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This paper studies measuring various average effects of X on Y in general struc-

tural systems with unobserved confounders U , a potential instrument Z, and a

proxy W for U . We do not require X or Z to be exogenous given the covariates or

W to be a perfect one-to-one mapping of U . We study the identification of coeffi-

cients in linear structures as well as covariate-conditioned average nonparametric

discrete and marginal effects (e.g., average treatment effect on the treated), and

local and marginal treatment effects. First, we characterize the bias, due to the

omitted variablesU , of (nonparametric) regression and instrumental variables es-

timands, thereby generalizing the classic linear regression omitted variable bias

formula. We then study the identification of the average effects of X on Y when

U may statistically depend onX and Z. These average effects are point identified

if the average direct effect of U on Y is zero, in which case exogeneity holds, or if

W is a perfect proxy, in which case the ratio (contrast) of the average direct effect

of U on Y to the average effect of U on W is also identified. More generally, re-

stricting how the average direct effect of U on Y compares in magnitude and/or

sign to the average effect of U on W can partially identify the average effects of

X on Y . These restrictions on confounding are weaker than requiring benchmark

assumptions, such as exogeneity or a perfect proxy, and enable a sensitivity anal-

ysis. After discussing estimation and inference, we apply this framework to study

earnings equations.
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1. Introduction

When measuring causal effects in observational studies, researchers often consider the
unobserved variables that may jointly drive the cause and response of interest. For ex-
ample, when estimating the financial return to education, researchers consider the un-
observed individual “ability” that may jointly affect educational attainment and wage.
Similarly, when estimating the elasticity of output with respect to the labor input, re-
searchers consider the unobserved firm productivity that may jointly affect the input
demands (e.g., capital and labor) and the output. A standard assumption that is useful
to point identify average effects is the exogeneity (unconfoundedness) of the treatment
or the instrument given the covariates. For example, to estimate the return to education
researchers sometime assume that educational attainment, or an instrumental variable
that is related to educational attainment such as the distance to a college, does not de-
pend on ability given the covariates (see, e.g., Card (1995)). Similarly, to estimate produc-
tion functions, researchers may consider using the prices of inputs as instrumental vari-
ables that are related to the inputs and unrelated to productivity (see, e.g., the discussion
in Griliches and Mairesse (1998)). A second common assumption that is useful to point
identify average effects requires that there is a perfect one-to-one proxy for the unob-
served confounders. For example, a researcher may rely on a test score as a measure of
ability (see, e.g., the discussion in Neal and Johnson (1996)). Similarly, a researcher may
assume that, conditional on the capital input, investment or an intermediate input is a
perfect proxy for the firm’s productivity (see, e.g., Olley and Pakes (1996) and Levinsohn
and Petrin (2003)).

These standard assumptions are not directly testable and researchers often ponder
their validity. In particular, researchers sometimes question whether selection on un-
observables leads conditional exogeneity to fail. For example, Carneiro and Heckman
(2002) provided evidence suggesting that several commonly employed instruments in
the ability literature may be endogenous and Griliches and Mairesse (1998) discussed
how input prices may fail to be valid instruments when estimating production func-
tions. Also, researchers often question whether a proxy is a perfect coding of the unob-
served confounders. For example, a test score may be an error-laden measure of ability
(see, e.g., Bollinger (2003)). Similarly, the firm’s investment or intermediate input may
fail to be a strictly monotonic function of its productivity if there is an optimization or
measurement error in how this proxy variable is determined or coded.1

Given the important role that the assumptions of conditional exogeneity and per-
fect proxy play in estimating average effects in a variety of empirical settings, it is use-
ful to study the consequences of a possible departure from these benchmark assump-
tions. In order to do so, this paper characterizes the bias that standard estimands of
various average effects would incur in the presence of omitted variables (unobserved
confounders). It then demonstrates how restrictions on confounding that are weaker
than requiring conditional exogeneity or a perfect proxy can partially identify these av-
erage effects. This enables a sensitivity analysis through which a researcher may gain

1Also, Ackerberg, Caves, and Frazer (2015) discussed how the perfect proxy assumption can sometimes
render the input variables functionally dependent, complicating the identification of their effects on the
output.
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confidence in a causal effect estimate that is not highly sensitive to deviations from a
maintained assumption. In particular, the paper studies identifying and estimating var-
ious conditional average effects of the treatment X on the response Y in structural sys-
tems with unobserved confounders U , a potential (possibly invalid) instrument Z, and
a proxy W for U . We do not require X or Z to be conditionally exogenous, and thus
U may statistically depend on X and Z. Further, we do not require W to be a perfect
proxy, that is, a one-to-one mapping of U . The framework encompasses general spec-
ifications; we study the identification of coefficients in a linear structure as well as of
covariate-conditioned average nonparametric discrete and marginal effects (e.g., aver-
age treatment effect on the treated), local average treatment effect, and marginal treat-
ment effect.

The analysis proceeds in two steps. The first step studies the consequences of omit-
ted variables on the identification of average effects via standard estimands in the gen-
eral specifications that this paper considers. In the case of linear homogenous effects,
the linear regression omitted variable bias (OVB) representation is a classic result in
econometrics (see, e.g., Stock and Watson (2010, Chapter 6); Wooldridge (2012, Chap-
ter 3)). For instance, Angrist and Pischke (2009, p. 62) stated that the linear regression
OVB formula “is one of the most important things to know about regression.” What is
the analogue of the OVB formula in the cases of standard estimands, such as nonpara-
metric regression and instrumental variables (IV) estimands (e.g., Wald (1940) or local
IV estimands), for the various average effects described above? The first contribution
of this paper is to characterize the OVB formula in these cases thereby generalizing the
classic linear regression OVB representation. This enables studying the direction of the
OVB, including in nonparametric nonseparable structures with heterogenous effects.

The second step of the analysis demonstrates how an imperfect proxy W for U can
be used to either point or partially identify various average effects ofX on Y . In particu-
lar, these average effects are point identified in two special cases. The first occurs ifX or
Z is exogenous. It suffices for exogeneity that U is unassociated (in a precise statistical
sense) with X or Z. This condition is testable under our assumptions since it implies
that W is unassociated with X or Z. Alternatively, when U may statistically depend on
X and Z as we allow, exogeneity holds if one assumes that the average direct (i.e., hold-
ing X fixed) effect of U on Y is zero (e.g., the average effect of ability on wage is zero).
The second special case in which these average effects of X on Y are point identified
occurs if the proxyW is a perfect one-to-one mapping of U (e.g., a test score is a perfect
proxy for ability). In this case, the ratio (contrast) of the average direct effect of U on
Y to the average effect of U on W is also point identified. More generally, a researcher
may impose restrictions on how the average direct effect of U on Y compares in mag-
nitude and/or sign to the average effect of U on W that are weaker than the restrictions
obtained when assuming exogeneity or a perfect proxy. Moreover, this comparison may
be informed by economic theory and evidence, as illustrated in the paper’s empirical
application. The second contribution of this paper is to demonstrate how these magni-
tude and/or sign restrictions on confounding can point or partially identify the various
average effects of X on Y . This enables a researcher to analyze the sensitivity of the
causal effects estimates to deviations from the benchmark assumptions of exogeneity
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and perfect proxy and can help clarify the extent to which the empirical estimates hinge
on these identifying assumptions.

The paper is organized as follows. Section 2 describes the paper’s basic framework.
Section 3 states the data generation assumption. We derive the OVB formulas and char-
acterize the sharp identification regions under restrictions on confounding for con-
stant coefficients in a linear structure in Section 4, nonparametric average discrete and
marginal effects in Section 5, and local and marginal treatment effects in Section 6.
Section 7 discusses estimation and inference. Section 8 applies this paper’s framework
to study the return to education and the black–white wage gap. Section 9 concludes.
Appendix2 A in the Online Supplemental Material (Chalak (2019)) contains extensions.
Mathematical proofs are gathered in the Online Supplemental Material in Appendix B.

2. Basic framework and overview

2.1 Linear equations with homogenous effects

To illustrate the paper’s main ideas, consider an earnings structural equation (see, e.g.,
Mincer (1974) and Card (1999)), frequently employed in empirical work, given by

Y =X ′β̄+Uδ̄Y +U ′
Y ᾱY � (1)

The researcher observes realizations of the logarithm of hourly wage, Y , and of determi-
nants X of wage, such as years of education (and the level and square of years of expe-
rience). U , commonly referred to as “ability” in the literature, denotes unobserved skill,
and UY collects additional unobservables (disturbances). To introduce the main ideas
in their simplest form, we let U be a scalar and consider homogenous (constant) linear
effects β̄, δ̄Y , and ᾱY . Also, we leave any additional covariates implicit. However, as dis-
cussed below, we emphasize that this paper’s approach does not require homogenous
effects or a parametric or separable specification.

