because the latter
test does not employ an eigenvalue adjustment.

55In this section, the underlying i.i.d. random variables {Vi : i ≥ 1} have a distribution that does not de-
pend on n. Hence, for notational simplicity, we denote expectations by E, rather than EFn . Nevertheless, it
should be kept in mind that the reduced-form parameters πn may depend on n.
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19.3 SR-CQLRP test

The components of the SR-QLRP statistic and its conditioning matrix are n1/2Ω̂
−1/2
n ĝn

and n1/2D̃∗
n (see (9) and (15.6)) when r̂n = k, which holds wp → 1 under Assumption

HLIV. Those of Moreira (2003) are Sn and Tn (see (19.4)). The asymptotic equivalence of
these components in the model specified by (19.1)–(19.2) and Assumption HLIV is es-
tablished in parts (e) and (f) of the following lemma. Parts (a)–(d) of the lemma establish
the asymptotic behavior of the components Ω̂n and Σ̃n of the test statistic SR-QLRPn and
its conditioning statistic.

Lemma 19.1. Suppose Assumption HLIV holds. Under the null hypothesis H0 : θ= θ0, for
any sequence of reduced-form parameters {πn ∈Π : n≥ 1} and any p≥ 1, we have

(a) R̃n →p ΣV ⊗KZ ,

(b) Ω̂n →p (b
′
0ΣV b0)KZ , where b0 := (1�−θ′

0)
′,

(c) Σ̃n →p (b
′
0ΣV b0)

−1ΣV ,

(d) Σ̃εn →p (b
′
0ΣV b0)

−1ΣV ,

(e) n1/2Ω̂
−1/2
n ĝn = Sn + op(1), and

(f) n1/2D̃∗
n = −(Ik + op(1))Tn(Ip + op(1))+ op(1).

Comment. (i) The minus sign in Lemma 19.1(f) is not important because QLRPn (de-
fined in the paragraph containing (15.7) using the formula in (23)) is unchanged if D̃∗

n is
replaced by −D̃∗

n (and SR-QLRPn = QLRPn wp → 1 under Assumption HLIV).56

(ii) The results of Lemma 19.1 hold under the null hypothesis. Statistics that differ
by op(1) under sequences of null distributions also differ by op(1) under sequences of
contiguous alternatives. Hence, the asymptotic equivalence results of Lemma 19.1(e)
and (f) also hold under contiguous alternatives to the null.

Note that in the linear IV regression model the alternative parameter values {θn : n≥ 1}
that yield contiguous sequences of distributions from a sequence of null distributions
depend on the strength of identification as measured by πn. The reduced-form equa-
tion (19.2) states that y1i = Z′

iπnθn + V1i when πn and θn are the true values of π and θ.
Contiguous alternatives to the null distributions with parametersπn and θ0 are obtained
for parameter values πn and θn ( �= θ0) that satisfy πnθn −πnθ0 = πn(θn − θ0)=O(n−1/2).
If the IVs are strong, that is, lim infn→∞π ′

nn
−1∑n

i=1ZiZ
′
iπn > 0, then contiguous alterna-

tives have true θn values of distance O(n−1/2) from the null value θ0. If the IVs are weak
in the standard sense, for example,πn = πn−1/2 for some fixed matrixπ, then all θ values
not equal θ0 yield contiguous alternatives. For semi-strong identification in the standard
sense, for example, πn = πn−δ for some δ ∈ (0�1/2) and some fixed full-column-rank
matrix π, the contiguous alternatives have θn − θ0 =O(n−(1/2−δ)). For joint weak identi-
fication, contiguity occurs whenπn = (π1n� � � � �πpn) ∈Rk×p, n1/2‖πjn‖ → ∞ for all j ≤ p,
lim supn→∞ λmin(nπ

′
nπn) <∞, and θn is such that πn(θn − θ0)=O(n−1/2).

56This holds because for a1 ∈ Rk and A2 ∈ Rk×p we have λmin((a1�−A2)
′(a1�−A2)) =

infλ=(λ1�λ
′
2)

′ :‖λ‖=1(a1λ1 − A2λ2)
′(a1λ1 − A2λ2) = infλ=(λ1�−λ′

2)
′ :‖λ‖=1(a1λ1 + A2λ2)

′(a1λ1 + A2λ2) =
infλ=(λ1�λ

′
2)

′ :‖λ‖=1(a1λ1 +A2λ2)
′(a1λ1 +A2λ2)= λmin((a1�A2)

′(a1�A2)).
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(iii) The proofs of Lemma 19.1 and Lemmas 19.2 and 19.3 below are given in Sec-
tion 29 below.

19.4 SR-CQLR test

The components of the SR-QLR statistic and its conditioning matrix are n1/2Ω̂
−1/2
n ĝn

and n1/2D̂∗
n (see (8) and (23)) when r̂n = k, which holds wp → 1 under Assumption

HLIV. Here, we show that the conditioning statistic n1/2D̂∗
n is asymptotically equiva-

lent to Moreira’s (2003) conditioning statistic Tn (in the homoskedastic linear IV model
with fixed IVs) when πn → 0k×p. This includes the cases of standard weak identifica-
tion and semi-strong identification. It is not asymptotically equivalent in other circum-
stances. (See Comment (ii) to Lemma 19.2 below.) Nevertheless, under strong and semi-
strong IVs, the SR-CQLR test and Moreira’s CLR test are asymptotically equivalent.57

In consequence, when p = 1, the SR-CQLR test and Moreira’s CLR test are asymptoti-
cally equivalent (because standard weak, strong, and semi-strong identification cover
all possible cases). When p ≥ 2, this is not true (because weak identification can oc-
cur even when πn � 0k×p, if n1/2 times the smallest singular value of πn is O(1)). Al-
though asymptotic equivalence of the tests fails in some cases when p ≥ 2, the dif-
ferences appear to be small because they are due only to the differences between
fixed IVs and random IVs (which cause ΣV to differ somewhat from ΣV ∗ defined be-
low).

For π ∈Rk×p, define

ζn(π) := n−1
n∑
i=1

(
π ′ ⊗Zi

)
ZiZ

′
i

(
π ⊗Z′

i

)

−
(
n−1

n∑
i=1

(
π′ ⊗Zi

)
Zi

)(
n−1

n∑
i=1

(
π ′ ⊗Zi

)
Zi

)′

∈Rkp×kp� (19.6)

If limn−1∑n
i=1 vec(ZiZ′

i) vec(ZiZ′
i)

′ exists, then ζ(π) := limζn(π) exists for all π ∈ Rk×p.
Define

R(π) := ΣV ⊗KZ + (B′ ⊗ Ik
)[ 0k×k 0k×kp

0kp×k ζ(π)

]
(B⊗ Ik) ∈Rk(p+1)×k(p+1)� (19.7)

where B= B(θ0) is defined in (19).

57This holds because, under strong and semi-strong IVs, the SR-QLR statistic and Moreira’s CLR statistic

behave asymptotically like LM statistics that project onto n1/2Ω̂
−1/2
n D̂n (or equivalently, n1/2Ω̂

−1/2
n D̂nL̂

1/2
n )

and Tn, respectively, see Theorem 7.1 for the SR-QLR statistic, and n1/2Ω̂
−1/2
n D̂nL̂

1/2
n and Tn are asymptoti-

cally equivalent (up to multiplication by −1) by Lemma 19.1(f). Furthermore, the conditional critical values
of the two tests both converge in probability to χ2

p�1−α under strong and semi-strong identification; see
Theorem 7.1 for the SR-CQLR critical value.
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The probability limit of Σ̂n is shown below to be the symmetric matrix (b′
0ΣV b0)

−1 ×
ΣV ∗ ∈R(p+1)×(p+1), where ΣV ∗ is defined as follows. The (j� �) element of ΣV ∗ is

ΣV ∗j� := tr
(
Rj�(π∗)′K−1

Z

)
/k� (19.8)

whereRj�(π∗) denotes the (j� �) k×k submatrix ofR(π∗) for j� �= 1� � � � �p+ 1 and π∗ =
limπn. Equivalently, ΣV ∗ is the unique minimizer of ‖[Ip+1 ⊗ ((b′

0ΣV b0)
−1/2K

−1/2
Z )][Σ⊗

KZ − R(π∗)][Ip+1 ⊗ ((b′
0ΣV b0)

−1/2K
−1/2
Z )]‖ over all symmetric pd matrices Σ ∈

R(p+1)×(p+1). Note that when ζ(π∗)= 0 (as occurs when π∗ = 0k×p), ΣV ∗ = ΣV (because
R(π∗)= ΣV ⊗KZ in this case).

We use the following assumption.

Assumption HLIV2. (a) limn−1∑n
i=1 vec(ZiZ′

i) vec(ZiZ′
i)

′ exists and is finite,

(b) πn → π∗ for some π∗ ∈Rk×p, and

(c) λmax(ΣV ∗)/λmin(ΣV ∗)≤ 1/ε for ε > 0 as in the definition of the SR-QLR statistic.

Assumption HLIV2(c) implies that the eigenvalue adjustment to Σ̂n employed in the
SR-QLR statistic has no effect asymptotically. One could analyze the behavior of the SR-
CQLR test when this condition is eliminated. This would not affect the asymptotic null
rejection probabilities, but it would affect the form of the asymptotic distribution when
the condition is violated. For brevity, we do not do so here.

The asymptotic behavior of n1/2D̂∗
n is given in the following lemma. Under Assump-

tion HLIV, n1/2D̂∗
n equals the SR-CQLR conditioning statistic n1/2D̂∗

An wp → 1 (because
r̂n = k wp → 1).

Lemma 19.2. Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesisH0 :
θ= θ0 and any p≥ 1, we have

(a) R̂n →p R(π∗),
(b) Σ̂n →p (b

′
0ΣV b0)

−1ΣV ∗,

(c) Σ̂εn →p (b
′
0ΣV b0)

−1ΣV ∗, and

(d) n1/2D̂∗
n = −(Ik + op(1))Tn(L

−1/2
V 0 L

1/2
V ∗ + op(1)) + op(1), where LV 0 := (θ0� Ip)×

Σ−1
V (θ0� Ip)

′ ∈Rp×p and LV ∗ := (θ0� Ip)Σ
−1
V ∗(θ0� Ip)

′ ∈Rp×p.

Comment. (i) If π∗ = 0k×p, which occurs when all θ parameters are either weakly iden-
tified in the standard sense or semi-strongly identified, then ζ(π∗) = 0kp×kp, R(π∗) =
ΣV ⊗KZ , and ΣV ∗ = ΣV . In this case, Lemma 19.2(d) yields

n1/2D̂∗
n = −(Ik + op(1)

)
Tn
(
Ip + op(1)

)+ op(1) (19.9)

and n1/2D̂∗
n is asymptotically equivalent to Tn (up to multiplication by −1).

(ii) On the other hand, if π∗ �= 0k×p, then n1/2D̂∗
n is not asymptotically equivalent to

Tn in general due to the ζ(π∗) factor that appears in the second summand of R(π∗) in
(19.7). This factor arises because the IVs are fixed in the linear IV model (by assumption),
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but the variance estimator V̂n, which appears in R̂n (see (19)), and which determines Σ̂n
and ΣV ∗, treats the IVs as though they are random.

19.5 Kleibergen’s nonlinear CLR tests

19.5.1 Definitions of the tests This section analyzes the behavior of Kleibergen’s (2005,
2007) nonlinear CLR tests in the homoskedastic linear IV regression model with k ≥ p

fixed IVs. The behavior of Kleibergen’s nonlinear CLR tests is found to depend on the
choice of weighting matrix for the conditioning statistic. We find that whenp= 1 (where
p is the dimension of θ) and one employs the Jacobian-variance weighted condition-
ing statistic, Kleibergen’s CLR test and conditioning statistics reduce asymptotically to
those of Moreira’s (2003) CLR test, as desired. This type of weighting has been suggested
by Kleibergen’s (2005, 2007) and Smith (2007). On the other hand, Kleibergen’s CLR test
and conditioning statistics do not reduce asymptotically to those of Moreira (2003) when
p= 1 and one employs the moments-variance weighted conditioning statistic. The lat-
ter has been suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho,
and Smith (2012). Furthermore, the scale of the scalar conditioning statistic can differ
from the desired value of one by a factor that can be arbitrarily close to zero or infinity
(depending on the value of the reduced-form error matrix ΣV and null hypothesis value
θ0). This has adverse effects on the power of the moment-variance weighted CLR test.

When p≥ 2, Kleibergen’s nonlinear CLR tests depend on the form of a rank statistic.
In this case, we find that no choice of rank statistic makes Kleibergen’s CLR test statistic
and conditioning statistic reduce asymptotically to those of Moreira (2003).

Kleibergen’s test statistic takes the form:

CLRn(θ) := 1
2
(
ARn(θ)− rkn(θ)

+
√(

ARn(θ)− rkn(θ)
)2 + 4LMn(θ) · rkn(θ)

)
� where

LMn(θ) := nĝn(θ)
′Ω̂−1/2

n (θ)P
Ω̂

−1/2
n (θ)D̂n(θ)

Ω̂
−1/2
n (θ)ĝn(θ)

(19.10)

and rkn(θ) is a real-valued rank statistic, which is a conditioning statistic (i.e., the critical
value may depend on rkn(θ)).

The critical value of Kleibergen’s CLR test is c(1 − α� rkn(θ)), where c(1 − α� r) is the
1 − α quantile of the distribution of

clr(r) := 1
2
(
χ2
p +χ2

k−p − r +
√(
χ2
p +χ2

k−p − r
)2 + 4χ2

pr
)

(19.11)

for 0 ≤ r <∞ and the chi-square random variables χ2
p and χ2

k−p in (19.11) are indepen-
dent. The CLR test rejects the null hypothesis H0 : θ= θ0 if CLRn > c(1 − α� rkn) (where,
as elsewhere, the dependence of these statistics on θ0 is suppressed for simplicity).

Kleibergen’s CLR test depends on the choice of the rank statistic rkn(θ). Kleibergen
(2005, p. 1114, 2007, equation (37)) and Smith (2007, p. 7, footnote 4) propose to take
rkn(θ) to be a function of Ṽ −1/2

Dn (θ) vec(D̂n(θ)), where ṼDn(θ) ∈ Rkp×kp is a consistent
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estimator of the covariance matrix of the asymptotic distribution of vec(D̂n(θ)) (after
suitable normalization). We refer to Ṽ −1/2

Dn (θ) vec(D̂n(θ)) as the orthogonalized sample
Jacobian with Jacobian-variance weighting. In the i.i.d. case considered here, we have

ṼDn(θ) := n−1
n∑
i=1

vec
(
Gi(θ)− Ĝn(θ)

)
vec
(
Gi(θ)− Ĝn(θ)

)′
− Γ̂n(θ)Ω̂

−1
n (θ)Γ̂n(θ)

′� where

Γ̂n(θ) := (Γ̂1n(θ)
′� � � � � Γ̂pn(θ)′

)′ ∈Rpk×k

(19.12)

and Γ̂1n(θ)� � � � � Γ̂pn(θ) are defined in (18).
Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) pro-

posed to take rkn(θ) to be a function of Ω̂−1/2
n (θ)D̂n(θ). We refer to Ω̂−1/2

n (θ)D̂n(θ) as the
orthogonalized sample Jacobian with moment-variance weighting. Below we consider
both choices. For reasons that will become apparent, we treat the cases p= 1 and p≥ 2
separately.

19.5.2 p = 1 case Whether Kleibergen’s nonlinear CLR test reduces asymptotically to
Moreira’s CLR test in the homoskedastic linear IV regression model depends on the rank
statistic chosen. Here, we consider the two choices of rank statistic that have been con-
sidered in the literature. We find that Kleibergen’s nonlinear CLR test reduces asymptoti-
cally to Moreira’s CLR test with a rank statistic based on ṼDn(θ), but not with a rank statis-
tic based on Ω̂n(θ). This illustrates that the flexibility in the choice of the rank statistic for
Kleibergen’s CLR test can have drawbacks. It may lead to a test that has reduced power.

When p = 1, some calculations (based on the closed-form expression for the mini-
mum eigenvalue of a 2 × 2 matrix) show that

CLRn(θ)= ARn(θ)− λmin
((
n1/2Ω̂

−1/2
n (θ)ĝn(θ)� rn(θ)

)′
× (n1/2Ω̂

−1/2
n (θ)ĝn(θ)� rn(θ)

))
provided

rkn(θ)= rn(θ)
′rn(θ) for some random vector rn(θ) ∈Rk�

(19.13)

This equivalence is the origin of the p= 1 formula for the LR statistic in Moreira (2003).
Hence, when p = 1, for testing H0 : θ = θ0, Kleibergen’s test statistic with rkn(θ) =
rn(θ)

′rn(θ) is of the same form as Moreira’s (2003) LR statistic with rn(θ0) in place of
Tn and with n1/2Ω̂

−1/2
n (θ0)ĝn(θ0) in place of Sn, where θ0 is the null value of θ.58 The two

choices for rkn(θ) that we consider when p= 1 are

rk1n(θ) := nD̂n(θ)
′Ṽ −1
Dn (θ)D̂n(θ) and rk2n(θ) := nD̂n(θ)

′Ω̂−1
n (θ)D̂n(θ)� (19.14)

The statistic rk1n(θ) has been proposed by Kleibergen (2005, 2007) and Smith (2007)
and rk2n(θ) has been proposed by Newey and Windmeijer (2009) and Guggenberger,
Ramalho, and Smith (2012).

58The functional form of the rank statistics that have been considered in the literature, such as the statis-
tics of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006) all reduce
to the same function when p= 1. Specifically, rkn(θ) equals the squared length of some k vector rn(θ).
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Let

ζn(π) := n−1
n∑
i=1

ZiZ
′
i

(
Z′
iπ
)2 −
(
n−1

n∑
i=1

ZiZ
′
iπ

)(
n−1

n∑
�=1

Z�Z
′
�π

)′
� (19.15)

This definition of ζn(π) is the same as in (19.6) when p= 1.

Lemma 19.3. Suppose Assumption HLIV holds and p= 1. Under the null hypothesis H0 :
θ= θ0, for any sequence of reduced-form parameters {πn ∈Π : n≥ 1}, we have

(a) rk1n(θ0)= T
′
n[Ik +LV 0K

−1/2
Z ζn(πn)K

−1/2
Z + op(1)]−1Tn · (1 + op(1))+ op(1),

(b) rk2n(θ0) = T
′
nTn(LV 0b

′
0ΣV b0)

−1 · (1 + op(1)) + op(1), where LV 0 := (θ0�1)×
Σ−1
V (θ0�1)′ ∈R, and

(c) LV 0b
′
0ΣV b0 = (1−2θ0ρc+θ2

0c
2)2

c2(1−ρ2)
, where c2 := Var(V2i)/Var(V1i) > 0 and ρ =

Corr(V1i� V2i) ∈ (−1�1).

Comment. (i) If πn → 0, then ζn(πn) → 0 and Lemma 19.3(a) shows that rk1n(θ0)

equals T
′
nTn(1 + op(1))+ op(1). That is, under weak IVs and semi-strong IVs, rk1n(θ0)

reduces asymptotically to Moreira’s (2003) conditioning statistic. Under strong IVs, this
does not occur. However, under strong IVs, we have rk1n(θ0)→p ∞, just as T

′
nTn →p ∞.

In consequence, the test constructed using rk1n(θ0) has the same asymptotic properties
as Moreira’s (2003) CLR test under the null and contiguous alternative distributions.

(ii) Simple calculations show that ζn(πn) is positive semi-definite (psd). Hence,
rk1n(θ0) is smaller than it would be if the second summand in the square brackets in
Lemma 19.3(a) was zero.

(iii) Lemma 19.3(b) shows that the rank statistic rk2n(θ0) differs asymptotically from
Moreira’s conditioning statistic T

′
nTn by the scale factor (LV 0b

′
0ΣV b0)

−1. Thus, the non-
linear CLR test considered by Newey and Windmeijer (2009) and Guggenberger, Ra-
malho, and Smith (2012) does not reduce asymptotically to Moreira’s (2003) CLR test
in the homoskedastic linear IV regression model with fixed IVs under weak IVs. This
has negative consequences for its power. Under strong or semi-strong IVs, this test
does reduce asymptotically to Moreira’s (2003) CLR test because rk1n(θ0) →p ∞, just

as T
′
nTn →p ∞, which is sufficient for asymptotic equivalence in these case.

(iv) For example, if ρ = 0 and c = 1 in Lemma 19.3(c), then (LV 0b
′
0ΣV b0)

−1 = (1 +
θ2

0)
−2 ≤ 1. In this case, if |θ0| = 1, then (LV 0b

′
0ΣV b0)

−1 = 1/4 and rk2n(θ0) is 1/4 as large

as T
′
nTn asymptotically. On the other hand, if ρ= 0 and θ0 = 0, then (LV 0b

′
0ΣV b0)

−1 = c2,
which can be arbitrarily close to zero or infinity depending on c.

(v) When (LV 0b
′
0ΣV b0)

−1 is large (small), the rk2n(θ0) statistic is larger (smaller) than
desired and it behaves as though the IVs are stronger (weaker) than they really are, which
sacrifices power unless the IVs are quite strong (weak). Note that the inappropriate scale
of rk2n(θ0) does not cause asymptotic size problems, only power reductions.
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19.5.3 p≥ 2 case When p≥ 2, Kleibergen’s (2005) nonlinear CLR test does not reduce
asymptotically to Moreira’s (2003) CLR test for any choice of rank statistic rkn(θ0) for
several reasons.

First, Moreira’s (2003) LR statistic is given in (19.4), whereas Kleibergen’s (2005) non-
linear LR statistic is defined in (19.10). By Lemma 19.1(e), n1/2Ω̂

−1/2
n ĝn = Sn + op(1),

where, here and below, we suppress the dependence of various quantities on θ0. Hence,
ARn = S

′
nSn + op(1). Even if rkn takes the form r′nrn for some random k vector rn, it is not

the case that

CLRn = ARn − λmin
((
n1/2Ω̂

−1/2
n ĝn� rn

)′(
n1/2Ω̂

−1/2
n ĝn� rn

))
(19.16)

when p ≥ 2. Hence, the functional form of Kleibergen’s test statistic differs from that of
Moreira’s LR statistic when p≥ 2.

Second, for the rank statistics that have been suggested in the literature, namely,
those of Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and
Paap (2006), rkn is not of the form r′nrn, when p≥ 2.

Third, Moreira’s conditioning statistic is the k × p matrix Tn. Conditioning on this
random matrix is equivalent asymptotically to conditioning on the k×p matrix n1/2D̂∗

n

by Lemma 19.1(f). But, it is not equivalent asymptotically to conditioning on any of the
scalar rank statistics considered in the literature when p≥ 2.

Fourth, if one weights the conditioning statistic in the way suggested by Kleiber-
gen (2005) and Smith (2007), then the resulting CLR test is not guaranteed to have cor-
rect asymptotic size; see Section 5 of AG1. If one weights the conditioning statistic by
Ω̂−1
n , as suggested by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and

Smith (2012), then the CLR test is guaranteed to have correct asymptotic size under
the conditions given in AG1, but the conditioning statistic is not asymptotically equiva-
lent to Moreira’s (2003) conditioning statistic and the difference can be substantial; see
Lemma 19.3(b) and (c) for the p= 1 case.

20. Simulation results for singular and near-singular variance matrices

Here, we provide some finite-sample simulations of the null rejection probabilities of
the nominal 5% SR-AR and SR-CQLR tests when the variance matrix of the moments
is singular and near singular.59 The model we consider is the following homoskedastic
linear IV model: y1i = Y2iβ + Ui and Y2i = Z′

iπ + V1i, where all quantities are scalars
except Zi, π ∈ RdZ , θ = (β�π ′)′ ∈ Rβ+dZ , EUi = EV2i = 0, EUiZi = EV1iZi = 0dZ , and
E(ViV

′
i |Zi) = ΣV a.s. for Vi := (V1i� V2i)

′ and some 2 × 2 constant matrix ΣV . The corre-
sponding reduced-form equations are y1i =Z′

iπβ+ V1i and Y2i =Z′
iπ + V1i, where V1i =

Ui+V2iβ. The moment conditions for θ are gi(θ)= ((y1i−Z′
iπβ)Z

′
i� (Y2i−Z′

iπ)Z
′
i)

′ ∈Rk,
where k = 2dZ and dZ is the dimension of Zi. The variance matrix ΣV ⊗ EZiZ

′
i of

gi(θ0) = (V1iZ
′
i� V2iZ

′
i)

′ is singular whenever the covariance between the reduced-form

59Analogous results for the SR-CQLR2 test are not provided because the moment functions considered
are not of the form in (15.1), which is necessary to apply the SR-CQLR2 test.
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Table SM-1. Null rejection probabilities (×100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and k= 8.

SR-AR SR-CQLR

n ρV : 0�95 0�999999 1�0 0�95 0�999999 1�0

250 6�0 6�0 5�4 5�8 5�8 5�3
500 5�5 5�5 5�2 5�3 5�3 5�1

1000 5�5 5�5 5�2 5�3 5�3 5�1
2000 5�0 5�0 4�9 4�8 4�8 4�8
4000 5�0 5�0 5�1 4�8 4�8 5�0
8000 5�1 5�1 5�0 4�8 4�8 4�9

16,000 5�0 5�0 5�1 4�9 4�9 5�0

errors V1i and V2i is one (or minus one) or EZiZ′
i is singular. In this model, we are inter-

ested in joint inference concerning β and π. This is of interest when one wants to see
how the magnitude of π affects the range of plausible β values.

We take (V1i� V2i)∼N(02�ΣV ), where ΣV has unit variances and correlation ρV , Zi ∼
N(02� IdZ ), (V1i� V2i) andZi are independent, and the observations are i.i.d. across i. The
null hypothesis is H0 : (β�π) = (β0�π0). We consider the values: ρV = 0�95, 0�999999,
and 1�0; n= 250, 500, 1000, 2000, 4000, 8000, and 16,000; π0 = (π10�0�0�0)′, where π10 =
π10n = C/n1/2 and C = √

10, which yields a concentration parameter of λ= π ′EZiZ′
iπ =

10 for all n≥ 1; and β0 = 0. The variance matrix ΩF of the moment functions is singular
when ρV = 1 (because gi(θ0)= (V1iZ

′
i� V1iZ

′
i)

′ a.s.) and near singular when ρV is close to
one. Under H0, with probability one, the extra rejection condition in (14) is: reject H0

if [I4�−I4 ]̂gn(θ0) �= 04, which fails to hold a.s., and hence, can be ignored in probability
calculations made under H0. Forty thousand simulation repetitions are employed.

Tables SM-1, SM-2, and SM-3 report results for k= 8 (which corresponds to dZ = 4),
k = 4, and k = 12, respectively. Table SM-1 shows that the SR-AR and SR-CQLR tests
have null rejection probabilities that are close to the nominal 5% level for singular and
near singular variance matrices as measured by ρV . As expected, the deviations from
5% decrease with n. For all 40,000 simulation repetitions, all values of n considered, and

Table SM-2. Null rejection probabilities (×100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and k= 4.

SR-AR SR-CQLR

n ρV : 0�95 0�999999 1�0 0�95 0�999999 1�0

250 5�5 5�5 5�2 5�4 5�4 4�9
500 5�1 5�1 5�2 5�0 5�0 5�0

1000 4�9 4�9 5�1 4�8 4�8 4�8
2000 5�1 5�1 5�2 5�0 5�0 5�0
4000 5�1 5�1 5�1 5�0 5�0 4�9
8000 5�1 5�1 5�1 5�0 5�0 4�8

16,000 5�1 5�1 5�0 4�9 4�9 4�8
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Table SM-3. Null rejection probabilities (×100) of nominal 5% SR-AR and SR-CQLR tests with
singular and near singular variance matrices of the moment functions and k= 12.

SR-AR SR-CQLR

n ρV : 0�95 0�999999 1�0 0�95 0�999999 1�0

250 7�0 7�0 5�6 7�0 7�0 5�5
500 6�0 6�0 5�4 6�0 6�0 5�4

1000 5�5 5�5 5�3 5�5 5�5 5�3
2000 5�2 5�2 5�1 5�2 5�2 5�1
4000 5�1 5�1 5�1 5�1 5�1 5�1
8000 5�0 5�0 4�9 5�0 5�0 4�8

16,000 4�9 4�9 5�0 4�9 4�9 5�0

k = 8, we obtain r̂n(θ0) = 8 when ρV < 1�0 and r̂n(θ0) = 4 when ρV = 1. The estimator
r̂n(θ0) also makes no errors when k = 4 and 12. Tables SM-2 and SM-3 show that the
deviations of the null rejection probabilities from 5% are somewhat smaller when k =
4 and n ≤ 1000 than when k = 8, and somewhat larger when k = 12 and n ≤ 500. The
results for k = 8 and C = 0, 2,

√
30, and 10 are similar. For brevity, these results are not

reported.
We conclude that the method introduced in Section 4 to make the SR-AR and SR-

CQLR tests robust to singularity works very well in the model that is considered in the
simulations.

21. Simulation results for Kleibergen’s MVW-CLR test

This section presents finite-sample simulation results that show that Kleibergen’s (2005)
CLR test with moment-variance weighting (MVW-CLR) has low power in some scenarios
in the homoskedastic linear IV model with normal errors, relative to the power of the
SR-CQLR and SR-CQLRP tests, Kleibergen’s CLR test with Jacobian-variance weighting
(JVW-CLR), and the CLR test of Moreira (2003) (Mor-CLR).60 As noted at the beginning
of Section 19.5, Lemma 19.3 and Comment (iv) following it show that the scale (denoted
by scale below) of the moment-variance weighting conditioning statistic can be far from
the optimal value of one.61 We provide results for one scenario where scale is too large
and one scenario where it is too small. These scenarios are chosen based on the formula
given in Lemma 19.3.

The model is the homoskedastic normal linear IV model introduced in Section 19.1
with unknown error variance matrixΣV andp= 1. The IVs are fixed—they are generated

60The MVW-CLR and JVW-CLR tests denote Kleibergen’s (2005) CLR test with the rank statistic given

by the Robin and Smith (2000) statistics rkn = λmin(nD̂
′
nΩ̂

−1/2
n D̂n) and rkn = λmin(nD̂

′
nṼ

−1
Dn D̂n), respectively,

where Ω̂n and D̂n are defined in (8) and (18) with θ= θ0 and ṼDn is an estimator of the asymptotic variance
of D̂n (after suitable normalization) and is defined in (19.12). Note that the second formula for rkn is appro-
priate only for the case p= 1, which is the case considered here. The estimators Ω̂n and ṼDn are estimators
of the asymptotic variances of the sample moments and Jacobian, respectively, which leads to the MVW
and JVW terminology.

61The constant scale is the constant (LV 0b
′
0ΣV b0)

−1 in Lemma 19.3(b) and (c).
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once from a N(0k� Ik) distribution. The sample size n equals 1000. The hypotheses are
H0 : θ= 0 andH1 : θ �= 0. The tests have nominal size 0�05. The power results are based on
40,000 simulation repetitions and 1000 critical value repetitions and are size-corrected
(by adding nonnegative constants to the critical values of those tests that overreject un-
der the null). The reduced-form error variances and correlation are denoted by ΣV 11,
ΣV 22, and ρ, respectively, and λ := π ′Z′Zπ. The number of IVs is k. The MVW-CLR and
JVW-CLR tests employ the Robin and Smith (2000) rank statistic. Results are reported for
the tests discussed above, as well as Kleibergen’s LM test and the AR test.

Design 1 takes ΣV 11 = 1�0, ΣV 22 = 4�0, ρ= 0�5, π = 0�044, λ= 2�009, and k= 5. These
parameter values yield scale = 30�0, which results in the MVW-CLR test behaving like
Kleibergen’s LM test even though the LM test has low power in this scenario. Design 2
takes ΣV 11 = 3�0, ΣV 22 = 0�1, ρ= 0�95, π = 0�073, λ= 4�995, and k= 10. These parameter
values yield scale = 0�0033, which results in the MVW-CLR test behaving like the AR test
even though the AR test has low power in this scenario.

The power functions of the tests are reported in Figure SM-2 (with θλ1/2 on the hor-
izontal axes with λ1/2 fixed). Figure SM-2(a) shows that, for Design 1, the MVW-CLR and
LM tests have very similar power functions and both are substantially below the power
functions of the SR-CQLR, SR-CQLRP , JVW-CLR, and Mor-CLR tests, which have essen-
tially equal and optimal power. The AR test has high power, like that of the SR-CQLR,
SR-CQLRP , JVW-CLR, and Mor-CLR tests, for positive θ, and low power, like that of the
MVW-CLR and LM tests, for negative θ.

Figure SM-2(b) shows that, for Design 2, the MVW-CLR and AR tests have similar
power functions and both are substantially below the power functions of the SR-CQLR,
SR-CQLRP , JVW-CLR, Mor-CLR, and LM tests, which have essentially equal and optimal
power.

22. Eigenvalue-adjustment procedure

Eigenvalue adjustments are made to two sample matrices that appear in the SR-CQLR
and SR-CQLRP test statistics. These adjustments guarantee that the adjusted sample
matrices have minimum eigenvalues that are not too close to zero even if the corre-
sponding population matrices are singular or near singular. These adjustments improve
the asymptotic and finite-sample performance of the tests by improving their robust-
ness to singularities or near singularities.

The eigenvalue-adjustment procedure can be applied to any nonzero psd matrix
H ∈RdH×dH for some positive integer dH . Let ε be a positive constant. Let AHΛHA

′
H be

a spectral decomposition of H, where ΛH = Diag{λH1� � � � � λHdH } ∈RdH×dH is the diago-
nal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and
AH is a corresponding orthogonal matrix of eigenvectors ofH. The eigenvalue-adjusted
matrix Hε ∈RdH×dH is

Hε :=AHΛ
ε
HA

′
H� where

ΛεH := Diag
{
max
{
λH1�λmax(H)ε

}
� � � � �max

{
λHdH �λmax(H)ε

}}
�

(22.1)

We have λmax(H)= λH1, and λmax(H) > 0 provided the psd matrix H is nonzero.
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The following lemma provides some useful properties of this eigenvalue adjustment
procedure.

Lemma 22.1. Let dH be a positive integer, let ε be a positive constant, and let H ∈RdH×dH
be a nonzero positive semi-definite nonrandom matrix. Then,

(a) (uniqueness)Hε, defined in (22.1), is uniquely defined. (i.e., every choice of spectral
decomposition of H yields the same matrix Hε),

(b) (eigenvalue lower bound) λmin(H
ε)≥ λmax(H)ε,

(c) (condition number upper bound) λmax(H
ε)/λmin(H

ε)≤ max{1/ε�1},

(d) (scale equivariance) For all c > 0, (cH)ε = cHε, and

(e) (continuity) Hε
n →Hε for any sequence of psd matrices {Hn ∈ RdH×dH : n ≥ 1} that

satisfies Hn →H.

Comment. (i) The lower bound λmax(H)ε for λmin(H
ε) given in Lemma 22.1(b) is pos-

itive provided H �= 0dH×dH .

(ii) Lemma 22.1(c) shows that one can choose ε to control the condition number of
Hε. The latter is a common measure of how ill-conditioned a matrix is. If ε≤ 1, which is
a typical choice, then the upper bound is 1/ε. Note that Hε =H iff λmin(H)≥ λmax(H)ε

iff the condition number of H is less than or equal to 1/ε.

(iii) Scale equivariance of (·)ε established in Lemma 22.1(d) is an important property.
For example, one does not want the choice of measurements in $ or $1000 to affect in-
ference.

(iv) Continuity of (·)ε established in Lemma 22.1(e) is an important property because
it implies that for random matrices {Ĥn : n≥ 1} for which Ĥn →p H, one has Ĥε

n →p H
ε.

Proof of Lemma 22.1. For notational simplicity, we drop the H subscript on AH , ΛH ,
and ΛεH . We prove part (a) first. The eigenvectors of Hε (= AΛεA′) defined in (22) are
unique up to the choice of vectors that span the eigenspace that corresponds to any
eigenvalue. Suppose the j� � � � � j + d eigenvalues of H are equal for some d ≥ 0 and 1 ≤
j < dH . We can write A= (A1�A2�A3), where A1 ∈RdH×(j−1), A2 ∈RdH×(d+1), and A3 ∈
RdH×(dH−j−d). In addition, H can be written as H =A∗ΛA′∗, where A∗ = (A1�A2∗�A3),
the column space of A2∗ equals that of A2, and A∗ is an orthogonal matrix. As above,
Hε =AΛεA′. To establish part (a), if suffices to show thatHε =A∗ΛεA′∗, or equivalently,
AΛεA′ξ=A∗ΛεA′∗ξ for any ξ ∈RdH .

For any ξ ∈ RdH , we can write ξ = ξ1 + ξ2, where ξ1 belongs to the column space of
A2 (and A2∗) and ξ2 is orthogonal to this column space. We have

AΛεA′ξ =AΛε(A1�A2�A3)
′(ξ1 + ξ2)

=AΛε
(
0j−1′�

(
A′

2ξ1
)′
�0dH−j−d′)′ +AΛε

((
A′

1ξ2
)′
�0d+1′

�
(
A′

3ξ2
)′)′

=Aλεj
(
0j−1′�

(
A′

2ξ1
)′
�0dH−j−d′)′ + (A1�A2�A3)Λ

ε
((
A′

1ξ2
)′
�0d+1′

�
(
A′

3ξ2
)′)′

=A2A
′
2ξ1λ

ε
j + (A1�A3)Λ

ε−
((
A′

1ξ2
)′
�
(
A′

3ξ2
)′)′
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=A2∗A′
2∗ξ1λ

ε
j + (A1�A3)Λ

ε−
((
A′

1ξ2
)′
�
(
A′

3ξ2
)′)′

=A∗ΛεA′∗ξ� (22.2)

where Λε− ∈ R(dH−d−1)×(dH−d−1) is the diagonal matrix equal to Λε with its j� � � � � j + d

rows and columns deleted, λεj = max{λj�λmax(H)ε}, λj is the jth eigenvalue of Λ, the

second equality uses A′
1ξ1 = 0j−1, A′

3ξ1 = 0dH−j−d , and A′
2ξ2 = 0d+1, the third equality

holds because λj = · · · = λj+d implies that λεj = · · · = λεj+d , the fourth equality holds us-
ing the definition of Λε−, the fifth equality holds because A2A

′
2 = A2∗A′

2∗ (since both
equal the projection matrix onto the column space of A2 (and A2∗)), and the last equal-
ity holds by reversing the steps in the previous equalities with A∗ = (A1�A2∗�A3) in
place ofA= (A1�A2�A3). Because (22.2) holds for any matrix A2∗ defined as above and
any feasible j and d, part (a) holds.

To prove parts (b) and (c), we note that the eigenvalues of Hε are {max{λHj�
λmax(H)ε} : j = 1� � � � � dH} because Hε = AΛεA′ and A is an orthogonal matrix. In
consequence, λmin(H

ε) ≥ λmax(H)ε, which establishes part (b). If λmin(H) > λmax(H)ε,
then Hε = H, λmax(H

ε)/λmin(H
ε) = λmax(H)/λmin(H) < 1/ε, and the result of part (c)

holds. Alternatively, if λmin(H) ≤ λmax(H)ε, then λmin(H
ε) = λmax(H)ε. In addition, we

have λmax(H
ε)= max{λH1�λmax(H)ε} = λmax(H)×max{1� ε} using λH1 = λmax(H). Com-

bining these two results gives λmax(H
ε)/λmin(H

ε) = λmax(H)max{1� ε}/(λmax(H)ε) =
max{1/ε�1}, where the second equality uses the assumption that H is nonzero, which
implies that λmax(H) > 0. This gives the result of part (c).

We now prove part (d) and for clarity make the H subscripts on AH and ΛH explicit
in this paragraph. We have ΛcH = cΛH and we can take AcH =AH by the definition of
eigenvalues and eigenvectors. This implies that ΛεcH = cΛεH (using the definition of ΛεH
in (22)) and (cH)ε =AcHΛ

ε
cHA

′
cH = cAHΛ

ε
HA

′
H = cHε, which establishes part (d).

Now we prove part (e). Let AnΛnA
′
n be a spectral decomposition of Hn for n≥ 1. Let

Hε
n =AnΛ

ε
nA

′
n for n≥ 1, whereΛεn is the diagonal matrix with jth diagonal element given

by λεnj = max{λnj�λmax(Hn)ε} and λnj is the jth largest eigenvalue ofHn. (By part (a) of the
lemma, Hε

n is invariant to the choice of eigenvector matrix An used in its definition.)
Given any subsequence {n�} of {n}, let {nm} be a subsubsequence such thatAnm →A

for some orthogonal matrix A that may depend on the subsubsequence {nm}. (Such a
subsubsequence exists because the set of orthogonal dH × dH matrices is compact.) By
assumption,Hn →H. This implies thatΛn →Λ, whereΛ is the diagonal matrix of eigen-
values ofH in nonincreasing order (by Elsner’s theorem, see Stewart (2001, Theorem 3.1,
pp. 37–38)). In turn, this gives Λεn → Λε, where Λε is the diagonal matrix with jth diag-
onal element given by λεj = max{λj�λmax(H)ε} and λj is the jth largest eigenvalue of H,
because λmax(·) is a continuous function (by Elsner’s theorem again). The previous re-
sults imply thatHnm =AnmΛnmA

′
nm

→AΛA′,H =AΛA′,Hε
nm

=AnmΛ
ε
nm
A′
nm

→AΛεA′,
andAΛεA′ =Hε. Because every subsequence {n�} of {n} has a subsubsequence {nm} for
which Hε

nm
→Hε, we obtain Hε

n →Hε, which completes the proof of part (e).

23. Singularity-robust LM test

SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-
AR and SR-CQLR tests and CSs. However, these procedures are only partially singularity
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robust; see the discussion below. In addition, LM tests have low power in some circum-
stances under weak identification.

The SR-LM test statistic is

SR-LMn(θ) := nĝAn(θ)
′P
Ω̂

−1/2
An (θ)D̂An(θ)

ĝAn(θ)� (23.1)

where PM denotes the projection matrix onto the column space of the matrix M . For
testing H0 : θ= θ0, the SR-LM test rejects the null hypothesis if

SR-LMn(θ0) > χ
2
min{̂rn(θ0)�p}�1−α� (23.2)

where χ2
min{̂rn(θ0)�p}�1−α denotes the 1 − α quantile of a chi-squared distribution with

min{̂rn(θ0)�p} degrees of freedom. This test can be shown to have correct asymptotic
size and to be asymptotically similar for the parameter space FSR

LM, which is a general-
ization of the parameter space F0 in AG1 and has a similar (rather complicated) form to
F0. It is defined as follows: for some δ1 > 0,

FSR
LM :=

min{rF �p}⋃
j=0

FSR
LMj� where

FSR
LMj := {F ∈ FSR : τ∗

jF ≥ δ1 and λp−j
(
Ψ
C∗′
F�k−jG

∗
i B

∗
F�p−jξ

F

)≥ δ1

∀ξ ∈Rp−j with ‖ξ‖ = 1
}
�

G∗
i :=Π

−1/2
1F A′

FGi ∈RrF×p� rF := rk(ΩF)� g∗
i :=Π

−1/2
1F A′

Fgi ∈RrF �
Ψ
ai
F :=EFaia

′
i −EFaig

∗′
i

(
EFg

∗
i g

∗
i

)−1
EFg

∗
i a

′
i for any random vector ai�

(23.3)

τ∗
jF is the jth largest singular value of EFG∗

i for j = 1� � � � �min{rF �p}, τ∗
0F := δ1, B∗

F is
a p × p orthogonal matrix of eigenvalues of (EFG∗

i )
′(EFG∗

i ) ordered so that the cor-
responding eigenvalues (κ∗

1F� � � � �κ
∗
pF) are nonincreasing, C∗

F is a rF × rF orthogonal
matrix of eigenvalues of (EFG∗

i )(EFG
∗
i )

′ ordered so that the corresponding eigenval-
ues (κ∗

1F� � � � �κ
∗
rFF

) are nonincreasing, B∗
F := (B∗

F�j�B
∗
F�p−j) for B∗

F�j ∈ Rp×j and B∗
F�k−j ∈

Rp×(p−j), and C∗
F := (C∗

F�j�C
∗
F�k−j) for C∗

F�j ∈RrF×j and C∗
F�k−j ∈RrF×(rF−j).62 ,63 See Sec-

tion 3 of AG1 for a discussion of the form of this parameter space and the quantities
upon which it depends. Note thatΨai

F is the expected outer-product matrix of the vector

of residuals, ai − EFaig
∗′
i (EFg

∗
i g

∗
i )

−1g∗
i , from the L2(F) projections of ai onto the space

spanned by the components of g∗
i , see AG1 for further discussion.

The conditions in FSR
LM (beyond those in FSR) are used to guarantee that the condi-

tioning matrix D̂An ∈ Rr̂n×p has full rank min{̂rn�p} asymptotically with probability one

62The first min{rF �p} eigenvalues of (EFG∗
i )

′(EFG∗
i ) and (EFG

∗
i )(EFG

∗
i )

′ are the same. If rF > p, the
remaining rF −p eigenvalues of (EFG∗

i )(EFG
∗
i )

′ are all zeros. If rF < p, the remaining p− rF eigenvalues of
(EFG

∗
i )

′(EFG∗
i ) are all zeros.

63The matrices B∗
F and C∗

F are not necessarily uniquely defined, but this is not of consequence because
the λp−j(·) condition is invariant to the choice of B∗

F and C∗
F .
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(after pre- and post-multiplication by suitable matrices). AG1 shows that these condi-
tions are not redundant. Given the need for these conditions, the SR-LM test is not fully
singularity robust. The asymptotic size and similarity result for the SR-LM test stated
above can be proved using Theorem 4.1 of AG1 combined with the argument given in
Section 17 below. For brevity, we do not provide the details. Extensions of the asymp-
totic size and similarity results to SR-LM CSs are analogous to those for the SR-AR and
SR-CQLR CSs.

A theoretical advantage of the SR-AR and SR-CQLR tests and CSs considered in this
paper, relative to tests and CSs that make use of the LM statistic, is that they avoid the
complicated conditions that appear in FSR

LM.

24. Proofs of Lemmas 16.2, 5.1, and 15.1

Lemma 16.2 of AG2. Let D be a k × p matrix with the singular value decomposition
D = CΥB′, where C is a k × k orthogonal matrix of eigenvectors of DD′, B is a p × p

orthogonal matrix of eigenvectors of D′D, and Υ is the k× p matrix with the min{k�p}
singular values {τj : j ≤ min{k�p}} of D as its first min{k�p} diagonal elements and zeros
elsewhere, where τj is nonincreasing in j. Then ck�p(D�1 − α)= ck�p(Υ�1 − α).

Proof of Lemma 16.2. Define

B+ :=
[
B 0p

0p
′

1

]
∈R(p+1)×(p+1)� (24.1)

The matrix B+ is orthogonal because B is, where B is as in the statement of the lemma.
The eigenvalues of (D�Z)′(D�Z) are solutions {κj : j ≤ p+ 1} to∣∣(D�Z)′(D�Z)− κIp+1

∣∣= 0 or∣∣B+′(D�Z)′(D�Z)B+ − κIp+1
∣∣= 0 or∣∣(DB�Z)′(DB�Z)− κIp+1
∣∣= 0 or∣∣(CΥ�Z)′CC ′(CΥ�Z)− κIp+1
∣∣= 0 or�∣∣(Υ�Z∗)′(Υ�Z∗)− κIp+1
∣∣= 0� where Z∗ := C ′Z ∼N

(
0k� Ik

)
�

(24.2)

the equivalence of the first and second lines holds because |A1A2| = |A1| · |A2|, |B+| = 1,
and B+′B+ = Ip+1, the equivalence of the second and third lines holds by matrix alge-
bra, the equivalence of the third and fourth lines holds because DB= CΥB′B= CΥ and
CC ′ = Ik, and the equivalence of the last two lines holds by CC ′ = Ik and the definition
of Z∗. Equation (24.2) implies that λmin((D�Z)

′(D�Z)) equals λmin((Υ�Z
∗)′(Υ�Z∗)). In

addition, Z′Z =Z∗′Z∗. Hence,64

CLRk�p(D)=Z′Z − λmin
(
(D�Z)′(D�Z)

)=Z∗′Z∗ − λmin
((
Υ�Z∗)′(Υ�Z∗))� (24.3)

64The quantity CLRk�p(D) is written in terms of (D�Z) in (24.3), whereas it is written in terms of (Z�D)
in (24). Both expressions give the same value.



56 Andrews and Guggenberger Supplementary Material

SinceZ andZ∗ have the same distribution, CLRk�p(D) (=Z∗′Z∗ −λmin((Υ�Z
∗)′(Υ�Z∗)))

and CLRk�p(Υ) := Z′Z − λmin((Υ�Z)
′(Υ�Z)) have the same distribution and the same

1 − α quantile. That is, ck�p(D�1 − a)= ck�p(Υ�1 − α).

Lemma 5.1 of AG2. The statisticsQLRn, ck�p(n1/2D̂∗
n�1−α), D̂∗′

n D̂
∗
n,ARn, Σ̂n, and L̂n are

invariant to the transformation (gi�Gi)� (Mgi�MGi) ∀i ≤ n for any k× k nonsingular

matrix M . This transformation induces the following transformations: ĝn �Mĝn, Ĝn �
MĜn, Ω̂n �MΩ̂nM

′, Γ̂jn �MΓ̂jnM
′ ∀j ≤ p, D̂n �MD̂n, V̂n � (Ip+1 ⊗M)V̂n(Ip+1 ⊗M ′),

and R̂n � (Ip+1 ⊗M)R̂n(Ip+1 ⊗M ′).

Proof of Lemma 5.1. We refer to the results of the lemma for gi�Gi� � � � � R̂n as equiv-
ariance results. The equivariance results are immediate for gi, Gi, ĝn, Ĝn, Ω̂n, and Γ̂jn.
For D̂n = (D̂1n� � � � � D̂pn), we have

D̂jn := Ĝjn − Γ̂jnΩ̂
−1
n ĝn �MĜjn −MΓ̂jnM

′(MΩ̂nM
′)−1

Mĝn =MD̂jn (24.4)

for j = 1� � � � �p. We have fi := (g′
i� vec(Gi)

′)′ � ((Mgi)
′� vec(MGi)

′)′ = (Ip+1 ⊗M)fi. Us-
ing this, we obtain V̂n = n−1∑n

i=1(fi − f̂n)(fi − f̂n)
′ � (Ip+1 ⊗ M)V̂n(Ip+1 ⊗ M ′). Next,

we have R̂n := (B′ ⊗ Ik)V̂n(B ⊗ Ik) � (B′ ⊗M)V̂n(B ⊗M ′) = (Ip+1 ⊗M)R̂n(Ip+1 ⊗M ′)
using the equivariance result for V̂n. We have Σ̂j�n := tr(R̂′

j�nΩ̂
−1
n )/k� tr((MR̂j�nM

′)′ ×
(MΩ̂nM

′)−1)/k = tr(MR̂′
j�nM

′M ′−1Ω̂−1
n M−1)/k = Σ̂j�n for j� � = 1� � � � �p + 1 using the

equivariance result for R̂n. We have L̂n := (θ� Ip)(Σ̂
ε
n)

−1(θ� Ip)
′ � L̂n using the invariance

result for Σ̂n. We have D̂∗′
n D̂

∗
n := L̂

1/2
n D̂′

nΩ̂
−1
n D̂nL̂

1/2
n � L̂

1/2
n D̂′

nM
′(MΩ̂nM

′)−1MD̂nL̂
1/2
n =

D̂∗′
n D̂

∗
n. This implies that ck�p(n1/2D̂∗

n�1 − α)� ck�p(n
1/2D̂∗

n�1 − α) because ck�p(n1/2D̂∗
n�

1 − α) only depends on D̂∗
n through D̂∗′

n D̂
∗
n by the comment to Lemma 16.2.

We have ARn := nĝ′
nΩ̂

−1
n ĝn � nĝ′

nM
′(MΩ̂nM

′)−1Mĝn = ARn. We have

QLRn := ARn − λmin
(
n
(
ĝn� D̂nL̂

1/2
n

)′
Ω̂−1
n

(
ĝn� D̂nL̂

1/2
n

))
� ARn − λmin

(
n
(
Mĝn�MD̂nL̂

1/2
n

)′(
MΩ̂nM

′)−1(
Mĝn�MD̂nL̂

1/2
n

))= QLRn� (24.5)

using the invariance of ARn and L̂n and the equivariance of the other statistics that ap-
pear.

Lemma 15.1. The statistics QLRPn, ck�p(n1/2D̃∗
n�1 − α), D̃∗′

n D̃
∗
n, ARn, û∗

in, Σ̃n, and L̃n are
invariant to the transformation (Zi�u

∗
i ) � (MZi�u

∗
i ) ∀i ≤ n for any k × k nonsingular

matrix M . This transformation induces the following transformations: gi �Mgi ∀i ≤ n,
Gi � MGi ∀i ≤ n, ĝn � Mĝn, Ĝn � MĜn, Ω̂n � MΩ̂nM

′, Γ̂jn � MΓ̂jnM
′ ∀j ≤ p, D̂n �

MD̂n, Zn×k �Zn×kM ′, Ξ̃n �M ′−1
Ξ̃n, Ṽn � (Ip+1 ⊗M)Ṽn(Ip+1 ⊗M ′), and R̃n � (Ip+1 ⊗

M)R̃n(Ip+1 ⊗M ′).

Proof of Lemma 15.1. We refer to the results of the lemma for gi�Gi� � � � � R̃n as equiv-
ariance results. The equivariance results are immediate for gi, Gi, ĝn, Ĝn, Ω̂n, Γ̂jn, and
Zn×k. For D̂n = (D̂1n� � � � � D̂pn), we have D̂jn � MD̂jn for j = 1� � � � �p by (24.4) above.
In addition, we have Ξ̃n := (Z′

n×kZn×k)
−1Z′

n×kU
∗ � (MZ′

n×kZn×kM
′)−1MZ′

n×kU
∗ =



Supplementary Material Identification and singularity robust inference 57

M ′−1
Ξ̃n. We have û∗

in := Ξ̃′
nZi � (M ′−1

Ξ̃n)
′MZi = û∗

in. We have Ṽn := n−1∑n
i=1[(u∗

i −
û∗
in)(u

∗
i − û∗

in)
′ ⊗ ZiZ

′
i] � n−1∑n

i=1[(u∗
i − û∗

in)(u
∗
i − û∗

in)
′ ⊗ MZiZ

′
iM

′] = (Ip+1 ⊗ M)×
Ṽn(Ip+1 ⊗M ′) using the invariance of û∗

in. We have R̃n := (B′ ⊗ Ik)Ṽn(B ⊗ Ik) � (B′ ⊗
M)Ṽn(B⊗M ′)= (Ip+1 ⊗M)R̃n(Ip+1 ⊗M ′) using the equivariance result for Ṽn.

We have Σ̃j�n := tr(R̃′
j�nΩ̂

−1
n )/k � tr((MR̃j�nM

′)′(MΩ̂nM
′)−1)/k = tr(MR̃′

j�nM
′ ×

M ′−1Ω̂−1
n M−1)/k = Σ̃j�n for j� � = 1� � � � �p + 1 using the equivariance result for R̃n.

We have L̃n := (θ� Ip)(Σ̃
ε
n)

−1(θ� Ip)
′ � L̃n using the invariance result for Σ̃n. We have

D̃∗′
n D̃

∗
n := L̃

1/2
n D̂′

nΩ̂
−1
n D̂nL̃

1/2
n � L̃

1/2
n D̂′

nM
′(MΩ̂nM

′)−1MD̂nL̃
1/2
n = D̃∗′

n D̃
∗
n. This implies

that ck�p(n1/2D̃∗
n�1 − α)� ck�p(n

1/2D̃∗
n�1 − α) because ck�p(n1/2D̃∗

n�1 − α) only depends
on D̃∗

n through D̃∗′
n D̃

∗
n by the comment to Lemma 16.2.

We have ARn and QLRPn are invariant by the argument in the paragraph above that
contains (24.5).

25. Proofs of Lemma 16.4 and Proposition 16.5

Lemma 16.4. Suppose Assumption WU holds for some nonempty parameter space Λ∗ ⊂
ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

n1/2(ĝn� D̂n −EFnGi�WFnD̂nUFnTn)→d (gh�Dh� h)�

where (a) (gh�Dh) are defined in (16.21), (b)  h is the nonrandom function of h and Dh

defined in (16.24), (c) (Dh� h) and gh are independent, and (d) under all subsequences
{wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ∗, the convergence result above and
results of parts (a)–(c) hold with n replaced with wn.

Here and below, we use the following simplified notation:

Dn := EFnGi� Bn := BFn� Cn := CFn�

Bn = (Bn�q�Bn�p−q)� Cn = (Cn�q�Cn�k−q)�

Wn :=WFn� W2n :=W2Fn� Un :=UFn� and U2n :=U2Fn�

(25.1)

where q = qh is defined in (16.22), Bn�q ∈ Rp×q, Bn�p−q ∈ Rp×(p−q), Cn�q ∈ Rk×q, and
Cn�k−q ∈Rk×(k−q). Let

Υn�q := Diag{τ1Fn� � � � � τqFn} ∈Rq×q�
Υn�p−q := Diag{τ(q+1)Fn� � � � � τpFn} ∈R(p−q)×(p−q) if k≥ p�

Υn�k−q := Diag{τ(q+1)Fn� � � � � τkFn} ∈R(k−q)×(k−q) if k< p�

Υn :=
⎡⎢⎣ Υn�q 0q×(p−q)

0(p−q)×q Υn�p−q
0(k−p)×q 0(k−p)×(p−q)

⎤⎥⎦ ∈Rk×p if k≥ p� and

Υn :=
[

Υn�q 0q×(k−q) 0q×(p−k)

0(k−q)×q Υn�k−q 0(k−q)×(p−k)

]
∈Rk×p if k< p�

(25.2)
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As defined, Υn is the diagonal matrix of singular values of WnDnUn; see (16.15).

Proof of Lemma 16.4. The asymptotic distribution of n1/2(ĝn� vec(D̂n −Dn)) given in
Lemma 16.4 follows from the Lyapunov triangular-array multivariate CLT (using the mo-
ment restrictions in F ) and the following:

n1/2 vec(D̂n −Dn) = n−1/2
n∑
i=1

vec(Gi −Dn)−
⎛⎜⎝Γ̂1n

���

Γ̂pn

⎞⎟⎠ Ω̂−1
n n1/2ĝn

= n−1/2
n∑
i=1

⎡⎢⎣vec(Gi −Dn)−
⎛⎜⎝EFnG�1g

′
�

���

EFnG�pg
′
�

⎞⎟⎠Ω−1
Fn
gi

⎤⎥⎦+ op(1)� (25.3)

where the second equality holds by (i) the weak law of large numbers (WLLN) applied
to n−1∑n

�=1G�jg
′
� for j = 1� � � � �p, n−1∑n

�=1 vec(G�), and n−1∑n
�=1 g�g

′
�, (ii) EFngi = 0k,

(iii) h5�g = limΩFn is pd, and (iv) the CLT, which implies that n1/2ĝn =Op(1).
The limiting covariance matrix between n1/2 vec(D̂n −Dn) and n1/2ĝn is a zero ma-

trix because EFn[Gij − EFnGij − (EFnG�jg
′
�)Ω

−1
Fn
gi]g′

i = 0k×k, where Gij denotes the jth

column of Gi. By the CLT, the limiting variance matrix of n1/2 vec(D̂n − Dn) equals
lim VarFn(vec(Gi)− (EFn vec(G�)g

′
�)Ω

−1
Fn
gi) = lim�

vec(Gi)
Fn

= �
vec(Gi)
h , see (16.20), and the

limit exists because (i) the components of �vec(Gi)
Fn

are comprised of λ4�Fn and subma-
trices of λ5�Fn and (ii) λs�Fn → hs for s = 4�5. By the CLT, the limiting variance matrix of

n1/2ĝn equals limEFngig
′
i = h5�g.

The asymptotic distribution of n1/2WFnD̂nUFnTn is obtained as follows. Using (16.13)–
(16.15), the singular value decomposition of WnDnUn is WnDnUn = CnΥnB

′
n. Using this,

we get

WnDnUnBn�qΥ
−1
n�q = CnΥnB

′
nBn�qΥ

−1
n�q = CnΥn

(
Iq

0(p−q)×q

)
Υ−1
n�q

= Cn

(
Iq

0(k−q)×q

)
= Cn�q� (25.4)

where the second equality uses B′
nBn = Ip. Hence, we obtain

WnD̂nUnBn�qΥ
−1
n�q =WnDnUnBn�qΥ

−1
n�q +Wnn

1/2(D̂n −Dn)UnBn�q
(
n1/2Υn�q

)−1

= Cn�q + op(1)→p h3�q =  h�q� (25.5)

where the second equality uses (among other things) n1/2τjFn → ∞ for all j ≤ q (by the
definition of q in (16.22)). The convergence in (25.5) holds by (16.19), (16.24), and (25.1),
and the last equality in (25.5) holds by the definition of  h�q in (16.24).



Supplementary Material Identification and singularity robust inference 59

Using the singular value decomposition of WnDnUn again, we obtain: if k≥ p,

n1/2WnDnUnBn�p−q = n1/2CnΥnB
′
nBn�p−q = n1/2CnΥn

(
0q×(p−q)
Ip−q

)

= Cn

⎛⎜⎝ 0q×(p−q)

n1/2Υn�p−q
0(k−p)×(p−q)

⎞⎟⎠→ h3

⎛⎜⎝ 0q×(p−q)
Diag{h1�q+1� � � � �h1�p}

0(k−p)×(p−q)

⎞⎟⎠
= h3h

�
1�p−q� (25.6)

where the second equality uses B′
nBn = Ip, the third equality and the convergence hold

by (16.19) using the definitions in (16.24) and (25.2) with k ≥ p, and the last equality
holds by the definition of h�

1�p−q in (16.24) with k≥ p. Analogously, if k< p, we have

n1/2WnDnUnBn�p−q = n1/2CnΥn

(
0q×(p−q)
Ip−q

)
= Cn

(
0q×(k−q) 0q×(p−k)

n1/2Υn�k−q 0(k−q)×(p−k)

)

→ h3

(
0q×(k−q) 0q×(p−k)

Diag{h1�q+1� � � � �h1�k} 0(k−q)×(p−k)

)
= h3h

�
1�p−q� (25.7)

where the third equality holds by (25.2) with k < p and the last equality holds by the
definition of h�

1�p−q in (16.24) with k< p.

Using (25.6), (25.7), and n1/2(ĝn� D̂n −Dn)→d (gh�Dh), we get

n1/2WnD̂nUnBn�p−q = n1/2WnDnUnBn�p−q +Wnn
1/2(D̂n −Dn)UnBn�p−q

→d h3h
�
1�p−q + h71Dhh81h2�p−q =  h�p−q� (25.8)

where Bn�p−q → h2�p−q, Wn → h71, and Un → h81, and the last equality holds by the defi-
nition of  h�p−q in (16.24).

Equations (25.5) and (25.8) combine to establish

n1/2WnD̂nUnTn = n1/2WnD̂nUnBnSn = (WnD̂nUnBn�qΥ
−1
n�q�n

1/2WnD̂nUnBn�p−q
)

→d ( h�q� h�p−q)=  h (25.9)

using the definition of Sn in (16.23). This completes the proof of the convergence result
of Lemma 16.4.

Parts (a) and (b) of the lemma hold by the definitions of (gh�Dh) and  h. The inde-
pendence of (Dh� h) and gh, stated in part (c) of the lemma, holds by the independence
of gh and Dh (which follows from (16.21)), and part (b) of the lemma. Part (d) is proved
by replacing n by wn in the proofs above.

Proposition 16.5. Suppose Assumption WU holds for some nonempty parameter space
Λ∗ ⊂ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

(a) κ̂jn →p ∞ for all j ≤ q,
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(b) the (ordered) vector of the smallest p− q eigenvalues of nÛ ′
nD̂

′
nŴ

′
nŴnD̂nÛn, that is,

(̂κ(q+1)n� � � � � κ̂pn)
′, converges in distribution to the (ordered) p− q vector of the eigenval-

ues of  
′
h�p−qh3�k−qh′

3�k−q × h�p−q ∈R(p−q)×(p−q),
(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-

ma 16.4, and

(d) under all subsequences {wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ∗, the
results in parts (a)–(c) hold with n replaced with wn.

Proof of Proposition 16.5. For the case where k≥ p, Proposition 16.5 is the same as
Theorem 10.4(c)–(f) given in the SM to AG1, which is proved in Section 17 in the SM to
AG1. For brevity, we only describe the changes that need to be made to that proof to
cover the case where k < p. Note that the proof of Theorem 10.4(c)–(f) in AG1 is sim-
ilar to, but simpler than, the proof of Theorem 16.6, which is given in Section 26 be-
low.

In the second line of the proof of Lemma 17.1 in the SM to AG1, p needs to be re-
placed by min{k�p} three times.

In the fourth line of (17.3) in the SM to AG1, the k× p matrix that contains six sub-
matrices needs to be replaced by the following matrix when k< p:[

h�
6�r�1

+ o(1) 0r
�
1 ×(k−r�1 ) 0r

�
1 ×(p−k)

0(k−r�1 )×r�1 O(τr2Fn/τr1Fn)
(k−r�1 )×(k−r�1 ) 0(k−r�1 )×(p−k)

]
∈Rk×p� (25.10)

where r�1 is defined as in the proof of Lemma 17.1 in the SM to AG1.
In the first line of (17.22) in the SM to AG1, the k× (p− r�g−1) matrix that contains

three submatrices needs to be replaced by the following matrix when k< p:[
0r

�
g−1×(k−r�g−1) 0r

�
g−1×(p−k)

Diag{τrgFn� � � � � τkFn}/τrgFn 0(k−r�g−1)×(p−k)

]
∈Rk×(p−r�g−1)� (25.11)

The limit of this matrix as n→ ∞ equals the matrix given in the second line of (17.22)
that contains three submatrices. Thus, the limit of the matrix on the first line of (17.22)
is the same for the cases where k≥ p and k< p.

In the third line of (17.25) in the SM to AG1, the second matrix that contains
three submatrices (which is a k × (p − r�g) matrix) is the same as the matrix in the
first line of (17.22) in the SM to AG1, but with r�g in place of r�g−1 (using rg+1 =
r�g + 1 and rg = r�g−1 + 1). When k < p, this matrix needs to be changed just as
the matrix in the first line of (17.22) is changed in (25.11), but with r�g in place of
r�g−1.

No other changes are needed.

26. Proof of Theorem 16.6

Theorem 16.6. Suppose Assumption WU holds for some nonempty parameter space
Λ∗ ⊂ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗,

QLRWU�n →d g
′
hh

−1
5�ggh − λmin

((
 h�p−q�h

−1/2
5�g gh

)′
h3�k−qh′

3�k−q
(
 h�p−q�h

−1/2
5�g gh

))
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and the convergence holds jointly with the convergence in Lemma 16.4 and Proposi-
tion 16.5. When q = p (which can only hold if k ≥ p because q ≤ min{k�p}),  h�p−q
does not appear in the limit random variable and the limit random variable reduces to
(h

−1/2
5�g gh)

′h3�ph
′
3�ph

−1/2
5�g gh ∼ χ2

p. When q = k (which can only hold if k ≤ p), the λmin(·)
expression does not appear in the limit random variable and the limit random vari-
able reduces to g′

hh
−1
5�ggh ∼ χ2

k. When k ≤ p and q < k, the λmin(·) expression equals zero

and the limit random variable reduces to g′
hh

−1
5�ggh ∼ χ2

k. Under all subsequences {wn}
and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ Λ∗, the same results hold with n replaced
with wn.

The proof of Theorem 16.6 uses the approach in Johansen (1991, pp. 1569–1571) and
Robin and Smith (2000, pp. 172–173). In these papers, asymptotic results are established
under a fixed true distribution under which certain population eigenvalues are either
positive or zero. Here, we need to deal with drifting sequences of distributions under
which these population eigenvalues may be positive or zero for any given n, but the
positive ones may drift to zero as n→ ∞, possibly at different rates. This complicates the
proof considerably. For example, the rate of convergence result of Lemma 26.1(b) below
is needed in the present context, but not in the fixed distribution scenario considered in
Johansen (1991) and Robin and Smith (2000).

The proof uses the notation given in (25.1) and (25.2) above. The following defini-
tions are used:

D̂+
n := (D̂n� Ŵ

−1
n Ω̂

−1/2
n ĝn

) ∈Rk×(p+1)� Û+
n :=
[
Ûn 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

U+
n :=
[
Un 0p×1

01×p 1

]
∈R(p+1)×(p+1)� h+

81 :=
[
h81 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

B+
n :=
[
Bn 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

B+
n = (B+

n�q�B
+
n�p+1−q

)
for B+

n�q ∈R(p+1)×q and B+
n�p+1−q ∈R(p+1)×(p+1−q)�

D+
n := (Dn�0k

) ∈Rk×(p+1)� Υ+
n := (Υn�0k

) ∈Rk×(p+1)�

S+
n := Diag

{(
n1/2τ1Fn

)−1
� � � � �
(
n1/2τqFn

)−1
�1� � � � �1

}
=
[
Sn 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

(26.1)

where ĝn and Ω̂n are defined in (8) with θ= θ0, D̂n is defined in (18) with θ= θ0, Ŵn, Ûn,
Un (:= UFn ), and Wn (:=WFn ) are defined in (16.4), h81 is defined in (16.24), Bn (:= BFn )
is defined in (16.13), Dn is defined in (25.1), Υn is defined in (25.2), and Sn is defined in
(16.23).

Let

κ̂+
jn denote the jth eigenvalue of nÛ+′

n D̂
+′
n Ŵ

′
nŴnD̂

+
n Û

+
n � ∀j = 1� � � � �p+ 1� (26.2)
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ordered to be nonincreasing in j. We have65

ŴnD̂
+
n Û

+
n = (ŴnD̂nÛn� Ω̂

−1/2
n ĝn

)
and

λmin
(
n
(
ŴnD̂nÛn� Ω̂

−1/2
n ĝn

)′(
ŴnD̂nÛn� Ω̂

−1/2
n ĝn

))= λmin
(
nÛ+′

n D̂
+′
n Ŵ

′
nŴnD̂

+
n Û

+
n

)
= κ̂+

(p+1)n�

(26.3)

The proof of Theorem 16.6 uses the following rate of convergence lemma, which is
analogous to Lemma 17.1 in Section 17 of the SM to AG1.

Lemma 26.1. Suppose Assumption WU holds for some nonempty parameter space Λ∗ ⊂
ΛWU. Under all sequences {λn�h : n≥ 1} with λn�h ∈Λ∗ for which q defined in (16.22) satis-
fies q≥ 1, we have (a) κ̂+

jn →p ∞ for j = 1� � � � � q and (b) κ̂+
jn = op((n

1/2τ�Fn)
2) for all �≤ q

and j = q + 1� � � � �p + 1. Under all subsequences {wn} and all sequences {λwn�h : n ≥ 1}
with λwn�h ∈Λ∗, the same result holds with n replaced with wn.

Proof of Theorem 16.6. We have n1/2ĝn →d gh (by Lemma 16.4) and Ω̂−1/2
n →p h

−1/2
5�g

(because Ω̂n −ΩFn →p 0k×k by the WLLN, ΩFn → h5�g, and h5�g is pd). In consequence,
ARn →d g

′
hh

−1
5�ggh. Given this, the definition of QLRn in (16.3) and (26.3), to prove the

convergence result in Theorem 16.6, it suffices to show that

λmin
(
nÛ+

n D̂
+′
n Ŵ

′
nŴnD̂

+
n Û

+
n

)
→d λmin

((
 h�p−q�h

−1/2
5�g gh

)′
h3�k−qh′

3�k−q
(
 h�p−q�h

−1/2
5�g gh

))
� (26.4)

Now we establish (26.4). The eigenvalues {̂κ+
jn : j ≤ p+ 1} of nÛ+

n D̂
+′
n Ŵ

′
nŴnD̂

+
n Û

+
n are

the ordered solutions to the determinantal equation |nÛ+
n D̂

+′
n Ŵ

′
nŴnD̂

+
n Û

+
n − κIp+1| = 0.

Equivalently, with probability that goes to one (wp → 1), they are the solutions to∣∣Q+
n (κ)
∣∣= 0� where

Q+
n (κ) := nS+

n B
+′
n U

+′
n D̂

+′
n Ŵ

′
nŴnD̂

+
n U

+
n B

+
n S

+
n

− κS+
n B

+′
n U

+′
n

(
Û+
n

)−1′(
Û+
n

)−1
U+
n B

+
n S

+
n �

(26.5)

because |S+
n | > 0, |B+

n | > 0, |U+
n |> 0, and |Û+

n |> 0 wp → 1. Thus, λmin(nÛ
+′
n D̂

+′
n Ŵ

′
nŴn ×

D̂+
n Û

+
n ) equals the smallest solution, κ̂+

(p+1)n, to |Q+
n (κ)| = 0 wp → 1. (For simplicity, we

omit the qualifier wp → 1 that applies to several statements below.)
We write Q+

n (κ) in partitioned form using

B+
n S

+
n = (B+

n�qSn�q�B
+
n�p+1−q

)
� where

Sn�q := Diag
{(
n1/2τ1Fn

)−1
� � � � �
(
n1/2τqFn

)−1} ∈Rq×q� (26.6)

65In (26.3), we write (ŴnD̂nÛn� Ω̂
−1/2
n ĝn), whereas we write its analogue (Ω̂−1/2

n ĝn� D̂
∗
n) in (23) with its

columns in the reverse order. Both ways give the same value for the minimum eigenvalue of the inner
product of the matrix with itself, which is the statistic of interest. We use the order (Ω̂−1/2

n ĝn� D̂
∗
n) in AG2

because it is consistent with the order in Moreira (2003) and Andrews, Moreira, and Stock (2006). We use the
order (ŴnD̂nÛn� Ω̂

−1/2
n ĝn) here (and elsewhere in the SM) because it has significant notational advantages

in the proofs, especially in the proof of Theorem 16.6 in this section.
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The convergence result of Lemma 16.4 for n1/2WnD̂nUnTn (= n1/2WnD̂nUnBnSn) can be
written as

n1/2WnD̂
+
n U

+
n B

+
n�qSn�q = n1/2WnD̂nUnBn�qSn�q →p  h�q := h3�q and

n1/2WnD̂
+
n U

+
n B

+
n�p+1−q = n1/2Wn

(
D̂n� Ŵ

−1
n Ω̂

−1/2
n ĝn

)
U+
n B

+
n�p+1−q

= n1/2(WnD̂nUnBn�p−q�WnŴ
−1
n Ω̂

−1/2
n ĝn

)
→d

(
 h�p−q�h

−1/2
5�g gh

)
�

(26.7)

where  h�q and  h�p−q are defined in (16.24), Bn�p−q is defined in (25.1), and the conver-
gence in distribution uses ŴnW

−1
n →p Ik by (26.8).

We have

ŴnW
−1
n →p Ik and Û+

n

(
U+
n

)−1 →p Ip+1 (26.8)

because Ŵn →p h71 := limWn (by Assumption WU(a) and (c)), Û+
n →p h

+
81 := limU+

n (by
Assumption WU(b) and (c)), and h71 and h+

81 are pd (by the conditions in FWU).
By (26.5)–(26.8), we have

Q+
n (κ)

=
[

Iq + op(1) h′
3�qn

1/2WnD̂
+
n U

+
n B

+
n�p+1−q + op(1)

n1/2B+′
n�p+1−qU

+′
n D̂

+′
n W

′
nh3�q + op(1) n1/2B+′

n�p+1−qU
+′
n D̂

+′
n W

′
nWnn

1/2D̂+
n U

+
n B

+
n�p+1−q + op(1)

]

− κ

[
S2
n�q 0q×(p+1−q)

0(p+1−q)×q Ip+1−q

]
− κ

[
Sn�qA

+
1nSn�q Sn�qA

+
2n

A+′
2nSn�q A+

3n

]
� where

Â+
n =
[
A+

1n A+
2n

A+′
2n A+

3n

]
:= B+′

n U
+′
n

(
Û+
n

)−1′(
Û+
n

)−1
U+
n B

+
n − Ip+1 = op(1)

(26.9)

forA+
1n ∈Rq×q,A+

2n ∈Rq×(p+1−q), andA+
3n ∈R(p+1−q)×(p+1−q), and the first equality uses

 h�q := h3�q and  
′
h�q h�q = h′

3�qh3�q = limC ′
n�qCn�q = Iq (by (16.14), (16.16), (16.19), and

(16.24)). Note that A+
jn and Â+

jn (defined in (26.19) below) are not the same in general

for j = 1�2�3 because their dimensions differ. For example, A+
1n ∈ Rq×q, whereas Â+

1n ∈
Rr

�
1 ×r�1 , where r�1 is defined as in the proof of Lemma 17.1 in the SM to AG1.

If q= 0, then B+
n = B+

n�p+1−q and

nB+′
n Û

+′
n D̂

+′
n Ŵ

′
nŴnD̂

+
n Û

+
n B

+
n

= nB+′
n

((
U+
n

)−1
Û+
n

)′(
B+
n

)−1′
B+′
n U

+′
n D̂

+′
n W

′
n

(
ŴnW

−1
n

)′
× (ŴnW

−1
n

)(
WnD̂

+
n U

+
n B

+
n

)(
B+
n

)−1((
U+
n

)−1
Û+
n

)
B+
n

→d

(
 h�p−q�h

−1/2
5�g gh

)′(
 h�p−q�h

−1/2
5�g gh

)
� (26.10)

where the convergence holds by (26.7) and (26.8) and  h�p−q is defined as in (16.24) with
q= 0. The smallest eigenvalue of a matrix is a continuous function of the matrix (by El-
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sner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37–38)). Hence, the smallest eigen-
value of nB+′

n Û
+′
n D̂

+′
n Ŵ

′
nŴnD̂

+
n Û

+
n B

+
n converges in distribution to the smallest eigen-

value of ( h�p−q�h
−1/2
5�g gh)

′h3�k−qh′
3�k−q( h�p−q�h

−1/2
5�g gh) (using h3�k−qh′

3�k−q = h3h
′
3 = Ik

when q= 0), which proves (26.4) when q= 0.
In the remainder of the proof of (26.4), we assume q≥ 1, which is the remaining case

to be considered in the proof of (26.4). The formula for the determinant of a partitioned
matrix and (26.9) give∣∣Q+

n (κ)
∣∣= ∣∣Q+

1n(κ)
∣∣ · ∣∣Q+

2n(κ)
∣∣� where

Q+
1n(κ) := Iq + op(1)− κS2

n�q − κSn�qA
+
1nSn�q�

Q+
2n(κ) := n1/2B+′

n�p+1−qU
+′
n D̂

+′
n W

′
nWnn

1/2D̂+
n U

+
n B

+
n�p+1−q

+ op(1)− κIp+1−q − κA+
3n

− [n1/2B+′
n�p+1−qU

+′
n D̂

+′
n W

′
nh3�q + op(1)− κA+′

2nSn�q
]

× (Iq + op(1)− κS2
n�q − κSn�qA

+
1nSn�q

)−1

× [h′
3�qn

1/2WnD̂
+
n U

+
n B

+
n�p+1−q + op(1)− κSn�qA

+
2n

]
�

(26.11)

none of the op(1) terms depend on κ, and the equation in the first line holds provided
Q+

1n(κ) is nonsingular.
By Lemma 26.1(b) (which applies for q ≥ 1), for j = q + 1� � � � �p + 1, and A+

1n =
op(1) (by (26.9)), we have κ̂+

jnS
2
n�q = op(1) and κ̂+

jnSn�qA
+
1nSn�q = op(1). Thus, for j =

q+ 1� � � � �p+ 1,

Q+
1n

(̂
κ+
jn

)= Iq + op(1)− κ̂+
jnS

2
n�q − κ̂+

jnSn�qA
+
1nSn�q = Iq + op(1)� (26.12)

By (26.5) and (26.11), |Q+
n (̂κ

+
jn)| = |Q+

1n(̂κ
+
jn)| · |Q+

2n(̂κ
+
jn)| = 0 for j = 1� � � � �p + 1. By

(26.12), |Q+
1n(̂κ

+
jn)| �= 0 for j = q+ 1� � � � �p+ 1 wp → 1. Hence, wp → 1,∣∣Q+

2n

(̂
κ+
jn

)∣∣= 0 for j = q+ 1� � � � �p+ 1� (26.13)

Now we plug in κ̂+
jn for j = q+ 1� � � � �p+ 1 into Q+

2n(κ) in (26.11) and use (26.12). We
have

Q+
2n

(̂
κ+
jn

) = nB+′
n�p+1−qU

+′
n D̂

+′
n W

′
nWnD̂

+
n U

+
n B

+
n�p+1−q + op(1)

− [n1/2B+′
n�p+1−qU

+′
n D̂

+′
n W

′
nh3�q + op(1)

](
Iq + op(1)

)
× [h′

3�qn
1/2WnD̂

+
n U

+
n B

+
n�p+1−q + op(1)

]
− κ̂+

jn

[
Ip+1−q +A+

3n

− (n1/2B+′
n�p+1−qU

+′
n D̂

+′
n W

′
nh3�q + op(1)

)(
Iq + op(1)

)
Sn�qA

+
2n

−A+′
2nSn�q

(
Iq + op(1)

)(
h′

3�qn
1/2WnD̂

+
n U

+
n B

+
n�p+1−q + op(1)

)
+ κ̂+

jnA
+′
2nSn�q

(
Iq + op(1)

)
Sn�qA

+
2n

]
� (26.14)
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The term in square brackets on the last three lines of (26.14) that multiplies κ̂+
jn

equals

Ip+1−q + op(1)� (26.15)

because A+
3n = op(1) (by (26.9)), n1/2WnD̂

+
n U

+
n B

+
n�p+1−q = Op(1) (by (26.7)), Sn�q =

o(1) (by the definitions of q and Sn�q in (16.22) and (26.6), respectively, and h1�j :=
limn1/2τjFn ), A+

2n = op(1) (by (26.9)), and κ̂+
jnA

+′
2nSn�q(Iq + op(1))Sn�qA+

2n =
A+′

2nκ̂
+
jnS

2
n�qA

+
2n + A+′

2nκ̂
+
jnSn�qop(1)Sn�qA

+
2n = op(1) (using κ̂+

jnS
2
n�q = op(1) and A+

2n =
op(1)).