Our object of interest is the (average) effect β̄ of X on Y , for example, the (average)
financial return to education. Although the return to education is homogenous in this
example, and thus does not depend on U , ability U is freely associated with X and may
cause Y (e.g., the educational attainment and wage may depend on ability). Thus, U is
an unobserved “confounder” or “omitted variable” and X is potentially “endogenous.”
The researcher observes realizations of a vector Z of potential instrumental variables.
By definition, UY collects the unobservables that may drive Y and are assumed to be
uncorrelated withZ (given the covariates) whereasU (which may be a vector more gen-
erally in Section 4) is freely correlated with Z. This allows a potential instrument for
education, for example, the proximity to a college, to be invalid if it is correlated with

2The Appendices are located in the Online Supplemental Material and are available in the Replication
File (Chalak (2019)). Section A.1 extends the constant coefficients analysis to discuss exogenous random
coefficients and conditioning on covariates, additional empirical estimates, a panel structure, and proxies
included in the Y equation. Section A.2 studies the special case where U enters the Y and W equations
additively separably. Section A.3 studies the nonparametric nonseparable case with discreteU . Appendix B
in the Online Supplemental Material collects the mathematical proofs.
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ability U , for example, due to unobserved parental characteristics or choices. We let Z
and X have the same dimension and Cov(Z�X) be nonsingular. In particular, the most
basic case arises when Z equalsX . The linear IV regression OVB (or inconsistency) B in
recovering β̄ is given by

B≡ Cov(Z�X)−1 Cov(Z�Y)− β̄= Cov(Z�X)−1 Cov(Z�U)δ̄Y �

and this expression may help clarify the direction of the OVB. Exogeneity requires
Cov(Uδ̄Y +U ′

Y ᾱY �Z)= 0 in which caseB= 0. By definition ofU andUY , Cov(UY �Z)= 0
and we allow Cov(U�Z) �= 0. Thus, exogeneity is guaranteed to hold only if δ̄Y = 0, that
is, the average direct (holding X fixed) effect of U on Y is zero. The expression for B is
the IV analogue of the classic regression OVB formula and reduces to it in the special
case when Z =X .

The researcher may observe realizations of an error-laden proxyW for U given by

W =Uδ̄W +U ′
W ᾱW � (2)

where the unobservables UW may be correlated with UY , U , and X . For now, we con-
sider a linear equation forW with constant δ̄W and ᾱW . For example,W may denote the
logarithm of a test score commonly used as a proxy for ability, such as Intelligence Quo-
tient (IQ) or Knowledge of the World of Work (KWW). This parsimonious specification
facilitates comparing the coefficients on U in the Y and W equations while maintain-
ing the commonly used log-level specification for the wage equation. In particular, δ̄Y
and δ̄W are the semi-elasticities of the wage and test score with respect to ability,3 that
is, 100δ̄Y% and 100δ̄W % are the (average) approximate percentage changes in the wage
(withX fixed) and test score due to a unit increase in U .

Sometimes, researchers consider conditioning on the proxy to control for endogene-
ity. Provided δ̄W �= 0, substituting for U in equation (1) gives

Y =X ′β̄+W δ̄Y

δ̄W
+U ′

Y ᾱY −U ′
W ᾱW

δ̄Y

δ̄W
� (3)

If UW is degenerate then W is a perfect one-to-one proxy for U and, provided Cov[UY �
(Z′�U)′] = 0, a linear IV regression of Y on (1�X ′�W ′)′ using instruments (1�Z′�W ′)′

may point identify the (average) effect β̄ of X on Y as well as δ̄Y
δ̄W

, the ratio of the (av-

erage) direct effect of U on Y to the (average) effect of U on W . This result fails to hold
when UW is nondegenerate because a nonzero4 Cov(UW �Z|W ) can lead to an IV re-
gression bias5 in recovering β̄. Moreover, β̄ is “underidentified” in equation (3) since

3One could also consider standardizing the variables in equations (1) and (2), in which case the slope
coefficients on the standardized ability denote standard deviation shifts in wage (holding X fixed) and the
test score respectively due to a standard deviation shift in ability.

4From W = Uδ̄W +U ′
W ᾱW , Cov(UW �U |W ) is generally nonzero. Since Z (or X) and U are freely corre-

lated, it follows that UW is generally correlated with Z (or X) givenW .
5In general models, conditioning on W may, but need not, attenuate the regression bias (see, e.g., Wick-

ens (1972), Battistin and Chesher (2014), and Ogburna and VanderWeele (2012)).



1624 Karim Chalak Quantitative Economics 10 (2019)

Z and X have the same dimension (recall Z may equal X) and there are fewer ex-
ogenous instruments for (X ′�W ′)′ than is needed for an IV regression to point identify

(β̄′� δ̄Y
δ̄W
)′.

Instead of assuming that W is a perfect proxy with UW degenerate and Cov[UY �
(Z′�U)′] = 0, we consider the weaker restriction Cov[(U ′

Y �U
′
W )

′�Z] = 0. Then the IV OVB
is given by

B= Cov(Z�X)−1 Cov(Z�U)δ̄Y = Cov(Z�X)−1 Cov(Z�W )
δ̄Y

δ̄W
�

Note that the condition Cov(U�Z)= 0, which ensures exogeneity (B= 0), is testable un-
der these assumptions since it implies Cov(W �Z)= 0. Importantly, if Cov(U�Z) �= 0 then

the IV OVB is known up to the ratio δ̄Y
δ̄W

of the (average) direct effect ofU on Y to the (av-

erage) effect of U onW . In particular, β̄ is characterized by

β̄= Cov(Z�X)−1 Cov(Z�Y)− Cov(Z�X)−1 Cov(Z�W )
δ̄Y

δ̄W
�

This expression for β̄ involves two linear IV regression estimands. It also involves the

unknown ratio δ̄Y
δ̄W

. As we show, analogous expressions obtain for various nonparametric

average effects.

2.2 Magnitude and sign restrictions on confounding

In the linear homogenous case above as well as the nonparametric heterogenous cases
discussed below, we ask the following question: How does the average direct effect of U
on Y compare in magnitude or sign (or both) to the average effect ofU onW ? The paper
demonstrates how the answer to this question imposes restrictions on the magnitude

and sign of confounding (e.g., on δ̄Y
δ̄W

in equations (1) and (2)) that can point or partially

identify the average effect of X on Y (e.g., β̄ in (1)). We do not require a particular an-
swer to this question. Instead, we characterize the mapping6 from every possible answer
to the corresponding identification region for the average effect of X on Y . To keep the

scope of the paper manageable, we focus on restricting the support of, for example, δ̄Y
δ̄W

rather than imposing more general prior distributions. In particular, when U may sta-
tistically depend on X and Z, the average effect of X on Y (e.g., β̄) is point identified
in the following three special cases. The first case is exogeneity which obtains when one

assumes that the average direct effect ofU onY is zero (e.g., δ̄Y
δ̄W

= 0). The second special

case assumes that W is a perfect proxy, in which case the ratio (e.g., δ̄Y
δ̄W

) of the average

direct effect of U on Y to the average effect of U on W is also point identified. The third
special case is proportional confounding which assumes that the average direct effect of

U onY is equal to a known proportion of the average effect ofU onW (e.g., δ̄Y
δ̄W

= d). The

6Leamer (1983) suggested the slogan “the mapping is the message.”
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paper demonstrates that weaker restrictions on how the average direct effect of U on Y
compares in magnitude and/or sign to the average effect of U on W (e.g., |δ̄Y | ≤ |δ̄W |,
0 ≤ δ̄Y

δ̄W
, 0 ≤ δ̄Y

δ̄W
≤ 1, or δ̄Y

δ̄W
∈ [dL�dH] where [dL�dH] contains the perfect proxy estimate

of δ̄Y
δ̄W

or its 95% confidence interval) can partially identify the average effect of X on Y

and it characterizes the resulting sharp identification region. In this sense, restrictions
on confounding may be used to weaken standard assumptions, such as exogeneity or a
perfect proxy.

Sometimes, economic theory and/or evidence can provide guidance on sign and
magnitude restrictions on confounding. For example, in the earnings and proxy equa-
tions (1) and (2), it may be reasonable to assume that, given the observables, a change
in ability may cause an average direct percentage change (elasticity) in wage that is
smaller in magnitude than the resulting average percentage change in the test score,
that is, |δ̄Y | ≤ |δ̄W |. Moreover, these average effects may be in the same direction, that is,

0 ≤ δ̄Y
δ̄W

. These assumptions are in accord with several theoretical and empirical findings.

For instance, Cawley, Heckman, and Vytlacil (2001) find that the fraction of wage vari-
ance explained by measures of cognitive ability is modest and that personality traits are
correlated with earnings primarily through schooling attainment. Provided that ability
measures, such as IQ or KWW, are sufficiently associated with unobserved abilityU , this
suggests that the average direct effect ofU on Y may be modest. Second, when ability is
not revealed to employers, they may statistically discriminate based on observables such
as education (see, e.g., Altonji and Pierret (2001) and Arcidiacono, Bayer, and Hizmo
(2010)). This also suggests a modest average direct effect ofU onY . Last, recall that if one

assumes δ̄Y
δ̄W

∈ [dL�dH] then an estimate for β̄ corresponds to each d ∈ [dL�dH]. Thus, in

determining restrictions on confounding, a researcher may ask: what restrictions on δ̄Y
δ̄W

are in accord with plausible features of β̄? For example, the empirical findings in this

paper corroborate the assumption δ̄Y
δ̄W

≤ 1 in the earnings equation since values of δ̄Y
δ̄W

that exceed 1 lead to negative estimates of the average return to education and to an es-
timated black–white wage gap in favor of blacks, which is unlikely and inconsistent with
the general findings in the literature.

In a nutshell, magnitude and sign restrictions on confounding serve as a means for
identification when stronger assumptions, such as exogeneity or a perfect proxy, may
fail to hold7 and they enable examining the sensitivity of a study’s estimates to devia-
tions from these standard assumptions. Of course, a particular restriction on confound-
ing may in turn fail to hold. For example, an imposed sign and/or magnitude restric-

tion on δ̄Y
δ̄W

may be invalid or there may be additional omitted variables unaccounted

for in the analysis. Thus, researchers may want to carefully consider a range of restric-
tions on confounding in a sensitivity analysis. Nevertheless, our goal here is to provide a
framework in which restrictions on confounding can be used to weaken the benchmark
assumptions of exogeneity and a perfect proxy which are employed in a vast literature,
leading to more robust and credible causal estimates.