Equations (26.14) and (26.15) give

Q+
2n

(̂
κ+
jn

)
= n1/2B+′

n�p+1−qU
+′
n D̂

+′
n W

′
n

[
Ik − h3�qh

′
3�q
]
n1/2WnD̂

+
n U

+
n B

+
n�p+1−q

+ op(1)− κ̂+
jn

[
Ip+1−q + op(1)

]
= n1/2B+′

n�p+1−qU
+′
n D̂

+′
n W

′
nh3�k−qh′

3�k−qn
1/2WnD̂

+
n U

+
n B

+
n�p+1−q

+ op(1)− κ̂+
jn

[
Ip+1−q + op(1)

]
:=M+

n�p+1−q − κ̂+
jn

[
Ip+1−q + op(1)

]
� (26.16)

where the second equality uses Ik = h3h
′
3 = h3�qh

′
3�q +h3�k−qh′

3�k−q (because h3 = limCn
is an orthogonal matrix) and the last line defines the (p + 1 − q) × (p + 1 − q) matrix
M+
n�p+1−q.

Equations (26.13) and (26.16) imply that {̂κ+
jn : j = q+ 1� � � � �p+ 1} are the p+ 1 − q

eigenvalues of the matrix

M++
n�p+1−q := [Ip+1−q + op(1)

]−1/2
M+
n�p+1−q

[
Ip+1−q + op(1)

]−1/2
(26.17)

by pre- and post-multiplying the quantities in (26.16) by the rhs quantity [Ip+1−q +
op(1)]−1/2 in (26.16). By (26.7),

M++
n�p+1−q →d

(
 h�p−q�h

−1/2
5�g gh

)′
h3�k−qh′

3�k−q
(
 h�p−q�h

−1/2
5�g gh

)
� (26.18)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix
(by Elsner’s theorem; see Stewart (2001, Theorem 3.1, pp. 37–38)). By (26.18), the matrix
M++
n�p+1−q converges in distribution. In consequence, by the CMT, the vector of eigenval-

ues ofM++
n�p+1−q, viz., {̂κ+

jn : j = q+1� � � � �p+1}, converges in distribution to the vector of

eigenvalues of the limit matrix ( h�p−q�h
−1/2
5�g gh)

′h3�k−qh′
3�k−q( h�p−q�h

−1/2
5�g gh). Hence,

λmin(nÛ
+′
n D̂

+′
n Ŵ

′
nŴnD̂

+
n Û

+
n ), which equals the smallest eigenvalue, κ̂+

(p+1)n, converges

in distribution to the smallest eigenvalue of ( h�p−q�h
−1/2
5�g gh)

′h3�k−qh′
3�k−q( h�p−q�

h
−1/2
5�g gh), which completes the proof of (26.4).

The previous paragraph proves Comment (v) to Theorem 16.6 for the smallest
p+ 1 − q eigenvalues of n(ŴnD̂nÛn� Ω̂

−1/2
n ĝn)

′(ŴnD̂nÛn� Ω̂
−1/2
n ĝn). In addition, by Lem-
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ma 26.1(a), the largest q eigenvalues of this matrix diverge to infinity in probability,
which completes the proof of Comment (v) to Theorem 16.6.

When q = p, the third and fourth lines in (26.7) become n1/2WnŴ
−1
n Ω̂

−1/2
n ĝn and

h
−1/2
5�g gh, respectively, that is, n1/2WnD̂nUnBn�p−q and  h�p−q drop out (because

U+
n B

+
n�p+1−q = (0p′�1)′ in this case). In consequence, the limit in (26.18) becomes

(h
−1/2
5�g gh)

′h3�k−qh′
3�k−qh

−1/2
5�g gh, which has a χ2

k−p distribution (because h−1/2
5�g gh ∼N(0k�

Ik), h3 = (h3�q�h3�k−q) ∈ Rk×k is an orthogonal matrix, and h3�k−q has k − p columns
when q= p).

The convergence in Theorem 16.6 holds jointly with that in Lemma 16.4 and Propo-
sition 16.5 because the results in Proposition 16.5 and Theorem 16.6 just rely on the
convergence in distribution of n1/2WnD̂nUnTn, which is part of Lemma 16.4.

When q = k, the λmin(·) expression does not appear in the limit random variable in
the statement of Theorem 16.6 because, in the second line of (26.16) above, the term
Ik − h3�qh

′
3�q equals 0k×k, which implies that M+

n�p+1−q = 0(p+1−q)×(p+1−q) + op(1) and

M++
n�p+1−q = 0(p+1−q)×(p+1−q) + op(1)→p 0(p+1−q)×(p+1−q) in (26.17) and (26.18).

When k ≤ p and q < k, the λmin(·) expression (in the limit random variable in the
statement of Theorem 16.6) equals zero because h′

3�k−q( h�p−q�h
−1/2
5�g gh) is a (k− q)×

(p+ 1 − q) matrix, which has fewer rows than columns when k< p+ 1.
The convergence in Theorem 16.6 holds for a subsequence {wn : n≥ 1} of {n} by the

same proof as given above with n replaced by wn.

Proof of Lemma 26.1. The proof of Lemma 26.1 is the same as the proof of Lemma 17.1
in Section 17 in the SM to AG1, but with p replaced by p+ 1 (so p+ 1 is always at least
two), with τ(p+1)Fn := 0, with h6�p := limτ(p+1)Fn/τpFn = 0 (using 0/0 := 0), and with D̂n,
Ûn, Bn, κ̂jn, Ân, Dn, Un, h81, Υn, Bn�r�1 , and Bn�p−r�1 replaced by D̂+

n , Û+
n , B+

n , κ̂+
jn, Â+

n , D+
n ,

U+
n , h+

81, Υ+
n , B+

n�r�1
, and B+

n�p+1−r�1 , respectively, where

Â+
n =
[
Â+

1n Â+
2n

Â+′
2n Â+

3n

]
:= (B+

n

)′(
U+
n

)′(
Û+
n

)−1′(
Û+
n

)−1
U+
n B

+
n − Ip+1� (26.19)

where Â+
1n ∈Rr�1 ×r�1 , Â+

2n ∈Rr�1 ×(p+1−r�1 ), Â+
3n ∈R(p+1−r�1 )×(p+1−r�1 ), and r�1 is defined as in

the proof of Lemma 17.1 in the SM to AG1. Note that the quantities Â�n for � = 1�2�3,
which depend on Ân (see (17.2) in the SM to AG1), differ between the two proofs (be-
cause Ân differs from Â+

n ). Similarly, the quantities #n (defined in (17.8) in the SM to
AG1), ξ̂�n(κ) for � = 1�2�3 (defined in (17.9) in the SM to AG1), and Âj2n (defined in
(17.12) in the SM to AG1) differ between the two proofs (because the quantities on which
they depend differ between the two proofs).

The following quantities are the same in both proofs: {τjFn : j ≤ p}, q, {h6�j : j ≤
p − 1}, Gh, {rj : j ≤ Gh}, {r�j : j ≤ Gh}, h�

6�r�1
, Ŵn, Wn, h71, Cn, and h3. Note that the

first p singular values of WnDnUn (i.e., {τjFn : j ≤ p}) and the first p singular val-

ues of WnD
+
n U

+
n are the same. This holds because τjFn = κ

1/2
jFn

, where κjFn is the jth

eigenvalue of WnDnUnU
′
nD

′
nW

′
n, WnD

+
n U

+
n =Wn(Dn�0k)U+

n = (WnDnUn�0k), and hence,
WnD

+
n U

+
n U

+′
n D

+′
n W

′
n =WnDnUnU

′
nD

′
nW

′
n.
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The second equality in (17.3) in the SM to AG1, which states thatWnDnUnBn = CnΥn,
is a key equality in the proof of Lemma 17.1 in the SM to AG1. The analogue in the proof
of the current lemma is

WnD
+
n U

+
n B

+
n = (WnDn�0k

)[UnBn 0p×1

01×p 1

]
= (WnDnUnBn�0k

)= (CnΥn�0k
)= CnΥ

+
n � (26.20)

Hence, this part of the proof goes through when Dn, Un, Bn, and Υn are replaced by D+
n ,

U+
n , B+

n , and Υ+
n , respectively.

27. Proofs of the asymptotic size results

In this section, we prove Theorem 16.1, stated in Section 16.
Theorem 16.1 is proved first for the CQLR and CQLRP tests and CSs. For these test

results, we actually prove a more general result that applies to a CQLR test statistic that
is defined as the CQLR test statistic is defined in Section 5, but with the weight matrices
(Ω̂

−1/2
n � L̂

1/2
n ) replaced by any matrices (Ŵn� Ûn) that satisfy Assumption WU for some

parameter space Λ∗ ⊂ΛWU (stated in Section 16.5). Then we show that Assumption WU
holds for the parameter spacesΛWU andΛWU�P for the weight matrices employed by the
CQLR and CQLRP tests, respectively, defined in Sections 5 and 15. These results combine
to establish the CQLR and CQLRP test results of Theorem 16.1. The CQLR and CQLRP CS
results of Theorem 16.1 are proved analogously to those for the tests; see the Comment
to Proposition 16.3 for details.

In Section 27.6, we prove Theorem 16.1 for the AR test and CS.

27.1 Statement of results

A general QLRWU test statistic for testing H0 : θ= θ0 is defined in (16.3) as

QLRWU�n := ARn − λmin(nQ̂WU�n)� where

Q̂WU�n := (ŴnD̂nÛn� Ω̂
−1/2
n ĝn

)′(
ŴnD̂nÛn� Ω̂

−1/2
n ĝn

)
� (27.1)

ARn is defined in (18), and the dependence of QLRn, Q̂WU�n, Ŵn, D̂n, Ûn, Ω̂n, and ĝn on
θ0 is suppressed for notational simplicity.

The general CQLRWU test rejects the null hypothesis if

QLRWU�n > ck�p
(
n1/2ŴnD̂nÛn�1 − α

)
� (27.2)

where ck�p(D�1 − α) is defined just below (24).
The correct asymptotic size of the general CQLR test is established using the follow-

ing theorem.

Theorem 27.1. Suppose Assumption WU (defined in Section 16.5) holds for some
nonempty parameter space Λ∗ ⊂ ΛWU. Then the asymptotic null rejection probabilities
of the nominal size α CQLRWU test based on (Ŵwn� Ûwn) equal α under all subsequences
{wn} and all sequences {λwn�h : n≥ 1} with λwn�h ∈Λ∗.
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Comment. (i) Theorem 27.1 and Proposition 16.3 imply that any nominal size α CQLR
test based on matrices (Ŵn� Ûn) that satisfy Assumption WU for some parameter space
Λ∗ has correct asymptotic size α and is asymptotically similar (in a uniform sense) for
the parameter space Λ∗.

(ii) In Lemma 27.4 below, we show that the choice of matrices (Ŵn� Ûn) for the
CQLR and CQLRP tests (defined in Sections 5 and 15, resp.) satisfy Assumption WU
for the parameter spaces ΛWU and ΛWU�P (defined in (16.17)), respectively. In addition,
Lemma 27.4 shows that F ⊂ FWU and FP ⊂ FWU when δ1 andM1 that appear in the def-
inition of FWU are sufficiently small and large, respectively.66 In consequence, the CQLR
and CQLRP tests have correct asymptotic size α and are asymptotically similar (in a uni-
form sense) for the parameter spaces F and FP , respectively, as stated in Theorem 16.1.

The proof of Theorem 27.1 uses Proposition 16.5 and Theorem 16.6, as well as the
following lemmas.

Let {Dc
n : n ≥ 1} be a sequence of constant (i.e., nonrandom) k × p matrices. Here,

we determine the limit as n→ ∞ of ck�p(Dc
n�1 − α) under certain assumptions on the

singular values of Dc
n.

Lemma 27.2. Suppose {Dc
n : n ≥ 1} is a sequence of constant (i.e., nonrandom) k × p

matrices with singular values {τcjn ≥ 0 : j ≤ min{k�p}} for n ≥ 1 that satisfy (i) {τcjn ≥ 0 :
j ≤ min{k�p}} are nonincreasing in j for n ≥ 1, (ii) τcjn → ∞ for j ≤ q for some 0 ≤ q ≤
min{k�p} and (iii) τcjn → τcj∞ <∞ for j = q+ 1� � � � �min{k�p}. Then

ck�p
(
Dc
n�1 − α

)→ ck�p�q
(
τc∞�1 − α

)
� where

τc∞ := (τc(q+1)∞� � � � � τ
c
min{k�p}∞

)′ ∈Rmin{k�p}−q�

Υ
(
τc∞
) := ( Diag

{
τc∞
}

0(k−p)×(p−q)

)
∈R(k−q)×(p−q) if k≥ p�

Υ
(
τc∞
) := (Diag

{
τc∞
}
�0(k−q)×(p−k)) ∈R(k−q)×(p−q) if k< p�

ck�p�q
(
τc∞�1 − α

)
denotes the 1 − α quantile of

ACLRk�p�q
(
τc∞
) := Z′Z − λmin

((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
))
� and

Z :=
(
Z1

Z2

)
∼N
(
0k� Ik

)
for Z1 ∈Rq and Z2 ∈Rk−q�

Comment. (i) The matrix Υ(τc∞) is the diagonal matrix containing the min{k�p} − q

finite limiting eigenvalues of Dc
n. Note that Υ(τc∞) has only k− q rows, not k rows.

(ii) If q = p (which requires that k ≥ p), then Υ(τc∞) has no columns,
ACLRk�p�q(τc∞) = Z′

1Z1 ∼ χ2
p, and ck�p�q(τ

c∞�1 − α) equals the 1 − α quantile of the χ2
p

distribution.

66Note that the set of distributions FWU depends on the definitions of (WF�UF) (see (16.12)), and
(WF�UF) are defined differently for the QLR and QLR2 statistics; see (16.6)–(16.8) and (16.9)–(16.11), re-
spectively. Hence, the set of distributions FWU differs for the CQLR and CQLR2 tests.
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(iii) If q= k (which requires that k≤ p), then Υ(τc∞) and Z2 have no rows, the λmin(·)
expression in ACLRk�p�q(τc∞) disappears, ACLRk�p�q(τc∞)=Z′Z ∼ χ2

k, and ck�p�q(τc∞�1 −
α) is the 1 − α quantile of the χ2

k distribution.

(iv) If k ≤ p and q < k, then (Υ(τc∞)�Z2) has fewer rows (k− q) than columns (p−
q+1) and, hence, the λmin(·) expression in ACLRk�p�q(τc∞) equals zero, ACLRk�p�q(τc∞)=
Z′Z ∼ χ2

k, and ck�p�q(τc∞�1 − α) is the 1 − α quantile of the χ2
k distribution.

(v) The distribution function (df) of ACLRk�p�q(τc∞) is shown in Lemma 27.3 below
to be continuous and strictly increasing at its 1 − α quantile for all possible (k�p�q�τc∞)
values, which is required in the proof of Lemma 27.2.

The following lemma proves that the df of ACLRk�p�q(τc∞), defined in Lemma 27.2,
is continuous and strictly increasing at its 1 − α quantile. This is a key lemma for show-
ing that the CQLR and CQLRP tests have correct asymptotic size and are asymptotically
similar.

Lemma 27.3. Let τc∞ and Υ(τc∞) be defined as in Lemma 27.2. For all admissible inte-
gers (k�p�q) (i.e., k ≥ 1, p ≥ 1, and 0 ≤ q ≤ min{k�p}) and all min{k�p} − q (≥ 0) vec-
tors τc∞ with nonnegative elements in nonincreasing order, the df of ACLRk�p�q(τc∞) :=
Z′Z − λmin((Υ(τ

c∞)�Z2)
′(Υ(τc∞)�Z2)) is continuous and strictly increasing at its 1 − α

quantile ck�p�q(τc∞�1 − α) for all α ∈ (0�1), where Z := (Z′
1�Z

′
2)

′ ∼N(0k� Ik) for Z1 ∈ Rq
and Z2 ∈Rk−q.

The next lemma verifies Assumption WU for the choices of (Ŵn� Ûn) that are used
to construct the CQLR and CQLRP tests. Part (a) of the lemma shows that FWU, when
defined for (Ŵn� Ûn) as in the CQLR test, contains F for suitable choices of the constants
δ1 and M1 that appear in the definition of FWU. Part (b) of the lemma shows that the
parameter space FWU, when defined for (Ŵn� Ûn) as in the CQLRP test, contains the
parameter space FP for suitable constants δ1 and M1.

Lemma 27.4. (a) Suppose (Ŵn� Ûn) = (Ω̂
−1/2
n � L̂

1/2
n ), where Ω̂n (= Ω̂n(θ0)) and L̂n (=

L̂n(θ0)) are defined in (8) and (23). Then (i) Assumption WU holds for the parame-
ter space ΛWU with (Ŵ2n� Û2n) = (Ω̂n� (Ω̂n� R̂n)) for R̂n defined in (19), W1(W2) = W

−1/2
2

for W2 ∈ Rk×k, U1(U2F) = ((θ0� Ip)(Σ
ε(ΩF�RF))

−1(θ0� Ip)
′)1/2 for U2F = (ΩF�RF), h7 =

limW2Fwn := limΩFwn , and h8 = limU2Fwn := lim(ΩFwn �RFwn ), where ΩF := EFgig
′
i, RF

is defined in (16.7), Σ(ΩF�RF) is defined in (16.8), and Σε(ΩF�RF) is defined given
Σ(ΩF�RF) by (22), and (ii) F = FWU for δ1 sufficiently small and M1 sufficiently large
in the definition of FWU, where F is defined in (16.1) and FWU is defined in (16.12).

(b) Suppose gi(θ) = ui(θ)Zi, as in (15.1), and (Ŵn� Ûn) = (Ω̂
−1/2
n � L̃

1/2
n ), where Ω̂n (=

Ω̂n(θ0)) and L̃n (= L̃n(θ0)) are defined in (8) and (15.6), respectively. Then (i) Assumption
WU holds for the parameter spaceΛWU�P with (Ŵ2n� Û2n)= (Ω̂n� (Ω̂n� R̃n)) for R̃n defined

in (15.5), W1(W2)=W
−1/2

2 for W2 ∈Rk×k, U1(U2F)= ((θ0� Ip)(Σ̃
ε(ΩF� R̃F))

−1(θ0� Ip)
′)1/2

for U2F = (ΩF� R̃F), h7 = limW2Fwn := limΩFwn , and h8 = limU2Fwn := lim(ΩFwn � R̃Fwn ),

where ΩF := EFgig
′
i, Σ̃F := Σ(ΩF� R̃F) is defined in (16.11), Σ̃ε(ΩF� R̃F) is defined given
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Σ(ΩF� R̃F) by (22), and R̃F is defined in (16.10), and (ii) FP ⊂ FWU for δ1 sufficiently small
and M1 sufficiently large in the definition of FWU, where FP is defined in (16.1) and FWU

is defined in (16.12).

Comment. Theorem 27.1, Lemma 27.4, and Proposition 16.3 combine to prove the
CQLR and CQLRP test results of Theorem 16.1, which state that the CQLR and CQLRP
tests have correct asymptotic size and are asymptotically similar (in a uniform sense) for
the parameter spaces F and FP , respectively. As stated at the beginning of this section,
the proofs of the CQLR and CQLRP CS results of Theorem 16.1 are analogous to those
for the tests; see the Comment to Proposition 16.3, and hence, are not stated explicitly.

27.2 Proof of Theorem 27.1

Theorem 27.1 is stated in Section 27.1.
For notational simplicity, the proof below is given for the sequence {n}, rather than a

subsequence {wn : n≥ 1}. The same proof holds for any subsequence {wn : n≥ 1}.

Proof of Theorem 27.1. Let

Zh =
(
Zh1
Zh2

)
:=
(
h′

3�qh
−1/2
5�g gh

h′
3�k−qh

−1/2
5�g gh

)
= h′

3h
−1/2
5�g gh ∼N

(
0k� Ik

)
� (27.3)

where Zh1 ∈ Rq and Zh2 ∈ Rk−q and the distributional result holds because gh ∼
N(0k�h5�g) (by (16.21)) and h′

3h3 = limC ′
nCn = Ik. Note that Zh and (Dh� h) are inde-

pendent because gh and (Dh� h) are independent (by Lemma 16.4(c)).
By Theorem 16.6,

QLRWU�n →d g
′
hh

−1
5�ggh − λmin

((
 h�p−q�h

−1/2
5�g gh

)′
h3�k−qh′

3�k−q
(
 h�p−q�h

−1/2
5�g gh

))
= Z

′
hZh − λmin

((
h′

3�k−q h�p−q�Zh2
)′(
h′

3�k−q h�p−q�Zh2
))=: QLRh� (27.4)

where the equality uses h3h
′
3 = limCnC

′
n = Ik. When q = p, the term  h�p−q does not

appear and QLRh :=Z
′
hZh −Z

′
h2Zh2 =Z

′
h1Zh1.

Let {̂τjn : j ≤ min{k�p}} denote the min{k�p} singular values of n1/2ŴnD̂nÛn in non-
increasing order. They equal the vector of square roots of the first min{k�p} eigenvalues
of nÛ ′

nD̂nŴ
′
nŴnD̂nÛn in nonincreasing order. Define

τ̂n = (̂τ′
[1]n� τ̂

′
[2]n
)′ ∈Rmin{k�p}� where

τ̂[1]n = (̂τ1n� � � � � τ̂qn)
′ ∈Rq and τ̂[2]n = (̂τ(q+1)n� � � � � τ̂min{k�p}n)′ ∈Rmin{k�p}−q�

(27.5)

By Proposition 16.5(a) and (b), τ̂jn →p ∞ for j ≤ q (or, equivalently Diag−1{̂τ[1]n} →p

0q×q) and

τ̂[2]n →d τ[2]h� (27.6)

where τ̂jn = κ̂
1/2
jn for j ≤ q and τ[2]h is the vector of square roots of the first min{k�p} − q

eigenvalues of  
′
h�p−qh3�k−qh′

3�k−q h�p−q ∈ Rp−q)×(p−q) in nonincreasing order. (When
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q = min{k�p}, no vector τ[2]h appears.) By an almost sure representation argument,
for example, see Pollard (1990, Theorem 9.4, p. 45), there exists a probability space,

say (Ω0�F0�P0), and random variables (QLR0
n� τ̂

0′
n �QLR

0
h� τ

0′
[2]h)

′ defined on it such that

(QLR0
n� τ̂

0′
n )

′ has the same distribution as (QLRWU�n� τ̂
′
n)

′ for all n ≥ 1, (QLR
0
h� τ

0′
[2]h)

′ has

the same distribution as (QLRh� τ
′
[2]h)

′, and⎛⎜⎝ QLR0
n

Diag−1{̂τ0
[1]n
}

τ̂0
[2]n

⎞⎟⎠→
⎛⎜⎝QLR

0
h

0q×q

τ0
[2]h

⎞⎟⎠ a.s.� (27.7)

where τ0
[2]h ∈Rmin{k�p}−q. Let

Υ̂ 0
n :=
(

Diag
{̂
τ0
n

}
0(k−p)×p

)
∈Rk×p and Υ̂n :=

(
Diag{̂τn}
0(k−p)×p

)
∈Rk×p if k≥ p and

Υ̂ 0
n := (Diag

{̂
τ0
n

}
�0k×(p−k)) ∈Rk×p and

Υ̂n := (Diag{̂τn}�0k×(p−k)) ∈Rk×p if k< p�

(27.8)

The distributions of Υ̂ 0
n and Υ̂n are the same. The matrix Υ̂ 0

n has singular values given
by the vector τ̂0

n (= (̂τ0
1n� � � � � τ̂

0
min{k�p}n)

′) whose first q elements all diverge to infinity a.s.

and whose last min{k�p} − q elements written as the subvector τ̂0
[2]n converge to τ0

[2]h
a.s. Hence, for some set C ∈ F0 with P0(ω ∈ C) = 1, we have τ̂0

jn(ω)→ ∞ for j ≤ q and

τ̂0
[2]n(ω)→ τ0

[2]h(ω), where τ̂0
jn(ω), τ̂

0
[2]n(ω), τ

0
[2]h(ω), and Υ̂ 0

n (ω) denote the realizations

of the random quantities τ̂0
jn, τ̂0

[2]n, τ0
[2]h, and Υ̂ 0

n , respectively, whenω occurs. Thus, using

Lemma 27.2 with Dc
n = Υ̂ 0

n (ω) and τc∞ = τ0
[2]h(ω), we have

ck�p
(
Υ̂ 0
n (ω)�1 − α

)→ ck�p�q
(
τ0

[2]h(ω)�1 − α
)

for all ω ∈ C with P0(ω ∈ C)= 1� (27.9)

where ck�p�q(·�1 − α) is defined in Lemma 27.2. When q = min{k�p}, no vector τ0
[2]h(ω)

appears and by Comments (ii) and (iii) to Lemma 27.2 ck�p�q(τ0
[2]h(ω)�1 − α) equals the

1 − α quantile of the χ2
min{k�p} distribution.

Almost sure convergence implies convergence in distribution, so (27.7) and (27.9)
also hold (jointly) with convergence in distribution in place of convergence a.s. These
convergence in distribution results, coupled with the equality of the distributions of

(QLR0
n� Υ̂

0
n ) and (QLRWU�n� Υ̂n) for all n≥ 1 and of (QLR

0
h� τ

0′
[2]h)

′ and (QLRh� τ
′
[2]h)

′, yield
the following convergence result:(

QLRWU�n

ck�p
(
n1/2ŴnD̂nÛn�1 − α

))=
(

QLRWU�n

ck�p(Υ̂n�1 − α)

)
→d

(
QLRh

ck�p�q(τ[2]h�1 − α)

)
� (27.10)

where the first equality holds using Lemma 16.2.
Equation (27.10) and the continuous mapping theorem give

P
(
QLRWU�n > ck�p

(
n1/2ŴnD̂nÛn�1 − α

))→ P
(
QLRh > ck�p�q(τ[2]h�1 − α)

)
(27.11)
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provided P(QLRh = ck�p�q(τ[2]h�1 − α)) = 0. The latter holds because P(QLRh =
ck�p�q(τ[2]h�1 − α)|Dh) = 0 a.s. In turn, the latter holds because, conditional on Dh, the
df of QLRh is continuous at its 1 − α quantile (by Lemma 27.3, where QLRh conditional
on Dh and ACLRk�p�q(τc∞), which appears in Lemma 27.3, have the same structure with
the former being based on h′

3�k−q h�p−q, which is nonrandom conditional on Dh, and
the latter being based on Υ(τc∞), which is nonrandom, and the former only depends on
h′

3�k−q h�p−q through its singular values (see (24.3)) and ck�p�q(τ[2]h�1 −α)) is a constant

(because τ[2]h is random only through Dh).
By the same argument as in the proof of Lemma 16.2,

ck�p�q(τ[2]h�1 − α)= ck�p�q
(
h′

3�k−q h�p−q�1 − α
)
� (27.12)

where (with some abuse of notation) ck�p�q(h′
3�k−q h�p−q�1 −α) denotes the 1 −α quan-

tile of Z′Z − λmin((h
′
3�k−q h�p−q�Z2)

′(h′
3�k−q h�p−q�Z2)) for Z as in Lemma 27.2, be-

cause τ[2]h ∈ Rp−q are the singular values of h′
3�k−q h�p−q ∈ R(k−q)×(p−q) and Υ(τ[2]h)

(which appears in ACLRk�p�q(τ[2]h) = Z′Z − λmin((Υ(τ[2]h)�Z2)
′(Υ(τ[2]h)�Z2))) is the

(k− q)× (p− q) matrix with τ[2]h on the main diagonal and zeros elsewhere.
Thus, we have

P
(
QLRh > ck�p�q(τ[2]h�1 − α)

)
= P
(
QLRh > ck�p�q

(
h′

3�k−q h�p−q�1 − α
))

=EP
(
QLRh > ck�p�q

(
h′

3�k−q h�p−q�1 − α
)| h�p−q

)
=Eα= α� (27.13)

where the second equality holds by the law of iterated expectations and the third equal-
ity holds because, conditional on  h�p−q, ck�p�q(h′

3�k−q h�p−q�1 −α) is the 1 −α quantile

of QLRh (by the definitions of ck�p�q(·�1 − α) in Lemma 27.2 and QLRh in (27.4)) and the
df of QLRh is continuous at its 1 −α quantile (see the explanation following (27.11)).

27.3 Proof of Lemma 27.2

Lemma 27.2 is stated in Section 27.1.
The proof of Lemma 27.2 uses the following two lemmas. Let {τcjn : j ≤ min{k�p}} be

the singular values of Dc
n, as in Lemma 27.2. Define

Υc
n :=
(

Diag
{
τc1n� � � � � τ

c
pn

}
0(k−p)×p

)
∈Rk×p if k≥ p and

Υc
n := (Diag

{
τc1n� � � � � τ

c
kn

}
�0k×(p−k)) ∈Rk×p if k< p�

(27.14)

Lemma 27.5. Suppose the scalar constants {τcjn ≥ 0 : j ≤ min{k�p}} for n ≥ 1 satisfy
(i) {τcjn ≥ 0 : j ≤ min{k�p}} are nonincreasing in j for n≥ 1, (ii) τcjn → ∞ for j ≤ q for some
1 ≤ q ≤ min{k�p}, (iii) τcjn → τcj∞ < ∞ for j = q + 1� � � � �min{k�p}, and (iv) when p ≥ 2,
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τc(j+1)n/τ
c
jn → hc6�j for some hc6�j ∈ [0�1] for all j ≤ min{k�p} − 1. Let Υc

n be defined as in

(27.14). Let {κZjn : j ≤ p+ 1} denote the p+ 1 eigenvalues of (Υ c
n �Z)

′(Υ c
n �Z), ordered to be

nonincreasing in j, where Z ∼N(0k� Ik). Then,

(a) κZjn → ∞ ∀j ≤ q for all realizations of Z and

(b) κZjn = o((τc�n)
2) ∀�≤ q and ∀j = q+ 1� � � � �p+ 1 for all realizations of Z.

Comment. Lemma 27.5 only applies when q ≥ 1, whereas Lemma 27.2 applies when
q≥ 0.

Lemma 27.6. Let {F∗
n(x) : n≥ 1} and F∗(x) be df ’s onR and let α ∈ (0�1) be given. Suppose

(i) F∗
n(x)→ F∗(x) for all continuity points x of F∗(x) and (ii) F∗(q∞ + ε) > 1 − α for all

ε > 0, where q∞ := inf{x : F∗(x) ≥ 1 − α} is the 1 − α quantile of F∗(x). Then the 1 − α

quantile of F∗
n(x), viz., qn := inf{x : F∗

n(x)≥ 1 − α}, satisfies qn → q∞.

Comment. Condition (ii) of Lemma 27.6 requires that F∗(x) is increasing at its 1 − α

quantile.

Proof of Lemma 27.2. By Lemma 16.2, ck�p(Dc
n�1 − α) = ck�p(Υ

c
n �1 − α), where Υc

n is
defined in (27.14). Hence, it suffices to show that ck�p(Υ c

n �1 − α)→ ck�p�q(τ
c∞�1 − α). To

prove the latter, it suffices to show that for any subsequence {wn} of {n} there exists a
subsubsequence {un} such that ck�p(Υ c

un
�1 − α)→ ck�p�q(τ

c∞�1 − α). When p ≥ 2, given
{wn}, we select a subsubsequence {un} for which τc(j+1)un

/τcjun → hc6�j for some constant
hc6�j ∈ [0�1] for all j = 1� � � � �min{k�p} − 1 (where 0/0 := 0). We can select a subsubse-
quence with this property because every sequence of numbers in [0�1] has a convergent
subsequence by the compactness of [0�1].

For notational simplicity, when p ≥ 2, we prove the full sequence result that
ck�p(Υ

c
n �1 − α)→ ck�p�q(τ

c∞�1 − α) under the assumption that

τc(j+1)n/τ
c
jn → hc6�j for all j ≤ min{k�p} − 1 (27.15)

(as well as the other assumptions on the singular values stated in the theorem).67 The
same argument holds with n replaced by un below, which is the result that is needed
to complete the proof. When p = 1, we prove the full sequence result that ck�p(Υ c

n �1 −
α) → ck�p�q(τ

c∞�1 − α) without the condition in (27.15) (which is meaningless in this
case because there is only one value τcjun , namely τc1un , for each n). In this case, too, the
same argument holds with n replaced by un below, which is the result that is needed to
complete the proof. We treat the cases p≥ 2 and p= 1 simultaneously from here on.

First, we show that

CLRk�p
(
Υc
n

) := Z′Z − λmin
((
Υc
n�Z
)′(
Υc
n�Z
))

→ Z′Z − λmin
((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
)) := ACLRk�p�q

(
τc∞
)

(27.16)

67The condition in (27.15) is required by Lemma 27.5, which is used in the proof of Lemma 27.2 below.
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for all realizations of Z. If q= 0, then (27.16) holds because Υc
n → Υ(τc∞) (by the defini-

tion of Υc
n in (27.14), the definition of Υ(τc∞) in the statement of the Lemma 27.2, and

assumption (iii) of Lemma 27.2) and the minimum eigenvalue of a matrix is a continu-

ous function of the matrix (by Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37–

38)).

Now, we establish (27.16) when q ≥ 1. The (ordered) eigenvalues {κZjn : j ≤ p+ 1} of

(Υ c
n �Z)

′(Υ c
n �Z) are solutions to

∣∣(Υc
n�Z
)′(
Υc
n�Z
)− κIp+1

∣∣= 0 or∣∣Qc
n(κ)
∣∣= 0� where

Qc
n(κ) := Scn

(
Υc
n�Z
)′(
Υc
n�Z
)
Scn − κ

(
Scn
)2

and

Scn := Diag
{(
τc1n
)−1

� � � � �
(
τcqn
)−1

�1� � � � �1
}

∈R(p+1)×(p+1)�

(27.17)

Define

Scn�q := Diag
{(
τc1n
)−1

� � � � �
(
τcqn
)−1} ∈Rq×q� (27.18)

We have

(
Υc
n�Z
)
Scn =
((
Υc
n�Z
)( Iq

0(p+1−q)×q

)
Scn�q�
(
Υc
n�Z
)(0q×(p+1−q)

Ip+1−q

))
= (Ik�q�Υ c

n�p−q�Z
) ∈Rk×(p+1)� where

Ik�q :=
(

Iq
0(k−q)×q

)
∈Rk×q�

Υ c
n�p−q :=

⎛⎜⎝ 0q×(p−q)
Diag
{
τc(q+1)n� � � � � τ

c
pn

}
0(k−p)×(p−q)

⎞⎟⎠ ∈Rk×(p−q) if k≥ p� and

Υc
n�p−q :=

(
0q×(k−q) 0q×(p−k)

Diag
{
τc(q+1)n� � � � � τ

c
kn

}
0(k−q)×(p−k)

)
∈Rk×(p−q) if k< p�

(27.19)

By (27.17) and (27.19), we have

Qc
n(κ)=

[
Iq I ′

k�q

(
Υc
n�p−q�Z

)(
Υc
n�p−q�Z

)′
Ik�q

(
Υc
n�p−q�Z

)′(
Υc
n�p−q�Z

)]

− κ

[ (
Scn�q
)2 0q×(p+1−q)

0(p+1−q)×q Ip+1−q

]
� (27.20)



Supplementary Material Identification and singularity robust inference 75

By the formula for the determinant of a partitioned inverse,∣∣Qc
n(κ)
∣∣= ∣∣Qc

n�1(κ)
∣∣ · ∣∣Qc

n�2(κ)
∣∣� where

Qc
n�1(κ) := Iq − κ

(
Scn�q
)2 ∈Rq×q and

Qc
n�2(κ) := (Υc

n�p−q�Z
)′(
Υc
n�p−q�Z

)− κIp+1−q

− (Υc
n�p−q�Z

)′
Ik�q
(
Iq − κ

(
Scn�q
)2)−1

I ′
k�q

(
Υc
n�p−q�Z

)
∈R(p+1−q)×(p+1−q)�

(27.21)

For j = q+ 1� � � � �p+ 1, we have

Qc
n�1
(
κZjn
)= Iq − κZjn

(
Scn�q
)2 = Iq − Diag

{
κZjn
(
τc1n
)−2

� � � � �κZjn
(
τcqn
)−2}= Iq + o(1) (27.22)

for all realizations of Z, where the last equality holds by Lemma 27.5 (which applies for

q ≥ 1). This implies that |Qc
n�1(κ

Z
jn)| �= 0 for j = q + 1� � � � �p+ 1 for n large. Hence, for n

large, ∣∣Qc
n�2
(
κZjn
)∣∣= 0 for j = q+ 1� � � � �p+ 1� (27.23)

We write

Ik = (Ik�q� Ik�k−q)� where Ik�k−q :=
(

0q×(k−q)
Ik−q

)
∈Rk×(k−q) (27.24)

and Ik�q is defined in (27.19).68

For j = q+ 1� � � � �p+ 1, we have

Qc
n�2
(
κZjn
) = (Υc

n�p−q�Z
)′(
Υc
n�p−q�Z

)− κZjnIp+1−q

− (Υc
n�p−q�Z

)′
Ik�q
(
Iq + o(1)

)
I ′
k�q

(
Υc
n�p−q�Z

)
= (Υc

n�p−q�Z
)′
Ik�k−qI ′

k�k−q
(
Υc
n�p−q�Z

)+ o(1)− κZjnIp+1−q

:=Mc
n�p+1−q − κZjnIp+1−q� (27.25)

where the first equality holds by (27.22) and the definition of Qc
n�2(κ) in (27.21) and the

second equality holds because Ik = (Ik�q� Ik�k−q)(Ik�q� Ik�k−q)′ = Ik�qI
′
k�q + Ik�k−qI ′

k�k−q
and Υc

n�p−q = O(1) by its definition in (27.19) and the condition (iii) of Lemma 27.2 on

{τcjn : j = q+ 1� � � � �min{k�p}} for n≥ 1.

Equations (27.23) and (27.25) imply that {κZjn : j = q+ 1� � � � �p+ 1} are the p+ 1 − q

eigenvalues of the matrix Mc
n�p+1−q. By the definition of Υc

n�p−q in (27.19) and the condi-

68There is some abuse of notation here because Ik�q does not equal Ik�k−q even if q equals k− q.
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tions of the lemma on {τcjn : j = q+ 1� � � � �min{k�p}} for n≥ 1, we have

Mc
n�p+1−q →

((
0q×(p−q)
Υ
(
τc∞
) ) �Z)′

Ik�k−qI ′
k�k−q

((
0q×(p−q)
Υ
(
τc∞
) ) �Z)

= (Υ (τc∞)�Z2
)′(
Υ
(
τc∞
)
�Z2
)

(27.26)

for all realizations of Z, where the equality uses the definitions of Υ(τc∞) and Z2 in the
statement of the lemma.

The vector of (ordered) eigenvalues of a matrix is a continuous function of the
matrix (by Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37–38)). Hence, by
(27.26), the eigenvalues {κZjn : j = q + 1� � � � �p + 1} of Mc

n�p+1−q converge (for all re-
alizations of Z) to the vector of eigenvalues of (Υ(τc∞)�Z2)

′(Υ(τc∞)�Z2). In conse-
quence, the smallest eigenvalue κZ(p+1)n (of both Mc

n�p+1−q and (Υ c
n �Z)

′(Υ c
n �Z)) satis-

fies

λmin
((
Υc
n�Z
)′(
Υc
n�Z
))= κZ(p+1)n → λmin

((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
))
� (27.27)

where the equality holds by the definition of κZ(p+1)n in (27.17). This establishes (27.16).
Now we use (27.16) to establish that ck�p(Υ c

n �1−α)→ ck�p�q(τ
c∞�1−α), which proves

the lemma. Let

Fk�p�q�τc∞(x)= P
(
ACLRk�p�q

(
τc∞
)≤ x
)
� (27.28)

By (27.16), for any x ∈R that is a continuity point of Fk�p�q�τc∞(x), we have

1
(
CLRk�p

(
Υc
n

)≤ x
)→ 1
(
ACLRk�p�q

(
τc∞
)≤ x
)

a.s. (27.29)

Equation (27.29) and the bounded convergence theorem give

P
(
CLRk�p

(
Υc
n

)≤ x
)→ P

(
ACLRk�p�q

(
τc∞
)≤ x
)= Fk�p�q�τc∞(x)� (27.30)

Now Lemma 27.6 gives the desired result, because (27.30) verifies assumption (i) of
Lemma 27.6 and the df of ACLRk�p�q(τc∞) is strictly increasing at its 1 − α quantile (by
Lemma 27.3), which verifies assumption (ii) of Lemma 27.6.

Proof of Lemma 27.5. The proof is similar to the proof of Lemma 17.1 given in Sec-
tion 17 in the SM of AG1. But there are enough differences that we provide a proof.

By the definition of q (≥ 1) in the statement of Lemma 27.5, hc6�q = 0 if q <min{k�p}.
If q= min{k�p}, then hc6�q is not defined in the statement of Lemma 27.5 and we define it
here to equal zero. If hc6�j > 0, then {τcjn : n≥ 1} and {τc(j+1)n : n≥ 1} are of the same order
of magnitude, that is, 0< limτc(j+1)n/τ

c
jn ≤ 1. We group the first q values of τcjn into groups

that have the same order of magnitude within each group. Let G (∈ {1� � � � � q}) denote
the number of groups. Note that G equals the number of values in {hc6�1� � � � �hc6�q} that
equal zero. Let rg and rcg denote the indices of the first and last values in the gth group,
respectively, for g= 1� � � � �G. Thus, r1 = 1, rcg = rg+1 − 1, where by definition rG+1 = q+ 1,
and rcG = q. By definition, the τcjn values in the gth group, which have the gth largest
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order of magnitude, are {τcrgn : n≥ 1}� � � � � {τc
rcgn

: n≥ 1}. By construction, hc6�j > 0 for all j ∈
{rg� � � � � rcg − 1} for g= 1� � � � �G. (The reason is: if hc6�j is equal to zero for some j ≤ rcg − 1,
then {τc

rcgn
: n ≥ 1} is of smaller order of magnitude than {τcrgn : n ≥ 1}, which contradicts

the definition of rcg�) Also by construction, limτcj′n/τ
c
jn = 0 for any (j� j′) in groups (g�g′),

respectively, with g < g′.
The (ordered) eigenvalues {κZjn : j ≤ p+ 1} of (Υ c

n �Z)
′(Υ c

n �Z) are solutions to the de-
terminantal equation |(Υ c

n �Z)
′(Υ c

n �Z)− κIp+1| = 0. Equivalently, they are solutions to∣∣(τcr1n)−2(
Υc
n�Z
)′(
Υc
n�Z
)− (τcr1n)−2

κIp+1
∣∣= 0� (27.31)

Thus, {(τcr1n)−2κZjn : j ≤ p+ 1} solve∣∣(τcr1n)−2(
Υc
n�Z
)′(
Υc
n�Z
)− κIp+1

∣∣= 0� (27.32)

Let

hcc6�rc1
:= Diag

{
1�hc6�1�h

c
6�1h

c
6�2� � � � �

rc1−1∏
�=1

hc6��

}
∈Rrc1×rc1 � (27.33)

When k≥ p, we have(
τcr1n
)−1(

Υc
n�Z
)

=

⎡⎢⎢⎢⎢⎣
hcc6�rc1

+ o(1) 0r
c
1×(q−rc1) 0r

c
1×(p−q) O

(
1/τcr1n

)rc1×1

0(q−rc1)×rc1 O
(
τcr2n/τ

c
r1n

)(q−rc1)×(q−rc1) 0(q−rc1)×(p−q) O
(
1/τcr1n

)(q−rc1)×1

0(p−q)×rc1 0(p−q)×(q−rc1) O
(
1/τcr1n

)(p−q)×(p−q)
O
(
1/τcr1n

)(p−q)×1

0(k−p)×rc1 0(k−p)×(q−rc1) 0(k−p)×(p−q) O
(
1/τcr1n

)(k−p)×1

⎤⎥⎥⎥⎥⎦
→
[

hcc6�rc1
0r

c
1×(p+1−rc1)

0(k−rc1)×rc1 0(k−rc1)×(p+1−rc1)

]
� (27.34)

whereO(dn)s×s denotes a diagonal s×smatrix whose elements areO(dn) for some scalar
constants {dn : n≥ 1}, O(dn)s×1 denotes a s vector whose elements are O(dn), the equal-
ity uses τcjn/τ

c
r1n

=∏j−1
�=1(τ

c
(�+1)n/τ

c
�n)=∏j−1

�=1 h
c
6�� + o(1) for j = 2� � � � � rc1 (which holds by

the definition of hc6��) and τcjn/τ
c
r1n

= O(τcr2n/τ
c
r1n
) for j = r2� � � � � q (because {τcjn : j ≤ q}

are nonincreasing in j), and the convergence uses τcr1n → ∞ (by assumption (ii) of the
lemma since r1 ≤ q) and τcr2n/τ

c
r1n

→ 0 (by the definition of r2).
When k < p, (27.34) holds but with the rows dimensions of the submatrices in the

second line changed by replacing p− q by k− q and k−p by p− k four times each.
Equation (27.34) yields

(
τcr1n
)−2(

Υc
n�Z
)′(
Υc
n�Z
)→ [ (hcc6�rc1 )2 0r

c
1×(p+1−rc1)

0(p+1−rc1)×rc1 0(p+1−rc1)×(p+1−rc1)

]
� (27.35)

The vector of eigenvalues of a matrix is a continuous function of the matrix (by
Elsner’s theorem, see Stewart (2001, Theorem 3.1, pp. 37–38)). Hence, by (27.32) and
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(27.35), the first rc1 eigenvalues of (τcr1n)
−2(Υ c

n �Z)
′(Υ c

n �Z), that is, {(τcr1n)−2κZjn : j ≤ rc1},

satisfy

((
τcr1n
)−2

κZ1n� � � � �
(
τcr1n
)−2

κZrc1n
)→p

(
1�hc6�1�h

c
6�1h

c
6�2� � � � �

rc1−1∏
�=1

hc6��

)
and so

κZ1n → ∞ ∀j = 1� � � � � rc1

(27.36)

because τcr1n → ∞ (since r1 ≤ q) and hc6�� > 0 for all � ∈ {1� � � � � rc1 − 1} (as noted above).

By the same argument, the last p+ 1 − rc1 eigenvalues of (τcr1n)
−2(Υ c

n �Z)
′(Υ c

n �Z), that is,

{(τcr1n)−2κZjn : j = rc1 + 1� � � � �p+ 1}, satisfy

(
τcr1n
)−2

κZjn → 0 ∀j = rc1 + 1� � � � �p+ 1� (27.37)

Next, the equality in (27.34) gives

(
τcr1n
)−2(

Υc
n�Z
)′(
Υc
n�Z
)

=

⎡⎢⎢⎢⎢⎢⎣

(
hcc6�rc1

)2 + o(1) 0r
c
1×(q−rc1) 0r

c
1×(p−q) O

(
1/τcr1n

)rc1×1

0(q−rc1)×rc1 O
((
τcr2n/τ

c
r1n

)2)(q−rc1)×(q−rc1) 0(q−rc1)×(p−q) O
(
τcr2n/
(
τcr1n
)2)(q−rc1)×1

0(p−q)×rc1 0(p−q)×(q−rc1) O
(
1/
(
τcr1n
)2)(p−q)×(p−q)

O
(
1/
(
τcr1n
)2)(p−q)×1

O
(
1/τcr1n

)1×rc1 O
(
τcr2n/
(
τcr1n
)2)1×(q−rc1) O

(
1/
(
τcr1n
)2)1×(p−q)

O
(
1/
(
τcr1n
)2)1×1

⎤⎥⎥⎥⎥⎥⎦�

(27.38)

Equation (27.38) holds when k ≥ p and k < p (because the column dimensions of the

submatrices in the second line of (27.34) are the same when k≥ p and k< p).

Define Ij1�j2 to be the (p + 1) × (j2 − j1) matrix that consists of the j1 + 1� � � � � j2
columns of Ip+1 for 0 ≤ j1 < j2 ≤ p+ 1. We can write

Ip+1 = (I0�rc1
� Irc1�p+1)� where I0�rc1

:=
(

Irc1
0(p+1−rc1)×rc1

)
∈R(p+1)×rc1 and

Irc1�p+1 :=
(

0r
c
1×(p+1−rc1)
Ip+1−rc1

)
∈R(p+1)×(p+1−rc1)�

(27.39)

In consequence, we have

(
Υc
n�Z
)= ((Υc

n�Z
)
I0�rc1

�
(
Υc
n�Z
)
Irc1�p+1

)
and

#cn := (τcr1n)−2
I ′

0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1�p+1 = o

(
τcr2n/τ

c
r1n

)
�

(27.40)

where the last equality uses the expressions in the first row of the matrix on the rhs of

(27.38) and O(1/τcr1n)= o(τcr2n/τ
c
r1n
) (because τcr2n → ∞).
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As in (27.32), {(τcr1n)−2κZjn : j ≤ p+ 1} solve

0 = ∣∣(τcr1n)−2(
Υc
n�Z
)′(
Υc
n�Z
)− κIp+1

∣∣
=
∣∣∣∣∣∣
⎡⎣(τcr1n)−2

I ′
0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
I0�rc1

− κIrc1(
τcr1n
)−2

I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
I0�rc1

���

(
τcr1n
)−2

I ′
0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1�p+1(

τcr1n
)−2

I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1�p+1 − κIp+1−rc1

⎤⎦∣∣∣∣∣∣
= ∣∣(τcr1n)−2

I ′
0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
I0�rc1

− κIrc1

∣∣
× ∣∣(τcr1n)−2

I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1 �p+1 − κIp+1−rc1

−#c′n
((
τcr1n
)−2

I ′
0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
I0�rc1

− κIrc1

)−1
#cn
∣∣� (27.41)

where the third equality uses the standard formula for the determinant of a partitioned
matrix, the definition of #cn in (27.40), and the result given in (27.42) below that the ma-
trix which is inverted that appears in the last line of (27.41) is nonsingular for κ equal to
any solution (τcr1n)

−2κZjn to the first equality in (27.41) for j = rc1 + 1� � � � �p+ 1.

Now we show that, for j = rc1 + 1� � � � �p+ 1, (τcr1n)
−2κZjn cannot solve the determinan-

tal equation |(τcr1n)−2I ′
0�rc1

(Υ c
n �Z)

′(Υ c
n �Z)I0�rc1

− κIrc1 | = 0 for n sufficiently large, where

this determinant is the first multiplicand on the rhs of (27.41). Hence, {(τcr1n)−2κZjn : j =
rc1 + 1� � � � �p+ 1} must solve the determinantal equation based on the second multipli-
cand on the rhs of (27.41) for n sufficiently large. For j = rc1 + 1� � � � �p+ 1, we have(

τcr1n
)−2

I ′
0�rc1

(
Υc
n�Z
)′(
Υc
n�Z
)
I0�rc1

− (τcr1n)−2
κZjnIrc1 = (hcc6�rc1 )2 + o(1)� (27.42)

where the equality holds by (27.35) and (27.37). Equation (27.42) and λmin((h
cc
6�rc1

)2) > 0

(which follows from the definition of hcc6�rc1
in (27.33) and the fact that hc6�j > 0 for all

j ∈ {1� � � � � rc1 − 1}) establish the desired result.
For j = rc1 +1� � � � �p+1, plugging (τcr1n)

−2κZjn into the second multiplicand on the rhs
of (27.41) and using (27.40) and (27.42) gives

0 = ∣∣(τcr1n)−2
I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1�p+1 +o((τcr2n/τcr1n)2)− (τcr1n)−2

κZjnIp+1−rc1
∣∣� (27.43)

Thus, {(τcr1n)−2κZjn : j = rc1 + 1� � � � �p+ 1} solve

0 = ∣∣(τcr1n)−2
I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1 �p+1 + o

((
τcr2n/τ

c
r1n

)2)− κIp+1−rc1
∣∣� (27.44)

Or equivalently, multiplying through by (τcr2n/τ
c
r1n
)−2, {(τcr2n)−2κZjn : j = rc1 + 1� � � � �p+ 1}

solve

0 = ∣∣(τcr2n)−2
I ′
rc1�p+1

(
Υc
n�Z
)′(
Υc
n�Z
)
Irc1 �p+1 + o(1)− κIp+1−rc1

∣∣ (27.45)
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by the same argument as in (27.31) and (27.32).
Now, we repeat the argument from (27.32) to (27.45) with the expression in (27.45)

replacing that in (27.32) and with Ip+1−rc1 , τcr2n, τcr3n, rc2 − rc1 , p + 1 − rc2 , and hcc6�rc2
=

Diag{1�hc6�rc1+1�h
c
6�rc1+1h

c
6�rc1+2� � � � �

∏rc2−1
�=rc1+1 h

c
6��} ∈ R(r

c
2−rc1)×(rc2−rc1) in place of Ip+1, τcr1n,

τcr2n, rc1 , p+ 1 − rc1 , and hcc6�rc1
, respectively. In addition, I0�rc1

and Irc1�p+1 in (27.41) are re-

placed by the matrices Irc1�r
c
2

and Irc2�p+1. This argument gives

κZjn → ∞ ∀j = r2� � � � � r
c
2 and

(
τcr2n
)−2

κZjn = o(1) ∀j = rc2 + 1� � � � �p+ 1� (27.46)

Repeating the argument G− 2 more times yields

κZjn → ∞ ∀j = 1� � � � � rcG and(
τcrgn
)−2

κZjn = o(1) ∀j = rcg + 1� � � � �p+ 1�∀g= 1� � � � �G�
(27.47)

Note that “repeating the argument G− 2 more times” is justified by an induction argu-
ment that is analogous to that given in the proof of Lemma 17.1 given in Section 17 in
the SM of AG1.

Because rcJ = q, the first result in (27.47) proves part (a) of the lemma.
The second result in (27.47) with g=G implies: for all j = q+ 1� � � � �p+ 1,(

τcrGn
)−2

κZjn = o(1) (27.48)

because rcG = q. Either rG = rcG = q or rG < rcG = q. In the former case, (τcqn)
−2κZjn = o(1)

for j = q+ 1� � � � �p+ 1 by (27.47). In the latter case, we have

lim
τcqn

τcrGn
= lim

τcrcGn

τcrGn
=
rcG−1∏
j=rG

hc6�j > 0� (27.49)

where the inequality holds because hc6�j > 0 for all j ∈ {rG� � � � � rcG − 1}, as noted at the

beginning of the proof. Hence, in this case too, (τcqn)
−2κZjn = o(1) for j = q + 1� � � � �p+

1 by (27.48) and (27.49). Because τcjn ≥ τcqn for all j ≤ q, this establishes part (b) of the
lemma.

Proof of Lemma 27.6. For ε > 0, such that q∞ ± ε are continuity points of F∗(x), we
have

F∗
n(q∞ − ε)→ F∗(q∞ − ε) < 1 − α and

F∗
n(q∞ + ε)→ F∗(q∞ + ε) > 1 − α

(27.50)

by assumptions (i) and (ii) of the lemma and F∗(q∞ − ε) < 1 − α by the definition of
q∞. The first line of (27.50) implies that qn ≥ q∞ − ε for all n large. (If not, there exists
an infinite subsequence {wn} of {n} for which qwn < q∞ − ε for all n ≥ 1 and 1 − α ≤
F∗
wn
(qwn) ≤ F∗

wn
(q∞ − ε) → F∗(q∞ − ε) < 1 − α, which is a contradiction). The second

line of (27.50) implies that qn ≤ q∞ + ε for all n large. There exists a sequence {εk > 0 :
k≥ 1} for which εk → 0 and q∞ ± εk are continuity points of F∗(x) for all k≥ 1. Hence,
qn → q∞.
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27.4 Proof of Lemma 27.3

Lemma 27.3 is stated in Section 27.1.

Proof of Lemma 27.3. We prove the lemma by proving it separately for four cases:
(i) q ≥ 1, (ii) k ≤ p, (iii) τcmin{k�p}∞ = 0, where τcmin{k�p}∞ denotes the min{k�p}th (and
hence, last and smallest) element of τc∞, and (iv) q = 0, k > p, and τcp∞ > 0. First, sup-
pose q≥ 1. Then

ACLRk�p�q
(
τc∞
) := Z′Z − λmin

((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
))

= Z′
1Z1 +Z′

2Z2 − λmin
((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
))

(27.51)

and ACLRk�p�q(τc∞) is the convolution of a χ2
q distribution (since Z′

1Z1 ∼ χ2
q) and an-

other distribution. Consider the distribution of X + Y , where X is a random variable
with an absolutely continuous distribution and X and Y are independent. Let B be a
(measurable) subset of R with Lebesgue measure zero. Then

P(X +Y ∈ B)=
∫
P(X + y ∈ B|Y = y)dPY (y)=

∫
P(X ∈ B− y)dPY (y)= 0� (27.52)

where PY denotes the distribution of Y , the first equality holds by the law of iterated
expectations, the second equality holds by the independence of X and Y , and the last
equality holds because X is absolutely continuous and the Lebesgue measure of B − y

equals zero. Applying (27.52) to (27.51) with X =Z′
1Z1, we conclude that ACLRk�p�q(τc∞)

is absolutely continuous, and hence, its df is continuous at its 1 − α quantile for all α ∈
(0�1).

Next, we consider the df of X + Y , where X has support R+ and X and Y are inde-
pendent. Let c denote the 1 − α quantile of X + Y for α ∈ (0�1), and let cY denote the
1 − α quantile of Y . Since X ≥ 0 a.s., cY ≤ c. Hence, for all ε > 0,

P(Y < c+ ε)≥ P(Y < cY + ε)≥ 1 − α> 0� (27.53)

For ε > 0, we have

P
(
X +Y ∈ [c� c+ ε]) = ∫ P(X + y ∈ [c� c + ε]|Y = y

)
dPY (y)

=
∫
P
(
X ∈ [c− y� c− y + ε])dPY (y) > 0� (27.54)

where the first equality holds by the law of iterated expectations, the second equality
holds by the independence of X and Y , and the inequality holds because P(X ∈ [c −
y� c − y + ε]) > 0 for all y < c + ε (because the support of X is R+) and P(Y < c + ε) > 0
by (27.53). Equation (27.54) implies that the df of X +Y is strictly increasing at its 1 − α

quantile.
For the case when q ≥ 1, we apply the result of the previous paragraph with

ACLRk�p�q(τc∞) = X + Y and Z′
1Z1 = X . This implies that the df of ACLRk�p�q(τc∞) is

strictly increasing at its 1 − α quantile when q≥ 1.
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Second, suppose k ≤ p. Then (Υ(τc∞)�Z2)
′(Υ(τc∞)�Z2) ∈ R(p−q+1)×(p−q+1) is singu-

lar because (Υ(τc∞)�Z2) ∈ R(k−q)×(p−q+1) and k − q < p − q + 1. Hence, λmin((Υ(τ
c∞)�

Z2)
′(Υ(τc∞)�Z2))= 0, ACLRk�p�q(τc∞)=Z′Z ∼ χ2

k, ACLRk�p�q(τc∞) is absolutely continu-
ous, and the df of ACLRk�p�q(τc∞) is continuous and strictly increasing at its 1−α quantile
for all α ∈ (0�1).

Third, suppose τcmin{k�p}∞ = 0. Then, λmin((Υ(τ
c∞)�Z2)

′(Υ(τc∞)�Z2)) = 0,

ACLRk�p�q(τc∞) = Z′Z ∼ χ2
k, ACLRk�p�q(τc∞) is absolutely continuous, and the df of

ACLRk�p�q(τc∞) is continuous and strictly increasing at its 1 −α quantile for all α ∈ (0�1).
Fourth, suppose q = 0, k > p, and τcp∞ > 0. In this case, Z2 = Z (because q = 0) and

Υ(τc∞) = (D�0p×(k−p))′, where D := Diag{τc∞} is a pd diagonal p × p matrix (because
τcp∞ > 0). We writeZ = (Z′

a�Z
′
b)

′ (∼N(0k� Ik)), whereZa ∈Rp andZb ∈Rk−p andZb has
a positive number of elements (because k > p). Let ACLR abbreviate ACLRk�p�q(τc∞). In
the present case, we have

ACLR = Z′Z − λmin

((
D Za

0(k−p)×p Zb

)′(
D Za

0(k−p)×p Zb

))

= Z′Z − inf
ξ=(ξ′

1�ξ2)′:‖ξ‖=1

(
ξ1

ξ2

)′(
D2 DZa
Z′
aD Z′Z

)(
ξ1

ξ2

)
= sup

ξ=(ξ′
1�ξ2)′:‖ξ‖=1

[(
1 − ξ2

2
)(
Z′
bZb +Z′

aZa
)− ξ′

1D
2ξ1 − 2ξ2Z

′
aDξ1
]
� (27.55)

where ξ1 ∈Rp, ξ2 ∈R, and ξ′
1ξ1 + ξ2

2 = 1.
We define the following nonstochastic function:

ACLR(za�ω) := sup
ξ=(ξ′

1�ξ2)′:‖ξ‖=1

[(
1 − ξ2

2
)(
ω+ z′

aza
)− ξ′

1D
2ξ1 − 2ξ2z

′
aDξ1
]

(27.56)

for za ∈Rp and ω ∈R+. Note that ACLR = ACLR(Za�Z′
bZb).

We show below that the function ACLR(za�ω) is (i) nonnegative, (ii) strictly increas-
ing in ω on R+ ∀za �= 0p, and (iii) continuous in (za�ω) on Rp × R+, and ACLR(za�ω)
satisfies (iv) limω→∞ ACLR(za�ω) = ∞. In consequence, ∀za �= 0p, ACLR(za�ω) has a
continuous, strictly-increasing inverse function in its second argument with domain
[ACLR(za�0)�∞) ⊂ R+, which we denote by ACLR−1(za�x).69 Using this, we have: for
all x≥ ACLR(za�0) and za �= 0p,

ACLR(za�ω)≤ x iff ω≤ ACLR−1(za�x)� (27.57)

where the condition x≥ ACLR(za�0) ensures that x is in the domain of ACLR−1(za� ·).
Now, we show that for all x0 ∈R and za �= 0p,

lim
x→x0

P
(
ACLR

(
za�Z

′
bZb
)≤ x
)= P
(
ACLR

(
za�Z

′
bZb
)≤ x0

)
� (27.58)

69Properties (i), (iii), and (iv) determine the domain of ACLR−1(za�x) for its second argument.
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To prove (27.58), first consider the case x0 >ACLR(za�0) (≥ 0) and za �= 0p. In this case,
we have

lim
x→x0

P
(
ACLR

(
za�Z

′
bZb
)≤ x
) = lim

x→x0
P
(
Z′
bZb ≤ACLR−1(za�x)

)
= P
(
Z′
bZb ≤ ACLR−1(za�x0)

)
� (27.59)

where the first equality holds by (27.57) and the second equality holds by the continuity
of the df of the χ2

k−p random variable Z′
bZb and the continuity of ACLR−1(za�x) at x0.

Hence, (27.58) holds when x0 >ACLR(za�0).
Next, consider the case x0 <ACLR(za�0) and za �= 0p. We have

P
(
ACLR

(
za�Z

′
bZb
)≤ x0

)≤ P
(
ACLR

(
za�Z

′
bZb
)
<ACLR(za�0)

)= 0� (27.60)

where the equality holds because ACLR(za�x) is increasing in x on R+ by property (ii)
and Z′

bZb ≥ 0 a.s. For x sufficiently close to x0, x < ACLR(za�0) and by the same ar-
gument as in (27.60), we obtain P(ACLR(za�Z′

bZb) ≤ x) = 0. Thus, (27.58) holds for
x0 <ACLR(za�0).

Finally, consider the case x0 = ACLR(za�0) and za �= 0p. In this case, (27.58) holds
for sequences of values x that strictly decline to x0 by the same argument as for the first
case where x0 >ACLR(za�0). Next, consider a sequence that strictly increases to x0. We
have P(ACLR(za�Z′

bZb)≤ x)= 0 ∀x < x0 by the same argument as given for the second
case where x0 <ACLR(za�0). In addition, we have

P
(
ACLR

(
za�Z

′
bZb
)≤ x0

)= P
(
ACLR

(
za�Z

′
bZb
)≤ ACLR(za�0)

)
≤ P
(
Z′
bZb ≤ 0

)= 0� (27.61)

where the inequality holds because ACLR(za�x) is strictly increasing on for za �= 0p by
property (ii). This completes the proof of (27.58).

Using (27.58), we establish the continuity of the df of ACLR on R. For any x0 ∈R, we
have

lim
x→x0

P(ACLR ≤ x) = lim
x→x0

P
(
ACLR

(
Za�Z

′
bZb
)≤ x
)

= lim
x→x0

∫
P
(
ACLR

(
za�Z

′
bZb
)≤ x
)
dFZa(za)

=
∫
P
(
ACLR

(
za�Z

′
bZb
)≤ x0

)
dFZa(za)

= P(ACLR ≤ x0)� (27.62)

where FZa(·) denotes the df of Za, the first and last equalities hold because ACLR =
ACLR(Za, Z′

bZb), the second equality uses the independence of Za and Zb, and the
third equality holds by the bounded convergence theorem using (27.58) and P(Za �=
0p)= 1. Equation (27.62) shows that the df of ACLR is continuous on R.

Next, we show that the df of ACLR is strictly increasing at all x > 0. Because the df
of ACLR is continuous on R and equals 0 for x ≤ 0 (because ACLR ≥ 0 by property (i)),
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the 1 − α quantile of ACLR is positive. Hence, the former property implies that the df of
ACLR is strictly increasing at its 1 − α quantile, as stated in the lemma.

For x≥ ACLR(za�0), δ > 0, and za �= 0p, we have

P
(
ACLR

(
za�Z

′
bZb
) ∈ [x�x+ δ])

= P
(
Z′
bZb ∈ [ACLR−1(za�x)�ACLR−1(za�x+ δ)

])
> 0� (27.63)

where the equality holds by (27.57) and the inequality holds because ACLR−1(za�x) is
strictly increasing in x for x in [ACLR(za�0)�∞) when za �= 0p and Z′

bZb has a χ2
k−p

distribution, which is absolutely continuous.
The function ACLR(za�0) is continuous at all za ∈ Rp (by property (iii)) and

ACLR(0p�0)= 0 (by a simple calculation using (27.56)). In consequence, for any x > 0,
there exists a vector z∗

a ∈ Rp and a constant ε > 0 such that ACLR(za�0) < x for all
za ∈ B(z∗

a�ε), where B(z∗
a�ε) denotes a ball centered at z∗

a with radius ε > 0. Using this,
we have: for any x > 0 and δ > 0,

P
(
ACLR ∈ [x�x+ δ]) = ∫ P(ACLR

(
za�Z

′
bZb
) ∈ [x�x+ δ])dFZa(za)

≥
∫
B(z∗

a�ε)
P
(
ACLR

(
za�Z

′
bZb
) ∈ [x�x+ δ])dFZa(za) > 0� (27.64)

where the equality uses the independence of Za and Zb, the first inequality holds be-
cause B(z∗

a�ε) ⊂ R and the integrand is nonnegative, and the second inequality holds
because P(Za ∈ B(z∗

a�ε)) > 0 (since Za ∼ N(0p� Ip) and B(z∗
a�ε) is a ball with posi-

tive radius) and the integrand is positive for za ∈ B(z∗
a�ε) by (27.63) using the fact that

x >ACLR(za�0) for all za ∈ B(z∗
a�ε) by the definition of B(z∗

a�ε). Equation (27.64) shows
that the df of ACLR is strictly increasing at all x > 0, and hence, at its 1−α quantile which
is positive.

It remains to verify properties (i)–(iv) of the function ACLR(za�ω), which are stated
above. The function ACLR(za�ω) is seen to be nonnegative by replacing the supremum
in (27.56) by ξ = (0p′�1)′. Hence, property (i) holds. The function ACLR(za�ω) can be
written as

ACLR(za�ω)=ω+ z′
aza − λmin

(
D2 Dza
z′
aD z′

aza +ω

)
(27.65)

by analogous calculations to those in (27.55). The minimum eigenvalue is a continuous
function of a matrix is a continuous function of its elements by Elsner’s theorem; see
Stewart (2001, Theorem 3.1, pp. 37–38). Hence, ACLR(za�ω) is continuous in (za�ω) ∈
Rp ×R+ and property (iii) holds.

For any ξ2
∗2 ∈ [0�1) and ξ∗1 ∈Rp such that ξ′

∗1ξ∗1 = 1 − ξ2
∗2, we have

ACLR(za�ω)≥ (1 − ξ2
∗2
)(
ω+ z′

aza
)− ξ′

∗1D
2ξ∗1 − 2ξ∗2z

′
aDξ∗1 → ∞ as ω→ ∞� (27.66)

where the inequality holds by replacing the supremum over ξ in (27.56) by the same
expression evaluated at ξ∗ = (ξ′

∗1� ξ∗2)
′ and the divergence to infinity uses 1 − ξ2

∗2 > 0.
Hence, property (iv) holds.
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It remains to verify property (ii), which states that ACLR(za�ω) is strictly increasing
in ω on R+ ∀za �= 0p. For ω ∈R+, let ξω = (ξ′

ω1� ξω2)
′ (for ξω1 ∈Rp and ξω2 ∈R) be such

that ‖ξω‖ = 1 and

ACLR(za�ω)= (1 − ξ2
ω2
)(
ω+ z′

aza
)− ξ′

ω1D
2ξω1 − 2ξω2z

′
aDξω1� (27.67)

Such a vector ξω exists because the supremum in (27.56) is the supremum of a contin-
uous function over a compact set and, hence, the supremum is attained at some vector
ξω. (Note that ξω typically depends on za as well as ω.) Using (27.67), we obtain: for all
δ > 0, if ξ2

ω2 < 1,

ACLR(za�ω) <
(
1 − ξ2

ω2
)(
ω+ δ+ z′

aza
)− ξ′

ω1D
2ξω1 − 2ξω2z

′
aDξω1

≤ sup
ξ=(ξ′

1�ξ2)′:‖ξ‖=1

[(
1 − ξ2

2
)(
ω+ δ+ z′

aza
)− ξ′

1D
2ξ1 − 2ξ2z

′
aDξ1
]

= ACLR(za�ω+ δ)� (27.68)

Equation (27.68) shows that ACLR(za�ω) is strictly increasing at ω provided ξ2
ω2 < 1.

Next, we show that ξ2
ω2 = 1 only if za = 0p. By (27.56) and (27.67), ξω maximizes the

rhs expression in (27.56) over ξ ∈ Rp+1 subject to ξ′
1ξ1 + ξ2

2 = 1. The Lagrangian for the
optimization problem is(

1 − ξ2
2
)(
ω+ z′

aza
)− ξ′

1D
2ξ1 − 2ξ2z

′
aDξ1 + γ

(
1 − ξ2

2 − ξ′
1ξ1
)
� (27.69)

where γ ∈R is the Lagrange multiplier. The first-order conditions of the Lagrangian with
respect to ξ1, evaluated at the solution (ξ′

ω1� ξω2)
′ and the corresponding Lagrange mul-

tiplier, say γω, are

−2D2ξω1 − 2ξω2Dza − 2γωξω1 = 0p� (27.70)

The solution is ξω1 = 0p (which is an interior point of the set {ξ1 : ‖ξ1‖ ≤ 1}) only if ξω2 =
0 or za = 0p (because D is a pd diagonal matrix). Thus, ξ2

ω2 = 1 − ξ′
ω1ξω1 = 1 only if za =

0p. This concludes the proof of property (iv).

27.5 Proof of Lemma 27.4

Lemma 27.4 is stated in Section 27.1.
For notational simplicity, the following proof is for the sequence {n}, rather than a

subsequence {wn : n≥ 1}. The same proof holds for any subsequence {wn : n≥ 1}.

Proof of Lemma 27.4. We prove part (a)(i) first. We have

Ŵ2n = n−1
n∑
i=1

(
gig

′
i −EFngig

′
i

)− ĝnĝ
′
n +EFngig

′
i →p h5�g� (27.71)

where the convergence holds by the WLLN (using the moment conditions in F ),EFngi =
0k, and λ7�Fn = W2Fn = ΩFn := EFngig

′
i → h5�g (by the definition of the sequence {λn�h :

n≥ 1}). Hence, Assumption WU(a) holds for the parameter space ΛWU with h7 = h5�g.
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Next, we establish Assumption WU(b) for the parameter space ΛWU. Using the defi-
nition of V̂n (= V̂n(θ0)) in (19), we have

V̂n = n−1
n∑
i=1

fif
′
i − f̂nf̂

′
n =EFnfif

′
i − (EFnfi)(EFnfi)

′ + op(1) (27.72)

by the WLLN’s (using the moment conditions in F ). In consequence, we have

R̂n = (B′ ⊗ Ik
)(
EFnfif

′
i − (EFnfi)

(
EFnf

′
i

))
(B⊗ Ik)+ op(1)

→p Rh := (B′ ⊗ Ik
)[
h5 − vec

((
0k�h4

))
vec
((

0k�h4
))′]

(B⊗ Ik)� (27.73)

where B= B(θ0) is defined in (19), the convergence uses the definitions of λ4�F and λ5�F

in (16.16), and the definition of {λn�h : n≥ 1} in (16.18).
This yields

Û2n = (Ω̂n� R̂n)→p (h5�g�Rh)= h8� (27.74)

which verifies Assumption WU(b) for the parameter spaceΛWU for part (a) of the lemma.
Now we establish Assumption WU(c) for the parameter spaceΛWU for part (a) of the

lemma. We take W2 (which appears in the statement of Assumption WU(c)) to be the
space of psd k× k matrices and U2 (which also appears in Assumption WU(c)) to be the
space of nonzero psd matrices (Ω�R) for Ω ∈ Rk×k and R ∈ R(p+1)k×(p+1)k. By the def-
inition of Ŵ2n, Ŵ2n ∈ W2 a.s. We have W2F ∈ W2 ∀F ∈ FWU because W2F = EFgig

′
i is psd.

We have U2F ∈ U2 ∀F ∈ FWU because U2F = (ΩF�RF), ΩF := EFgig
′
i is psd and nonzero

(by the last condition in F , even if that condition is weaken to λmax(EFgig
′
i) ≥ δ) and

RF := (B′ ⊗ Ik)VF(B⊗ Ik) is psd and nonzero because B is nonsingular and VF (defined
in (16.7)) is nonzero by the argument given in the paragraph containing (27.77) below. By
their definitions, Ω̂n and R̂n are psd. In addition, they are nonzero wp → 1 by (27.74) and
the result just established that the two matrices that comprise h8 are nonzero. Hence,
(Ω̂n� R̂n) ∈ U2 wp → 1.

The function W1(W2)=W
−1/2

2 is continuous at W2 = h7 on W2 because λmin(h7) > 0
(given that h7 = limEFngig

′
i and λmin(EFgig

′
i)≥ δ by the last condition in F ).

The functionU1(·) defined in (16.8) is well-defined in a neighborhood of h8 and con-
tinuous at h8 provided all psd matrices Ω ∈ Rk×k and R ∈ R(p+1)k×(p+1)k with (Ω�R)

in a neighborhood of h8 := lim(ΩFn�RFn) are such that Σε(Ω�R) is nonsingular, where
Σ(Ω�R) is defined in the paragraph containing (16.8) with (Ω�R) in place of (ΩF�RF)

and Σε(Ω�R) is defined given Σ(Ω�R) by (22). Lemma 22.1(b) shows that Σε(Ω�R) is
nonsingular provided λmax(Σ(Ω�R)) > 0. We have

λmax
(
Σ(Ω�R)

) ≥ max
j≤p+1

Σjj(Ω�R)= max
j≤p+1

tr
(
Ω−1/2RjjΩ

−1/2)/k
≥ max
j≤p+1

λmax
(
Ω−1/2RjjΩ

−1/2)/k
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= max
j≤p+1

sup
λ:‖λ‖=1

λ′Ω−1/2∥∥Ω−1/2λ
∥∥Rjj Ω−1/2λ∥∥Ω−1/2λ

∥∥ · ∥∥Ω−1/2λ
∥∥2/k

≥ max
j≤p+1

λmax(Rjj)λmin
(
Ω−1)/k > 0� (27.75)

where Σjj(Ω�R) denotes the (j� j) element of Σ(Ω�R), Rjj denotes the (j� j) k× k sub-

matrix of R, the first inequality holds by the definition of λmax(·), the first equality holds

by (21) with (Ω�R) in place of (Ω̂n(θ)� R̂n(θ)), the second inequality holds because the

trace of a psd matrix equals the sum of its eigenvalues by a spectral decomposition, the

third inequality holds by the definition of λmin(·), and the last inequality holds because

the conditions in F imply that λmin(Ω
−1)= 1/λmax(Ω) > 0 for Ω in some neighborhood

of limΩFn (because λmax(ΩF) = supλ∈Rk:‖λ‖=1EF(λ
′gi)2 ≤ EF‖gi‖2 ≤ M2/(2+γ) < ∞ for

all F ∈ F using the Cauchy–Bunyakovsky–Schwarz inequality) and infF∈F λmax(RF) > 0,

which we show below, implies that λmax(Rjj) > 0 for some j ≤ p+ 1.

To establish Assumption WU(c) for part (a) of the lemma, it remains to show that

inf
F∈F

λmax(RF) > 0� (27.76)

We show that the last condition in F , that is, infF∈F λmin(EFgig
′
i) > 0 implies (27.76). In

fact, the last condition in F is very much stronger than is needed to get (27.76). (The full

strength of the last condition in F is used in the proof of Lemma 16.4 (see Section 25)

because Ω̂−1/2
n enters the definition of D̂n and Ω̂n −ΩFn →p 0k×k, where ΩF = EFgig

′
i.)

We show that (27.76) holds provided infF∈F λmax(EFgig
′
i) > 0.

Let x∗ ∈R(p+1)k be such that ‖x∗‖ = 1 and λmax(VF)= x∗′VFx∗. Let x† = (B⊗ Ik)
−1x∗.

Then we have

λmax(RF) := λmax
((
B′ ⊗ Ik

)
VF(B⊗ Ik)

)= sup
x∈R(p+1)k:‖x‖=1

x′(B′ ⊗ Ik
)
VF(B⊗ Ik)x

≥ x†′(B′ ⊗ Ik
)
VF(B⊗ Ik)x

† · ∥∥x†∥∥−2 = x∗′VFx∗/
(
x∗′(B⊗ Ik)

−1′(B⊗ Ik)
−1x∗)

≥ λmax(VF)/λmax
(
(B⊗ Ik)

−1′(B⊗ Ik)
−1)=Kλmax(VF)� (27.77)

whereK := 1/λmax((B⊗ Ik)
−1′(B⊗ Ik)

−1) is positive and does not depend on F (because

B and B ⊗ Ik are nonsingular and do not depend on F for B = B(θ0) defined in (19)).

Next, infF∈F λmax(VF) ≥ infF∈F λmax(EFgig
′
i) ≥ δ because EFgig′

i is the upper left p× p

submatrix of VF , which implies that λmax(VF) ≥ λmax(EFgig
′
i), and λmax(EFgig

′
i) ≥ δ by

the last condition in F . This completes the verification (27.76) and the verification of

Assumption WU(c) in part (a) of the lemma.

Now we prove part (a)(ii). It suffices to show that F ⊂ FWU for δ1 sufficiently small

and M1 sufficiently large because FWU ⊂ F by the definition of FWU. We need to show

that the four conditions in the definition of FWU in (16.12) hold.
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(I) We show that infF∈F λmin(WF) > 0, whereWF :=W1(W2F) :=Ω
−1/2
F := (EFgig

′
i)

−1/2

(by (16.5), (16.8), and (16.11)). The inequality EF‖gi‖2+γ ≤M in F implies λmin(WF)≥ δ1

for δ1 sufficiently small (because the latter holds if λmax(W
−2
F ) ≤ δ−2

1 and W −2
F = ΩF =

EFgig
′
i.

(II) We show that supF∈F ‖WF‖ <∞, where WF := W1(W2F) := Ω
−1/2
F := (EFgig

′
i)

−1/2

(by (16.5) and (16.8)). We have infF∈F λmin(ΩF) > 0 (by the last condition in F ).

(III) We show that infF∈F λmin(UF) > 0, where in the present case UF := U1(U2F) :=
((θ0� Ip)(Σ

ε
F)

−1(θ0� Ip)
′)1/2 and ΣF := Σ(ΩF�RF) has (j� �) element equal to

tr(R′
j�FΩ

−1
F )/k (by (16.8)). We have supF∈F ‖RF‖ = supF∈F ‖(B′ ⊗ Ik)VarF(fi)(B⊗ Ik)‖<

∞ (where the inequality uses the condition EF‖(g′
i� vec(Gi)

′)′‖2+γ ≤ M in F). In

addition, infF∈F λmin(ΩF) > 0 (by the last condition in F ). The latter results imply

that supF∈F ‖ΣF‖ < ∞ (because ΣF minimizes ‖(Ip+1 ⊗ Ω
−1/2
F )[Σ ⊗ ΩF − RF ](Ip+1 ⊗

Ω
−1/2
F )‖, see the paragraph containing (16.8)). This implies that supF∈F ‖ΣεF‖ < ∞.