7Even if stronger or alternative assumptions hold, restrictions on confounding may yield tighter confi-
dence intervals.
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2.3 Nonparametric nonseparable equations

An advantage of this paper’s approach is that it does not require a parametric or separa-
ble specification. Sections 5 and 6 give key nonparametric results. Section 5 focuses on
the case in which there are no excluded instruments (Z =X) and then generalizes the
linear specification of Section 4 to let the outcome Y and proxyW be generated by

Y = r(X�S�U�UY ) and W = q(S�U�UW )� (4)

Here, the vector of observed covariates S, the scalar8 confounderU , and the vector of un-
observablesUY interact nonseparably withX to driveY according to the unknown non-
parametric structural function r. For example, this generalizes the linear specification in
the “correlated random coefficient” model.9 Similarly,U and the unobserved vectorUW
interact nonseparably with S to driveW according to the unknown nonparametric func-
tion q. Suppose that10 UY ⊥ (U�X)|S so that the component U of the “exogenous treat-
ment” (U�X) is unobserved and, unlike UY , may statistically depend on X given the
covariates S. In particular, if U |S is degenerate then there are no omitted variables and
we obtain the standard assumption of conditional exogeneity (or unconfoundedness)
UY ⊥X|S. First, we characterize the OVB of nonparametric regression methods in recov-
ering the covariate-conditioned average discrete or marginal effects of X on Y , thereby
generalizing the classic linear regression OVB formula to the nonparametric nonsepara-
ble case. Second, we show that if W is a perfect proxy for U (with UW degenerate and q
strictly monotonic in U given S) then the conditional average effect of X on Y is point
identified, as is the ratio of the conditional average effect of U on Y to that of U on W .
More generally, if the proxy W is imperfect and UW ⊥ (U�X)|S then restrictions on how
the magnitude or sign (or both) of the conditional average effect of U on Y contrasts
with that of U onW can partially identify the conditional average effect ofX on Y .

Section 6 focuses on the case where X is binary and then generalizes the specifica-
tion in Section 5 by allowing Z to differ from X . Specifically, it augments equations (4)
with a treatment selection equation where UX is an unobserved variable and the func-
tion ν is unknown:

X = 1
{
UX ≤ ν(Z�S)}� (5)

Suppose (UX�UY )⊥(Z�U)|S. If U |S is degenerate then there are no omitted vari-
ables and we obtain the standard assumptions of “monotonicity” and exogeneity,
(UX�UY )⊥Z|S, ofZ. Otherwise,U may statistically depend on the potential instrument
Z given S. First, we characterize the OVB of the Wald and local IV estimands for the con-
ditional local and marginal treatment effects (LATE and MTE). Then we use restrictions
on confounding, that are weaker than exogeneity or a perfect proxy, to partially identify
the conditional LATE and MTE.

8The Online Supplemental Material in Appendix A.2 considers a vector U that enters r additively sepa-
rably.

9The correlated random coefficient model restricts r such that Y = r(X�U�UY ) = β(U�UY )X +
αY (U�UY ), with a random intercept αY (U�UY ) and slopeβ(U�UY ). For example, in this special case ability
U affects the wage Y through both αY (·) and the linear return β(·) to educationX (see, e.g., Card (2001)).

10A⊥B|S = s denotes conditional independence given S = s as in Dawid (1979). �⊥ denotes dependence.
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3. Data generation

The next assumption defines the data generating process. To ease the exposition, we
leave the covariates S implicit hereafter except when necessary—the identification anal-
ysis can be readily generalized to be made conditional on covariates.

Assumption 1 (S.1). (i) LetM ≡ ( Z
�×1

′� X
k×1

′� W
m×1

′� Y
1×1
)′ be a random vector whose realiza-

tions are observed (by the researcher). (ii) Let a structural system generate the unobserved
vectorsUW andUY of countable dimension and the unobserved confounders U

l×1
collected

inL≡ (U ′
W �U

′
Y �U

′)′, potential instrumentsZ, causesX , proxiesW , and response Y such
that

Y = r(X�U�UY ) and W = q(U�UW )�
where r and q are unknown real- and vector-valued functions, respectively, and E(Y�
W ′)′ <∞.

S.1(i) introduces the observed (or measured) variables M . S.1(ii) introduces the un-
observed (or latent) variables L ≡ (U ′

W �U
′
Y �U

′)′ and assumes that Y and W are gen-
erated according to the unknown nonparametric nonseparable structural functions r
and q. The causal effects ofX on Y and those ofU on Y andW are features of the struc-
tural functions r and q whereas the observability of X or U is an empirical matter. Last,
the vector of potential instruments Z may equal to, or contain elements of, X . Whereas
we restrict how UY and UW depend on Z below, we allow U to statistically depend on Z
which complicates the identification of the effects of X on Y . Thus, the elements of Z
may, but need not, be valid instruments.

4. Identification of coefficients in a linear structure

Although the paper’s framework does not require a linear or parametric effect of X on
Y , it is instructive to begin the identification analysis by studying the linear specifica-
tion S.2, with constant coefficients. Appendix A.1 in the Online Supplemental Material
builds on this section’s analysis to consider random, albeit exogenous, coefficients (that
depend on UY or UW respectively) in the Y and W equations and to explicitly accom-
modate the covariates.

Assumption 2 (S.2). Linearity: Assume S.1 and let

Y = r(X�U�UY )=X ′β̄+U ′δ̄Y +U ′
Y ᾱY and W ′ = q(U�UW )′ =U ′δ̄W +U ′

W ᾱW �

Section 4 studies the identification of the (average) effect β̄ of X on Y in the bench-
mark specification S.2, where the omitted variables U enters the Y and W equations
linearly. Sections 5 and 6 study two nonseparable models that allow the effect ofX on Y
to depend on U .
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4.1 IV regression notation

To shorten the notation throughout, for a random vectorA with a finite mean, we write

Ā≡E(A) and Ã≡A− Ā�

For example, β̄ ≡ E(β). Further, for random vectors B and C of equal dimension with
Cov(C�A) finite and Cov(C�B) finite and nonsingular, we use the following succinct no-
tation for the linear IV regression estimand and residual:

RA�B|C ≡ Cov(C�B)−1 Cov(C�A) and ε′A�B|C ≡ Ã′ − B̃′RA�B|C�

By construction,E(εA�B|C)= 0 and Cov(C�εA�B|C)= 0. Thus,RA�B|C is the vector of slope
coefficients associated with B in a linear IV regression ofA on (1�B′)′ using instruments
(1�C ′)′. If B = C, we obtain the linear regression estimand RA�B ≡ RA�B|B and residual
εA�B ≡ εA�B|B.

4.2 Characterization and point identification

Next, we formalize the discussion illustrated in equations (1) and (2) and extend it to
allow U and W to be vectors. First, Theorem 4.1 derives the IV regression bias B for β̄.
Then it usesW in characterizing the expression for B.

Theorem 4.1. Assume S.2 with �= k andm= l. Let Cov[Z�(Y�W ′)′]<∞.

(i) If (i.a) Cov(Z�X) is nonsingular and (i.b) Cov(UY �Z)= 0, then

B≡RY�X|Z − β̄=RU�X|Zδ̄Y �

(ii) If, in addition, (ii.a) δ̄W is nonsingular with δ̄ ≡ δ̄−1
W δ̄Y and (ii.b) Cov(UW �Z) = 0

then

B=RW�X|Zδ̄�

The most basic version of Theorem 4.1 obtains when Z =X . In this case, (i) yields
the standard linear regression OVB formula B = RU�Xδ̄Y . More generally, Theorem 4.1
derives the IV OVB when Z may differ from X and shows how the direction of the bias
depends on RU�X|Z and δ̄Y . Last, if a proxy is available then β̄ is characterized in (ii) by

β̄=RY�X|Z −RW�X|Zδ̄�

The uncorrelation condition (i.b) would suffice for RY�X|Z to point identify β̄ had
Cov(U�Z) = 0, as would occur if U is degenerate and there are not omitted variables.
Theorem 4.1 characterizes the bias of the estimand RY�X|Z for β̄ under condition (i.b)
when U is unobserved and freely correlated with Z. Thus, condition (i.b) isolates the
omitted variable U as the source of the bias of RY�X|Z . Similarly, condition (ii.b) ensures
that W is an informative proxy, with Cov(Z�W ) arising solely due to U . Last, the non-
singularity conditions (i.a) and (ii.a) require that � = k and m = l. More generally, one
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may consider � ≥ k and m ≥ l, and having � ≥ k +m may point identify β̄. For exam-
ple, if �= k+m,m= l, and Cov[Z�(X ′�W ′)′] is nonsingular then (β̄′� δ̄′)′ =RY�(X ′�W ′)′|Z .
This paper does not require this many instruments, and thus β̄ is “underidentified.” In
particular, we let �= k, as would obtain when Z =X .