In addition, ΣF is nonsingular ∀F ∈ F (because infF∈F λmin(ΣF) > 0 by the proof of

result (IV) below). The last two results imply the desired result infF∈F λmin(UF) =
infF∈F λmin((θ0� Ip)(Σ

ε
F)

−1(θ0� Ip)
′)1/2) > 0 (because A := (θ0� Ip) ∈ Rp×(p+1) has full

row rank p and λmin(UF) = infλ∈Rp:‖λ‖=1 λ
′A(ΣεF)

−1A′λ ≥ infλ∈Rp:‖λ‖=1(A
′λ)′(ΣεF)

−1 ×
(A′λ)/‖A′λ‖2 × infλ∈Rp:‖λ‖=1 ‖A′λ‖2 = λmin((Σ

ε
F)

−1)λmin(AA
′)≥ δ2 for some δ2 > 0 that

does not depend on F).

(IV) We show that supF∈F ‖UF‖<∞, where UF is defined in (III) immediately above.

By the same calculations as in (27.75) (which use (27.76)) with ΣF and (ΩF�RF) in place

of Σ(Ω�R) and (Ω�R), respectively, we have infF∈FP
λmax(ΣF) > 0. The latter implies

infF∈FP
λmin(Σ

ε
F) > 0 by Lemma 22.1(b). In turn, the latter implies the desired result

supF∈FP
‖UF‖ = supF∈FP

‖((θ0� Ip)× (ΣεF)
−1(θ0� Ip)

′)1/2‖<∞.

This completes the proof of part (a)(ii).

Now, we prove part (b)(i) of the lemma. Assumption WU(a) holds for the parameter

space ΛWU�P with h7 = h5�g by the same argument as for part (a)(i).

Next, we verify Assumption WU(b) for the parameter space ΛWU�P for Û2n =
(Ω̂n� R̃n). Using the definition of Ṽn (= Ṽn(θ0)) in (15.5), we have

Ṽn = n−1
n∑
i=1

(
u∗
i u

∗′
i ⊗ZiZ

′
i

)− n−1
n∑
i=1

(
û∗
inu

∗′
i ⊗ZiZ

′
i

)− n−1
n∑
i=1

(
u∗
i û

∗′
in ⊗ZiZ

′
i

)
+n−1

n∑
i=1

(
û∗
inû

∗′
in ⊗ZiZ

′
i

)
� (27.78)
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We have

n−1
n∑
i=1

(
u∗
i u

∗′
i ⊗ZiZ

′
i

)=EFnfif
′
i + op(1)�

Ξ̃n = (n−1Z′
n×kZn×k

)−1
n−1Z′

n×kU
∗

= (EFnZiZ′
i

)−1
EFnZiu

∗′
i + op(1)

= (EFnZiZ′
i

)−1
EFn(gi�Gi)+ op(1)=:ΞFn + op(1)�

n−1
n∑
i=1

(
û∗
inu

∗′
i ⊗ZiZ

′
i

)= n−1
n∑
i=1

(
Ξ̃′
nZiu

∗′
i ⊗ZiZ

′
i

)
=EFn

(
Ξ′
Fn
(gi�Gi)⊗ZiZ

′
i

)+ op(1)� and

n−1
n∑
i=1

(
û∗
inû

∗′
in ⊗ZiZ

′
i

)= n−1
n∑
i=1

(
Ξ̃′
nZiZ

′
iΞ̃n ⊗ZiZ

′
i

)
=EFn

(
Ξ′
Fn
ZiZ

′
iΞFn ⊗ZiZ

′
i

)+ op(1)�

(27.79)

where the first line holds by the WLLN’s (since u∗
i u

∗′
i ⊗ZiZ

′
i = fif

′
i for fi defined in (16.10)

and using the moment conditions in F ), the second line holds by the WLLN’s (using the
conditions in F and FP ), Slutsky’s theorem, andZiu∗′

i = (gi�Gi), the fourth line holds by
the WLLN’s (using EF((‖(gi�Gi)‖ · ‖Zi‖2)1+γ/4) ≤ (EF‖(gi�Gi)‖2+γ/2EF‖Zi‖4+γ)1/2 <∞
for γ > 0 by the Cauchy–Bunyakovsky–Schwarz inequality and the moment conditions
in F and FP ) and the result of the second and third lines, and the fifth line holds by the
WLLN’s (using the moment conditions in F and FP ) and the result of the second and
third lines.

Equations (16.10) (which defines ṼF ) with F = Fn, (27.78), and (27.79) combine to
give

Ṽn − ṼFn →p 0� (27.80)

Using the definitions of R̃n and R̃F (in (15.5) and (16.10)), (27.71), (27.80), and h7 :=
limW2Fn = limΩFn yield

(Ω̂n� R̃n)→p lim(ΩFn� R̃Fn)=: h8� (27.81)

This establishes Assumption WU(b) for the parameter space ΛWU�P for part (b) of the
lemma.

Assumption WU(c) holds for the parameter space ΛWU�P , with W2 and U2 defined
as above, by the argument given above to verify Assumption WU(c) in part (a) of the
lemma plus the inequality infF∈F λmax(R̃F) > 0. The latter holds by the same argu-
ment as used above to show infF∈F λmax(RF) > 0 (which is given in the paragraph
containing (27.77) and the paragraph following it), but with (i) R̃F in place of RF
and (ii) infF∈F λmax(ṼF) > 0, rather than infF∈F λmax(VF) > 0, holding. Condition (ii)
holds because infF∈F λmax(ṼF) ≥ infF∈F λmax(EFgig

′
i) > 0 because ṼF can be written as
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EF(u
∗
i − Ξ′

FZi)(u
∗
i − Ξ′

FZi)
′ ⊗ ZiZ

′
i, the first element of Ξ′

FZi is zero (because ΞF :=
(EFZiZ

′
i)

−1EF(gi�Gi), see (16.10), and EFgi = 0k), the first element of u∗
i −Ξ′

FZi = ui
(because u∗

i = (ui�u
′
θi)

′), the upper left k×k submatrix of ṼF equals EFu2
i ZiZ

′
i =EFgig

′
i,

and so, λmax(VF)≥ λmax(EFgig
′
i), and infF∈F λmax(EFgig

′
i) > 0 is implied by the last con-

dition in F . This completes the verification of Assumption WU(c) in part (b) of the
lemma.

Now, we prove part (b)(ii) of the lemma. We need to show that the four conditions in
the definition of FWU in (16.12) hold for all F ∈ FP , for some δ1 sufficiently small and
some M1 sufficiently large.

(I) & (II) We have infF∈FP
λmin(WF) > 0 and supF∈FP

‖WF‖<∞ by the proofs of (I) and
(II) for part (a)(ii) of the lemma and FP ⊂ F .

(III) We show that infF∈FP
λmin(UF) > 0, where in the present case UF :=U1(U2F) :=

((θ0� Ip)(Σ
ε(ΩF� R̃F))

−1(θ0� Ip)
′)1/2 and Σ(ΩF� R̃F) has (j� �) element equal to

tr(R̃′
j�FΩ

−1
F )/k (by (16.11)). The inequalities EF‖Zi‖4+γ ≤ M , EF‖(g′

i� vec(Gi)
′)′‖2+γ ≤

M , and λmin(EFZiZ
′
i) ≥ δ imply that supF∈FP

(‖ΞF‖ + ‖EFfif ′
i ‖ + ‖EF(Ξ′

FZiZ
′
iΞF ⊗

ZiZ
′
i)‖ + ‖EF(gi�Gi)ΞF ⊗ ZiZ

′
i‖) < ∞, where ΞF is defined in (16.10) (using the

Cauchy–Bunyakovsky–Schwarz inequality). This, in turn, implies that supF∈FP
‖ṼF‖ <

∞, supF∈FP
‖R̃F‖ < ∞, supF∈FP

‖Σ̃F‖ < ∞, supF∈FP
‖Σ̃εF‖ < ∞, and λmin(L̃F) ≥ δ2 for

some δ2 > 0, where ṼF and R̃F are defined in (16.10), Σ̃F :=
Σ(ΩF� R̃F), L̃F := (θ0� Ip)(Σ̃

ε
F)

−1(θ0� Ip)
′, and (Σ̃εF)

−1 exists by (IV) below (and
λmin(L̃F) ≥ δ2 holds because A := (θ0� Ip) ∈ Rp×(p+1) has full row rank p and
λmin(L̃F) = infλ∈Rp:‖λ‖=1 λ

′A(Σ̃εF)
−1A′λ ≥ infλ∈Rp:‖λ‖=1(A

′λ)′(Σ̃εF)
−1(A′λ)/‖A′λ‖2 ×

infλ∈Rp:‖λ‖=1 ‖A′λ‖2 = λmin((Σ̃
ε
F)

−1)λmin(AA
′) ≥ δ2 for some δ2 > 0 that does not de-

pend on F). Finally, λmin(L̃F)≥ δ2 implies the desired result that λmin(UF)≥ δ1 for some

δ1 > 0 (because UF := L̃
1/2
F ).

(IV) We show that supF∈FP
‖UF‖<∞, where UF is as in (III) immediately above. The

proof is the same as the proof of (IV) for part (a)(ii) of the lemma given above, but with
R̃F in place of RF and with the verification that infF∈F λmax(R̃F) > 0 given in the the
verification of Assumption WU(c) above.

Results (I)–(IV) establish the result of part (b)(ii) of the lemma.

27.6 Proof of Theorem 16.1 for the Anderson–Rubin test and CS

Proof of Theorem 16.1 for AR test and CS. We prove the AR test results of Theo-
rem 16.1 by applying Proposition 16.3 with

λ= λF := EFgig
′
i� hn(λ) := λ� and Λ := {λ : λ= λF for some F ∈ FAR}� (27.82)

We define the parameter space H as in (16.2). For notational simplicity, we verify As-
sumption B∗ used in Proposition 16.3 for a sequence {λn ∈Λ : n≥ 1} for which hn(λn)→
h ∈ H, rather than a subsequence {λwn ∈ Λ : n ≥ 1} for some subsequence {wn} of {n}.
The same argument as given below applies with a subsequence {λwn : n ≥ 1}. For the
sequence {λn ∈Λ : n≥ 1}, we have

λFn → h := limEFngig
′
i� (27.83)
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The k×k matrix h is pd because λmin(EFngig
′
i)≥ δ > 0 for all n≥ 1 (by the last condition

in FAR) and limλmin(EFngig
′
i)= λmin(h) (because the minimum eigenvalue of a matrix is

a continuous function of the matrix).
By the multivariate central limit theorem for triangular arrays of row-wise i.i.d. ran-

dom vectors with mean 0k, variance λFn that satisfies λFn → h, and uniformly bounded
2 + γ moments, we have

n1/2ĝn →d h
1/2Z� where Z ∼N

(
0k� Ik

)
� (27.84)

We have

Ω̂n = n−1
n∑
i=1

(
gig

′
i −EFngig

′
i

)− ĝnĝ
′
n +EFngig

′
i →p h and Ω̂−1

n →p h
−1� (27.85)

where the equality holds by definition of Ω̂n in (8), the first convergence result uses
(27.83), (27.84), and the WLLN’s for triangular arrays of row-wise i.i.d. random vectors
with expectation that converges to h, and uniformly bounded 1 +γ/2 moments, and the
second convergence result holds by Slutsky’s theorem because h is pd.

Equations (27.84) and (27.85) give

ARn := nĝ′
nΩ̂

−1
n ĝn →d Z

′h1/2h−1h1/2Z =Z′Z ∼ χ2
k� (27.86)

In turn, (27.86) gives

PFn
(
ARn > χ2

k�1−α
)→ P

(
Z′Z >χ2

k�1−α
)= α� (27.87)

where the equality holds because χ2
k�1−α is the 1 − α quantile of Z′Z. Equation (27.87)

verifies Assumption B∗ and the proof of the AR test results of Theorem 16.1 is com-
plete.

The proof of the AR CS results of Theorem 16.1 is analogous to those for the tests;
see the Comment to Proposition 16.3.

28. Proofs of Theorems 7.1 and 15.3

Suppose k≥ p. Let AF and Π1F be defined as in (4) and (5) and the paragraph following
these equations with θ = θ0. Define λ∗

F , Λ∗, and {λ∗
n�h : n ≥ 1} as λF , ΛWU, and {λn�h :

n≥ 1}, respectively, are defined in (16.16)–(16.18), but with gi and Gi replaced by g∗
Fi :=

Π
−1/2
1F A′

Fgi and G∗
Fi :=Π

−1/2
1F A′

FGi, with F replaced by FSR, and with WF (:=W1(W2F))
and UF (:= U1(U2F)) defined as in (16.8) with gi and Gi replaced by g∗

Fi and G∗
Fi. In

addition, we restrict {λ∗
n�h : n ≥ 1} to be a sequence for which λmin(EFngig

′
i) > 0 for all

n ≥ 1. Let (s∗1Fn� � � � � s
∗
pFn

) denote the singular values of EFG∗
Fi. Under these conditions,

AFn =AΩ
Fn

, Π1Fn =ΠFn , WFn := (Π
−1/2
1Fn

A′
Fn
ΩFnAFnΠ

−1/2
1Fn

)−1/2 = Ik, and n1/2s∗pFn → ∞ iff

n1/2spFn → ∞.

Theorem 7.1 of AG2. Suppose k≥ p. For any sequence {λ∗
n�h : n≥ 1} that exhibits strong

or semi-strong identification (i.e., for which n1/2s∗pFn → ∞) and for which λ∗
n�h ∈Λ∗ ∀n≥ 1

for the SR-CQLR test statistic and critical value, we have
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(a) SR-QLRn = QLRn + op(1)= LMn + op(1)=LMGMM
n + op(1) and

(b) ck�p(n1/2D̂∗
n�1 − α)→p χ

2
p�1−α.

Theorem 15.3. Suppose k ≥ p. For any sequence {λ∗
n�h : n ≥ 1} that exhibits strong or

semi-strong identification (i.e., for which n1/2s∗pFn → ∞) and for which λ∗
n�h ∈Λ∗

P ∀n≥ 1,
we have

(a) SR-QLRPn = QLRPn + op(1)= LMn + op(1)= LMGMM
n + op(1) and

(b) ck�p(n1/2D̃∗
n�1 − α)→p χ

2
p�1−α.

The proofs of Theorems 7.1 and 15.3 use the following lemma that concerns the
QLRWU�n statistic, which is based on general weight matrices Ŵn and Ûn (see (16.3)), and
considers sequences of distributions F in F or FP , rather than sequences in FSR or FSR

P .
Given the result of this lemma, we obtain the results of Theorems 7.1 and 15.3 using an
argument that is similar to that employed in Section 17, combined with the verification
of Assumption WU for the parameter spaces ΛWU and ΛWU�P for the CQLR and CQLRP
tests, respectively, that is given in Lemma 27.4 in Section 27.

For the weight matrix Ŵn ∈ Rk×k, Kleibergen’s LM statistic and the standard GMM
LM statistic are defined by

LMn(Ŵn) := nĝ′
nΩ̂

−1/2
n PŴnD̂n

Ω̂
−1/2
n ĝn and

LMGMM
n (Ŵn) := nĝ′

nΩ̂
−1/2
n PŴnĜn

Ω̂
−1/2
n ĝn�

(28.1)

respectively, where Ĝn is the sample Jacobian defined in (8) with θ= θ0. In Lemma 28.1,
we show that when n1/2τpFn → ∞, the QLRWU�n statistic is asymptotically equivalent to

the LMn(Ŵn) and LMGMM
n (Ŵn) statistics.

The condition n1/2τpFn → ∞ corresponds to strong or semi-strong identification in
the present context. This holds because, for F ∈ FWU, the smallest and largest singu-
lar values of WF(EFGi)UF (i.e., τmin{k�p}F and τ1F) are related to those of Ω−1/2

F EFGi,
denoted (as in Section 6.2 of AG2) by smin{k�p}F and s1F , via c1sjF ≤ τjF ≤ c2sjF for
j = min{k�p} and j = 1 for some constants 0< c1 < c2 <∞. This result uses the condition
λmin(ΩF) ≥ δ > 0 in FWU. (See Section 10.3 in the SM to AG1 for the argument used to
prove this result.) In consequence, when k ≥ p, the standard weak, nonstandard weak,
semi-strong, and strong identification categories defined in Section 6.2 are unchanged
if sjFn is replaced by τjFn in their definitions for j = 1�p.

Lemma 28.1. Suppose k ≥ p and Assumption WU holds for some nonempty parameter
space Λ∗ ⊂ ΛWU. Under all sequences {λn�h : n ≥ 1} with λn�h ∈ Λ∗ for which n1/2τpFn →
∞, we have

(a) QLRWU�n = LMn(Ŵn)+ op(1)= LMGMM
n (Ŵn)+ op(1) and

(b) ck�p(n1/2ŴnD̂nÛn�1 − α)→p χ
2
p�1−α.
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Comment. The choice of the weight matrix Ûn that appears in the definition of
the QLRWU�n statistic, defined in (16.3), does not affect the asymptotic distribution
of QLRWU�n statistic under strong or semi-strong identification. This holds because
QLRWU�n is within op(1) of LM statistics that project onto the matrices ŴnD̂nÛn and

ŴnĜnÛn, but such statistics do not depend on Ûn because PŴnD̂nÛn
= PŴnD̂n

and
PŴnĜnÛn

= PŴnĜn
when Ûn is a nonsingular p×p matrix. In consequence, the LM statis-

tics that appear in Lemma 28.1 (and are defined in (28.1)) do not depend on Ûn.

Proofs of Theorem 7.1 of AG2 and Theorem 15.3. By the second last paragraph of
Section 5.2, SR-QLRn(θ0) = QLRn(θ0) wp → 1 under any sequence {Fn ∈ FSR : n ≥ 1}
with rFn(θ0) = k for n large. By the same argument as given there, SR-QLRPn(θ0) =
QLRPn(θ0) wp → 1 under any sequence {Fn ∈ FSR

P : n ≥ 1} with rFn(θ0) = k for n large.
This establishes the first equality in part (a) of Theorems 7.1 and 15.3 because by as-
sumption λmin(EFngig

′
i) > 0 for all n ≥ 1 (see the paragraphs preceding Theorems 7.1

and 15.3).
Assumption WU for the parameter spacesΛWU andΛWU�P is verified in Lemma 27.4

in Section 27 for the CQLR and CQLRP tests, respectively. Hence, Lemma 28.1 im-
plies that under sequences {λn�h : n ≥ 1} we have QLRn = LMn(Ω̂

−1/2
n ) + op(1) =

LMGMM
n (Ω̂

−1/2
n ) + op(1) and likewise for QLRPn, where QLRn and QLRPn are de-

fined in (23) and in the paragraph containing (15.7), respectively, and LMn(Ω̂
−1/2
n )

and LMGMM
n (Ω̂

−1/2
n ) are defined in (28.1) with Ŵn = Ω̂

−1/2
n . In addition, Lemma 28.1

implies that ck�p(n1/2D̂∗
n�1 − α) →p χ

2
p�1−α and ck�p(n

1/2D̃∗
n�1 − α) →p χ

2
p�1−α. Note

that all of these results are for sequences of distributions F in F or FP , not FSR or
FSR
P .

Next, we employ a similar argument to that in (17.5)–(17.7) of Section 17. Specifically,
we apply the version of Lemma 28.1 described in the previous paragraph with g∗

Fi :=
Π

−1/2
1F A′

Fgi and G∗
Fi := Π

−1/2
1F A′

FGi in place of gi and Gi to the QLRn and QLRPn test
statistics and their corresponding critical values. We have n1/2s∗pFn → ∞ iff n1/2τ∗

pFn
→

∞, where s∗pF denotes the smallest singular value of EFG∗
Fi and τ∗

pF is defined to be

the smallest singular value of (EFg∗
Fig

∗′
Fi)

−1/2(EFG
∗
Fi)UF = (Π

−1/2
1F A′

FΩFAFΠ
−1/2
1F )−1/2 ×

(EFG
∗
i )UF = (EFG

∗
i )UF . In consequence, the condition n1/2τpFn → ∞ of Lemma 28.1

holds for the transformed variables g∗
Fni

and G∗
Fni

, that is, n1/2τ∗
pFn

→ ∞. In the present

case, {Π−1/2
1Fn

A′
Fn

: n ≥ 1} are nonsingular k × k matrices by the assumption that
λmin(EFngig

′
i) > 0 for all n ≥ 1 (as specified in the paragraphs preceding Theorems

7.1 and 15.3). In consequence, by Lemmas 5.1 and 15.1, the QLRn and QLRPn test
statistics and their corresponding critical values are exactly the same when based on
g∗
Fi and G∗

Fi as when based on gi and Gi. By the definitions of FSR and FSR
P , the

transformed variables g∗
Fi and G∗

Fi satisfy the conditions in F and FP ; see (17.6) and
(17.7). In particular, EFg∗

Fig
∗′
Fi = Ik and λmin(EFZ

∗
FiZ

∗′
Fi) ≥ 1/(2c) > 0, where Z∗

Fi :=
Π

−1/2
1F A′

FZi and c is as in the definition of FSR
P in (15.3). In addition, the LMn and

LMGMM
n statistics are exactly the same when based on g∗

Fi and G∗
Fi as when based

on gi and Gi. (This holds because, for any k × k nonsingular matrix M ,
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such as M = Π
−1/2
1F A′

F , we have LMn := nĝ′
nΩ̂

−1
n D̂n[D̂′

nΩ̂
−1
n D̂n]−1D̂′

nΩ̂
−1
n ĝn

= nĝ′
nM

′(MΩ̂nM
′)−1MD̂n[D̂′

nM
′(MΩ̂nM

′)−1MD̂n]−1D̂′
nM

′(MΩ̂nM
′)−1ĝn and likewise

for LMGMM
n �) Using these results, the version of Lemma 28.1 described in the previous

paragraph applied to the transformed variables g∗
Fi and G∗

Fi establishes the second and
third equalities of part (a) of Theorems 7.1 and 15.3 and part (b) of Theorems 7.1 and
15.3.

Proof of Lemma 28.1. We start by proving the first result of part (a) of the lemma. We
have n1/2τpFn → ∞ iff q = p (by the definition of q in (16.22)). Hence, by assumption,
q= p. Given this, Q+

2n(κ) (defined in (26.11) in the proof of Theorem 16.6) is a scalar. In
consequence, (26.13) and (26.16) with j = p+ 1 give

0 = ∣∣Q+
2n

(̂
κ+
(p+1)n

)∣∣= ∣∣M+
n�p+1−q − κ̂+

(p+1)n

(
1 + op(1)

)∣∣ and, hence�

κ̂+
(p+1)n =M+

n�p+1−q
(
1 + op(1)

)
= (n1/2B+′

n�p+1−qU
+′
n D̂

+′
n W

′
n

)
× h3�k−qh′

3�k−q
(
n1/2WnD̂

+
n U

+
n B

+
n�p+1−q

)(
1 + op(1)

)+ op(1)

= (n1/2ĝ′
nΩ̂

−1/2
n Ŵ −1′

n W ′
n

)
× h3�k−qh′

3�k−q
(
n1/2WnŴ

−1
n Ω̂

−1/2
n ĝn

)(
1 + op(1)

)+ op(1)

= nĝ′
nΩ̂

−1/2
n h3�k−qh′

3�k−qΩ̂
−1/2
n ĝn + op(1)�

(28.2)

where κ̂+
(p+1)n is defined in (26.2), the equality on the third line holds by the defi-

nition of M+
n�p+1−q in (26.16), the equality on the fourth line holds by lines two and

three of (26.7) because when q= p the third line of (26.7) becomes n1/2WnŴ
−1
n Ω̂

−1/2
n ĝn,

that is, n1/2WnD̂nUnBn�p−q drops out, as noted near the end of the proof of Theo-
rem 16.6, and the last equality holds because WnŴ

−1
n = Ik + op(1) by Assumption WU

and n1/2Ω̂
−1/2
n ĝn =Op(1).

Next, we have

QLRWU�n := ARn − λmin(nQ̂WU�n)

= ARn − κ̂+
(p+1)n

= nĝ′
nΩ̂

−1/2
n

(
Ik − h3�k−qh′

3�k−q
)
Ω̂

−1/2
n ĝn + op(1)

= nĝ′
nΩ̂

−1/2
n h3�qh

′
3�qΩ̂

−1/2
n ĝn + op(1)� (28.3)

where the first equality holds by the definition of QLRWU�n in (16.3), the second equality
holds by the definition of κ̂+

(p+1)n in (26.2), the third equality holds by (28.2) and the

definition ARn := nĝ′
nΩ̂

−1
n ĝn in (9), and the last equality holds because h3 = (h3�q�h3�k−q)

is a k× k orthogonal matrix.
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When q= p, by Lemma 16.4, we have

n1/2WnD̂nUnTn →d  h = h3�q and so

n1/2ŴnD̂nUnTn →p h3�q�
(28.4)

where the equality holds by the definition of  h in (16.24) when q = p and the second
convergence uses WnŴ

−1
n = Ik + op(1) by Assumption WU. In consequence,

PŴnD̂n
= Pn1/2ŴnD̂nUnTn

= Ph3�q + op(1)= h3�qh
′
3�q + op(1) and

QLRWU�n = LMn(Ŵn)+ op(1)�
(28.5)

where the first equality holds because n1/2UnTn is nonsingular wp → 1 by Assumption
WU and post-multiplication by a nonsingular matrix does not affect the resulting pro-
jection matrix, the second equality holds by (28.4), the third equality holds because
h′

3�qh3�q = Iq (since h3 = (h3�q�h3�k−q) is an orthogonal matrix), and the second line

holds by the first line, (28.3), n1/2Ω̂
−1/2
n ĝn = Op(1), and the definition of LMn(Ŵn) in

(28.1).
As in (25.5) in Section 25 with Ĝn in place of D̂n, we have

WnĜnUnBn�qΥ
−1
n�q =WnDnUnBn�qΥ

−1
n�q +Wnn

1/2(Ĝn −Dn)UnBn�q
(
n1/2Υn�q

)−1

= Cn�q + op(1)→p h3�q� (28.6)

where Dn := EFnGi, the second equality uses (among other things) n1/2τjFn → ∞ for
all j ≤ q (by the definition of q in (16.22)). The convergence in (28.6) holds by (16.19),
(16.24), and (25.1). Using (28.6) in place of the first line of (28.4), the proof of QLRWU�n =
LMGMM

n (Ŵn) + op(1) is the same as that given for QLRWU�n = LMn(Ŵn) + op(1). This
completes the proof of part (a) of Lemma 28.1.

By (27.10) in the proof of Theorem 27.1, we have

ck�p
(
n1/2ŴnD̂nÛn�1 − α

)→d ck�p�q(τ[2]h�1 − α) and

ck�p�q(τ[2]h�1 − α)= χ2
p�1−α when q= p�

(28.7)

where the second line of (28.7) holds by the sentence following (27.9). This proves part
(b) of Lemma 28.1 because convergence in distribution to a constant is equivalent to
convergence in probability to the same constant.

29. Proofs of Lemmas 19.1, 19.2, and 19.3

29.1 Proof of Lemma 19.1

Lemma 19.1. Suppose Assumption HLIV holds. Under the null hypothesis H0 : θ =
θ0, for any sequence of reduced-form parameters {πn ∈ Π : n ≥ 1} and any p ≥ 1, we
have: (a) R̃n →p ΣV ⊗ KZ , (b) Ω̂n →p (b

′
0ΣV b0)KZ , where b0 := (1�−θ′

0)
′, (c) Σ̃n →p

(b′
0ΣV b0)

−1ΣV , (d) Σ̃εn →p (b
′
0ΣV b0)

−1ΣV , (e) n1/2Ω̂
−1/2
n ĝn = Sn + op(1), and (f) n1/2D̃∗

n =
−(Ik + op(1))Tn(Ip + op(1))+ op(1).
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In this section, we suppress the dependence of various quantities on θ0 for nota-
tional simplicity. Thus, gi := gi(θ0), Gi :=Gi(θ0) = (Gi1� � � � �Gip) ∈ Rk×p, and similarly
for ĝn, Ĝn, fi, B, D̂n, Γ̂jn, Ω̂n, R̃n, D̃∗

n, and L̃n.
The proof of Lemma 19.1 uses the following lemmas. Define

A∗
0 := ΣV B

(
b′

0ΣV 2c0� � � � � b
′
0ΣVp+1c0

Ip

)
∈R(p+1)×p�

B :=
(

1 0′
p

−θ0 −Ip

)
∈R(p+1)×(p+1)�

c0 := (b′
0ΣV b0

)−1
� b0 := (1�−θ′

0
)′
� (29.1)

(ΣV 1� � � � �ΣVp+1) := ΣV ∈R(p+1)×(p+1)� and

LV 0 := (θ0� Ip)Σ
−1
V (θ0� Ip)

′ ∈Rp×p�

As defined in (19.4), A0 := (θ0� Ip)
′ ∈R(p+1)×p.

Lemma 29.1. A∗
0LV 0 = −A0.

Comment. Some calculations show that the columns of A∗
0 and A0 are all orthogonal

to b0. Also, A∗
0 and A0 both have full column rank p. Hence, the columns of A∗

0 and A0

span the same space inRp+1. It is for this reason that there exists ap×p positive definite
matrix L=LV 0 that solves A∗

0L= −A0.

Lemma 29.2. Suppose Assumption HLIV holds. Under H0, we have (a) n1/2ĝn →d

N(0k�b′
0ΣV b0 · KZ), (b) n−1∑n

i=1(Gijg
′
i − EGijg

′
i) = op(1) ∀j ≤ p, (c) Ĝn = Op(1),

(d) n−1∑n
i=1(gig

′
i −Egig

′
i)= op(1), and (e) Ĝn − n−1∑n

i=1EGi =Op(n
−1/2).

Proof of Lemma 19.1. To prove part (a), we determine the probability limit of Ṽn
defined in (15.5). By (15.5) and (19.1)–(19.3), in the linear IV regression model with
reduced-form parameter πn, we have

ui := ui(θ0)= y1i −Y ′
2iθ0� Eui = 0�

uθi = −Y2i = −π ′
nZi − V2i� Euθi = −π ′

nZi�

u∗
i :=
(
ui
uθi

)
=
(
ui

−Y2i

)
=Ξ′

nZi +
(
ui

−V2i

)
� where Ξn = (0k�−πn) ∈Rk×(p+1)�

Eu∗
i =Ξ′

nZi�u
∗
i −Eu∗

i =
(
ui

−V2i

)
= B′Vi� û∗

in −Eu∗
i = (Ξ̃n −Ξn)

′Zi� and

U∗ := (u∗
1� � � � � u

∗
n

)′ =Zn×kΞn + V B� where V := (V1� � � � � Vn)
′ ∈Rn×(p+1)

(29.2)

and B := B(θ0) is defined in (15.5).
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Next, we have

Ξ̃n −Ξn = (Z′
n×kZn×k

)−1
Z′
n×kU

∗ −Ξn

= (n−1Z′
n×kZn×k

)−1
n−1Z′

n×kV B=Op
(
n−1/2)� (29.3)

where the first equality holds by the definition of Ξ̃n in (15.5), the second equality uses
the last line of (29.2), and the third equality holds by Assumption HLIV(c) (specifically,
n−1Z′

n×kZn×k → KZ and KZ is pd) and by n−1/2Z′
n×kV = Op(1) (which holds because

EZ′
n×kV = 0 and the variance of the (j� �) element of n−1/2Z′

n×kV is n−1∑n
i=1Z

2
ijEV

2
i� →

KZjjEV
2
i� <∞ using Assumption HLIV(c), where KZjj denotes the (j� j) element of KZ ,

for all j ≤ k, �≤ p+ 1).
By the definition of Ṽn in (15.5) and simple algebra, we have

Ṽn := n−1
n∑
i=1

[(
u∗
i − û∗

in

)(
u∗
i − û∗

in

)′ ⊗ZiZ
′
i

]
= n−1

n∑
i=1

[(
u∗
i −Eu∗

i

)(
u∗
i −Eu∗

i

)′ ⊗ZiZ
′
i

]
− n−1

n∑
i=1

[(
û∗
in −Eu∗

i

)(
u∗
i −Eu∗

i

)′ ⊗ZiZ
′
i

]
− n−1

n∑
i=1

[(
u∗
i −Eu∗

i

)(
û∗
in −Eu∗

i

)′ ⊗ZiZ
′
i

]
+ n−1

n∑
i=1

[(
û∗
in −Eu∗

i

)(
û∗
in −Eu∗

i

)′ ⊗ZiZ
′
i

]
� (29.4)

Using the third line of (29.2), the fourth summand on the rhs of (29.4) equals

n−1
n∑
i=1

[
(Ξ̃n −Ξn)

′ZiZ′
i(Ξ̃n −Ξn)⊗ZiZ

′
i

]
� (29.5)

The elements of the fourth summand on the rhs of (29.4) are each op(1) because each is
bounded by Op(n−1)n−1∑n

i=1 ‖Zi‖4 using (29.3) and n−1∑n
i=1 ‖Zi‖4 ≤ n−1∑n

i=1 ‖Zi‖4 ×
1(‖Zi‖> 1)+ 1 ≤ n−1∑n

i=1 ‖Zi‖6 + 1 = o(n) by Assumption HLIV(c).
Using the third line of (29.2), the second summand on the rhs of (29.4) (excluding

the minus sign) equals

n−1
n∑
i=1

[
(Ξ̃n −Ξn)

′ZiV ′
i B⊗ZiZ

′
i

]
� (29.6)

The elements of the second summand on the rhs of (29.4) are each op(1) because Ξ̃n −
Ξn = Op(n

−1/2) by (29.3) and for any j1� j2� j3 ≤ k and � ≤ p we have n−1∑n
i=1Zij1Zij2 ×

Zij3Vi� = op(n
1/2) because its mean is zero and its variance is EV 2

i�n
−1∑n

i=1Z
2
ij1
Z2
ij2
Z2
ij3

=
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o(n) by Assumption HLIV(c). By the same argument, the elements of the third summand
on the rhs of (29.4) are each op(1).

In consequence, we have

Ṽn = n−1
n∑
i=1

[
B′ViV ′

i B⊗ZiZ
′
i

]+ op(1)

= n−1
n∑
i=1

[(
B′ViV ′

i B−B′ΣV B
)⊗ZiZ

′
i

]+ [B′ΣV B⊗ n−1
n∑
i=1

ZiZ
′
i

]
+ op(1)

→p B
′ΣV B⊗KZ� (29.7)

where the first equality holds using (29.4), the argument in the two paragraphs follow-
ing (29.4), and the third line of (29.2), the second equality holds by adding and subtract-
ing the same quantity, and the convergence holds by Assumption HLIV(c) (specifically,
n−1∑n

i=1ZiZ
′
i →KZ) and because the first summand on the second line is op(1) (which

holds because it has mean zero and each of its elements has variance that is bounded by
O(n−2∑n

i=1 ‖Zi‖4) = o(1), where the latter equality holds by the calculations following
(29.5)).

Equation (29.7) gives

R̃n := (B′ ⊗ Ik
)
Ṽn(B⊗ Ik)→p ΣV ⊗KZ (29.8)

because B′B′ = BB= Ip+1. Hence, part (a) holds.
To prove part (b), we have

Ω̂n := n−1
n∑
i=1

gig
′
i − ĝnĝ

′
n = n−1

n∑
i=1

Egig
′
i + n−1

n∑
i=1

(
gig

′
i −Egig

′
i

)+Op
(
n−1)

= n−1
n∑
i=1

ZiZ
′
iEu

2
i + op(1)→p

(
b′

0ΣV b0
)
KZ� (29.9)

where the first equality holds by the definition in (8), second equality uses n1/2ĝn =Op(1)
by Lemma 29.2(a), the third equality holds by Lemma 29.2(d), and the convergence
holds by Assumption HLIV(c) and because Eu2

i = E(V ′
i b0)

2 = b′
0ΣV b0 by Assumption

HLIV(b).
Part (c) holds because

Σ̃j�n = tr
(
R̃j�nΩ̂

−1
n

)
/k→p tr

(
ΣVj�KZ

(
b′

0ΣV b0
)−1

K−1
Z

)
/k= ΣVj�

(
b′

0ΣV b0
)−1

� (29.10)

where Σ̃j�n and ΣVj� denote the (j� �) elements of Σ̃n and ΣV , respectively, R̃j�n de-
notes the (j� �) submatrix of R̃n of dimension k× k, and the convergence holds because
R̃j�n →p ΣVj�KZ for j� �= 1� � � � �p+ 1 and Ω̂n →p (b

′
0ΣV b0)KZ by parts (a) and (b) of the

lemma.
Part (d) holds because Σ̃εn →p ((b

′
0ΣV b0)

−1ΣV )
ε by part (c) of the lemma and

Lemma 22.1(e), ((b′
0ΣV b0)

−1ΣV )
ε = (b′

0ΣV b0)
−1ΣεV by Lemma 22.1(d), and ΣεV = ΣV by

Assumption HLIV(e) and Comment (ii) to Lemma 22.1).
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We prove part (f) next. We have

n−1Z′
n×kY =

(
n−1

n∑
i=1

Zi
(
y1i −Y ′

2iθ0
)+ n−1

n∑
i=1

ZiY
′
2iθ0� n

−1
n∑
i=1

ZiY2i

)

= (ĝn − Ĝnθ0�−Ĝn)= (ĝn� Ĝn)

(
1 0′

p

−θ0 −Ip

)
= (ĝn� Ĝn)B� (29.11)

where the expressions for ĝn and Ĝn use (19.3). Using (29.11) and the definition of LV 0
in (29.1), the statistic Tn defined in (19.4) can be written as

Tn := (Z′
n×kZn×k

)−1/2
Z′
n×kYΣ

−1
V A0
(
A′

0Σ
−1
V A0
)−1/2

= n1/2(n−1Z′
n×kZn×k

)−1/2
(ĝn� Ĝn)BΣ

−1
V A0L

−1/2
V 0 � (29.12)

Note that, using the definitions ofB andLV 0 in (29.1) andA0 in (19.4), the rhs expression
for Tn equals the expression in (19.4).

Now we simplify the statistic D̂n := (D̂1n� � � � � D̂pn), where D̂jn := Ĝjn − Γ̂jnΩ̂
−1
n ĝn for

j = 1� � � � �p, by replacing Γ̂jn and Ω̂n by their probability limits plus op(1) terms. Let
πn := (π1n� � � � �πpn) ∈Rk×p. For j = 1� � � � �p, we have

Γ̂jn := n−1
n∑
i=1

(Gij − Ĝjn)g
′
i = n−1

n∑
i=1

EGijg
′
i + n−1

n∑
i=1

(
Gijg

′
i −EGijg

′
i

)− Ĝjnĝ
′
n

= n−1
n∑
i=1

EGijg
′
i + op(1)= −n−1

n∑
i=1

EZiY2ijZ
′
iui + op(1)

= −n−1
n∑
i=1

ZiZ
′
iEV2ijV

′
i b0 + n−1

n∑
i=1

ZiZ
′
i

(
Z′
iπjn
)
Eui + op(1)

= −n−1
n∑
i=1

ZiZ
′
iΣ

′
Vj+1b0 + op(1)� (29.13)

where gi =Zi(y1i−Y ′
2iθ0)=Ziui by (19.3), the third equality holds by Lemma 29.2(a)–(c),

the fourth equality holds by (19.3) with θ= θ0, the fifth equality uses Y2ij = Z′
iπjn + V2ij

and ui = V ′
i b0, and the sixth equality holds because EVi = 0 by Assumption HLIV(b),

ui = V ′
i b0, and ΣV := (ΣV 1� � � � �ΣVp+1) := EViV

′
i .

Equations (29.9) and (29.13) give

D̂jn := Ĝjn − Γ̂jnΩ̂
−1
n ĝn = Ĝjn +Σ′

Vj+1b0
(
b′

0ΣV b0
)−1

ĝn + op
(
n−1/2) and

D̂n := (D̂1n� � � � � D̂pn)= (ĝn� Ĝn)

(
Σ′
V 2b0c0� � � � �Σ

′
Vp+1b0c0

Ip

)
+ op
(
n−1/2)

= (ĝn� Ĝn)BΣ
−1
V

(
ΣV B

(
Σ′
V 2b0c0� � � � �Σ

′
Vp+1b0c0

Ip

))
+ op
(
n−1/2)

= (ĝn� Ĝn)BΣ
−1
V A∗

0 + op
(
n−1/2)�

(29.14)
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where the second equality on the first line uses ĝn = Op(n
−1/2) by Lemma 29.2(a), the

second line uses c0 = (b′
0ΣV b0)

−1, the second last equality holds because B−1 = B, and
the last equality holds by the definition of A∗

0 in (29.1).
Now, we have

n1/2D̃∗
n := n1/2Ω̂

−1/2
n D̂nL̂

1/2
n

= (b′
0ΣV b0

)−1/2(
Ik + op(1)

)(
n−1Z′

n×kZn×k
)−1/2

n1/2(ĝn� Ĝn)BΣ
−1
V A∗

0

× (b′
0ΣV b0

)1/2
L

1/2
V 0

(
Ip + op(1)

)+ op(1)

= −(Ik + op(1)
)(
n−1Z′

n×kZn×k
)−1/2

n1/2(ĝn� Ĝn)BΣ
−1
V A0L

−1/2
V 0

(
Ip + op(1)

)
+ op(1)

= −(Ik + op(1)
)
Tn
(
Ip + op(1)

)+ op(1)� (29.15)

where the first equality holds by the definition of D̃∗
n in (23), the second equality holds

by (29.14), Ω̂n →p (b
′
0ΣV b0)KZ (which holds by part (b) of the lemma), and L̃n :=

(θ0� Ip)(Σ̃
ε
n)

−1(θ0� Ip)
′ →p (b

′
0ΣV b0)LV 0 (which holds because Σ̃εn →p (b

′
0ΣV b0)

−1ΣV by

part (d) of the lemma), forLV 0 := (θ0� Ip)Σ
−1
V (θ0� Ip)

′ defined in (29.1), the third equality
holds by Lemma 29.1, and the last equality holds by (29.12). This completes the proof of
part (f).

Lastly, we prove part (e). The statistic Sn satisfies

Sn := (Z′
n×kZn×k

)−1/2
Z′
n×kYb0

(
b′

0ΣV b0
)−1/2

= n1/2

(
n−1

n∑
i=1

ZiZ
′
i

)−1/2

ĝn
(
b′

0ΣV b0
)−1/2

= n1/2Ω̂
−1/2
n ĝn + op(1)� (29.16)

where the first equality holds by the definition of Sn in (19.4), the second equality
holds because Y ′

i b0 = ui, and the third equality holds by (29.9) and n1/2ĝn = Op(1) by
Lemma 29.2(a). This proves part (e).

Proof of Lemma 29.1. By premultiplying by BΣ−1
V , the equation A∗

0LV 0 = −A0 is seen
to be equivalent to(

b′
0ΣV 2c0� � � � � b

′
0ΣVp+1c0

Ip

)
LV 0 = −BΣ−1

V

(
θ′

0
Ip

)
=
(

−1 0p′
θ0 Ip

)
Σ−1
V

(
θ′

0
Ip

)
� (29.17)

The last p rows of these p+ 1 equations are

LV 0 = (θ0� Ip)Σ
−1
V (θ0� Ip)

′� (29.18)

which hold by the definition of LV 0 in (29.1).
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Substituting in the definition of LV 0, the first row of the equations in (29.17) is(
b′

0ΣV 2c0� � � � � b
′
0ΣVp+1c0

)
(θ0� Ip)Σ

−1
V (θ0� Ip)

′ = (−1�0p′)Σ−1
V (θ0� Ip)

′� (29.19)

Equation (29.19) holds by the following argument. Write ΣV := (ΣV 1�Σ
∗
V 2) for Σ∗

V 2 ∈
R(p+1)×p. Then b′

0Σ
∗
V 2θ0 = −b′

0ΣV b0 + b′
0ΣV 1, since b0 := (1�−θ′

0)
′. The left-hand side

of (29.19) equals(
b′

0Σ
∗
V 2θ0c0� b

′
0ΣV 2c0� � � � � b

′
0ΣVp+1c0

)
Σ−1
V (θ0� Ip)

′

= ((−b′
0ΣV b0 + b′

0ΣV 1
)
c0� b

′
0ΣV 2c0� � � � � b

′
0ΣVp+1c0

)
Σ−1
V (θ0� Ip)

′

= (−1 + b′
0ΣV 1c0� b

′
0ΣV 2c0� � � � � b

′
0ΣVp+1c0

)
Σ−1
V (θ0� Ip)

′� (29.20)

where the second equality uses the definition of c0 in (29.1).
Hence, the difference between the left-hand side (lhs) and the rhs of (29.19) equals

(
b′

0ΣV 1c0� � � � � b
′
0ΣVp+1c0

)
Σ−1
V (θ0� Ip)

′ = c0b
′
0ΣV Σ

−1
V

(
θ′

0
Ip

)
= 0′

p (29.21)

using b′
0 := (1�−θ′

0). Thus, (29.19) holds, which completes the proof.

Proof of Lemma 29.2. Part (a) holds by the CLT of Eicker (1963, Theorem 3) and the
Cramér–Wold device under Assumptions HLIV(a)–(c) because n1/2ĝn = n−1∑n

i=1Ziui
is an average of i.i.d. mean-zero finite-variance random variables ui with nonrandom
weights Zi.

To show part (b), we write

n−1
n∑
i=1

(
Gijg

′
i −EGijg

′
i

)
= −n−1

n∑
i=1

ZiZ
′
i(Y2ijui −EY2ijui)

= −n−1
n∑
i=1

ZiZ
′
i

(
Z′
iπjn
)
ui − n−1

n∑
i=1

ZiZ
′
i

(
V2ijui −Σ′

Vj+1b0
)
� (29.22)

where the first equality holds because gi = Ziui and Gij = −ZiY2ij , the second equality
holds because Y2ij = Z′

iπjn + V2ij and EV2ijui = EV2ijV
′
i b0 = Σ′

Vj+1b0. Both summands
on the rhs have mean zero. The (�1� �2) element of the first summand has variance
equal to n−2∑n

i=1(Zi�1Zi�2Z
′
iπjn)

2 × Var(ui), which converges to zero for all �1� �2 ≤ k

because n−1∑n
i=1 ‖Zi‖6 = o(n), Var(ui) = b′

0ΣV b0 < ∞, and supj≤p�n≥1 ‖πjn‖ < ∞ by
Assumption HLIV(b)–(d). The (�1� �2) element of the second summand has variance
equal to n−2∑n

i=1Z
2
i�1
Z2
i�2

Var(V2ijui), which converges to zero for all �1� �2 ≤ k because

n−1∑n
i=1 ‖Zi‖6 = o(n) and Var(V2ijui)≤ E(V2ijV

′
i b0)

2 ≤ b′
0b0E‖Vi‖4 <∞ by Assumptions

HLIV(b)–(c). This establishes part (b).
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For part (c), we have

Ĝn = −n−1
n∑
i=1

ZiY
′
2i = −n−1

n∑
i=1

ZiZ
′
iπn − n−1

n∑
i=1

ZiV
′

2i� (29.23)

The first term on the rhs is O(1) by Assumption HLIV(c)–(d). The second term on the
rhs is Op(n−1/2) (= op(1)) because it has mean zero and its (�� j) element for � ≤ k and
j ≤ p has variance n−2∑n

i=1Z
2
i�ΣVj∗j∗ , where ΣVj∗j∗ <∞ is the (j∗� j∗) element of ΣV and

j∗ = j + 1, and n−1∑n
i=1Z

2
i�ΣVj∗j∗ →KZ��ΣVj∗j∗ , where KZ�� <∞ is the (�� �) element of

KZ . Hence, the rhs is Op(1), which establishes part (c).
To prove part (d), we have

n−1
n∑
i=1

(
gig

′
i −Egig

′
i

)= n−1
n∑
i=1

ZiZ
′
i

(
u2
i −Eu2

i

)→p 0� (29.24)

where the convergence holds because the rhs of the equality has mean zero and
its (�1� �2) element has variance equal to n−1 times n−1∑n

i=1(Z
2
i�1
Z2
i�2

Var((V ′
i b0)

2) ≤
n−1∑n

i=1 ‖Zi‖4E‖Vi‖4‖b0‖4 <∞ by Assumption HLIV(b)–(c) for all �1� �2 ≤ k. This proves
part (d).

Part (e) holds by the following argument:

Ĝn − n−1
n∑
i=1

EGi = −n−1
n∑
i=1

Zi(Y2i −EY2i)
′ = −n−1

n∑
i=1

ZiV
′

2i =Op
(
n−1/2)� (29.25)

where the last equality holds by the argument following (29.23).

29.2 Proof of Lemma 19.2

Lemma 19.2. Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesisH0 :
θ = θ0 and any p ≥ 1, we have: (a) R̂n →p R(π∗), (b) Σ̂n →p (b

′
0ΣV b0)

−1ΣV ∗, (c) Σ̂εn →p

(b′
0ΣV b0)

−1ΣV ∗, and (d) n1/2D̂∗
n = −(Ik + op(1))Tn(L

−1/2
V 0 L

1/2
V ∗ + op(1)) + op(1), where

LV 0 := (θ0� Ip)Σ
−1
V (θ0� Ip)

′ ∈Rp×p and LV ∗ := (θ0� Ip)Σ
−1
V ∗(θ0� Ip)

′ ∈Rp×p.

Proof of Lemma 19.2. To prove part (a), we determine the probability limit of V̂n de-
fined in (19), where fi = (Z′

iui�− vec(ZiY ′
2i)

′)′ by (19.1) and (19.3). For ζn(π) defined in
(19.6), we can write

ζn(πn)= n−1
n∑
i=1

Z∗
niZ

∗′
ni� where

Z∗
ni := vec

(
ZiZ

′
iπn − n−1

n∑
�=1

Z�Z
′
�πn

)

= (π ′
n ⊗Zi

)
Zi − n−1

n∑
�=1

(
π′
n ⊗Z�

)
Z� ∈Rkp

(29.26)
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and the second equality in the second line follows from vec(ABC)= (C ′ ⊗A) vec(B).
We have

V̂n := n−1
n∑
i=1

(
fi − n−1

n∑
�=1

Ef�

)(
fi − n−1

n∑
�=1

Ef�

)′

−
(
f̂n − n−1

n∑
�=1

Ef�

)(
f̂n − n−1

n∑
�=1

Ef�

)′

= n−1
n∑
i=1

(
Ziui

− vec
(
ZiV

′
2i
)−Z∗

ni

)(
Ziui

− vec
(
ZiV

′
2i
)−Z∗

ni

)′
+ op(1)

= n−1
n∑
i=1

((
ui

−V2i

)(
ui

−V2i

)′
⊗ZiZ

′
i

)
+
(

0k×k 0k×kp

0kp×k ζn(πn)

)

+ n−1
n∑
i=1

(
Ziui

− vec
(
ZiV

′
2i
))( 0k

−Z∗
ni

)′
+ n−1

n∑
i=1

(
0k

−Z∗
ni

)(
Ziui

− vec
(
ZiV

′
2i
))′

+ op(1)

=
((

1 −θ′
0

0p −Ip

)
ΣV

(
1 −θ′

0
0p −Ip

)′)
⊗
(
n−1

n∑
i=1

ZiZ
′
i

)
+
(

0k×k 0k×kp

0kp×k ζ(π∗)

)
+ op(1)

= (B′ΣV B
)⊗(n−1

n∑
i=1

ZiZ
′
i

)
+
(

0k×k 0k×kp

0kp×k ζ(π∗)

)
+ op(1)� (29.27)

where the second equality holds using Eui = 0, EV2i = 0p, Y2i = π ′
nZi + V2i,

vec(ZiY ′
2i − n−1∑n

�=1EZ�Y
′
2�) = vec(ZiV ′

2i) + Z∗
ni, and Lemma 29.2(a) and (e) because

f̂n − n−1∑n
�=1Ef� = (ĝ′

n� vec(Ĝn − n−1∑n
�=1EG�)

′)′, the third equality holds by (29.26)
and simple rearrangement, the fourth equality holds because (i) the first summand on
the rhs of the fourth equality is the mean of the first summand on the lhs of the fourth
equality using ui = (1�−θ′

0)Vi, (ii) the variance of each element of the lhs matrix is o(1)
because E‖Vi‖4 < ∞ and n−1∑n

i=1 ‖Zi‖4 = o(n) by Assumption HLIV(b)–(c) (because
n−1∑n

i=1 ‖Zi‖4 ≤ n−1∑n
i=1 ‖Zi‖41(‖Zi‖ > 1) + 1 ≤ n−1∑n

i=1 ‖Zi‖6 + 1 = o(n) using As-
sumption HLIV(c)), (iii) ζn(πn)→ ζ(π∗) by Assumption HLIV2(a)–(b), and (iv) the third
and fourth summands on the lhs of the fourth equality have zero means and the vari-
ance of each element of these summands is o(1) (because each variance is bounded
by n−2∑n

i=1 ‖Z∗
ni‖2‖Zi‖2 ≤ ‖πn‖2(n−2∑n

i=1 ‖Zi‖6 + 2n−2∑n
i=1 ‖Zi‖4n−1∑n

�=1 ‖Z�‖2 +
n−2∑n

i=1 ‖Zi‖2(n−1∑n
�=1 ‖Z�‖2)2) = o(1), using ‖Z∗

ni‖ ≤ ‖πn‖(‖Zi‖2 + n−1∑n
�=1 ‖Z�‖2),

supπ∈Π ‖πn‖ < ∞, and E‖Vi‖2 < ∞ by Assumption HLIV(b)–(d)), and the fifth equality
holds by the definition of B in (19).

Using the definitions of R̂n in (19) and R(π∗) in (19.7), part (a) of the lemma follows
from (29.27).

Next, we prove part (b). We have

Σ̂j�n = tr
(
R̂′
j�nΩ̂

−1
n

)
/k→p tr

(
Rj�(π∗)′

(
b′

0ΣV b0
)−1

K−1
Z

)
/k=: (b′

0ΣV b0
)−1

ΣV ∗j�� (29.28)
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where Σ̂j�n and ΣV ∗j� denote the (j� �) elements of Σ̂n and ΣV ∗, respectively, R̂′
j�n and

Rj�(π∗) denote the (j� �) submatrices of dimension k× k of R̂′
n and R(π∗), respectively,

the convergence holds by part (a) of the lemma and Lemma 19.1(b), and the last equality
holds by the definition of ΣV ∗j� in (19.8). Equation (29.28) establishes part (b).

Part (c) holds because part (b) of the lemma and Lemma 22.1(e) imply that Σ̂εn →p

((b′
0ΣV b0)

−1ΣV ∗)ε, Lemma 22.1(d) implies that ((b′
0ΣV b0)

−1ΣV ∗)ε = (b′
0ΣV b0)

−1ΣεV ∗,
and Assumption HLIV2(c) implies that ΣεV ∗ = ΣV ∗.

To prove part (d), we have

n1/2D̂∗
n

:= n1/2Ω̂
−1/2
n D̂nL̂

1/2
n

= ((b′
0ΣV b0KZ

)−1/2
K

1/2
Z + op(1)

)(
n−1Z′

n×kZn×k
)−1/2

n1/2(ĝn� Ĝn)BΣ
−1
V A∗

0L
1/2
V 0

× (L−1/2
V 0

(
b′

0ΣV b0LV ∗
)1/2 + op(1)

)+ op(1)

= −(Ik + op(1)
)(
n−1Z′

n×kZn×k
)−1/2

n1/2(ĝn� Ĝn)BΣ
−1
V A0L

−1/2
V 0

× (L−1/2
V 0 L

1/2
V ∗ + op(1)

)+ op(1)

= −(Ik + op(1)
)
Tn
(
L

−1/2
V 0 L

1/2
V ∗ + op(1)

)+ op(1)� (29.29)

where the first equality holds by the definition of D̂∗
n in (23), the second equality

holds by (i) (29.14), (ii) the result of part (c) of the lemma that Σ̂εn →p (b
′
0ΣV b0)

−1ΣV ∗,
(iii) the result of Lemma 19.1(b) that Ω̂n →p (b

′
0ΣV b0)KZ , (iv) n−1Z′

n×kZn×k → KZ by

Assumption HLIV(c), (v) L̂n := (θ0� Ip)(Σ̂
ε
n)

−1(θ0� Ip)
′ as defined in (23) with θ = θ0,

and (vi) L̂n →p b
′
0ΣV b0LV ∗ for LV ∗ defined in part (d) of the lemma, the third equal-

ity holds by Lemma 29.1, and the last equality holds by (29.12). This completes the proof
of part (d).

29.3 Proof of Lemma 19.3

Lemma 19.3. Suppose Assumption HLIV holds and p = 1. Under the null hypothe-
sis H0 : θ = θ0, for any sequence of reduced-form parameters {πn ∈ Π : n ≥ 1}, we
have: (a) rk1n(θ0) = T

′
n[Ik + LV 0K

−1/2
Z ζn(πn)K

−1/2
Z + op(1)]−1Tn · (1 + op(1)) + op(1),

(b) rk2n(θ0)= T
′
nTn(LV 0b

′
0ΣV b0)

−1 ·(1+op(1))+op(1), whereLV 0 := (θ0�1)Σ−1
V (θ0�1)′ ∈

R, and (c) LV 0b
′
0ΣV b0 = (1−2θ0ρc+θ2

0c
2)2

c2(1−ρ2)
, where c2 := Var(V2i)/Var(V1i) > 0 and ρ =

Corr(V1i� V2i) ∈ (−1�1).

When p= 1, we write

ΣV :=EViV
′
i := (ΣV 1�ΣV 2) :=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
∈R2×2 (29.30)

for ΣV 1�ΣV 2 ∈R2, using the definition in (19.2).
The proof of Lemma 19.3 uses the following lemma.
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Lemma 29.3. Under the conditions of Lemma 19.3, (a) LV 0 = σ2
1 −2θ0ρσ1σ2+θ2

0σ
2
2

σ2
1σ

2
2 (1−ρ2)

> 0,

(b) b′
0ΣV b0 = σ2

1 − 2θ0ρσ1σ2 + θ2
0σ

2
2 , and (c) LV 0(σ

2
2 − (b′

0ΣV 2)
2(b′

0ΣV b0)
−1)= 1.

Proof of Lemma 19.3. We prove part (b) first. By (29.9) and (29.14),

n1/2Ω̂
−1/2
n D̂n

= n1/2(Ik + op(1)
)(
n−1Z′

n×kZn×k
)−1/2

(ĝn� Ĝn)BΣ
−1
V A∗

0
(
b′

0ΣV b0
)−1/2 + op(1)

= −n1/2(Ik + op(1)
)(
n−1Z′

n×kZn×k
)−1/2

(ĝn� Ĝn)BΣ
−1
V A0L

−1
V 0

(
b′

0ΣV b0
)−1/2

+ op(1)

= −(Ik + op(1)
)
Tn
(
LV 0b

′
0ΣV b0

)−1/2 + op(1)� (29.31)

where the second equality holds by Lemma 29.1 and the third equality holds by (29.12).
Because T

′
n(Ik + op(1))Tn = T

′
nTn + op(1)‖Tn‖2, the result of part (b) follows.

Next, we prove part (a). We have

n−1
n∑
i=1

(Gi − Ĝn)(Gi − Ĝn)
′

= n−1
n∑
i=1

(
Gi − n−1

n∑
�=1

EG�

)(
Gi − n−1

n∑
�=1

EG�

)′

−
(
Ĝn − n−1

n∑
i=1

EGi

)(
Ĝn − n−1

n∑
i=1

EGi

)′

= n−1
n∑
i=1

(
−ZiZ′

iπn −ZiV2i + n−1
n∑
�=1

Z�Z
′
�πn

)

×
(

−ZiZ′
iπn −ZiV2i + n−1

n∑
�=1

Z�Z
′
�πn

)′
+ op(1)

= n−1
n∑
i=1

(ZiV2i)(ZiV2i)
′ + 2n−1

n∑
i=1

(
ZiZ

′
iπn
)
(ZiV2i)

′

− 2

(
n−1

n∑
�=1

Z�Z
′
�πn

)(
n−1

n∑
�=1

ZiV2i

)′

+ ζn(πn)+ op(1)

= n−1Z′
n×kZn×kσ

2
2 + ζn(πn)+ op(1)� (29.32)

where the first equality holds by algebra, the second equality holds by Lemma 29.2(e),
Gi = −ZiY2i, Y2i =Z′

iπn + V2i, and so Y2i −EY2i = V2i, the third equality holds by multi-
plying out the terms on the lhs of the third equality and using the definition of ζn(π) in
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(19.15), the first summand on the lhs of the fourth equality equals the first summand on
the rhs of the fourth equality plus op(1) by the same argument as for Lemma 29.2(d)
with V 2

2i in place of u2
i and σ2

2 := EV 2
2i in place of Eu2

i , the second summand on the
lhs of the fourth equality is op(1) because it has mean zero and its elements have vari-
ances that are bounded by 4σ2

2n
−2∑n

i=1 ‖Zi‖6 supπ∈Π ‖π‖2, which is o(1) by Assumption
HLIV(c)–(d), and the third summand on the lhs of the fourth equality is op(1) because
n−1∑n

�=1Z�Z
′
�πn =O(1) by Assumption HLIV(c) and (d) and n−1∑n

�=1ZiV2i = op(1) by
the argument following (29.23).

Combining (29.9), (29.13), (29.32) and the definition of ṼDn in (19.14), we obtain

ṼDn = n−1
n∑
i=1

ZiZ
′
i

(
σ2

2 − (b′
0ΣV 2
)2(
b′

0ΣV b0
)−1)+ ζn(πn)+ op(1)

= KZL
−1
V 0 + ζn(πn)+ op(1)� (29.33)

where the second equality holds by Lemma 29.3(c) and Assumption HLIV(c).
Next, we have

n1/2(n−1Z′
n×kZn×k

)−1/2
D̂nL

1/2
V 0

= n1/2(n−1Z′
n×kZn×k

)−1/2
(ĝn� Ĝn)BΣ

−1
V A∗

0L
1/2
V 0 + op(1)

= −n1/2(n−1Z′
n×kZn×k

)−1/2
(ĝn� Ĝn)BΣ

−1
V A0L

−1/2
V 0 + op(1)= −Tn + op(1)� (29.34)

where the first equality holds by (29.14), the second equality holds by Lemma 29.1, and
the third equality holds by (29.12).

Using (29.33), we obtain

n1/2Ṽ
−1/2
Dn D̂n = [KZL−1

V 0 + ζn(πn)+ op(1)
]−1/2

n1/2D̂n

= −[KZL−1
V 0 + ζn(πn)+ op(1)

]−1/2(
n−1Z′

n×kZn×k
)1/2

TnL
−1/2
V 0 + op(1)

= −[KZL−1
V 0 + ζn(πn)+ op(1)

]−1/2
K

1/2
Z TnL

−1/2
V 0

(
1 + op(1)

)+ op(1)� (29.35)

where the second equality holds using (29.34) and Assumption HLIV(c), the third equal-
ity holds by Assumption HLIV(c) and some calculations. Using this, we obtain

rk1n := nD̂′
nṼ

−1
Dn D̂n

= T
′
nK

1/2
Z

[
KZL

−1
V 0 + ζn(πn)+ op(1)

]−1
K

1/2
Z TnL

−1
V 0

(
1 + op(1)

)+ op(1)

= T
′
n

[
Ik +LV 0K

−1/2
Z ζn(πn)K

−1/2
Z + op(1)

]−1
Tn
(
1 + op(1)

)+ op(1)� (29.36)

where the last equality holds by some algebra. This proves part (a) of the lemma.
Part (c) of the lemma follows from Lemma 29.3(a) and (b) by substituting in σ2

2 =
c2σ2

1 .
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Proof of Lemma 29.3. Part (a) holds by the following calculations:

LV 0 := (θ0�1)

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)−1(
θ0

1

)

= 1

σ2
1σ

2
2
(
1 − ρ2)(θ0�1)

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)(
θ0

1

)

= σ2
1 − 2θ0ρσ1σ2 + θ2

0σ
2
2

σ2
1σ

2
2
(
1 − ρ2) � (29.37)

We have LV 0 > 0 because ΣV is pd by Assumption HLIV(b) and (θ0�1) �= 02.
Part (b) holds by the first of the following two calculations:

b′
0ΣV b0 := (1�−θ0)

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)(
1

−θ0

)
= σ2

1 − 2θ0ρσ1σ2 + θ2
0σ

2
2 and

b′
0ΣV 2 := (1�−θ0)

(
ρσ1σ2�σ

2
2
)′ = ρσ1σ2 − θ0σ

2
2 �

(29.38)

Using (29.38), we obtain

σ2
2 − (b′

0ΣV 2
)2(
b′

0ΣV b0
)−1 = σ2

2 −
(
ρσ1σ2 − θ0σ

2
2
)2

σ2
1 − 2θ0ρσ1σ2 + θ2

0σ
2
2

= σ2
1σ

2
2 − 2θ0ρσ1σ

3
2 + θ2

0σ
4
2 − (ρσ1σ2 − θ0σ

2
2
)2

σ2
1 − 2θ0ρσ1σ2 + θ2

0σ
2
2

= σ2
1σ

2
2
(
1 − ρ2)

σ2
1 − 2θ0ρσ1σ2 + θ2

0σ
2
2

=L−1
V 0� (29.39)

which proves part (c).

30. Proof of Theorem 18.1

In Sections 16 and 17, we establish Theorems 6.1 and 15.2 by first establishing Theo-
rem 16.1, which concerns non-SR versions of the AR, CQLR, and CQLRP tests and em-
ploys the parameter spaces FAR, F , and FP , rather than FSR

AR, FSR, and FSR
P . We prove

Theorem 18.1 here using the same two-step approach.
In the time series context, the non-SR version of the AR statistic is defined as in (9)

based on {fi − f̂n : i ≤ n}, but with Ω̂n defined in (18.3) and Assumption Ω below, rather
than in (8), and the critical value is χ2

k�1−α. The non-SR QLR time series test statistic and

conditional critical value are defined as in Section 5.1, but with V̂n and Ω̂n defined in
(18.3) and Assumption V below based on {fi − f̂n : i ≤ n}, in place of V̂n and Ω̂n defined
in (19) and (8), respectively. The non-SR QLRP time series test statistic and conditional
critical value are defined as in Section 15, but with Ṽn and Ω̂n defined in (18.3) and As-
sumption VP below based on {(u∗

i − û∗
in)⊗ Zi : i ≤ n}, rather than in (15.5) and (8), re-

spectively.
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For the (non-SR) AR, (non-SR) CQLR and (non-SR) CQLRP tests in the time series
context, we use the following parameter spaces. We define

FTS�AR := {F : {Wi : i= · · · �0�1� � � � } are stationary and strong mixing under F with

strong mixing numbers
{
αF(m) :m≥ 1

}
that satisfy αF(m)≤ Cm−d�

EFgi = 0k�EF‖gi‖2+γ ≤M� and λmin(ΩF)≥ δ
}

(30.1)

for some γ�δ > 0, d > (2 + γ)/γ, and C�M < ∞, where ΩF is defined in (18.4). We de-
fine FTS and FTS�P as F and FP are defined in (16.1), respectively, but with FTS�AR in
place of FAR. For CSs, we use the corresponding parameter spaces FTS�Θ�AR := {(F�θ0) :
F ∈ FTS�AR(θ0)�θ0 ∈ Θ}, FTS�Θ := {(F�θ0) : F ∈ FTS(θ0)�θ0 ∈ Θ}, and FTS�Θ�P := {(F�θ0) :
F ∈ FTS�P(θ0)�θ0 ∈Θ}, where FTS�AR(θ0), FTS(θ0), and FTS�P(θ0) denote FTS�AR, FTS, and
FTS�P , respectively, with their dependence on θ0 made explicit.

For the (non-SR) CQLR test and CS in the time series context, we use the following
assumptions.

Assumption V. V̂n(θ0)− VFn(θ0)→p 0(p+1)k×(p+1)k under {Fn : n ≥ 1} for any sequence
{Fn ∈ FTS�P : n ≥ 1} for which VFn(θ0) → V for some matrix V whose upper left k × k

submatrix Ω is pd.

Assumption V-CS. V̂n(θ0n) − VFn(θ0n) →p 0(p+1)k×(p+1)k under {(Fn�θ0n) : n ≥ 1} for
any sequence {(Fn�θ0n) ∈ FTS�Θ�P : n ≥ 1} for which VFn(θ0n) → V for some matrix V

whose upper left k× k submatrix Ω is pd.

For the (non-SR) CQLRP test and CS, we use Assumptions VP and VP-CS, which are
defined to be the same as Assumptions V and V-CS, respectively, but with FTS�P and
FTS�Θ�P in place of FTS and FTS�Θ.

For the (non-SR) AR test and CS, we use AssumptionsΩ andΩ-CS, which are defined
as follows.

Assumption Ω. Ω̂n(θ0)−ΩFn�n(θ0)→p 0k×k under {Fn : n ≥ 1} for any sequence {Fn ∈
FTS�AR : n ≥ 1} for which ΩFn�n(θ0)→Ω for some pd matrix Ω and rFn�n(θ0) = r for all n
large, for any r ∈ {1� � � � �k}.

Assumption Ω-CS is the same as Assumption Ω, but with θ0n and FTS�Θ�AR in place
of θ0 and FTS�AR.

For the time series case, the asymptotic size and similarity results for the non-SR
tests and CSs are as follows.

Theorem 30.1. Suppose the AR, CQLR, and CQLRP tests are defined as above, the param-
eter spaces for F are FTS�AR, FTS, and FTS�P , respectively (defined in the paragraph con-
taining (30.1)), and the corresponding Assumption Ω, V, or VP holds for each test. Then
these tests have asymptotic sizes equal to their nominal size α ∈ (0�1) and are asymptot-
ically similar (in a uniform sense). Analogous results hold for the AR, CQLR, and CQLRP
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CSs for the parameter spaces FTS�Θ�AR, FTS�Θ, and FTS�Θ�P , respectively, provided the cor-
responding AssumptionΩ-CS, V-CS, or VP-CS holds for each CS, rather than Assumption
Ω, V, or VP .

The proof of Theorem 18.1 uses Theorem 30.1 and the following lemma.

Lemma 30.2. Suppose {Xi : i= · · · �0�1� � � � } is a strictly stationary sequence of mean zero,
square integrable, strong mixing random variables. Then Var(Xn) = 0 for any n ≥ 1 im-
plies that Xi = 0 a.s., where Xn := n−1∑n

i=1Xi.

Proof of Theorem 18.1. The proof of Theorem 18.1 using Theorem 30.1 is essentially
the same as the proof (given in Section 17) of Theorems 6.1 and 15.2 using Theorem 16.1
and Lemma 17.1. Thus, we need an analogue of Lemma 17.1 to hold in the time series
case. The proof of Lemma 17.1 (given in Section 17) goes through in the time series case,
except for the following:

(i) in the proof of r̂n ≤ r (= rFn ) a.s. ∀n ≥ 1 we replace the statement “for any con-
stant vector λ ∈ Rk for which λ′ΩFnλ = 0, we have λ′gi = 0 a.s. [Fn] and λ′Ω̂nλ =
n−1∑n

i=1(λ
′gi)2 − (λ′ĝn)2 = 0 a.s. [Fn]” by the statement “for any constant vector λ ∈

Rk for which λ′ΩFnλ = 0, we have λ′gi = 0 a.s. [Fn] by Lemma 30.2 (with Xi = λ′gi)
and in consequence λ′Ω̂nλ = 0 a.s. [Fn] by Assumption SR-V(c), SR-V-CS(c), SR-VP (c),
SR-VP-CS(c), SR-Ω(c), or SR-Ω-CS(c).”

(ii) in the proof of r̂n ≥ r a.s. ∀n≥ 1 we have Π−1/2
1Fn

A′
Fn
Ω̂nAFnΠ

−1/2
1Fn

→p Ir , with Π1Fn
and AFn replaced by Π1Fn�n and AFn�n, respectively, by Assumption SR-V(a) or SR-V-
CS(a), rather than by the definition of Ω̂n combined with a WLLN for i.i.d. random vari-
ables,

(iii) in (17.2), the second implication holds by Lemma 30.2 (with Xi = λ′gi) and the
fourth implication holds by Assumption SR-V(c), SR-V-CS(c), SR-VP (c), SR-VP-CS(c), SR-
Ω(c), or SR-Ω-CS(c), and

(iv) the results of Lemmas 5.1 and 15.1, which are used in the proof of Lemma 17.1,
holds using the equivariance condition in Assumption SR-V(b), SR-V-CS(b), SR-VP (b),
SR-VP-CS(b), SR-Ω(b), or SR-Ω-CS(b).

Proof of Theorem 30.1. The proof is essentially the same as the proof of Theo-
rem 16.1 (given in Section 27) and the proofs of Lemma 16.4 and Proposition 16.5 (given
in Section 25 above and Section 17 in the SM of AG1, resp.) for the i.i.d. case, but with
some modifications. The modifications are the first, second, third, and fifth modifica-
tions stated in the proof of Theorem 7.1 in AG1, which is given in Section 20 in the
SM to AG1. Briefly, these modifications involve: (i) the definition of λ5�F , (ii) justifying
the convergence in probability of Ω̂n and the positive definiteness of its limit by As-
sumption V, V-CS, VP , VP-CS, Ω, or Ω-CS, rather than by the WLLN for i.i.d. random
variables, (iii) justifying the convergence in probability of Γ̂jn (= Γ̂jn(θ0)) by Assumption
V, V-CS, VP , or VP-CS, rather than by the WLLN for i.i.d. random variables, and (iv) us-
ing the WLLN and CLT for triangular arrays of strong mixing random vectors given in
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Lemma 20.1 in the SM of AG1, rather than the WLLN and CLT for i.i.d. random vectors.
For more details on the modifications, see Section 20 in the SM to AG1. These modifica-
tions affect the proof of Lemma 16.4. No modifications are needed elsewhere.

Proof of Lemma 30.2. Suppose Var(Xn) = 0. Then Xn equals a constant a.s. Be-
cause EXn = 0, the constant equals zero. Thus,

∑n
i=1Xi = 0 a.s. By strict stationarity,∑n

i=1Xi+sn = 0 a.s. and
∑n+1

i=2 Xi+sn = 0 a.s. for all integers s ≥ 0. Taking differences yields
X1+sn =X1+n+sn for all s ≥ 0. That is, X1 =X1+sn for all s ≥ 1.

Let A be any Borel set in R. By the strong mixing property, we have

ξs := ∣∣P(X1 ∈A�X1+sn ∈A)− P(X1 ∈A)P(X1+sn ∈A)∣∣
≤ αX(sn)→ 0 as s→ ∞� (30.2)

where αX(m) denotes the strong mixing number of {Xi : i= · · · �0�1� � � � } for time period
separations of size m≥ 1. We have

ξs = ∣∣P(X1 ∈A)− P(X1 ∈A)2∣∣= P(X1 ∈A)(1 − P(X1 ∈A))� (30.3)

where the first equality holds because X1 =X1+sn a.s. and by strict stationarity. Because
ξs → 0 as s→ ∞ by (30.2) and ξs does not depend on s by (30.3), we have ξs = 0. That is,
P(X1 ∈A) equals zero or one (using (30.3)) for all Borel sets A, and hence, Xi equals a
constant a.s. Because EXi = 0, the constant equals zero.

31. Proof of Theorems 9.1, 13.1, and 9.2

31.1 Proof of Theorem 9.1

To prove Theorem 9.1, we use the same proof structure as for the full vector test. Like the
proof for the full vector test, the proof of Theorem 9.1 is based on a number of interme-
diate lemmas, propositions, and theorems. A key change is that the role of EFGi ∈Rk×p

in the full vector case is played byO′
F(EFgig

′
i)

−1/2EFGi ∈R(k−b)×p in the subvector case,
whereOF ∈Rk×(k−b), defined below, is such thatM(EFgig

′
i)

−1/2EFGiβ
=OFO

′
F . In this sense,

the role of k is replaced by k− b.
The proof of the full vector case is given for a general CQLR test that employs weight-

ing matrices Ŵn and Ûn that satisfy a certain high level condition Assumption WU. In
particular, Ŵn and Ûn converge to certain matrices WFn and UFn , respectively. We fol-
low that structure and prove the result of the theorem for a general CQLR test. How-
ever, for the subvector test, the weighting matrices Ŵn and WFn are set equal to the
identity matrix and, therefore, do not appear in the high level Assumption WUS , which
adapts Assumption WU from the full vector test. We verify Assumption WUS for the spe-
cific choice of weighting matrix Ûn employed in the subvector CQLR test (47), which is
Ûn = L̂

1/2
n (θ0� β̂n), in Lemma 31.9 below.
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A general QLRWU subvector test statistic is defined as

QLRSWU�n := ARSn(θ0� β̂n)− λmin
(
nQ̂S

WU�n

)
� where

Q̂S
WU�n := (Ω̃−1/2

n (η̂)D̂n(η̂)Ûn� Ω̃
−1/2
n (η̂)ĝn(η̂)

)′
×MJ̃n(η̂)

(
Ω̃

−1/2
n (η̂)D̂n(η̂)Ûn� Ω̃

−1/2
n (η̂)ĝn(η̂)

) (31.1)

for η̂ := (θ′
0� β̂

′
n)

′, and Ûn := U1(Û2n) is defined as in (16.4). Here, we keep the WU no-
tation from the full vector test, even though no W -type matrix affects the statistic. The
population counterpartUF :=U1(U2F) of Ûn is defined as in (16.5). The general CQLRSWU
test rejects the null hypothesis if

QLRSWU�n > ck�p
(
n1/2Ω̃

−1/2
n (η̂)D̂n(η̂)Ûn� J̃n(η̂)�1 − α

)
� (31.2)

where ck�p(D�J�1 − α) is defined in (48).70

The proof for the subvector test result is based on working out the asymptotic null
rejection probabilities along certain drifting sequences of parameters {λSn�h : n ≥ 1} that
we introduce below (31.15). The notation involving λ and h in (16.16) and (16.19) for the
full vector case has to be adapted to the subvector case. The argument θ0 in the notation
for expressions for full vector inference is replaced throughout by the argument (θ0�β

∗).
For example, in λS4�F = EFGi, Gi abbreviates Gi(θ0�β

∗), rather than Gi(θ0) as in the full

vector case. In addition, relative to λn�h for the full vector case, λSn�h contains several ad-

ditional components, such as λS4�θjβ�F := EFGiθjβ for j = 1� � � � �p and λS4�βjβ�F :=EFGiβjβ

for j = 1� � � � � b.

Construction of basesOFn and ÕFn for the spaces spanned by the eigenvectors correspond-
ing to the eigenvalue 1 of two projection matrices For a projection matrix, the eigenval-
ues are 0 or 1. When deriving the asymptotic distribution of Q̂S

n(θ0� β̂n) in (47), which is
part of the test statistic QLRSn(θ0� β̂n), it is helpful to factor MJ̃n(η)

into a product ÕFnÕ
′
Fn

where ÕFn ∈ Rk×(k−b) contains a basis for the space of eigenvectors spanned by the
eigenvalue 1 of the projection matrix MJ̃n(η)

. Given this factorization, we consider the

quantities (Õ′
Fn
Ω̃

−1/2
n (η)ĝn(η)� Õ

′
Fn
D̂∗
n(η)), which puts us into the framework used in the

proof for the full vector test. Note that, in general, eigenvectors are not continuous func-
tions of a matrix. However, in the case of a projection matrix, the eigenvalues are well
separated and eigenvectors that are continuous can be explicitly constructed.

We now outline this construction. First, given a sequence of nonstochastic matrices
{Jn ∈Rk×b : n≥ 1} that satisfy Jn → J with J of full column rank b, we construct matrices

70The reason Ω̃
−1/2
n is used in the definitions of QLRSn(θ� β̂n) in (47) and QLRSWU�n, rather than Ω̂

−1/2
n , is

that we prove the subvector results using the proof of the full vector result with Ŵn, WFn , and D̂n ∈ Rk×p

replaced by Ik, Ik, and Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n) ∈R(k−b)×p, respectively, where Õ′

Fn
∈R(k−b)×k, defined

below, is such that ÕFn Õ
′
Fn

=MJ̃n(θ0�β̂n)
. For the full vector results, the difference between Ŵn and WFn can

be handled easily because ŴnW
−1
Fn

→p Ip (as in (26.8)). But, in the subvector case, the same strategy cannot

be applied to Ω̃−1/2
n (θ0� β̂n) and (EFngig

′
i)

−1/2, because of the factor Õ′
Fn

that precedes Ω̃−1/2
n (θ0� β̂n) in the

definition of Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n), which is the subvector equivalent to D̂n.
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On and O ∈Rk×(k−b) such that MJn =OnO
′
n, MJ =OO′, and On →O. To do so, note first

that for any O′ ∈ R(k−b)×k having rows that contain an orthonormal basis of eigenvec-
tors of the eigenvalue 1, we have MJ = OO′. A basis of eigenvectors of the eigenvalue
0 is given by the columns of J. Therefore, the space of eigenvectors corresponding to
the eigenvalue 1 is given by span(J)⊥, the orthogonal complement of span(J). We have
span(J)⊥ =N(J′).