To illustrate how Theorem 4.1 applies to point identify β̄, consider equations (1)
and (2) where m = l = 1. Under exogeneity, the IV OVB disappears and RY�X|Z = β̄.
This occurs in the event that Z and U are uncorrelated, in which case RW�X|Z = 0, or
if one assumes that U does not determine Y , and in particular δ̄Y = 0. Alternatively,
if one assumes that W is a perfect proxy with degenerate UW then both β̄ and the ra-

tio δ̄Y
δ̄W

of the average direct effect of U on Y to that of U on W may be point identi-

fied. Specifically, provided Cov[UY � (Z′�U)′] = 0 and Cov[(Z′�W )′� (X ′�W )′] is nonsin-

gular, we have (β̄′� δ̄Y
δ̄W
)′ = RY�(X ′�W ′)′|(Z′�W ′)′ . When W is error-laden as in Theorem 4.1,

β̄ = RY�X|Z − RW�X|Z δ̄Yδ̄W is point identified under proportional confounding, when the

average effects δ̄Y and δ̄W are assumed to be of a known proportion, δ̄Y
δ̄W

= d. For exam-

ple, under equiconfounding, these average effects are of equal magnitude | δ̄Y
δ̄W

| = 1. Then

β̄ is point identified under positive (δ̄Y = δ̄W ) or negative (δ̄Y = −δ̄W ) equiconfounding
by β̄ = RY−W �X|Z or β̄ = RY+W �X|Z , respectively (see Chalak (2012)). More generally, U
may be a vector of potential confounders. Often, to each confounder Uh corresponds a
proxyWh = αWh +UhδWh so thatW ′ = α′

W +U ′δW with δW = diag(δW1� � � � � δWm). Then

β̄=RY�X|Z −RW�X|Zδ̄=RY�X|Z −
m∑
h=1

δ̄Y�h

δ̄Wh
RWh�X|Z�

As before, β̄ = RY�X|Z under exogeneity, (β̄′� δ̄′)′ = RY�(X ′�W ′)′|(Z′�W ′)′ if W is a perfect

proxy, and β̄=RY�X|Z−∑m
h=1RWh�X|Zdh under proportional confounding with

δ̄Y�h
δ̄Wh

= dh
for h= 1� � � � �m.

Corollary 4.2 collects these point identification results and allows for a general ma-
trix δW . However, it is useful to keep in mind the leading case where δW is a diagonal
matrix with straightforward interpretation. Subscripts denote vector elements, for ex-
ample, β̄j and RY�X|Z�j are the jth elements of β̄ and RY�X|Z , respectively.

Corollary 4.2. Assume the conditions of Theorem 4.1 and let j = 1� � � � �k. (i) If Bj = 0
(exogeneity), then β̄j = RY�X|Z�j . (ii) If UW is degenerate (perfect proxy), Cov(UY �U)= 0,
and Cov[(Z′�W ′)′� (X ′�W ′)′] is nonsingular then (β̄′� δ̄′)′ =RY�(X ′�W ′)′|(Z′�W ′). (iii) If δ̄= d
where d is a known vector (proportional confounding), then β̄j =RY�X|Z�j −RW�X|Z�jd.

In sum, it suffices for exogeneity that RU�X|Z�j = 0, in which case RW�X|Z�j = 0, or
δ̄Y = 0. Moreover, if one fails to reject the null hypothesis RW�X|Z�j = 0 against the alter-
native RW�X|Z�j �= 0, for example, via a t-test in the scalar proxy case, then one cannot
reject, under Theorem 4.1’s assumptions, that RY�X|Z�j point identifies β̄j . Last, assum-
ing either a perfect proxy or proportional confounding point identifies β̄.
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4.3 Partial identification

Magnitude and sign restrictions on confounding that are weaker than requiring exo-
geneity (δ̄Y = 0 when U may depend on Z), a perfect proxy (with δ̄ identified), or pro-
portional confounding (δ̄= d) can partially identify the elements of β̄. To illustrate, con-
sider the earnings (Y = log(Wage)) and proxy (W = log(KWW )) equations (1) and (2).
We consider how the average direct effect δ̄Y of U on Y compares in magnitude and
sign to the average effect δ̄W of U onW .

Suppose that |δ̄| ≡ | δ̄Y
δ̄W

| ≤ 1 so that (on average) the response of W to U is at least

as large as the direct response of Y to U . For example, this assumes that the elasticity
of the test score with respect to ability is at least as large as the elasticity of wage with
respect to ability. Assume further that 0 ≤ δ̄ so that these average responses have the
same sign. Then δ̄ ∈ D = [0�1] and the expression for β̄ from Theorem 4.1 implies that,
for j = 1� � � � �k, β̄j is partially identified in the region Bj([0�1]) given by

Bj
([0�1]) =

{
[RY�X|Z�j�RY�X|Z�j −RW�X|Z�j] if RW�X|Z�j ≤ 0�

[RY�X|Z�j −RW�X|Z�j�RY�X|Z�j] if 0 ≤RW�X|Z�j�

The mirror-image identification region for β̄j obtains if one assumes that δ̄ ∈ D =
[−1�0].

Instead, if 1 ≤ |δ̄| ≡ | δ̄Y
δ̄W

| so that (on average) the response (elasticity) of W to U is at

most as large as the direct response of Y to U , and 0 ≤ δ̄ then δ̄ ∈ D = [1�+∞) and we
obtain the identification region Bj([1�+∞)) for β̄j :

Bj
([1�+∞)

) =
{

[RY�X|Z�j −RW�X|Z�j�+∞) if RW�X|Z�j ≤ 0�

(−∞�RY�X|Z�j −RW�X|Z�j] if 0 ≤RW�X|Z�j�

Note that Bj([1�+∞)) excludes the IV estimand RY�X|Z�j . The mirror-image result ob-
tains when δ̄ ∈ D = (−∞�−1].

Wider identification regions obtain under either magnitude or sign (but not both)
restrictions on δ̄Y and δ̄W . In particular, if |δ̄Y | ≤ |δ̄W | then δ̄ ∈ D = [−1�1] and

Bj
([−1�1]) =

{
[RY�X|Z�j +RW�X|Z�j�RY�X|Z�j −RW�X|Z�j] if RW�X|Z�j ≤ 0�

[RY�X|Z�j −RW�X|Z�j�RY�X|Z�j +RW�X|Z�j] if 0 ≤RW�X|Z�j�

Note that Bj([−1�1]) is twice as large as Bj([0�1]) or Bj([−1�0]). Also, the “closer” Z is
to exogeneity, the smaller |RW�X|Z�j| is, and the tighter these three identification regions
are. Alternatively, if |δ̄W | ≤ |δ̄Y | then δ̄ ∈ D = (−∞�−1]∪ [1�+∞) and β̄j is partially iden-
tified in

Bj
(
(−∞�−1] ∪ [1�+∞)

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−∞�RY�X|Z�j +RW�X|Z�j] ∪ [RY�X|Z�j −RW�X|Z�j�+∞)

if RW�X|Z�j ≤ 0�

(−∞�RY�X|Z�j −RW�X|Z�j] ∪ [RY�X|Z�j +RW�X|Z�j�+∞)

if 0 ≤RW�X|Z�j�
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In this case, the “farther” Z is from exogeneity, the larger |RW�X|Z�j| is, and the more
informative Bj((−∞�−1]), Bj([1�+∞)), and Bj((−∞�−1] ∪ [1�+∞)) are.

Alone, sign restrictions on δ̄Y
δ̄W

yield the following identification region which deter-

mines the direction of the IV regression OVB. In particular, we have

Bj
([0�+∞)

) =
{

[RY�X|Z�j�+∞) if RW�X|Z�j ≤ 0�

(−∞�RY�X|Z�j] if 0 ≤RW�X|Z�j

and the mirror-image result obtains for Bj((−∞�0]).
These identification regions obtain by restricting the sign and/or magnitude of δ̄Y

δ̄W
.

More generally, a researcher may impose a lower bound dL and an upper bound dH on
δ̄Y
δ̄W

so that δ̄ ∈ D = [dL�dH]. For example, D may contain the perfect proxy estimate or

95% confidence interval for δ̄Y
δ̄W

. In this case, similar identification regions that involve

RY�X|Z�j , dLRW �X|Z�j , and dHRW �X|Z�j obtain. Moreover, suppose that U is a vector and
there is a proxy Wh = αWh + UhδWh for each confounder Uh, h = 1� � � � �m, so that δW =
diag(δW1� � � � � δWm). Then β̄j =RY�X|Z�j −∑m

h=1RWh�X|Z�j
δ̄Y�h
δ̄Wh

and magnitude and/or sign

restrictions on δ̄h = δ̄Y�h
δ̄Wh

∈ Dh, h= 1� � � � �m, yield the identification region Bj(×m
h=1 Dh)

for β̄j , j = 1� � � � �k, discussed next.
Corollary 4.3 formalizes this discussion for a general matrix δW and interval re-

strictions11 on δ̄h. Identification regions under magnitude or sign restrictions (or both)
on confounding obtain by setting the vectors dL and dH suitably, including possibly
dL�h = −∞ or dH�h = +∞.

Corollary 4.3. Assume the conditions of Theorem 4.1 and that δ̄h ∈ Dh = [dL�h�� dH�h],
h= 1� � � � �m. Then, for j = 1� � � � �k,

β̄j ∈ Bj

(
m×
h=1

Dh

)
≡ {RY�X|Z�j −RW�X|Z�jd : dh ∈ Dh�h= 1� � � � �m}�

and this identification region is sharp.

The bounds Bj(×m
h=1 Dh) in Corollary 4.3 are sharp. Specifically, Corollary 4.3’s proof

shows that for each average effect in Bj(×m
h=1 Dh) there corresponds unobservables

(V �VY �VW ) and functions r∗ and q∗ for the Y and W equations that satisfy all the con-
ditions imposed on (U�UY �UW ) and r and q in Corollary 4.3 and that could have gen-
erated the observables (X�Y�W ). Last, different potential instruments or proxies may
lead to different identification regions, in which case β̄j is identified in the intersection
of these regions, provided it is nonempty.