There are T := ( k
b

)
different sets of b rows from the set of k rows of J ∈ Rk×b. Given

that J has full column rank, there is at least one choice of b rows of J that form a basis of
Rb. For notational simplicity, assume that the first b columns of J′ form a basis of Rb.71

Decompose J′ = (J′
1� J

′
2) with J′

1 ∈ Rb×b and J′
2 = (j1� � � � � jk−b) ∈ Rb×(k−b), js ∈ Rb for

s = 1� � � � �k−b. It follows that a basis ofN(J′) is given by the vectors (−j′sJ−1
1 � e′

s)
′ ∈Rk for

s = 1� � � � �k− b, where es denotes the sth coordinate vector in Rk−b. This holds because

J′
(

−(J−1
1

)′
js

es

)
= (J′

1� J
′
2
)(−(J−1

1

)′
js

es

)
= 0b for s = 1� � � � �k− b� (31.3)

Let Q′ ∈R(k−b)×k be a matrix whose sth row is given by(−j′sJ−1
1 � e′

s

)
(31.4)

for s = 1� � � � �k− b. Define

O′ =O(J)′ := (Q′Q
)−1/2

Q′� (31.5)

The matrix OO′ is symmetric and idempotent, and hence, is a projection matrix. Since
the rows of Q′ are orthogonal to the rows of J′, OO′ projects onto the space orthogonal
to the columns of J. That is, OO′ = MJ . When we want to emphasize which choice of
the t = 1� � � � �T sets of b columns from the set of k columns of J′ is used in the above
construction of O′ =O(J)′ we add an additional subindex and write

O′
t =Ot(J)

′ (31.6)

instead.
Use analogous notation for J′

n = (J′
n1� J

′
n2), J

′
n2 = (jn1� � � � � jn(k−b)), the matrix Q′

n ∈
R(k−b)×k, whose sth row is given by (−j′nsJ−1

n1 � e
′
s), and O′

n = O(Jn)
′ := (Q′

nQn)
−1/2Q′

n.
Then OnO

′
n = MJn , OO′ = MJ , and O′

n → O′ as desired, where the convergence follows
directly from Jn → J. Again, when we want to emphasize which set of b columns of J′

n is
used in the construction, we write

O′
nt =Ot(Jn)

′ (31.7)

instead.
Under sequences {λSn�h ∈ΛS : n≥ 1} (defined below), this construction is applied to

Jn = (EFngig′
i

)−1/2
EFnGiβ (31.8)

71If that is not the case and the first b columns do not form a basis, simply adapt the notation in what
follows so that the b columns of J′ that are referred to, do indeed form a basis of Rb.
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and the matrix On just constructed also is sometimes denoted by OFn . Under the se-
quence {λSn�h ∈ ΛS : n ≥ 1}, it follows that Jn converges to the matrix Jh := (h5�g)

−1/2h4�β

defined below.
As in (31.5), for given F ∈ FS ,

O′
F =O′

Ft =O
((
EFgig

′
i

)−1/2
EFGiβ

)′
(31.9)

denotes a basis of the space of eigenvectors for the eigenvalue 1 for M(EFgig
′
i)

−1/2EFGiβ

using the construction outlined above for any choice t = 1� � � � �T of any b columns of
((EFgig

′
i)

−1/2EFGiβ)
′ that form a basis of Rb.

Under sequences {λSn�h ∈ ΛS : n ≥ 1}, Lemma 31.5 below implies that J̃n(θ0� β̂n) −
Jn ∈ Rk×b converges in probability to zero and Jn = (EFngig

′
i)

−1/2EFnGiβ → Jh :=
(h5�g)

−1/2h4�β. In addition, Jn has full column rank b for all n sufficiently large, under
the restrictions in FS . Therefore, J̃n(θ0� β̂n) has full column rank b wp → 1. For any b
columns indexed by t = 1� � � � �T of J′

h that form a basis of Rb and apply the above con-
struction with this choice of columns to both J̃n(θ0� β̂n)

′ and J′
n to obtain

Õ′
Fn

=O
(
J̃n(θ0� β̂n)

)′ ∈R(k−b)×k and O′
Fn

=O(Jn)
′ (31.10)

using the notation in (31.5). Given that J̃n(θ0� β̂n) − Jn →p 0k×b, it follows that Õ′
Fn

−
O′
Fn

→p 0(k−b)×k.

Definition of {λSn�h ∈ ΛS : n ≥ 1} As described above, each t = 1� � � � �T indexes a set

of b columns of ((EFgig′
i)

−1/2EFGiβ)
′. For any t = 1� � � � �T for which the b columns of

((EFgig
′
i)

−1/2EFGiβ)
′ form a basis of Rb, consider a singular value decomposition of

O′
Ft(EFgig

′
i)

−1/2(EFGi)UF ∈ R(k−b)×p. More precisely, let BF = BFt denote a p × p or-
thogonal matrix of eigenvectors of

U ′
F(EFGi)

′(EFgig′
i

)−1/2
OFtO

′
Ft

(
EFgig

′
i

)−1/2
EFGiUF (31.11)

ordered so that the corresponding eigenvalues (κ1Ft� � � � �κpFt) are nonincreasing. Let
CF = CFt denote a (k− b)× (k− b) orthogonal matrix of eigenvectors of

O′
Ft

(
EFgig

′
i

)−1/2
(EFGi)UFU

′
F(EFGi)

′(EFgig′
i

)−1/2
OFt� (31.12)

The corresponding eigenvalues are (κ1Ft� � � � �κk−bFt).
Let (τ1Ft� � � � � τmin{k−b�p}Ft) denote the min{k− b�p} singular values of

O′
Ft

(
EFgig

′
i

)−1/2
(EFGi)UF� (31.13)

which are nonnegative and ordered so that τjFt is nonincreasing in j. For all other t =
1� � � � �T (for which the b columns of ((EFgig′

i)
−1/2EFGiβ)

′ indexed by t do not form a
basis of Rb), define (τ1Ft� � � � � τmin{k−b�p}Ft) to be a vector of minus ones and BFt and
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CFt to be identity matrices in Rp×p and R(k−b)×(k−b), respectively. (This definition is

arbitrary and could be replaced by other choices.)

Define the elements of λS to be

λS1�F := (τ1F1� � � � � τmin{k−b�p}F1� � � � � τ1FT � � � � � τmin{k−b�p}FT )′

∈RT min{k−b�p}�

λS2�F := (BF1� � � � �BFT ) ∈Rp×Tp�

λS3�F := (CF1� � � � �CFT ) ∈R(k−b)×T(k−b)�

λS4�F := EFGi ∈Rk×p�

λS4�β�F := EFGiβ ∈Rk×b�

λS4�θjβ�F := EFGiθjβ ∈Rk×b for j = 1� � � � �p�

λS4�βjβ�F := EFGiβjβ ∈Rk×b for j = 1� � � � � b�

λS5�F := EF

(
gi

vec(Gi)

)(
gi

vec(Gi)

)′
∈R(p+1)k×(p+1)k�

λS5�βj�F := EFGiβjg
′
i ∈Rk×k for j = 1� � � � � b�

λS5�3�j�F := EFgigijg
′
i ∈Rk×k for j = 1� � � � �k�

λS6�F := (λ6�1F1� � � � � λ6�(min{k−b�p}−1)F1� � � � � λ6�1FT � � � � �λ6�(min{k−b�p}−1)FT )
′

:=
(
τ2F1

τ1F1
� � � � �

τmin{k−b�p}F1

τ(min{k−b�p}−1)F1
� � � � �

τ2FT

τ1FT
� � � � �

τmin{k−b�p}FT
τ(min{k−b�p}−1)FT

)′

∈ [0�1]T(min{k−b�p}−1)�

λS8�F :=U2F�

λS9�F := F�

λS10�F := VarF
(
g′
i� vec(Gi)

′� vec
(
gig

′
i

)′
� vec(Gβi)

′)′�
λS := λSF := (λS1�F � � � � � λS10�F

)
�

(31.14)

where 0/0 := 0 for the components of λS6�F , and λS is the vector that collects all the above

terms in one vector. As mentioned above, there is no weighting matrix Ŵn for the sub-

vector test and therefore, no λS7�F component appears. For j = 1� � � � � b, we denote the jth

column of λS4�β�F ∈Rk×b by λS4�βj�F ∈Rk. Let

ΛS := {λSF : F ∈ FS
}
� and

hn
(
λS
) := (n1/2λS1�F �λ

S
2�F �λ

S
3�F �λ

S
4�F � � � � � λ

S
6�F �λ

S
8�F �λ

S
10�F
)
�

(31.15)
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Let {λSn�h ∈ΛS : n≥ 1} denote a sequence {λSn ∈ΛS : n≥ 1} for which hn(λSn)→ h ∈H,

for H as in (16.2).72 Denote by h4�β, h4�θjβ, h4�βjβ, h5�Gg, and h5�G, the limits of λS4�β�Fn ,

λS4�θjβ�Fn , λS4�βjβ�Fn , λS5�GgFn , and λS5�GFn under the sequence {λSn�h : n≥ 1}, respectively, and

analogously for other expressions, where by λS5�GgF and λS5�GF we denote the lower left

and lower right submatrices of λS5�F of dimensions Rpk×k and Rpk×pk.

Consider a sequence {λSn�h : n ≥ 1} and let the distributions {Fn : n ≥ 1} corre-

spond to {λSn�h : n ≥ 1}. Because under {λSn�h : n ≥ 1}, (EFngig
′
i)

−1/2EFnGiβ converges
to a full column rank matrix, there exists a smallest index t∗ ∈ {1� � � � �T } such that
for all n sufficiently large the b columns of ((EFngig

′
i)

−1/2EFnGiβ)
′ indexed by t∗ form

a basis of Rb, and by definition of {λSn�h : n ≥ 1}, n1/2(τ1Fnt∗� � � � � τmin{k−b�p}Fnt∗) →
(h1�1t∗� � � � �h1�min{k−b�p}t∗). Note that t∗ depends on the sequence {λSn�h ∈ ΛS : n ≥ 1}. We

include τ1Ft , BFt , and CFt for all t = 1� � � � �T in the definition of λS1�F , λS2�F , and λS3�F in

(31.14) because this ensures the convergence of n1/2τ1Fnt∗ , BFnt∗ , and CFnt∗ for the value
t∗ just defined.

In what follows, with slight abuse of notation, we leave out the index t∗ from the
notation.

As in (16.22), let qS = qSh (∈ {0� � � � �min{k− b�p}}) be such that

h1�j = ∞ for 1 ≤ j ≤ qSh and h1�j <∞ for qSh + 1 ≤ j ≤ min{k− b�p}� (31.16)

where h1�j := limn1/2τjFn ≥ 0 for j = 1� � � � �min{k− b�p}.
Define FS

WU as FWU in (16.12) with F replaced by FS and W replaced by Ik. Define
ΛSWU as ΛWU in (16.17) with FWU replaced by FS

WU.

Assumption WUS for the parameter space ΛS∗ ⊂ΛSWU. Under all subsequences {wn}
and all sequences {λSwn�h : n≥ 1} with λSwn�h ∈ΛS∗ ,

(a) Û2wn →p h8 (:= limU2Fwn ) and

(b) U1(·) is a continuous function at h8 on some set U2 that contains {λS8�F (=U2F) : λS ∈
ΛS∗} and contains Û2wn wp → 1.

As in (16.23), let (and recall again that we leave out the index t∗ from the notation)

Sn := Diag
{(
n1/2τ1Fn

)−1
� � � � �
(
n1/2τqSFn

)−1
�1� � � � �1

} ∈Rp×p and

Tn := BFnSn ∈Rp×p�
(31.17)

The random function CLRk�p(D�J) in (48) that generates the conditional critical
value of the CLR subvector test can be expressed as follows. Suppose MJ = OO′, for O

72Regarding the notation, it would be more consistent to put a superscript S on all of the expressions
involving h. However, this would introduce too much clutter, so we do not do so.
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defined in (31.5). Then we can write

CLRk�p(D�J) := Z′MJZ − λmin
(
(Z�D)′MJ(Z�D)

)
= (O′Z

)′
O′Z − λmin

((
O′Z�O′D

)′(
O′Z�O′D

))
= Z

′
Z − λmin

((
Z�O′D

)′(
Z�O′D

))
�

∼ CLRk−b�p
(
O′D�0(k−b)×0)= CLRk−b�p

(
O′D
)
� (31.18)

where Z ∼N(0k� Ik), Z :=O′Z ∼N(0k−b� Ik−b), “∼” denotes “has the same distribution
as,” and CLRk−b�p(O′D) is the expression from the full vector test defined in (24).

We now state the intermediate lemmas, propositions, and theorems upon which the
proof of Theorem 9.1 is based. Using them, the proof of Theorem 9.1 follows the same
lines as the proof of Theorem 16.1 for the full vector case.

By Lemma 16.2, the 1 − α quantile ck−b�p(O′D�1 − α) of CLRk−b�p(O′D) depends on
O′D only through the singular values of O′D. By (31.18), that immediately implies the
following analogue to Lemma 16.2.

Lemma 31.1. Let D and J be k× p and k× b matrices, respectively, where J has full col-
umn rank b. Let CΥB′ denote a singular value decomposition of O′D ∈ R(k−b)×p, where
Υ contains the singular values in nonincreasing order and O′ =O(J)′ is defined in (31.5).
Then ck�p(D�J�1 − α) depends on D and J only through Υ and

ck�p(D�J�1 − α)= ck−b�p
(
Υ�0(k−b)×0�1 − α

)= ck−b�p(Υ�1 − α)�

Just like the full vector test in Lemma 5.1, the subvector CQLR test is invariant to
nonsingular transformations of the moment functions. We suppress the dependence on
θ0 of the statistics in the following lemma.

Lemma 31.2. Given the preliminary estimator β̃n of β∗
n, the statistics ARSn(β̂n), QLRSn(β̂n),

β̂n, ck�p(n1/2D̂∗
n(β̂n)� J̃n(β̂n)�1 − α), D̂∗′

n (β̂n)MJ̃n(β̂n)
D̂∗
n(β̂n), ĝn(β̂n)

′Ω̃−1/2
n (β̂n)MJ̃n(β̂n)

×
D̂∗
n(β̂n), Σ̂n(β̂n), and L̂n(β̂n) are invariant to the transformation (gi(β)�Gi(β)) �

(Mgi(β)�MGi(β)) ∀i ≤ n for any k× k nonsingular matrix M . This transformation in-
duces the following transformations: ĝn(β̂n) � Mĝn(β̂n), Ĝn(β̂n) � MĜn(β̂n),
G̃βn(β̂n) � MG̃βn(β̂n), Γ̂jn(β̂n) � MΓ̂jn(β̂n)M

′ ∀j ≤ p, D̂n(β̂n) � MD̂n(β̂n), Ω̂n(β̂n) �
MΩ̂n(β̂n)M

′, Ω̃n(β̂n) � MΩ̃n(β̂n)M
′, V̂n(β̂n) � (Ip+1 ⊗ M)V̂n(β̂n) × (Ip+1 ⊗ M ′), and

R̂n(β̂n)� (Ip+1 ⊗M)R̂n(β̂n)(Ip+1 ⊗M ′).

The proof of the lemma is straightforward for all quantities except ck�p(n1/2D̂∗
n(β̂n)�

J̃n(β̂n)�1 −α). Using Lemma 31.1, this quantity depends on n1/2D̂∗
n(β̂n) and J̃n(β̂n) only

through the nonzero singular values of O(J̃n(β̂n))′n1/2D̂∗
n(β̂n), which equal the square

roots of the nonzero eigenvalues of n1/2D̂∗
n(β̂n)

′MJ̃n(β̂n)
n1/2D̂∗

n(β̂n). But, the latter quan-
tity is invariant to the transformation (gi(β)�Gi(β))� (Mgi(β)�MGi(β)).
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The derivation in (31.18) immediately implies an analogue of the result in
Lemma 27.2. Let ck−b�p�q(τc∞�1 − α) denote the 1 − α quantile of

ACLRk−b�p�q
(
τc∞
) :=Z

′
Z − λmin

((
Υ
(
τc∞
)
�Z2
)′(
Υ
(
τc∞
)
�Z2
))
� where

Z :=
(
Z1

Z2

)
∼N
(
0k−b� Ik−b

)
for Z1 ∈Rq and Z2 ∈Rk−b−q�

τc∞ := (τc(q+1)∞� � � � � τ
c
min{k−b�p}∞

)′ ∈Rmin{k−b�p}−q�

Υ
(
τc∞
) := ( Diag

{
τc∞
}

0(k−b−p)×(p−q)

)
∈R(k−b−q)×(p−q) if k− b≥ p� and

Υ
(
τc∞
) := (Diag

{
τc∞
}
�0(k−b−q)×(p−k−b))

∈R(k−b−q)×(p−q) if k− b < p�

(31.19)

Lemma 31.3. Suppose {(Dc
n� J

c
n) : n ≥ 1} is a sequence of constant (i.e., nonrandom) k×

p and k × b matrices, respectively, such that Oc′n Dc
n (for OcnO

c′
n = MJcn and Ocn defined in

(31.5)) has singular values {τcjn ≥ 0 : j ≤ min{k − b�p}} for n ≥ 1 that satisfy (i) {τcjn ≥ 0 :
j ≤ min{k− b�p}} are nonincreasing in j for n≥ 1, (ii) τcjn → ∞ for j ≤ q for some 0 ≤ q ≤
min{k− b�p} and (iii) τcjn → τcj∞ <∞ for j = q+ 1� � � � �min{k− b�p}. Then

ck�p
(
Dc
n� J

c
n�1 − α

)→ ck−b�p�q
(
τc∞�1 − α

)
�

The next lemma is a restatement of Lemma 27.3 with k replaced by k− b.

Lemma 31.4. For all admissible integers (k− b�p�q) (i.e., k− b ≥ 1, p ≥ 1, and 0 ≤ q ≤
min{k − b�p}) and all min{k − b�p} − q (≥ 0) vectors τc∞ with nonnegative elements in
nonincreasing order, the df of ACLRk−b�p�q(τc∞) :=Z

′
Z − λmin((Υ(τ

c∞)�Z2)
′(Υ(τc∞)�Z2))

is continuous and strictly increasing at its 1 − α quantile ck−b�p�q(τc∞�1 − α) for all α ∈
(0�1), where Z := (Z

′
1�Z

′
2)

′ ∼ N(0k−b� Ik−b) for Z1 ∈ Rq and Z2 ∈ Rk−b−q and τc∞ and
Υ(τc∞) are defined in (31.19).

The next lemma is an important ingredient in the proof of Theorem 9.1 because it
provides the asymptotic distributions of key quantities. It is the analogue and extension
of Lemma 16.4 for the subvector test. We now introduce some notation that is used in
the lemma.

By the Lyapunov CLT, under sequences {λSn�h ∈ΛS : n≥ 1}, we have

n−1/2
n∑
i=1

⎛⎜⎜⎜⎝
gi

vec(Gi)

vec
(
gig

′
i −Ωn

)
vec(Gβi −EnGβi)

⎞⎟⎟⎟⎠
→d Lh ∼N

(
0d

∗
�h10
)
� where

Lh := (g′
h�L

′
h�2�L

′
h�3�L

′
h�4
)′

for gh ∈Rk�Lh�2 ∈Rkp�Lh�3 ∈Rk2
�Lh�4 ∈Rkb�

Gh := vec−1
k�p(Lh) ∈Rk×p�

(31.20)
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d∗ = k + kp + k2 + kb, and the function vec−1
k�p(·) is the inverse of the vec(·) function

for k × p matrices. (Thus, the domain of vec−1
k�p(·) consists of kp-vectors and its range

consists of k×p matrices.) As defined in (31.20), gh is the same as in (16.21) for the full

vector case.

The asymptotic distributions of (i) n1/2(β̂n − β∗
n), (ii) n1/2ĝn(β̂n), (iii) n1/2 ×

vec(D̂n(β̂n) − Dn), where Dn := EnGi, (iv) n1/2(Ω̃n(β̂n) − Ωn), and (v) n1/2(G̃βjn(β̂n) −
EnGiβj ) are given by

(i) βh := [(h−1/2
5�g h4�β

)′(
h

−1/2
5�g h4�β

)]−1(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g gh�

(ii) gSh := h
1/2
5�gMh

−1/2
5�g h4�β

h
−1/2
5�g gh�

(iii) vec
(
D
S
h

) := (vec(Gh)− h5�Ggh
−1
5�ggh
)+ vec(h4�θ1ββh� � � � �h4�θpββh)

− h5�Ggh
−1
5�gh4�ββh�

(iv) κ
S
h := (κSh�1� � � � �κSh�k)� and

(v) #Sh := (#Sh�1� � � � �#Sh�b) where

κ
S
h�j :=Lj�h�3 − h5�3�jh

−1
5�ggh

+ [(h5�β1�j� � � � �h5�βb�j)+ ((h5�β1)
′
j� � � � � (h5�βb)

′
j

)− h5�3�jh
−1
5�gh4�β

]
βh

for j = 1� � � � �k�

#Sh�j :=Lj�h�4 − h5�βjh
−1
5�ggh + (h4�βjβ − h5�βjh

−1
5�gh4�β

)
βh for j = 1� � � � � b�

(31.21)

Lj�h�3�Lj�h�4 ∈ Rk denote the (j − 1)k+ 1� � � � � jk components of Lh�3 and Lh�4, respec-

tively, and (h5�βs )
′
j ∈ Rk denotes the jth column of (h5�βs )

′ ∈ Rk×k for s = 1� � � � � b.73 If

no preliminary estimator appears, that is, β̂n = β∗
n, then the quantities in (31.21) re-

duce to those in the full vector case. In particular, βh = 0b, gSh = gh, and vec(D
S
h) =

vec(Gh)− h5�Ggh
−1
5�ggh = vec(Dh).

Consider the function that maps vec(ϕ) onto vec(ϕ−1/2), where ϕ ∈ Rk×k is pos-

itive definite. Let ϕh ∈ Rk
2×k2

denote the matrix of partial derivatives of that map-

ping evaluated at vec(h5�g). Consider the function that maps vec(J) for J ∈ Rk×b onto

vec((−j′1(J1)
−1� e′

1)� � � � � (−j′(k−b)(J1)
−1� e′

k−b)) ∈ Rk(k−b), as defined in (31.4) and (31.5).

Denote by Bh ∈Rk(k−b)×kb the matrix of partial derivatives of that mapping evaluated at

vec(h−1/2
5�g h4�β).

The asymptotic distributions of (vi) n1/2(Ω̃
−1/2
n (β̂n) − Ω

−1/2
n ), (vii) n1/2 ×

(J̃n(β̂n)−Ω
−1/2
n EnGβi), (viii) n1/2(Õn−On), (ix) n1/2(Õ′

nΩ̃
−1/2
n (β̂n)D̂n(β̂n)−O′

nΩ
−1/2
n Dn),

73See (31.45)–(31.46) for (i), (31.48) for (ii), (31.52) for (iii), (31.54) for (iv), and (31.55) for (v).
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(x) n1/2Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)×UnBnSn are given by

(vi) vec−1
k�k

(
ϕh vec

(
κ
S
h

))
�

(vii) ωSh := h
−1/2
5�g #Sh + vec−1

k�k

(
ϕh vec

(
κ
S
h

))
h4�β�

(viii) vec−1
k�k−b
(
Bh vec

(
ωSh
))
�

(ix) χh := vec−1
k�k−b
(
Bh vec

(
ωSh
))′
h

−1/2
5�g h4

+O
(
h

−1/2
5�g h4�β

)′ vec−1
k�k

(
ϕh vec

(
κ
S
h

))
h4

+O
(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g Dh�

(x)  
S
h := ( Sh�qS � Sh�p−qS

)
� where  

S
h�qS := h3�qS ∈R(k−b)×qS �

 
S
h�p−qS := h3h

�
1�p−qS +χhh81h2�p−qS ∈R(k−b)×(p−qS)�

(31.22)

and h�
1�p−qS ∈R(k−b)×(p−qS) is defined as in (16.24) with k− b and qS in place of k and q,

respectively.74

Lemma 31.5. Suppose Assumptions gB and WUS hold for some nonempty parameter
space ΛS∗ ⊂ΛSWU. Under all sequences {λSn�h ∈ΛS∗ : n≥ 1},

(a) n1/2(β̂n −β∗
n)→d βh,

(b) J̃n(β̂n)→p h
−1/2
5�g h4�β,

(c)

n1/2

⎛⎜⎜⎜⎝
ĝn(θ0� β̂n)

D̂n(θ0� β̂n)−EFnGi

Ω̃n(θ0� β̂n)−EFngig
′
i

G̃βn(θ0� β̂n)−EFnGiβ

⎞⎟⎟⎟⎠→d

⎛⎜⎜⎜⎝
gSh
D
S
h

κ
S
h

#Sh

⎞⎟⎟⎟⎠ �

where (βh�D
S
h�κ

S
h�#

S
h) and gSh are independent,

(d) for Õ′
Fn

defined in (31.10),

n1/2Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)UFnTn →d  

S
h ∈R(k−b)×p�

where (βh�D
S
h�κ

S
h�#

S
h� 

S
h) and gSh are independent, and

(e) under all subsequences {wn} and all sequences {λwn�h : n ≥ 1} with λwn�h ∈ ΛS∗ , the
convergence results in parts (a)–(d) hold with n replaced with wn.

74See (31.56) for (vi), (31.57) for (vii), (31.59) for (viii), (31.64) for (ix), and (31.60), (31.61), and (31.65) for
(x). Recall again that we leave out a subindex t∗ from certain expressions.
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Lemma 31.5 is proved in Section 31.2 below. Note that in order to obtain consis-

tency of the first step estimator β̃n we only need to impose the conditions in FS
AR�1.

In particular, for consistency of β̃n, the variance matrix ΩFn is allowed to be rank de-

ficient. Lemma 31.5(b) and (c) implies Theorem 9.1 for the subvector AR test. This holds

because ARSn(θ0� β̂n) is a quadratic form in MJ̃n(θ0�β̂n)
Ω̃

−1/2
n (θ0� β̂n)n

1/2ĝn(θ0� β̂n) which

converges in distribution to M
h

−1/2
5�g h4�β

h
−1/2
5�g gh. Because h−1/2

5�g h4�β has full column rank

b, the desired result follows.

An analogue of Proposition 16.5 holds where Ŵn, WFn , and D̂n ∈ Rk×p are replaced

by Ik, Ik, and Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n) ∈ R(k−b)×p, respectively. In particular, κ̂jn is

defined as the jth eigenvalue of

n
(
Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)Ûn

)′
Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)Ûn� (31.23)

Recall the following notation as for the full vector test, BFn = (BFn�qS �BFn�p−qS ), CFn =
(CFn�qS , CFn�k−b−qS ), with BFn�qS ∈ Rp×qS , BFn�p−qS ∈ Rp×(p−qS), CFn�qS ∈ R(k−b)×qS , and

CFn�k−b−qS ∈R(k−b)×(k−b−qS) and corresponding decompositions for the limiting matri-

ces h2 = (h2�qS �h2�p−qS ) and h3 = (h3�qS �h3�k−b−qS ). Recall that we leave out a subindex

t∗ from certain expressions.

Proposition 31.6. Suppose Assumption WUS holds for some nonempty parameter

space ΛS∗ ⊂ΛSWU. Under all sequences {λSn�h : n≥ 1} with λSn�h ∈ΛS∗ ,

(a) κ̂jn →p ∞ for all j ≤ qS ,

(b) (̂κ(qS+1)n� � � � � κ̂pn)
′ converges in distribution to the (ordered) p − qS vector of the

eigenvalues of  
S′
h�p−qSh3�k−b−qSh′

3�k−b−qS 
S
h�p−qS ∈R(p−qS)×(p−qS),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lem-

ma 31.5, and

(d) under all subsequences {wn} and all sequences {λSwn�h : n ≥ 1} with λSwn�h ∈ ΛS∗ , the

results in parts (a)–(c) hold with n replaced with wn.

An analogue of Theorem 16.6 holds for QLRSWU�n = ARSn(θ0� β̂n)− λmin(nQ̂
S
WU�n), de-

fined in (31.1). For η̂ := (θ0� β̂n), wp → 1, we can write

Q̂S
WU�n = (Õ′

Fn
Ω̃

−1/2
n (η̂)D̂n(η̂)Ûn� Õ

′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)

)′
× (Õ′

Fn
Ω̃

−1/2
n (η̂)D̂n(η̂)Ûn� Õ

′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)

)
(31.24)

by again replacing Ŵn, WFn , Ω̂−1/2
n ĝn, and D̂n ∈ Rk×p by Ik, Ik, Õ′

Fn
Ω̃

−1/2
n (η̂)ĝn(η̂), and

Õ′
Fn
Ω̃n(θ0� β̂n)

−1/2D̂n(θ0� β̂n) ∈ R(k−b)×p, respectively. This implies that the role of k is

played by k− b. Note that by Lemma 31.5(b) and (c) and (31.59) below, which implies
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Õ′
Fn

=O(J̃n(θ0� β̂n))
′ →p O(h

−1/2
5�g h4�β)

′, we have

n1/2Õ′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)→d O

(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g gSh

= O
(
h

−1/2
5�g h4�β

)′
M
h

−1/2
5�g h4�β

h
−1/2
5�g gh

= O
(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g gh ∼N

(
0k−b� Ik−b

)
� (31.25)

using gSh := h
1/2
5�gMh

−1/2
5�g h4�β

h
−1/2
5�g gh, OO′ =M

h
−1/2
5�g h4�β

, and O′O = Ik−b.

Theorem 31.7. Suppose Assumption WUS holds for some nonempty parameter space
ΛS∗ ⊂ΛSWU. Under all sequences {λSn�h : n≥ 1} with λSn�h ∈ΛS∗ ,

QLRSWU�n →d l
′
hlh − λmin

((
 
S
h�p−qS � lh

)′
h3�k−b−qSh′

3�k−b−qS
(
 
S
h�p−qS � lh

))
� where

lh := O
(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g gh�

 
S
h�p−qS is defined in (31.22), and the convergence holds jointly with the convergence in

Lemma 31.5 and Proposition 31.6. When qS = p (which can only hold if k−b≥ p because

qS ≤ min{k− b�p}),  
S
h�p−qS does not appear in the limit random variable and the limit

random variable reduces to

l′hh3�ph
′
3�plh ∼ χ2

p�

When qS = k−b (which can only hold if k−b≤ p), the λmin(·) expression does not appear
in the limit random variable and the limit random variable reduces to

l′hlh ∼ χ2
k−b� (31.26)

When k − b ≤ p and qS < k − b, the λmin(·) expression equals zero and the limit ran-
dom variable reduces to the one in (31.26). Under all subsequences {wn} and all sequences
{λSwn�h : n≥ 1} with λSwn�h ∈ΛS∗ , the same results hold with n replaced with wn.

The following lemma, which the proof of Theorem 31.7 relies on, adapts Lemma 26.1
from the full vector test and Lemma 17.1 in AG1. Define

Υn :=
⎡⎢⎣ Υn�qS 0q

S×(p−qS)

0(p−qS)×qS Υn�p−qS
0(k−b−p)×qS 0(k−b−p)×(p−qS)

⎤⎥⎦ ∈R(k−b)×p if k− b≥ p� and

Υn :=
[

Υn�qS 0q
S×(k−b−qS) 0q

S×(p−(k−b))

0(k−b−qS)×qS Υn�k−b−qS 0(k−b−qS)×(p−(k−b))

]

∈R(k−b)×p if k− b < p�

(31.27)
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as in (25.2), but with τ1Fnt∗� � � � � τpFnt∗ and qS in place of τ1Fn� � � � � τpFn and q, respectively.
Define

D̂+
n := (Õ′

Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)� Õ

′
Fn
Ω̃

−1/2
n ĝn

) ∈R(k−b)×(p+1)�

Û+
n :=
[
Ûn 0p×1

01×p 1

]
∈R(p+1)×(p+1)� U+

n =
[
Un 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

h+
81 :=
[
h81 0p×1

01×p 1

]
∈R(p+1)×(p+1)� B+

n =
[
Bn 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

B+
n := (B+

n�qS
�B+

n�p+1−qS
)

for B+
n�qS

∈R(p+1)×qS and B+
n�p+1−qS ∈R(p+1)×(p+1−qS)�

D+
n := (O(Jn)′Ω−1/2

n Dn�0k
) ∈R(k−b)×(p+1)� Υ+

n := (Υn�0k−b) ∈R(k−b)×(p+1)�

S+
n := Diag

{(
n1/2τ1Fn

)−1
� � � � �
(
n1/2τqSFn

)−1
�1� � � � �1

}
=
[
Sn 0p×1

01×p 1

]
∈R(p+1)×(p+1)�

(31.28)

with Jn defined in (31.8). Let

κ̂+
jn denote the jth eigenvalue of nÛ+′

n D̂
+′
n D̂

+
n Û

+
n � ∀j = 1� � � � �p+ 1� (31.29)

ordered to be nonincreasing in j.

Lemma 31.8. Suppose Assumption WUS holds for some nonempty parameter space ΛS∗ ⊂
ΛSWU. Under all sequences {λSn�h : n ≥ 1} with λSn�h ∈ ΛS∗ for which qS satisfies qS ≥ 1,

we have (a) κ̂+
jn →p ∞ for j = 1� � � � � qS and (b) κ̂+

jn = op((n
1/2τ�Fn)

2) for all � ≤ qS and

j = qS + 1� � � � �p+ 1. Under all subsequences {wn} and all sequences {λSwn�h : n ≥ 1} with

λSwn�h ∈ΛS∗ , the same result holds with n replaced with wn.

The proof of Lemma 17.1, with analogous modifications that were made in order to
prove Lemma 26.1, applies to prove Lemma 31.8. For example, the equivalent of (17.3)
of AG1 is

τ−1
r1Fn

D̂+
n U

+
n B

+
n = τ−1

r1Fn
D+
n U

+
n B

+
n + (n1/2τr1Fn

)−1
n1/2(D̂+

n −D+
n

)
U+
n B

+
n

= τ−1
r1Fn

(
O(Jn)

′Ω−1/2
n DnUnBn�0k−b)+Op

((
n1/2τr1Fn

)−1)
= τ−1

r1Fn
CnΥ

+
n +Op

((
n1/2τr1Fn

)−1)
→p h3

⎡⎣ h�
6�r�1

0r
�
1 ×(p+1−r�1 )

0(k−b−r�1 )×r�1 0(k−b−r�1 )×(p+1−r�1 )

⎤⎦ � where

h�
6�r�1

:= Diag

{
1�h6�1�h6�1h6�2� � � � �

r�1 −1∏
�=1

h6��

}
(31.30)
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and the second equality uses n1/2(D̂+
n −D+

n )=Op(1), which holds by (31.62) below and
Lemma 31.5(b). Note that here, unlike in the fourth line of (17.3) of AG1, no op(1) term
arises. Also recall again that we leave out the subindex t∗ from the notation, for example,
in h6�j for j = 1� � � � � r�1 − 1.

As mentioned above, the proof of Theorem 9.1 now follows the same lines as the
proof of Theorem 16.1 for the full vector case. The roles of k, h−1/2

5�g gh, n1/2ŴnD̂nÛn, and

 
′
h�p−qh3�k−qh′

3�k−q h�p−q in the proof of Theorem 16.1 are played by k−b, lh (defined in

Theorem 31.7), n1/2Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n) × D̂n(θ0� β̂n)Ûn, and  

S′
h�p−qSh3�k−b−qSh′

3�k−b−qS ×
 
S
h�p−qS , respectively. By Lemma 31.1, the almost sure representation argument used in

the proof of the full vector result, and Lemma 31.3, we have

ck�p
(
n1/2Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)Ûn� J̃n(θ0� β̂n)�1 − α

)
= ck−b�p

(
Υ̂n�0(k−b)×0�1 − α

)
= ck−b�p(Υ̂n�1 − α)

→d ck−b�p�qS
(
h′

3�k−b−qS 
S
h�p−qS �1 − α

)
� (31.31)

where Υ̂n denotes the matrix of singular values of n1/2Õ′
Fn
Ω̃

−1/2
n (θ0� β̂n)D̂n(θ0� β̂n)Ûn, de-

fined as in (27.8), ck−b�p�qS (·�1 −α) is defined in (31.19) (and ck−b�p�qS (h′
3�k−b−qS 

S
h�p−qS �

1 −α) uses the notation in (27.12)), and the convergence in (31.31) is joint with the con-
vergence in Theorem 31.7.

To conclude the proof of Theorem 9.1, we state the equivalent of Lemma 27.4 for
the subvector case, which verifies that Assumption WUS holds when Ûn is defined
as L̂1/2

n , where L̂n := (θ0� Ip)(Σ̂
ε
n(θ0� β̂n))

−1(θ0� Ip)
′ ∈ Rp×p is defined in (47). Further-

more, the following lemma shows that FS = FS
WU, where FS is defined in (53) and

FS
WU is defined just below (31.16). Recall the definition Σj�(ΩF�RF) := tr(R′

j�FΩ
−1
F )/k

for the (j� �)-th component of Σ, where ΩF := EFgig
′
i, VF := EF(fi − EFfi)(fi − EFfi)

′ ∈
R(p+1)k×(p+1)k, RF := (B′ ⊗ Ik)VF(B⊗ Ik) ∈R(p+1)k×(p+1)k in (16.7). Also, recall the def-
inition of R̂n(θ0� β̂n) := (B′ ⊗ Ik)V̂n(θ0� β̂n)(B ⊗ Ik), which is given by (19) with (θ0� β̂n)

in place of θ.

Lemma 31.9. (a) Assumption WUS holds with Û2n = (Ω̂n(θ0� β̂n)� R̂n(θ0� β̂n)),
U1(U2F)=U1(ΩF�RF)= ((θ0� Ip)(Σ

ε(ΩF�RF))
−1(θ0� Ip)

′)1/2 defined in (16.8), and h8 =
limU2Fwn = lim(ΩFwn �RFwn ), under any sequence {λwn�h ∈ΛS∗ : n≥ 1}, and

(b) FS = FS
WU for δ1 sufficiently small and M1 sufficiently large in the definition of

FS
WU.

The proof of Lemma 31.9 follows the same lines as the proof of Lemma 27.4. As in
(27.73), we have

V̂n(θ0� β̂n)=EFnfif
′
i − (EFnfi)(EFnfi)

′ + op(1) (31.32)
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and

R̂n(θ0� β̂n) = (B′ ⊗ Ik
)(
EFnfif

′
i − (EFnfi)

(
EFnf

′
i

))
(B⊗ Ik)+ op(1)

→p Rh := (B′ ⊗ Ik
)[
h5 − vec

((
0k�h4

))
vec
((

0k�h4
))′]

(B⊗ Ik)� (31.33)

where the convergence holds by results stated (or proved exactly as) in the proof of
Lemma 31.5(b) below. This implies that Assumption WUS(a) holds, namely, Û2wn −
U2Fwn = (Ω̂wn(θ0� β̂n), R̂wn(θ0� β̂n)) − (ΩFwn �RFwn ) = op(1). Assumption WUS(b) holds
by the same argument as the one for the full vector case that starts in the paragraph
containing (27.75). This establishes Lemma 31.9(a).

Lemma 31.9(b) holds by the same argument as the one for the full vector case that
starts after the paragraph that contains (27.77).

31.2 Proof of Lemma 31.5

Throughout the proof, we use the shorthand notation gi(β) = gi(θ0�β) and ĝn(β) =
n−1∑n

i=1 gi(θ0�β) and write gi for gi(β∗), where β∗ is the true value of β, and anal-
ogously for other expressions, for example, we write D̂n(β) for D̂n(θ0�β) and Gi for
Gi(θ0�β

∗). Furthermore, to simplify notation, we replace subscripts Fn by n, for exam-
ple, we write En, rather than EFn .

Proof of Lemma 31.5(a). Given {λSn�h : n ≥ 1}, let Fn and β∗
n denote the distribution

of Wi and the true parameter β when the sample size is n. Let Q̂n(β) = ‖ĝn(β)‖2 and
Qn(β) = ‖Engi(β)‖2, where a subscript n on E or P denotes expectation or probability
under Fn, respectively. The following proof adapts the standard proof for consistency of
extremum estimators to the case of drifting DGP’s {λSn�h : n≥ 1}.

(a1). We first show consistency of the first-step estimator, that is, β̃n −β∗
n →p 0b un-

der {λSn�h : n ≥ 1}. Let ε > 0. By the identifiability condition in FS
AR�1 in (50), there exists

δε > 0 such that β ∈ B\B(β∗
n�εe) implies Qn(β)≥ δε. Thus,

Pn
(∥∥β̃n −β∗

n

∥∥> ε) = Pn
(
β̃n ∈ B\B(β∗

n�ε
))

≤ Pn
(
Qn(β̃n)− Q̂n(β̃n)+ Q̂n(β̃n)≥ δε

)
≤ Pn
(
Qn(β̃n)− Q̂n(β̃n)+ Q̂n

(
β∗
n

)≥ δε
)

≤ Pn
(

2 sup
β∈B

∣∣Qn(β)− Q̂n(β)
∣∣≥ δε

)
→ 0�

where the second inequality holds because Q̂n(·) is minimized by β̃n, the third inequality
holds because Qn(β∗

n)= 0, and the convergence result holds, because, as we show now,
supβ∈B |Q̂n(β)−Qn(β)| →p 0.

For δ > 0, define

Yiδ := sup
β∈B

sup
β′∈B(β�δ)

∥∥gi(β′)− gi(β)
∥∥� (31.34)
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whose distribution depends on Fn. By Assumption gB, gi(·) is uniformly continuous on
B and thereforeYiδ → 0 a.s. [μ] as δ→ 0. Furthermore,EμYiδ ≤ 2Eμ supβ∈B ‖gi(β)‖<∞,

where the latter inequality holds by the conditions in FS
AR�1. Therefore, by the domi-

nated convergence theorem (DCT) it follows that EμYiδ → 0 as δ→ 0. Let fn denote the
Radon–Nikodym derivative of Fn wrt μ and note that by assumption fn ≤ M . We have
supn EnYiδ = supn EμfnYiδ ≤EμMYiδ → 0 as δ→ 0.

By Assumption gB, B is compact. Therefore, for δ > 0 there is a finite cover of B by
balls of radius δ centered at some points βj , j = 1� � � � � Jδ, that is, B⊂⋃Jδ

j=1B(βj�δ). Let

Hn(β)= ĝn(β)−Engi(β)� (31.35)

Because FS
AR�1 imposes supβ∈B EF‖gi(β)‖1+γ ≤M , a Lyapunov-type WLLN implies that

for any fixed β ∈ B we haveHn(β)→p 0k as n→ ∞. It then follows that for ε > 0 we have

Pn
(

sup
β∈B

∥∥Hn(β)
∥∥> 2ε

)
≤ Pn
(

max
j=1�����Jδ

sup
β∈B(βj�δ)

∥∥Hn(β)−Hn(βj)
∥∥+ ∥∥Hn(βj)

∥∥> 2ε
)

≤ Pn
(

sup
β∈B

sup
β′∈B(β�δ)

∥∥Hn
(
β′)−Hn(β)

∥∥> ε)+ Pn
(

max
j=1�����Jδ

∥∥Hn(βj)
∥∥> ε)� (31.36)

where the first inequality holds by the triangle inequality.
For the first summand in (31.36), we have the following bound:

Pn
(

sup
β∈B

sup
β′∈B(β�δ)

∥∥Hn
(
β′)−Hn(β)

∥∥> ε)

≤ Pn

(
1
n

n∑
i=1

(Yiδ +EnYiδ) > ε

)

≤En
1
n

n∑
i=1

(Yiδ +EnYiδ)/ε

= 2EnYiδ/ε� (31.37)

where the first inequality holds by the triangle inequality and the second inequality
holds by Markov’s inequality. Because, as shown above, supn EnYiδ → 0 as δ → 0, for
given ν > 0 there is δν > 0 such that 2EnYiδ/ε < ν/2 for all n and for all δ ≤ δν . Be-
cause Hn(β) →p 0, we can find a finite nδν ∈ N such that for all n ≥ nδν we have
Pn(maxj=1�����Jδν ‖Hn(βj)‖> ε) < ν/2. This proves

Pn
(

sup
β∈B

∥∥Hn(β)
∥∥> 2ε

)
→ 0 (31.38)

as n→ ∞. By the reverse triangle inequality, we then obtain the desired supβ∈B |Q̂n(β)−
Qn(β)| →p 0 as n→ ∞.
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(a2). Next, we show consistency of β̂n. Let {βn − β†
n : n ≥ 1} be any nonstochas-

tic sequence that converges to 0b. We can write Engi(βn) − Engi(β
†
n) = Eμhn for hn =

(gi(βn)− gi(β
†
n))fn. Because fn ≤M and gi(·) is uniformly continuous on B by Assump-

tion gB, it follows that hn → 0k a.s. [μ]. Furthermore, Eμhn ≤ 2MEμ supβ∈B ‖gi(β)‖<∞
by the conditions in FS

AR. Therefore, by the DCT, Eμhn → 0k.
Define Engi(β̃n) = Engi(β)|β=β̃n . That is, the expectation is taken first treating β as

nonrandom, and then the resulting expression is evaluated at the random vector β̃n. For
any given ε > 0,∥∥ĝn(β̃n)∥∥ ≤ ∥∥ĝn(β̃n)−Engi(β̃n)

∥∥+ ∥∥Engi(β̃n)−Engi
(
β∗
n

)∥∥
≤ sup
β∈B(β∗

n�ε)

∥∥ĝn(β)−Engi(β)
∥∥+ op(1)

= op(1)� (31.39)

where the first inequality holds by the triangle inequality, the second inequality holds
wp → 1 because β̃n −β∗

n →p 0b and Eμhn → 0k, and the equality holds by (31.38).
Furthermore, n−1∑n

i=1 gi(β̃n)gi(β̃n)
′ − Engig

′
i →p 0k×k. This result is proved as in

(31.39), by establishing a UWLLN onB(β∗
n�ε) for n−1∑n

i=1 gi(·)gi(·)′ and by showing that
Eμhn → 0k×k for hn = (gi(βn)gi(βn)

′ − gi(β
†
n)gi(β

†
n)

′)fn when βn − β†
n converges to 0b.

The latter follows as above from the DCT using Eμ supβ∈B(β∗
n�ε)

‖gi(β)‖2 <∞ by the con-

ditions in FS
AR. The former follows using the same proof as for (31.38) noting that by the

conditions in FS
AR we have Eμ supβ∈B(β∗

n�ε)
‖gi(β)‖2 < ∞ and supβ∈B(β∗

n�ε)
EF‖gi(β)‖2+γ

is uniformly bounded. We have therefore shown that (ϕ̂′
nϕ̂n)

−1 −Engig
′
i →p 0k×k, where

ϕ̂′
nϕ̂n is defined in (42). Because FS

AR imposes λmin(EFgig
′
i)≥ δ, it follows that

ϕ̂′
nϕ̂n − (Engig′

i

)−1 →p 0k×k� (31.40)

The remainder of the consistency proof is analogous to the proof in part (a1), but
with Q̂n(β) := ‖ϕ̂nĝn(β)‖2 and Qn(β) := ‖(Engig′

i)
−1/2Engi(β)‖2. To establish a UWLLN

for Q̂n(β), note that

sup
β∈B(β∗

n�ε)

∥∥ϕ̂nĝn(β)− (Engig′
i

)−1/2
Engi(β)

∥∥
≤ ‖ϕ̂n‖ sup

β∈B(β∗
n�ε)

∥∥ĝn(β)−Engi(β)
∥∥+ ∥∥ϕ̂n − (Engig′

i

)−1/2∥∥ sup
β∈B(β∗

n�ε)

∥∥Engi(β)∥∥
= op(1)� (31.41)

where the inequality uses the triangle inequality and the equality uses (31.38), (31.40),
the assumption that supβ∈B(β∗

n�ε)
‖Engi(β)‖ is uniformly bounded by a finite num-

ber, and that ‖ϕ̂n‖ = O(1) because λmin(Engig
′
i) ≥ δ. Equation (31.41) implies that

supβ∈B(β∗
n�ε)

|Q̂n(β)−Qn(β)| = op(1).
(a3). Now, we derive the limiting distribution of β̂n under {λSn�h : n ≥ 1}. As above,

Q̂n(β) := ‖ϕ̂nĝn(β)‖2. Because β∗
n is bounded away from the boundary of B, β̂n−β∗

n →p
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0b, and gi(·) ∈ C2(B(β∗
n�ϑ)), the following FOC holds wp → 1 and element-by-element

mean-value expansions of ∂
∂βQn(β̂n) exist:

0b = ∂

∂β
Qn(β̂n)= ∂

∂β
Qn
(
β∗
n

)+ ∂2

∂β∂β′Qn
(
β+
n

)(
β̂n −β∗

n

)
� (31.42)

where the mean-value β+
n lies on the segment joining β̂n and β∗

n (and hence satisfies
β̂n −β∗

n →p 0b).
For m, j = 1� � � � � b, we have

∂

∂β
Qn(β) =

[
n−1

n∑
i=1

∂

∂β′ gi(β)
]′
ϕ̂′
nϕ̂nn

−1
n∑
i=1

gi(β) and

[
∂2

∂β∂β′Qn(β)
]
mj

= n−1
n∑
i=1

∂

∂βm
gi(β)

′ϕ̂′
nϕ̂nn

−1
n∑
i=1

∂

∂βj
gi(β) (31.43)

+ n−1
n∑
i=1

∂2

∂βm∂βj
gi(β)

′ϕ̂′
nϕ̂nn

−1
n∑
i=1

gi(β)�

By the argument in (31.39), n−1∑n
i=1 gi(β

+
n )→p 0k under {λSn�h : n≥ 1}. Furthermore,

n−1
n∑
i=1

∂

∂βj
gi
(
β+
n

)−En
∂

∂βj
gi →p 0k (31.44)

under {λSn�h : n ≥ 1}. The latter holds by the argument in (31.39) with gi(β̃n) replaced

by ∂
∂βj
gi(β

+
n ) and using the assumptions supβ∈B(β∗

n�ϑ)
En‖Giβ(β)‖1+γ and

Eμ supβ∈B(β∗
n�ϑ)

‖Giβ(β)‖ are uniformly bounded in FS . In addition, n−1∑n
i=1

∂2

∂βm∂βj
×

gi(β
+
n )=Op(1) (again by an argument as in (31.39) with gi(β̃n) replaced by ∂2

∂βm∂βj
gi(β

+
n )

and using the fact that supβ∈B(β∗
n�ϑ)

En‖ ∂2

∂βm∂βj
gi(β)‖1+γ and Eμ supβ∈B(β∗

n�ϑ)
‖ ∂2

∂βm∂βj
×

gi(β)‖ are uniformly bounded by the conditions in FS). It follows that ∂2

∂β∂β′Qn(β+
n ) −

B∗
n →p 0b×b under {λSn�h : n≥ 1}, where B∗

n :=EnG
′
iβ(Engig

′
i)

−1EnGiβ.

Because λmin(B
∗
n) is bounded away from zero (since τmin(EnGiβ)≥ δ for Fn ∈ FS), it

follows that ∂2

∂β∂β′Qn(β+
n ) is invertible wp → 1. This and (31.42) give

n1/2(β̂n −β∗
n

)= −(B∗
n + op(1)

)−1√
n
∂

∂β
Qn
(
β∗
n

)
� (31.45)

From above, we have

n1/2 ∂

∂β
Qn
(
β∗
n

)= (EnGiβ)
′(Engig′

i

)−1
n−1/2

n∑
i=1

gi
(
β∗
n

)+ op(1)� (31.46)

By the CLT result in (31.20), n−1/2∑n
i=1 gi(β

∗
n) →d gh. Combining the previous results

and using the definition of the vector h, we obtain the result of Lemma 31.5(a).
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Proof of Lemma 31.5(b). Using Lemma 31.5(a) or the same argument employed mul-
tiple times in the proof of Lemma 31.5(a), we have: n−1∑n

i=1 gi(β̂n) →p 0k, n−1 ×∑n
i=1 gi(β̂n)gij(β̂n) − Engigij →p 0k, n−1∑n

i=1 gi(β̂n)gij(β̂n)gi(β̂n)
′ − λS5�3�j�n →p 0k×k,

Ω̂−1
n (β̂n) − (Engigi)

−1 →p 0k×k, n−1∑n
i=1Giβj (β̂n) − λS4�βj�n →p 0k, and n−1 ×∑n

i=1Giβj (β̂n)gi(β̂n)
′ − λS5�βj�n →p 0k×k. Therefore, Ω̃n(β̂n) →p h5�g, G̃βn(β̂n) →p h4�β,

and J̃n(β̂n)→p h
−1/2
5�g h4�β.

Proof of Lemma 31.5(c). We derive the limit distributions of (i) ĝn(β̂n), (ii) D̂n(β̂n)−
EnGi, (iii) Ω̃n(θ0� β̂n)−Engig

′
i, and (iv) G̃βn(θ0� β̂n)−EnGiβ under {λSn�h : n≥ 1} in (c1)–

(c4) below, respectively.
(c1). We have

n1/2ĝn(β̂n) = n1/2ĝn
(
β∗
n

)+ Ĝβn
(
β+
n

)
n1/2(β̂n −β∗

n

)
= (Ik − (EnGiβ)B

∗−1
n (EnGiβ)

′(Engig′
i

)−1)
n1/2ĝn

(
β∗
n

)+ op(1)� (31.47)

where the first equality uses a mean-value expansion with β+
n on the segment joining β̂n

and β∗
n and the second equality holds by (31.45) and (31.46). Therefore,

n1/2ĝn(β̂n)→d g
S
h := h

1/2
5�gMh

−1/2
5�g h4�β

h
−1/2
5�g gh� (31.48)

Note that the assumption of strong identification of β, namely τmin(EFGiβ) ≥ δ in FS ,
implies that h4�β has full column rank b.

(c2). Recall the definition of Γ̂jn(·) for j = 1� � � � �p in (18). Under sequences {λSn�h : n≥
1}, we have(

Γ̂ ′
1n(β̂n)� � � � � Γ̂

′
pn(β̂n)

)′
Ω̂−1
n (β̂n)− ((EnGi1g

′
i

)′
� � � � �
(
EnGipg

′
i

)′)′
Ω−1
n →p 0� (31.49)

which is established analogously to the results in (31.40) and (31.44), using the uniform
finite bounds on supβ∈B(β∗

n�ϑ)
En‖( ∂

∂β′ gi(β))gij(β)‖1+γ and Eμ supβ∈B(β∗
n�ϑ)

‖( ∂
∂β′ gi(β))×

gij(β)‖ for j = 1� � � � �k in FS .
Using gi(·) ∈ C2(B(β∗�ϑ)), by a second-order Taylor expansion of ĝn(β̂n) about β∗

n

and a mean-value expansion of Gi(β̂n) (as in (31.47)), we obtain

n1/2 vec
(
D̂n(β̂n)−Dn

)
= n−1/2

n∑
i=1

⎡⎢⎣vec(Gi −EnGi)−
⎛⎜⎝EnG�1g

′
�

���

EnG�pg
′
�

⎞⎟⎠Ω−1
n gi

⎤⎥⎦
+ vec
(
(EnGiθ1β)n

1/2(β̂n −β∗
n

)
� � � � � (EnGiθpβ)n

1/2(β̂n −β∗
n

))
−
⎡⎢⎣
⎛⎜⎝EnG�1g

′
�

���

EnG�pg
′
�

⎞⎟⎠Ω−1
n

⎤⎥⎦ (EnGiβ)n
1/2(β̂n −β∗

n

)+ op(1)� (31.50)
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where EnG�jg
′
� = EnGijg

′
i for any observation indices �� i ≥ 1 by stationarity. The terms

on the rhs of the first line of (31.50) consist of the term Dn = EnGi and the first term
of the expansions of Gi(β̂n) and gi(β̂n), respectively, replacing sample averages by ex-
pectations as in (31.49). The term in the second line comes from the second term of the
expansion of Gi(β̂n). For this, we use

Ĝθjβn
(
β+
n

)−EnGiθjβ →p 0k×b for j = 1� � � � �p (31.51)

for any sequence β+
n such that β+

n − β∗
n →p 0. The latter is established (as in sev-

eral places above) using the assumptions that supβ∈B(β∗
n�ϑ)

En‖ ∂2

∂θt∂β′ gi(β)‖1+γ and

Eμ supβ∈B(β∗
n�ϑ)

‖ ∂2

∂θt∂β′ gi(β)‖ are uniformly bounded in FS . The first term of the third line

comes from the second term of the expansion of gi(β̂n) and using (31.44) and (31.49).
The op(1) term contains the errors caused by the approximations in (31.49) and (31.51)
and from the third term of the expansion of gi(β̂n) (which is indeed op(1) given the

moment bounds in FS on ∂2

∂θt∂β′ gi(β)).
Equation (31.50), combined with Lemma 31.5(a), (31.20), (31.14), and the paragraph

containing (31.16), give

n1/2 vec
(
D̂n(β̂n)−Dn

)
→d vec

(
D
S
h

)
:= (vec(Gh)− h5�Ggh

−1
5�ggh
)+ vec(h4�θ1ββh� � � � �h4�θpββh)

− h5�Ggh
−1
5�gh4�ββh� (31.52)

Note that gSh and βh are independent because

cov
(
M
h

−1/2
5�g h4�β

h
−1/2
5�g gh�βh

)
=M

h
−1/2
5�g h4�β

(
h

−1/2
5�g h4�β

)[(
h

−1/2
5�g h4�β

)′(
h

−1/2
5�g h4�β

)]−1 = 0k×b� (31.53)

Next, we establish that gSh and D
S
h (defined in (31.21)) are independent. The last two

summands that make upD
S
h are independent of gSh because gSh and βh are independent.

Regarding the first summand, recall that from (31.20) we know that vec(Gh) and gh are
jointly normally distributed and because cov(gh� vec(Gh)− h5�Ggh

−1
5�ggh)= 0k×pk, it fol-

lows that vec(Gh)− h5�Ggh
−1
5�ggh and gSh are independent.

(c3). Next, we derive the asymptotic distribution of Ω̃n(β̂n). Let j ∈ {1� � � � �k}. By a
mean-value expansion, for some vectors β+

n and β†
n on the line segment joining β̂n and

β∗
n, under {λSn�h ∈ΛS : n≥ 1}, we have

n1/2[Ω̃jn(β̂n)−Ωjn

]
= n1/2

[
n−1

n∑
i=1

gigij −Ωjn

]
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+ n−1
n∑
i=1

[
Giβ

(
β+
n

)
gij
(
β+
n

)+ gi
(
β+
n

)(∂gij(β+
n

)
∂β

)′]
n1/2(β̂n −β∗

n

)
− �̂jn(β̂n)Ω̂

−1
n (β̂n)

[
n1/2ĝn +Giβ

(
β†
n

)
n1/2(β̂n −β∗

n

)]+ op(1)

→d κ
S
h�j

:=Lj�h�3 − h5�3�jh
−1
5�ggh

+ [(h5�β1�j� � � � �h5�βb�j)+ ((h5�β1)
′
j� � � � � (h5�βb)

′
j

)− h5�3�jh
−1
5�gh4�β)

]
βh� (31.54)

where Lj�h�3 ∈Rk denotes the (j − 1)k+ 1� � � � � jk components of Lh�3, (h5�βl )
′
j ∈ Rk de-

notes the jth column of (h5�βl )
′ ∈Rk×k for l= 1� � � � � b, and the convergence result holds

by the moment restrictions in the parameter space, WLLN’s, (31.20), and part (a) of the

lemma. Equation (31.54) yields n1/2(Ω̃n(β̂n)−Ωn)→d κ
S
h := (κSh�1� � � � �κ

S
h�k).

By definition, κ
S
h�j is a nonrandom function of Lj�h�3 − h5�3�jh

−1
5�ggh and βh. By

(31.53), βh and gSh are independent. In addition, Lj�h�3 − h5�jh
−1
5�ggh and gh are inde-

pendent, because they are jointly normal with a zero covariance matrix. Therefore,

Lj�h�3 − h5�jh
−1
5�ggh and gSh (:= h

1/2
5�gMh

−1/2
5�g h4�β

h
−1/2
5�g gh) are independent. This shows that

κ
S
h := (κSh�1� � � � �κ

S
h�k) and gSh are independent.

Equation (31.54) yields n1/2(Ω̃jn(β̂n)−Ωjn)→d κ
S
h, as desired.

(c4). As in (31.54), for j ∈ {1� � � � � b}, under {λSn�h ∈ΛS : n≥ 1}, we have

n1/2[G̃βjn(β̂n)−EnGiβj

]
= n1/2

[
n−1

n∑
i=1

Giβjn −EnGiβj

]
+ n−1

n∑
i=1

Giβjβ

(
β+
n

)
n1/2(β̂n −β∗

n

)
− �̂jn(β̂n)Ω̂n(β̂n)

−1[n1/2ĝn +Giβ

(
β⊥
n

)
n1/2(β̂n −β∗

n

)]
→d #

S
h�j :=Lj�h�4 − h5�βjh

−1
5�ggh + (h4�βjβ − h5�βjh

−1
5�gh4�β

)
βh� (31.55)

where Lj�h�4 ∈Rk denotes the (j − 1)k+ 1� � � � � jk components of Lh�4. Equation (31.55)
and #Sh := (#Sh�1� � � � �#

S
h�b) yield n1/2(G̃βn(β̂n)−EnGiβj )→d #

S
h, as desired.

By the same argument as for κ
S
h above, #Sh := (#Sh�1� � � � �#

S
h�b) and gSh are indepen-

dent.

Proof of Lemma 31.5(d). First, we obtain the asymptotic distributions of Ω̃−1/2
n (β̂n),

J̃n(β̂n), and Õn = Õn(J̃n(β̂n)).
Consider the function that maps vec(ϕ) onto vec(ϕ−1/2), where ϕ ∈ Rk×k is positive

definite. Denote by ϕh ∈ Rk2×k2
the matrix of partial derivatives of that mapping evalu-

ated at vec(h5�g). By n1/2(Ω̃jn(β̂n) −Ωjn)→d κ
S
h, which holds by part (c) of the lemma

(and is proved in (31.54)), and the delta method, we have

n1/2[Ω̃−1/2
n (β̂n)−Ω

−1/2
n

]→d vec−1
k�k

(
ϕh vec

(
κ
S
h

))
� (31.56)



Supplementary Material Identification and singularity robust inference 131

The asymptotic distribution J̃n(β̂n) := Ω̃
−1/2
n (β̂n)G̃βn(β̂n) is obtained as follows:

n1/2[J̃n(β̂n)−Ω
−1/2
n EnGβi

]
= Ω̃

−1/2
n (β̂n)n

1/2[Ĝβn(β̂n)−EnGβi

]+ n1/2[Ω̃−1/2
n (β̂n)−Ω

−1/2
n

]
EnGβi

→d ω
S
h := h

−1/2
5�g #Sh + vec−1

k�k

(
ϕh vec

(
κ
S
h

))
h4�β� (31.57)

where the convergence uses (31.56) and n1/2(G̃βn(β̂n)−EnGiβj )→d #
S
h, which holds by

part (c) of the lemma (and is proved in (31.55)).
Assume wlog that the first b columns of (h−1/2

5�g h4�β)
′ are linearly independent.75

Then, by (31.4) and (31.5), we have

On =O(Jn)= ((−j′n1(Jn1)
−1� e′

1
)′
� � � � �
(−j′n(k−b)(Jn1)

−1� e′
k−b
)′)

and

Õn =O(J̃n)= ((−j̃′n1(J̃n1)
−1� e′

1
)′
� � � � �
(−j̃′n(k−b)(J̃n1)

−1� e′
k−b
)′)
�

(31.58)

where again J′
n = (J′

n1� J
′
n2) with J′

n1 ∈Rb×b and J′
n2 = (jn1� � � � � jnk−b) ∈Rb×(k−b), jnl ∈Rb

for l = 1� � � � �k − b, and analogously for J̃′
n. Consider the function that maps vec(J)

for J ∈ Rk×b onto vec(O(J)) ∈ Rk(k−b), where O(J) is defined by (31.4) and (31.5). De-

note by Bh ∈ Rk(k−b)×kb the matrix of partial derivatives of that mapping evaluated at
vec(h−1/2

5�g h4�β). Then, by the delta method,

n1/2(Õn −On)→d vec−1
k�k−b
(
Bh vec

(
ωSh
))

(31.59)

and the asymptotic distribution is independent of gSh.

Given the asymptotic distributions of Ω̃−1/2
n (β̂n) and Õn, the asymptotic distribution

of n1/2Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnTn is obtained as follows. We write this matrix in terms of

two submatrices:

n1/2Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnBnSn

= (Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnBn�qSΥ

−1
n�qS

� n1/2Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnBn�p−qS

)
� (31.60)

Consider the first component on the rhs of (31.60). By definition, the singular value
decomposition of O′

nΩ
−1/2
n DnUn is CnΥnB′

n and, as in the proof of the full vector case

preceding (25.5), we have O′
nΩ

−1/2
n DnUnBn�qSΥ

−1
n�qS

= Cn�qS . Hence, we obtain

Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnBn�qSΥ

−1
n�qS

=O′
nΩ

−1/2
n DnUnBn�qSΥ

−1
n�qS

+ n1/2(Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)−O′

nΩ
−1/2
n Dn

)
UnBn�qS

(
n1/2Υn�qS

)−1

75If the first b columns of (h−1/2
5�g h4�β)

′ are linearly dependent,On and Õn are given by analogous formulas

involvingR′
n =EnG

′
iβΩ

−1/2
n = (R′

n1�R
′
n2) and R̃n(β̂n)′ = (R̃′

n1� R̃
′
n2) just based on a different set of b columns

of (h−1/2
5�g h4�β)

′.
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= Cn�qS + op(1)

→p  
S
h�qS := h3�qS ∈R(k−b)×qS � (31.61)

where the second equality uses n1/2(Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n) − O′

nΩ
−1/2
n Dn) = Op(1) and

n1/2τjn → ∞ for all j ≤ qS (by the definition of qS in (31.16)). The convergence in (31.61)
holds by (31.14) and (31.15), and the last equality in (31.61) holds by definition. To see
that the Op(1) result holds, we write

n1/2(Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)−O′

nΩ
−1/2
n EnGi

)
= Õ′

nΩ̃
−1/2
n (β̂n)n

1/2(D̂n(β̂n)−EnGi

)+ Õ′
nn

1/2(Ω̃−1/2
n (β̂n)−Ω

−1/2
n

)
EnGi

+ n1/2(Õ′
n −O′

n

)
Ω

−1/2
n EnGi� (31.62)

The Op(1) result then holds by (31.52), (31.56), (31.59), On = O(1), Ω−1/2
n = O(1), and

Dn =O(1).
Next, consider with the second component on the rhs of (31.60). As in (25.6) and

(25.7), we have

n1/2O′
nΩ

−1/2
n DnUnBn�p−qS → h3h

�
1�p−qS � (31.63)

By (31.52), (31.56), and (31.59), we have

n1/2(Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)−O′

nΩ
−1/2
n Dn

)
= n1/2(Õn −On)

′Ω̃−1/2
n (β̂n)D̂n(β̂n)+O′

nn
1/2(Ω̃−1/2

n (β̂n)−Ω
−1/2
n

)
D̂n(β̂n)

+O′
nΩ

−1/2
n n1/2(D̂n(β̂n)−Dn

)
→d χh

:= vec−1
k�k−b
(
Bh vec

(
ωSh
))′
h

−1/2
5�g h4

+O
(
h

−1/2
5�g h4�β

)′ vec−1
k�k

(
ϕh vec

(
κ
S
h

))
h4 +O

(
h

−1/2
5�g h4�β

)′
h

−1/2
5�g Dh� (31.64)

Using (31.63) and (31.64), we obtain

n1/2Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)UnBn�p−qS

= n1/2O′
nΩ

−1/2
n DnUnBn�p−qS

+ n1/2(Õ′
nΩ̃

−1/2
n (β̂n)D̂n(β̂n)−O′

nΩ
−1/2
n Dn

)
UnBn�p−qS

→d  
S
h�p−qS := h3h

�
1�p−qS +χhh81h2�p−qS ∈R(k−b)×(p−qS)� (31.65)

where Bn�p−qS → h2�p−qS , U2n → h8, and Un = U1(U2n)→ U1(h8) =: h81, using the def-
initions in (16.4), (16.5), and (16.24). Combining (31.60), (31.61), and (31.65) gives the

desired asymptotic result because  
S
h := ( 

S
h�qS � 

S
h�p−qS ) by (31.22).
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We have (βh�D
S
h�κ

S
h�#

S
h� 

S
h) is independent of gSh because  

S
h is a nonrandom func-

tion of h and (D
S
h�κ

S
h�#

S
h), see (31.22), and (βh�D

S
h�κ

S
h�#

S
h) is independent of gSh by

Lemma 31.5(c).

Proof of Lemma 31.5(e). The proofs of parts (a)–(d) of the lemma go through when n
is replaced by wn.

31.3 Proof of Theorem 13.1

The proof of Theorem 13.1 is a combination of the following lemma and the correct
asymptotic size results for the subvector AR and CQLR tests given in Theorem 9.1.

In the following lemma, θ0n is the true value that may vary with n. For notational
simplicity, we suppress the dependence of various quantities on θ0n.

Lemma 31.10. Suppose Assumption gB holds. Then, for any sequence {(Fn�β∗
n�θ0n) ∈

FS�SR
Θ�AR : n ≥ 1}, (a) r̂n(β̃n) = rFn(β̃n) = rFn(β

∗
n) wp → 1, (b) col(Ân(β̃n)) = col(AFn(β̃n)) =

col(AFn(β
∗
n)) wp → 1, and (c) given the first-stage estimator β̃n, the statistics

SR-ARSn(β̂Ân), SR-QLRSn(β̂Ân), χ
2
r̂n(β̃n)�1−α, ĉrn(β̃n)�p(n

1/2D̂∗̂
An
(β̂Ân), J̃Ân(β̂Ân)�1 − α) are

invariant wp → 1 to the replacement of r̂n(β̃n) and Ân(β̃n)
′ by rFn(β

∗
n) and Π−1/2

1Fn
(β∗

n)×
AFn(β

∗
n)

′, respectively.

Proof of Lemma 31.10. First, we establish part (a). For any β ∈ B(β∗
n�ε),

λ ∈N(ΩFn(β)
) =⇒ λ ∈

⋂
β∈B(β∗

n�ε)

N
(
ΩFn(β)

)
=⇒ sup

β∈B(β∗
n�ε)

λ′ΩFn(β)λ= 0

=⇒ sup
β∈B(β∗

n�ε)

VarFn
(
λ′gi(β)

)= 0

=⇒ sup
β∈B(β∗

n�ε)

∣∣λ′gi(β)−EFnλ
′gi(β)

∣∣= 0 a.s. [Fn]

=⇒ sup
β∈B(β∗

n�ε)

λ′Ω̂n(β)λ= 0 a.s. [Fn]

=⇒ ∀β ∈ B(β∗
n�ε
)
� Ω̂n(β)λ= 0 a.s. [Fn]

=⇒ λ ∈
⋂

β∈B(β∗
n�ε)

N
(
Ω̂n(β)

)
a.s. [Fn]� (31.66)

where the first implication holds by condition (iv) of FS�SR
AR�2 . From the proof of Lem-

ma 31.5, under sequences {(Fn�β∗
n�θ0n) ∈ FS�SR

Θ�AR : n ≥ 1}, we have that β̃n − β∗
n →p 0b.

Thus, wp → 1 it follows that β̃n ∈ B(β∗
n�ε). Thus, from (31.66),N(ΩFn(β̃n))⊂N(Ω̂n(β̃n))

wp → 1 and r̂n(β̃n)≤ rFn(β̃n) wp → 1.
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Next, we prove r̂n(β̃n)≥ rFn(β̃n) wp → 1. By considering subsequences, it suffices to
consider the case where rFn(β

∗
n)= r for all n≥ 1 for some r ∈ {0�1� � � � �k}. We have

r̂n(β̃n)= rk
(
Ω̂n(β̃n)

)≥ rk
(
Π

−1/2
1Fn

(β̃n)AFn(β̃n)
′Ω̂n(β̃n)AFn(β̃n)Π

−1/2
1Fn

(β̃n)
)

(31.67)

because Ω̂n(β̃n) is k × k, the matrix AFn(β̃n)Π
−1/2
1Fn

(β̃n) is k × r wp → 1 by condition

(iv) of FS�SR
AR�2 and consistency of β̃n, and wlog 1 ≤ r ≤ k. (If r = 0, then the desired in-

equality r̂n(β̃n) ≥ 0 = rFn(β̃n) holds trivially wp → 1, where the equality holds by con-
dition (iv) of FS�SR

AR�2 and consistency of β̃n).) From condition (iv) of FS�SR
AR�2 , it follows that

AFn(β) =AFn(β
∗
n) and therefore AFn(β) does not depend on β for all β ∈ B(β∗

n�ε). For
β ∈ B(β∗

n�ε), we therefore write AFn for AFn(β) to simplify notation. Furthermore,

Π
−1/2
1Fn

(β)A′
Fn
Ω̂n(β)AFnΠ

−1/2
1Fn

(β)

= n−1
n∑
i=1

Π
−1/2
1Fn

(β)A′
Fn

(
gi(β)−EFngi(β)

)(
gi(β)−EFngi(β)

)′
AFnΠ

−1/2
1Fn

(β)

−
[
n−1

n∑
i=1

Π
−1/2
1Fn

(β)A′
Fn

(
gi(β)−EFngi(β)

)]

×
[
n−1

n∑
i=1

(
gi(β)−EFngi(β)

)′
AFnΠ

−1/2
1Fn

(β)

]
� (31.68)

By construction and using condition (iv) of FS�SR
AR�2 , we have, for all β ∈ B(β∗

n�ε),

EFnΠ
−1/2
1Fn

(β)A′
Fn

(
gi(β)−EFngi(β)

)(
gi(β)−EFngi(β)

)′
AFnΠ

−1/2
1Fn

(β)= Ir�

By the uniform moment bound in FS�SR
Θ�AR, namely, EF supβ∈B(β∗�ε) ‖Π−1/2

1F (β)AF(β)
′ ×

(gi(β)−EFgi(β))‖2 ≤M and continuity of (gi(β)−EFngi(β))′AFnΠ
−1/2
1Fn

(β) as a function
of β (which holds by Elsner’s theorem and Assumption gB), it follows from a uniform
weak law of large numbers for L1+γ/2-bounded i.i.d. random variables for γ > 0 that the
expressions in the second and third lines of (31.68) converge in probability to Ir and 0r×r ,
respectively, uniformly over β ∈ B(β∗� ε). This implies that

Π
−1/2
1Fn

(β̃n)AFn(β̃n)
′Ω̂n(β̃n)AFn(β̃n)Π

−1/2
1Fn

(β̃n)→p Ir�

This establishes that r̂n(β̃n) ≥ r wp → 1 and, therefore, r̂n(β̃n) = r and N(ΩFn(β̃n)) =
N(Ω̂n(β̃n)) wp → 1, which proves (a). In turn, the latter implies that col(AFn(β̃n)) =
col(Ân(β̃n)) wp → 1, which also proves part (b).

To prove part (c), it suffices to consider the case where r ≥ 1 because the test statistics
and their critical values are all equal to zero by definition when r̂n(β̃n)= 0 and r̂n(β̃n)= 0
wp → 1 when r = 0 by part (a). Part (b) of the lemma implies that there exists a random
r × r nonsingular matrix M̂n such that

Ân(β̃n)=AFn

(
β∗
n

)
Π

−1/2
1Fn

(
β∗
n

)
M̂n wp → 1� (31.69)
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because Π−1/2
1Fn

(β∗
n) is nonsingular (since by its definition it is a diagonal matrix with the

positive eigenvalues of ΩFn(β
∗
n) on its diagonal.) Equation (31.69) and r̂n(β̃n)= r wp →

1 imply that the statistics SR-ARSn(β̂Ân), SR-QLRSn(β̂Ân), χ
2
r̂n(β̃n)�1−α, ĉrn(β̃n)�p(n

1/2 ×
D̂∗̂
An
(β̂Ân)� J̃Ân(β̂Ân)�1 − α), are invariant wp → 1 to the replacement of r̂n(β̃n) and

Ân(β̃n)
′ by r and AFn(β

∗
n)Π

−1/2
1Fn

(β∗
n)M̂n, respectively. Now we apply the invariance

results of Lemma 31.2 with (k�gi(β)�Gi(β)) replaced by (r�Π
−1/2
1Fn

(β∗
n)AFn(β

∗
n)

′gi(β)�
Π

−1/2
1Fn

(β∗
n)AFn(β

∗
n)

′Gi(β)) and with M equal to M̂ ′
n. These results imply that the pre-

vious four statistics when based on r and Π
−1/2
1Fn

(β∗
n)AFn(β

∗
n)

′gi(β) are invariant to the

multiplication of the moments Π−1/2
1Fn

(β∗
n)AFn(β

∗
n)

′gi(β) by the nonsingular matrix M̂ ′
n.

Thus, the statistics, defined as in Section 5.2, are invariant wp → 1 to the replacement of
r̂n(β̃n) and Â′

n(β̃n) by r and Π−1/2
1Fn

(β∗
n)AFn(β

∗
n)

′, respectively, which proves part (c).

31.4 Proof of Theorem 9.2

Proof of Theorem 9.2. By Lemma 31.10(a) and (b) and FS ⊂ FS�SR
AR (because FS im-

poses λmin(EFgig
′
i) ≥ δ, where FS�SR

AR is defined in (52)), we have r̂n(β̃n) = rFn(β̃n) =
rFn(β

∗
n) and col(Ân(β̃n)) = col(AFn(β̃n)) = col(AFn(β

∗
n)) wp → 1. Also, given

λmin(EFngig
′
i) ≥ δ, it follows that the orthogonal matrix AFn(β

∗
n) is in Rk×k. Given that

the statistics QLRSn(β̂n) and ck�p(n
1/2D̂∗

n(β̂n)� J̃n(β̂n)�1 − α) are invariant to nonsingu-
lar transformations by Lemma 31.2, the definition of the subvector SR test in (13.2),
combined with the previous two statements imply that SR-QLRSn(θ0� β̂Ân)= QLRSn(η̂)+
op(1). Because r̂n(β̃n) = k wp → 1, it follows that ĉrn(θ0�β̃n)�p

(n1/2D̂∗̂
An
(θ0� β̂Ân)�

J̃Ân(θ0� β̂Ân)�1 − α) = ck�p(n
1/2D̂∗

n(η̂)� J̃n(η̂)�1 − α) wp → 1, where the latter critical
value is the one for the subvector CQLR test without singularity robustness; see (48).
This proves the first equalities in parts (a) and (b).

We now proceed as in the proof of Theorem 7.1. We replace Ŵn, WFn , Ω̂−1/2
n ĝn,

and D̂n ∈ Rk×p by the corresponding quantities Ik, Ik, Õ′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂), and

Õ′
Fn
Ω̃n(η̂)

−1/2D̂n(η̂) ∈ R(k−b)×p, respectively. Note that qS = p under {λSn�h : n ≥ 1}. The

analogue to (28.2) with qS = p therefore states that

κ̂+
(p+1)n = nĝ′

n(η̂)Ω̂
−1/2
n ÕFnh3�k−ph′

3�k−pÕ
′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)+ op(1)� (31.70)

In addition, the analogue to (28.3) with qS = p states that

QLRSWU�n = nĝ′
n(η̂)Ω̂

−1/2
n ÕFnh3�ph

′
3�pÕ

′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)+ op(1)� (31.71)

where QLRSWU�n := ARSn(η̂) − λmin(nQ̂
S
WU�n) is defined below Proposition 31.6 and

equals QLRSn(η̂) when Ûn is taken to be L̂1/2
n (η̂). Equation (31.61) implies that h3�p =

Õ′
Fn
Ω̃

−1/2
n (η̂)D̂n(η̂)UnBn�pΥ

−1
n�p + op(1). Because UnBn�pΥ

−1
n�p is an invertible matrix, it

follows that Ph3�p = P
Õ′
Fn
Ω̃

−1/2
n (η̂)D̂n(η̂)

+ op(1). Therefore, using h′
3�ph3�p = Ip, it follows

that

QLRSWU�n = nĝ′
n(η̂)Ω̂

−1/2
n ÕFnPÕ′

Fn
Ω̃

−1/2
n (η̂)D̂n(η̂)

Õ′
Fn
Ω̃

−1/2
n (η̂)ĝn(η̂)+ op(1)� (31.72)
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By (31.48), Ω̃
−1/2
n (η̂)n1/2ĝn(η̂) = MJhh

−1/2
5�g n1/2ĝn(θ0�β

∗
n) + op(1), where Jh =

h
−1/2
5�g h4�β. Also, ÕFn = O(Jh) + op(1) and Ω̃

−1/2
n (η̂)D̂n(η̂) = Jθh + op(1), where Jθh :=

h
−1/2
5�g h4 and Jθh has full column rank p. Thus, we obtain

QLRSn(η̂) = n1/2ĝn
(
θ0�β

∗
n

)′
h

−1/2
5�g MJhO(Jh)PO(Jh)′JθhO(Jh)

′MJhh
−1/2
5�g n1/2ĝn

(
θ0�β

∗
n

)+ op(1)

= n1/2ĝn
(
θ0�β

∗
n

)′
h

−1/2
5�g PMJh

Jθhh
−1/2
5�g n1/2ĝn

(
θ0�β

∗
n

)+ op(1)� (31.73)

where the second equality uses O(Jh)O(Jh)′ =MJh =M ′
Jh
MJh .

From the above, it also follows that

LMS
n = n1/2ĝn

(
θ0�β

∗
n

)′
h

−1/2
5�g (MJhP[Jθh:Jh]MJh)h

−1/2
5�g n1/2ĝn

(
θ0�β

∗
n

)+ op(1) (31.74)

using h−1/2
5�g Ĝηn(η̂) →p [Jθh : Jh] := [h−1/2

5�g h4 : h−1/2
5�g h4�β] and [Jθh : Jh] has full column

rank p+ b.
Next, we have

MJhP[Jθh:Jh]MJh =MJhP[MJh
Jθh:Jh]MJh =MJh(PMJh

Jθh + PJh)MJh = PMJh
Jθh� (31.75)

where the first equality holds because [Jθh : Jh] and [MJhJθh : Jh] span the same space,
the second equality holds because MJhJθh and Jh are orthogonal, and the last equality
holds because PJhMJh = 0k×k and PMJh

JθhMJh = PMJh
Jθh . Equations (31.73)–(31.75) com-

bine to show that QLRSn(η̂)= LMS
n +op(1), which establishes the second equality of part

(a).
By (31.31), ck�p(n1/2D̂∗

n(η̂)� J̃n(η̂)�1 − α)+ op(1)→p ck−b�p�qS (h′
3�k−b−qS 

S
h�p−qS �1 −

α), where ck−b�p�qS (·�1 − α) is defined in (31.19) (and uses the notation in (27.12)). In

the present case, qS = p, which implies that  
S
h�p−qS has no columns, ACLRk�p�q(τc∞)=

Z′
1Z1 ∼ χ2

p, and ck�p�q(h
′
3�k−b−qS ×  

S
h�p−qS �1 − α) equals the 1 − α quantile of the χ2

p

distribution. Hence, the convergence result in part (b) holds.
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