11One can consider other types of restrictions, including a prior distribution on δ̄h as in, for example,
Conley, Hansen, and Rossi (2012). The interval restriction considered here can be viewed as a restriction on
the support of δ̄h.
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4.4 Discussion and connections to the literature

To conclude Section 4, we comment on how its results complement several related

papers. First, the results relate to the literature which imposes assumptions on the

“measurement error” UW in the proxy W . In particular, requiring that UW is clas-

sical,12 that is, Cov[UW �(X ′�U ′�UY )′] = 0, may yield bounds13 on δ̄� and thus β̄

(see, e.g., Klepper and Leamer (1984) and Bollinger (2003)). Here, we do not require

Cov[UW �(U�U ′
Y )

′] = 0. Also, some papers use multiple proxies for identification. For ex-

ample, consider two scalar proxiesWh =Uδ̄Wh +U ′
Wh
ᾱWh , h= 1�2, forU with δ̄W1� δ̄W2 �= 0

and Cov[(Z′�U�UW2)
′� (UY �UW1)

′] = 0. Then an IV regression of Y on (1�X ′�W1)
′ using

instruments (1�Z′�W2)
′ may point identify (β̄′� δ̄Y

δ̄W1
)′ (see, e.g., Blackburn and Neumark

(1992)). This paper’s method does not require multiple proxies forU . Further, if multiple

proxies are available,14 the measurement error is not required to be uncorrelated across

proxies. For example, UW1 and UW2 (e.g., test taking skills) may be correlated. Second,

this section’s results also add to a growing literature that employs several alternative as-

sumptions to partially identify the coefficients in a linear or parametric model when exo-

geneity may fail. For example, Altonji, Conley, Elder, and Taber (2011) assumed that the

selection on unobservables occurs similarly to that on observables, restricting how X

depends on U and the covariates. Reinhold and Woutersen (2009) and Nevo and Rosen

(2012) assumed that the correlation between Z and U and that between X and U have

the same sign and that Z is less correlated with U than X is. Conley, Hansen, and Rossi

(2012) allowed Z to enter the linear equation for Y and imposed a prior distribution

on the coefficient on Z that is weaker than requiring it to be zero. Klein and Vella (2009,

2010) and Lewbel (2012) imposed restrictions on the second moments (heteroskedastic-

ity). Bontemps, Magnac, and Maurin (2012) provided additional examples and a general

treatment of set identified linear models. Our framework complements these papers

since it does not require their identifying assumptions. Further, as demonstrated in Sec-

tions 5 and 6, this paper’s framework does not require a linear, parametric, or separable

specification. Instead, we use imperfect proxies to identify average effects under mag-

nitude and sign restrictions on confounding, including in nonparametric nonseparable

structures. Of course, which (combination of) identifying assumption(s) is appropriate

depends on the empirical application.

12Recall that classical measurement error in a scalar X induces an attenuation bias in the linear regres-
sion estimandRY�X for β̄whereas the direction of the bias that results from an omitted variableU depends
on Cov(X�U) and the coefficient δ̄Y on U .

13WhenU is a scalar, the bounds on δ̄Y
δ̄W

are the coefficient onW in a linear regression or Y on (1�X ′�W )′

and the inverse of the coefficient on Y in a linear regression of W on (1�X ′�Y)′. When U and W are m× 1
vectors, in order for the identification region for δ̄ to be bounded, all linear regressions of any element of
(Y�W ′)′ on the remaining elements (after projecting on X) must yield (properly rearranged) coefficient
vectors that lie in the same orthant (see Klepper and Leamer (1984)).

14Appendix A.1.5 in the Online Supplemental Material studies the linear case with multiple proxies forU
that are also components ofX .
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5. Identification of average nonparametric effects

Section 5 focuses on the case in which there are no excluded instruments, that is,Z =X ,
and then extends Section 4’s analysis by removing the linearity assumption15 S.2. Here,
we study the identification of the conditional average effect ofX on Y when changing x
to x∗ givenX = x∗:

β̄
(
x�x∗|x∗) ≡E[

r
(
x∗�U�UY

) − r(x�U�UY )|X = x∗]�
For instance, for binary X , β̄(0�1|1) is the average treatment effect on the treated. If
r is differentiable in a scalar cause of interest, we set k = 1 to denote this variable by
X and we subsume, without loss of generality, the remaining causes into the implicit
covariates. We then study the identification of the conditional average marginal effect of
X on Y at x givenX = x:

β̄(x|x)≡E
[
∂

∂x
r(x�U�UY )

∣∣∣X = x
]
�

In studying the identification of β̄(x�x∗|x∗) and β̄(x|x), we use a shorthand notation
for the difference and derivative of a nonparametric regression. Specifically, for random
vectorsA and B with E(A) finite and b and b∗ in the support16 of B, we let

RNA�B
(
b�b∗) ≡E(

A′|B= b∗) −E(
A′|B= b)�

Further, when B is a scalar and the derivative exists, we write

RNA�B(b)≡ ∂

∂b
E

(
A′|B= b)�

Theorem 5.1 characterizes the nonparametric bias B(x�x∗|x∗) or B(x|x) of the non-
parametric regression estimand RNY�X(x�x

∗) or RNY�X(x) in recovering the average effect
β̄(x�x∗|x∗) or β̄(x|x) in the presence of an omitted variableU . While bothU andUY can
generate heterogeneity in the response of Y toX ,U is the only source of endogeneity of
X (or of “essential heterogeneity” in the nomenclature of Heckman, Urzua, and Vytlacil
(2006)). Specifically, Theorem 5.1 imposes the local (at x and x∗) mean independence
condition,17

E
[
r
(
x†�u�UY

)|U = u�X = ẍ] =E[
r
(
x†�u�UY

)]
for x†� ẍ ∈ {

x�x∗} and all u ∈ Uẍ� (6a)

15Appendix A.2 in the Online Supplemental Material studies an intermediate case in which U enters r
and q additively separably.

16Throughout, for random vectors A and B, we denote the cumulative distribution function (cdf) of A
by FA(·) and that of A conditional on B = b by FA|B(·|b). We let the corresponding probability density or
mass functions be fA(·) and fA|B(·|b), respectively. We denote the support ofA by A and that ofA|B= b by
Ab.

17Mean independence conditions are often employed to identify average causal effects. See, for example,
Manski (1990) and Heckman, Ichimura, and Todd (1998).
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In the case of the marginal effect β̄(x|x), Theorem 5.1 further imposes the local (at x)
condition,

E

[
∂

∂x
r(x�u�UY )

∣∣∣U = u�X = x
]

=E
[
∂

∂x
r(x�u�UY )

]
� for all u ∈ Ux� (6b)

Note thatUY ⊥ (U�X) implies18 (6a) and (6b). IfU is degenerate, then there are no omit-
ted variables andUY ⊥ (U�X) reduces to the standard exogeneity conditionUY ⊥X (or
more generallyUY ⊥X|S as in, e.g., Altonji and Matzkin (2005), Hoderlein and Mammen
(2007), and Imbens and Newey (2009)19). In this special case, the weaker local mean in-
dependence conditions20 (6a) and (6b) suffice for RNY�X(x�x

∗) or RNY�X(x) to point iden-
tify β̄(x�x∗|x∗) or β̄(x|x).

Similarly, Theorem 5.1 imposes the analogous condition to (6a) for the proxy equa-
tion:

E
[
q(u�UW )|U = u�X = ẍ] =E[

q(u�UW )
]

for ẍ ∈ {
x�x∗} and u ∈ Uẍ� (7)

so that W is an informative proxy with the mean dependence of W on X at x and x∗
arising solely due toU . Here,UW ⊥ (U�X) implies the local mean independence condi-
tion (7).

Using Theorem 5.1’s characterization, Corollary 5.2 partially identifies β̄(x�x∗|x∗) or
β̄(x|x) by imposing magnitude and sign restrictions on the average marginal effects of
the omitted variable U on the response Y at (x�u) and on the proxy variable W at u,
denoted by

δ̄Y (u;x)≡E
[
∂

∂u
r(x�u�UY )

]
and δ̄W (u)≡E

[
∂

∂u
q(u�UW )

]
�

For brevity, Theorem 5.1 states the results in the case where r and q are differentiable
in u and the distribution of U given X is continuous or, as a limiting case, degener-
ate.21 Theorem A.7 in Appendix A.3 in the Online Supplemental Material gives the re-
sults for discrete U , with sums replacing integrals. To proceed, we collect in Assump-
tion B.1 regularity conditions that ensure that the moments and derivatives exist and
justify interchanging the order of the derivative and integral in expressions such as
RNY�X(x)= ∂

∂x

∫
Ux E[r(x�u�UY )]fU |X(u|x)du, where we use (6a). For this, B.1 also lets Ux

be constant in a neighborhood of x (or Ux = Ux∗ in the case of β̄(x�x∗|x∗)) to remove the
complication introduced by the boundary terms. To give a stronger simpler condition,

18UY ⊥ (U�X) is not necessary, for instance, Theorem 5.1 permits Var(UY |X) to depend onX .
19Similar to Imbens and Newey (2009), one can consider covariates S2 and a scalar unobserved S1 recov-

erable from a choice equationX = p̃(Z�S2� S1) with p̃monotonic in S1, such that (UY �S1)⊥Z|S2, yielding
UY ⊥X|S with S = (S1� S

′
2)

′. We allow but do not require this possibility.
20For example, if U is degenerate at u and X is binary then condition (6a) states that the potential out-

comes r(0�u�UY ) and r(1�u�UY ) are mean independent of the treatmentX .
21It may be convenient to view the case in which U |X = x is degenerate at u(x) as a limiting case for a

sequence of absolutely continuous FτU |X(u|x) as τ→ 0. In particular, one can set FU |X(u|x)=H(u− u(x))
where H(·) is the Heaviside step function. Then, when u(x) is a differentiable function, ∂

∂xFU |X(u|x) =
− ∂
∂xu(x)δ(u− u(x)) where δ(·) is the Dirac delta function, with an impulse concentrated at u(x) (see, e.g.,

Bracewell (1986)).
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given (6a), (6b), and (7), it suffices for B.1 that (i) U is compact and Ux= U for all x in
X and that, for all values of the fixed argument(s) in (ii)–(iv), (ii) r(x� ·�uy) and q(·�uw)
(resp., fU |X(·|x) and, for k = 1, ∂

∂xfU |X(·|x) and ∂
∂x r(x� ·�uy)) are continuously differen-

tiable (resp., continuous) on U , (iii) E[r(x�u�UY )�q(u�UW )′] <∞, and (iv) ∂
∂u r(x�u� ·),

∂
∂x r(x�u� ·) for k = 1, and ∂

∂uq(u� ·) are each bounded in absolute value by integrable
functions of uy and uw, respectively. Assumption B.1 in Appendix B in the Online Sup-
plemental Material gives weaker local regularity conditions

Theorem 5.1. Assume S.1 with m = l = 1, x�x∗ ∈ X , and that FU |X(·|x) and FU |X(·|x∗)
are absolutely continuous or, in the limit, degenerate.

(i.a) If conditions B.1.i(a, b, c, d) and (6a) hold, then

B
(
x�x∗|x∗) ≡RNY�X

(
x�x∗) − β̄(

x�x∗|x∗) = −
∫
Ux
δ̄Y (u;x)

[
FU |X

(
u|x∗) − FU |X(u|x)

]
du�

(i.b) If conditions B.1.i(b, e, f, g) and (7) hold, then

RNW �X
(
x�x∗) = −

∫
Ux
δ̄W (u)

[
FU |X

(
u|x∗) − FU |X(u|x)

]
du�

(ii) Set k= 1. (ii.a) If conditions B.1.i(c, d), B.1.ii(a, b, c, d), (6a), and (6b) hold, then

B(x|x)≡RNY�X(x)− β̄(x|x)= −
∫
Ux
δ̄Y (u;x) ∂

∂x
FU |X(u|x)du�

(ii.b) If conditions B.1.i(f, g), B.1.ii(a, d, e), and (7) hold, then

RNW �X(x)= −
∫
Ux
δ̄W (u)

∂

∂x
FU |X(u|x)du�

B(x�x∗|x∗) and B(x|x) generalize the classic linear regression OVB formula to the
nonparametric nonseparable case. These biases depend on the average marginal effect
δ̄Y (u;x) of U on Y and on the conditional distribution of U |X . This provides insight
into the sign of the OVB. For instance, if δ̄Y (u;x) is nonnegative for a.e. u ∈ Ux (e.g., the
average marginal effect of ability on wage is nonnegative) and the stochastic dominance
relation FU |X(u|x∗) ≤ FU |X(u|x) for a.e. u ∈ Ux holds (e.g., the probability of low ability
U is small when education is high (x < x∗)) then B(x�x∗|x∗) is nonnegative.

Under exogeneity, B(x�x∗|x∗) = 0 and RNY�X(x�x
∗) point identifies β̄(x�x∗|x∗). This

occurs if U ⊥X , in which case RNW �X(x�x
∗) = 0, or if δ̄Y (u;x) = 0 for a.e. u ∈ Ux. Alter-

natively, suppose thatW = q(U�UW )≡ q̃(U) is a perfect proxy, with UW degenerate and
q̃ strictly monotonic in u (see, e.g., Olley and Pakes (1996) and Griliches and Mairesse
(1998)). Then, substituting for U = q̃−1(W ) in r and using condition (6a), we have that
β̄(x�x∗|x∗) is point identified (see, e.g., White and Chalak (2013, Theorem 4.2)):

E
[
E

(
Y |X = x∗�W

) −E(Y |X = x�W )|X = x∗] = β̄(
x�x∗|x∗)�
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In this case, under UY ⊥ (U�X), the ratio δ̄Y (u;x)
δ̄W (u)

is also point identified by

∂

∂w
E(Y |X = x�W =w)=E

[
∂

∂u
r(x�u�UY )

∂

∂w
q̃−1(w)

]
= δ̄Y (u;x)

δ̄W (u)
�

Last, if W is an imperfect proxy as in Theorem 5.1 then β̄(x�x∗|x∗) is point identified
by RNY�X(x�x

∗) − d(x)RNW �X(x�x
∗) under proportional confounding, when δ̄Y (u;x) =

d(x)δ̄W (u) for a.e. u ∈ Ux and d(x) is known. In this case, the average effects of U on
Y (at x) and W are assumed to be of a known proportion d(x) for a.e. u ∈ Ux. Analogous
results hold for β̄(x).

Corollary 5.2 characterizes the sharp identification regions for β̄(x�x∗|x∗) and β̄(x|x)
that obtain under weaker magnitude and/or sign restrictions on confounding.

Corollary 5.2. Suppose that, for a.e. u ∈ Ux, δ̄Y (u;x) = d(u�x)δ̄W (u) with d(u�x) ∈
D(x)≡ [dL(x)�dH(x)].

(i) Under the conditions of Theorem 5.1(i), if δ̄W (u)[FU |X(u|x∗)− FU |X(u|x)] is either
nonpositive for a.e. u ∈ Ux or nonnegative for a.e. u ∈ Ux then

β̄
(
x�x∗|x∗) ∈ B

(
D(x)

) ≡ {
RNY�X

(
x�x∗) −RNW �X

(
x�x∗)d : d ∈ D(x)

}
�

and this identification region is sharp.

(ii) Under the conditions of Theorem 5.1(ii), if δ̄W (u) ∂∂xFU |X(u|x) is either nonpositive
for a.e. u ∈ Ux or nonnegative for a.e. u ∈ Ux then

β̄(x|x) ∈ B
(
D(x)

) ≡ {
RNY�X(x)−RNW �X(x)d : d ∈ D(x)

}
�

and this identification region is sharp.

If U is degenerate, then exogeneity holds and Corollary 5.2’s bounds collapse to the
nonparametric regression estimand. More generally, the conditions of Corollary 5.2 ob-
tain if E[q(u�UW )] is monotonic in u (e.g., on average, the test score is monotonic in
ability) and FU |X(u|x∗) ≤ FU |X(u|x) for a.e. u ∈ Ux (e.g., the probability of low ability U
is small when education is high). In particular, Corollary 5.2 analyzes the consequences
of deviating from the exogeneity and perfect proxy assumptions by letting the set D(x)
contain zero (recall that δ̄Y (·;x) = 0 ensures exogeneity) and/or estimates of δ̄Y (u;x)

δ̄W (u)

for u ∈ Ux that obtain under the perfect proxy assumption. The identification region
B(D(x)) is sharp under the conditions22 in Corollary 5.2. We leave studying the con-
sequences of imposing stronger assumptions, such as UY ⊥ (U�X) and UW ⊥ (U�X),
on the identification of β̄(x�x∗|x∗) and β̄(x|x) to other work.

To conclude, Section 5’s analysis removes the requirement that U |S is degenerate in
the conditional exogeneity condition UY ⊥ (X�U)|S where U is an omitted component

22As can be seen from the proof, B(D(x)) remains sharp if one strengthens the local conditions (6a), (6b)
and (7) to require the stronger global mean independence conditions E[r(x�u�UY )|U�X] = E[r(x�u�UY )]
for all (x�u) ∈ X × U and E[q(u�UW )|U�X] =E[q(u�UW )] for all u ∈ U .
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of the “exogenous treatment” (X�U) given the covariates S. This analysis complements
the results in Imbens (2003) who proposes a sensitivity analysis under an alternative
weakening of exogeneity that views U as an omitted covariate, with UY ⊥X|(U�S) and
U ⊥ S. Also, the results in Section 5 relate to the literature that uses an error-laden mea-
sure23 W ofU to point identify the effect ofU on Y under auxiliary assumptions. Recent
examples include Hu, Shiu, and Woutersen (2015, 2016) who point identify the coeffi-
cient on a mismeasured endogenous variable in a single index model with exogenous
instruments and either a separable equation for the latent variable or structural func-
tions that are monotonic in certain unobservables. Last, multiple proxies for U that are
mutually independent given U (see, e.g., Cunha, Heckman, and Schennach (2010)) may
help identify the average nonparametric effect ofX on Y . Corollary 5.2’s bounds may be
useful when multiple proxies are unavailable or mutually dependent given U .

6. Identification of local and marginal treatment effects

Section 6 focuses on the case whereX is binary and then extends Section 5’s analysis to
allow Z to differ from X . Here, both Z and X may be endogenous. Specifically, we let
Y and W be as in24 S.1 and consider a treatment X generated via a threshold crossing
selection equation, as in, for example, Heckman and Vytlacil (2005). As shown in Vytlacil
(2002), under exogeneity of Z, S.3 is equivalent to the monotonicity assumption in, for
example, Imbens and Angrist (1994).

Assumption 3 (S.3). Assume S.1 and suppose further thatX is generated by25

X = 1
{
UX ≤ ν(Z)}�

where ν is an unknown real-valued function and UX is an unobserved random variable
with FUX(·) absolutely continuous. We augment L≡ (U ′

X�U
′
W �U

′
Y �U

′)′ with UX .

Under S.3, selection into treatment (X = 1) holds if and only if ν(Z) exceeds UX .
When interest attaches to a scalar potential instrument, we set �= 1 to denote it byZ and
we subsume, without loss of generality, the remaining potential instruments into the
implicit covariates. We let FUX(·) be absolutely continuous to simplify the exposition.

It is convenient to rewrite the equation for Y in its random coefficients form

Y = [
r(1�U�UY )− r(0�U�UY )

]
X + r(0�U�UY )≡ β(U�UY )X + αY (U�UY )� (8)

Following the literature (e.g., Imbens and Angrist (1994) and Heckman and Vytlacil
(2005)), we study the identification of the conditional local average treatment effect
(LATE)

β̄
(
ν(z) < UX ≤ ν(z∗)� z∗) ≡E[

β(U�UY )|ν(z) < UX ≤ ν(z∗)�Z = z∗]�
23This paper’s analysis does not require that the “measurement error” UW obeys UW ⊥UY .
24Appendix A.2 in the Online Supplemental Material studies the case in whichU enters r and q additively

separably.
251{A} = 1 ifA is true and equals 0 otherwise.
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This is the average treatment effect for the subpopulation with instrument Z = z∗ and
for whom X = 0 if Z = z whereas X = 1 if Z = z∗. Under UX ⊥ Z, averaging this local
effect over the distribution ofZ yields the LATE β̄(ν(z) < UX ≤ ν(z∗)). WhenZ is binary,
this latter effect is the average treatment effect for the “compliers” who receive the treat-
ment (X = 1) if and only if Z = 1 (see, e.g., Angrist, Imbens, and Rubin (1996)). Similarly,
we study the identification of the conditional marginal treatment effect (MTE)

β̄
(
ν(z)� z

) ≡E[
β(U�UY )|UX = ν(z)�Z = z]�

UnderUX ⊥Z, averaging β̄(ν(z)� ·) over the distribution ofZ yields the MTE β̄(ν(z)), the
average treatment effect for those who are indifferent toward receiving the treatment if
Z = z.

In studying the identification of LATE and MTE, we use the following succinct no-
tation for the Wald and local instrumental variable (LIV) estimands. In particular, for
random variable B and vectorsA and C, provided the means exist and the denominator
is nonzero, define

RWald
A�B|C

(
c� c∗

) ≡ RNA�C
(
c� c∗

)
RNB�C

(
c� c∗

) ≡ E
(
A′|C = c∗) −E(

A′|C = c)
E

(
B|C = c∗) −E(B|C = c) �

Further, when C is a scalar and the derivatives exist with nonzero denominator, let

RLIV
A�B|C(c)≡ RNA�C(c)

RNB�C(c)
≡

∂

∂c
E

(
A′|C = c)

∂

∂c
E(B|C = c)

�

Theorem 6.1 characterizes the OVB of RWald
Y�X|Z(z� z

∗) or RLIV
Y�X|Z(z) in recovering

β̄(ν(z) < UX ≤ ν(z∗)� z∗) or β̄(ν(z)� z) in the presence of an omitted variable U . It main-
tains that

UX⊥(U�Z)� (9)

Further, analogously to Theorem 5.1, Theorem 6.1 restricts the local (at z and z∗) mean
dependence of the random coefficients on (U�Z) so that:

E
[
α(u�UY )|U = u�Z = z̈] =E[

α(u�UY )
]

and

E
[
β(u�UY )|UX�U = u�Z = z̈] =E[

β(u�UY )|UX
]

for z̈ = z� z∗ and all u ∈ Uz̈ �
(10)

Note that (UX�UY ) ⊥ (U�Z) implies conditions (9) and (10). Thus, Theorem 6.1 char-
acterizes the bias B(ν(z) < UX ≤ ν(z∗)� z∗) or B(ν(z)� z) that arises when the exogenous
componentU of the treatment (U�X) is unobserved and possibly stochastically depen-
dent on the instrument Z for the endogenous treatment component X . If U is degen-
erate, then there are no omitted variables and (UX�UY ) ⊥ (U�Z) reduces to the stan-
dard instrument exogeneity condition (UX�UY ) ⊥ Z which ensures the assumptions
in, for example, Heckman and Vytlacil (2005) and Imbens and Angrist (1994). In this
special case, condition (9) and the local mean independence condition (10) suffice for
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RWald
Y�X|Z(z� z

∗) or RLIV
Y�X|Z(z) to point identify β̄(ν(z) < UX ≤ ν(z∗)� z∗) or β̄(ν(z)� z). Anal-

ogously to α(u�UY ), we let the local mean dependence ofW on Z arise solely due to U :

E
[
q(u�UW )|U = u�Z = z̈] =E[

q(u�UW )
]

for z̈ = z� z∗ and all u ∈ Uz̈ � (11)

Here, UW ⊥(U�Z) implies the local mean independence condition (11).
Theorem 6.1 considers the case where r and q are differentiable in u and the distri-

bution of U given Z is continuous or, as a limiting case, degenerate. Here, too, Assump-
tion B.2 collects regularity conditions that justify the operations involving derivatives
and integrals and lets Uz be constant in a neighborhood of z (or Uz = Uz∗ in the case of
LATE). For example, given (9), (10), and (11) (and provided the denominator RNX�Z(z)=
fUX (ν(z))

∂
∂z ν(z) is nonzero), it suffices for B.2 that (i) U is compact and Uz= U for all z in

Z and that, for all values of the fixed argument(s) in (ii)–(v), (ii) r(1{ux ≤ ν(z)}� ·�uy) and
q(·�uw) (resp., fU |Z(·|z),E[β(·�UY )|UX = ux], and ∂

∂z fU |Z(·|z) for �= 1) are continuously
differentiable (resp., continuous) on U , (iii) E[r(1{UX ≤ ν(z)}�u�UY )�q(u�UW )′] < ∞,
(iv) E[β(u�UY )|UX = ·] and fUX (·) are continuous on UX and ν(·) is continuously differ-
entiable on Z , and (v) ∂

∂u r(1{· ≤ ν(z)}�u� ·) and ∂
∂uq(u� ·) are bounded in absolute value

by an integrable function of (ux�uy) and uw, respectively. Assumption B.2 in Appendix B
in the Online Supplemental Material gives weaker local regularity conditions. We slightly
abuse the previous δ̄Y (u;x) notation and denote the average marginal effects ofU on Y
at (z�u) andW at u by

δ̄Y (u;z)≡E
[
∂

∂u
r
(
1
{
UX ≤ ν(z)}�u�UY )]

and δ̄W (u)≡E
[
∂

∂u
q(u�UW )

]
�

Theorem 6.1. Assume S.1 and S.3 with m = l = 1, z� z∗ ∈ Z , Pr[ν(z) < UX ≤ ν(z∗)] > 0,
and that FU |Z(·|z) and FU |Z(·|z∗) are absolutely continuous or, in the limit, degenerate.

(i.a) If conditions B.2.i(a, b, c, d), (9), and (10) hold, then

B
(
ν(z) < UX ≤ ν(z∗)� z∗)
≡RWald

Y�X|Z
(
z� z∗) − β̄(

ν(z) < UX ≤ ν(z∗)� z∗)
= − 1

RNX�Z
(
z� z∗)

∫
Uz
δ̄Y (u;z)

[
FU |Z

(
u|z∗) − FU |Z(u|z)

]
du�

(i.b) If conditions B.2.i(b, e, f, g) and (11) hold, then

RWald
W �X|Z

(
z� z∗) = − 1

RNX�Z
(
z� z∗)

∫
Uz
δ̄W (u)

[
FU |Z

(
u|z∗) − FU |Z(u|z)

]
du�

(ii) Set �= 1. (ii.a) If conditions B.2.i(c, d), B.2.ii(a, b, c, d, e), (9), and (10) hold, then

B
(
ν(z)� z

) ≡RLIV
Y�X|Z(z)− β̄(

ν(z)� z
) = − 1

RNX�Z(z)

∫
Uz
δ̄Y (u;z) ∂

∂z
FU |Z(u|z)du�

(ii.b) If conditions B.2.i(f, g), B.2.ii(a, c, e, f), and (11) hold, then

RLIV
W �X|Z(z)= − 1

RNX�Z(z)

∫
Uz
δ̄W (u)

∂

∂z
FU |Z(u|z)du�
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Theorem 6.1 shows how the OVB of the Wald or LIV estimand for the conditional
LATE or MTE depends on the average marginal effect of U on Y and on the distribution
of U |Z. For example, if δ̄Y (u;z) is nonnegative for a.e. u ∈ Uz (e.g., the average marginal
effect of ability on wage is nonnegative) and FU |Z(u|z∗)≤ FU |Z(u|z) for a.e. u ∈ Uz (e.g.,
the probability of low ability is small when in proximity to a college) then B(ν(z) < UX ≤
ν(z∗)� z∗) is nonnegative.

The OVB B(ν(z)� z) vanishes under exogeneity (e.g., when U ⊥ Z (and thus
RLIV
W �X|Z(z) = 0) or δ̄Y (u;z) = 0 for a.e. u ∈ Uz). Alternatively, if W = q(U�UW ) = q̃(U) is

a perfect proxy, with UW degenerate and q̃ strictly monotonic, then using U = q̃−1(W ),
(9), and (10) gives

E

[
∂

∂z
E(Y |Z = z�W )

∣∣∣Z = z
]

∂

∂z
E(X|Z = z)

= β̄(
ν(z)� z

)
�

In this case, under (UX�UY )⊥ (U�Z), the ratio δ̄Y (u;z)
δ̄W (u)

is also point identified by

∂

∂w
E(Y |Z = z�W =w)=E

[
∂

∂w
r
(
1
{
UX ≤ ν(z)}� q̃−1(w)�UY

)] = δ̄Y (u;z)
δ̄W (u)

�

Last, whenW is an imperfect proxy and proportional confounding holds (i.e., δ̄Y (u;z)=
d(z)δ̄W (u) for a.e. u ∈ Uz with d(z) known), then RLIV

Y�X|Z(z)−RLIV
W �X|Z(z)d(z) point iden-

tifies β̄(ν(z)� z). Analogous results hold for the LATE β̄(ν(z) < UX ≤ ν(z∗)� z∗).
Restrictions on confounding that are weaker than setting δ̄Y (u;z)

δ̄W (u)
to 0 (exogeneity) or

to the perfect proxy estimate can partially identify β̄(ν(z) < UX ≤ ν(z∗)� z∗) or β̄(ν(z)� z).

Corollary 6.2. Suppose that, for a.e. u ∈ Uz , δ̄Y (u;z) = d(u�z)δ̄W (u) with d(u�z) ∈
D(z) ≡ [dL(z)�dH(z)]. (i) Under the conditions of Theorem 6.1(i), if δ̄W (u)[FU |Z(u|z∗)−
FU |Z(u|z)] is either nonpositive for a.e. u ∈ Uz or nonnegative for a.e. u ∈ Uz then

β̄
(
ν(z) < UX ≤ ν(z∗)� z∗) ∈ B

(
D(z)

) ≡ {
RWald
Y�X|Z

(
z� z∗) −RWald

W �X|Z
(
z� z∗)d : d ∈ D(z)

}
�

and this identification region is sharp.
(ii) Under the conditions of Theorem 6.1(ii), if δ̄W (u) ∂∂zFU |Z(u|z) is either nonpositive

for a.e. u ∈ Uz or nonnegative for a.e. u ∈ Uz then

β̄
(
ν(z)� z

) ∈ B
(
D(z)

) ≡ {
RLIV
Y�X|Z(z)−RLIV

W �X|Z(z)d : d ∈ D(z)
}
�

and this identification region is sharp.

B(D(z)) is sharp under the conditions in Corollary 6.2. We leave studying the con-
sequences of imposing stronger assumptions, such as (UX�UY ) ⊥ (U�Z) and UW ⊥
(U�Z), on the identification of β̄(ν(z) < UX ≤ ν(z∗)� z∗) and β̄(ν(z)� z) to other work.26

26See the comments following the proof of Corollary 6.2 on the sharpness of B(D(z)) if one strengthens
the local conditions (10, 11) to the global mean independence conditions E[α(u�UY )|U�Z] = E[α(u�UY )],
E[β(u�UY )|UX�U�Z] =E[β(u�UY )|UX ], and E[q(u�UY )|U�Z] =E[q(u�UY )] for all u ∈ U .
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Last, Appendix A.2.2 in the Online Supplemental Material discusses how one may use
the bounds on MTE to partially identify various average effects.

In closing, the analysis in Sections 5 and 6 contributes to the literature on partial
identification of nonparametric average effects when X or Z are endogenous. In par-
ticular, Manski and Pepper (2000) assumed known bounds on the range of Y and that
E[r(x�U�UY )|Z = z] is monotonic in z. They also consider having r be monotonic in x.
Okumura and Usui (2014) combined these assumptions for Z = X along with having
r be concave in x. Further, the conditions in Corollaries 5.2 and 6.2 resemble those
in Manski and Pepper (2009, Lemma 3.1) who show that if r is monotonic in u and
FU |W (u|w∗) ≤ FU |W (u|w) for all w ≤ w∗ and u then W is a monotone IV. Sections 5 and
6 do not impose any of the above assumptions. Instead they use restrictions on con-
founding to partially identify various average effects. Last, one can build on the results
in Section 6 to study the identification of various average effects under restrictions on
confounding in systems with discrete (nonbinary) or continuous X and possibly mis-
measured potential instruments (see, e.g., Schennach, White, and Chalak (2012) and
Chalak (2017)).

7. Estimation and inference

The identification regions in Corollaries 4.3, 5.2, and 6.2 are of the form B(D)={L(R;d) :
d ∈ D} where the function L(R;d) is known up to a nuisance parameter d, which is par-
tially identified in a known set D, and R collects (IV) regression estimands of Y and W
on X (using instruments Z). For example, if D = [dL, dH] then the identification region
for β̄(x�x∗|x∗) is

B
([dL�dH]) ≡ {

RNY�X
(
x�x∗) −RNW �X

(
x�x∗)d : d ∈ [dL�dH]}�

and each element of B([dL�dH]) is a linear transformation of E(Y |X) and E(W |X) eval-
uated at x∗ and x. We can estimate the (IV) regression estimands R, underlying each
element b̄(d) = L(R;d) of B(D), using consistent and asymptotically normal paramet-
ric, semiparametric, or nonparametric (e.g., kernel) standard estimators R̂. We can then
estimate the identification region B(D) consistently using B̂(D)= {L(R̂;d) : d ∈ D}. Fur-
ther, for each d ∈ D, we can derive the asymptotic distribution of L(R̂;d) as a linear
transformation of R̂ and construct a 1 − α (e.g., 95%) confidence interval C1−α(d) for
L(R;d). Using Proposition 2 of Chernozhukov, Rigobon, and Stoker (2010), a 1−α confi-
dence region CI β̄�1−α for a partially identified parameter β̄ ∈ B(D) then obtains by form-

ing the union:27

CI β̄�1−α =
⋃
d∈D

C1−α(d)�

We illustrate the above discussion in the context of the earnings equation specifica-
tion used in Section 8.1. In this case, X , Z, and the covariates S are binary or discrete

27Alternatively, one can consider adapting the procedures in, for example, Imbens and Manski (2004)
and Stoye (2009).
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variables, and Y andW (here U andW are scalar) are generated by

Y = gX(X)′γ̄+Uδ̄Y +U ′
Y ᾱY and W =Uδ̄W +U ′

W ᾱW � (12)

We collect into the vectors GX ≡ gX(X), HZ ≡ hZ(Z), and GS ≡ gS(S) known flexible
(e.g., power and threshold crossing) functions of X , Z, and S, respectively. Here, the
average effect β̄(x�x∗) is encoded by the linear transformation [gX(x∗)− gX(x)]′γ̄ of γ̄.
As discussed in Section A.1.1 in Appendix A in the Online Supplemental Material, when
E(HZ |S) and/orE[(G′

X�W �Y)
′|S] is affine inGS , applying Theorem A.1 (the conditional

on S version of Theorem 4.1), withGX andHZ replacingX andZ, yields γ̄j =RY�G|H�j −
RW�G|H�jδ̄ where we put G ≡ (G′

X�G
′
S)

′ and H ≡ (H ′
Z�G

′
S)

′. The same characterization
for γ̄j obtains under the following specification, with Cov[H�(U ′

Y �U
′
W )

′] = 0,

Y =G′
Xγ̄+G′

Sψ̄Y +Uδ̄Y +U ′
Y ᾱY and W =G′

Sψ̄W +Uδ̄W +U ′
W ᾱW � (13)

In either representation, each element in the identification region for β̄(x�x∗), obtained
under restrictions on confounding, is a linear transformation of (R′

Y�G|H�R
′
W �G|H)

′.
To proceed, we first derive the asymptotic distribution of the plug-in estima-

tor (R̂′
Y�G|H� R̂

′
W �G|H)

′ for (R′
Y�G|H�R

′
W �G|H)

′. This allows for H = G. For observations
{Ai�Bi�Ci}ni=1 corresponding to generic random vector A and random vectors B and

C of equal dimension, let Ãi ≡Ai − 1
n

∑n
i=1Ai and denote the linear IV regression esti-

mator and sample residuals by

R̂A�B|C ≡
(

1
n

n∑
i=1

C̃iB̃
′
i

)−1(
1
n

n∑
i=1

C̃iÃ
′
i

)
and ε̂′A�B|C�i ≡ Ã′

i − B̃′
iR̂A�B|C�

The asymptotic distribution of
√
n(R̂′

Y�G|H� R̂
′
W �G|H)

′ obtains using standard argu-

ments.28 For this, we putQ≡ diag(E(H̃G̃′)�E(H̃G̃′)).

Theorem 7.1. Assume S.1(i) with m = 1 and that E[H̃(G̃′� Ỹ � W̃ )] is finite and E(H̃G̃′)
is nonsingular. Suppose further that:

(i) 1
n

∑n
i=1 H̃iG̃

′
i

p→E(H̃G̃′), and

(ii) n−1/2 ∑n
i=1(H̃

′
iεY�G|H�i� H̃ ′

iεW �G|H�i)′
d→N(0�Ξ), where

Ξ ≡
[

E
(
H̃ε2

Y�G|HH̃
′) E

(
H̃εY�G|HεW �G|HH̃ ′)

E
(
H̃εW �G|HεY�G|HH̃ ′) E

(
H̃ε2

W �G|HH̃
′)

]

is finite and positive definite.

Then Λ≡Q−1ΞQ′−1 is finite and positive definite and

√
n
((
R̂′
Y�G|H� R̂

′
W �G|H

)′ − (
R′
Y�G|H�R

′
W �G|H

)′) d→N(0�Λ)�

28See, for example, White (2001) for primitive (sampling and moment) conditions that ensure the law of
large numbers and central limit theorem in conditions (i) and (ii) of Theorem 7.1.
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The asymptotic distribution of the estimator for each element of the identifica-
tion region for β̄(x�x∗) then obtains as a linear transformation of that of

√
n(R̂′

Y�G|H�
R̂′
W �G|H)

′. For instance, suppose that Xj is the jth component of GX and that the

effect βj of Xj on Y is linear so that β̄j = γ̄j . Then β̄j is partially identified in
Gj([dL�dH])= {RY�G|H�j−RW�G|H�jd : d ∈ [dL�dH]}. One can estimate each element γ̄j(d)
of Gj([dL�dH]) by γ̂j(d)= R̂Y�G|H�j − R̂W �G|H�jd. Using Theorem 7.1, the asymptotic dis-
tribution of

√
nγ̂j(d) obtains as the jth component of

√
n
(
γ̂(d)− γ̄(d)) d→N

(
0�Σ(d)

)
�

where Σ(d) can be written as (I is the identity matrix)

Σ(d)=
[
I −dI

]
Λ

[
I −dI

]′ =E(
H̃G̃′)−1

E
(
H̃ε2

(Y−dW )�G|HH̃
′)E(

G̃H̃ ′)−1
�

Under regularity conditions (e.g., White (1980, 2001)), we can consistently estimate Λ
and therefore Σ(d). In particular, we use the heteroskedasticity-robust estimator

Σ̂(d)≡
(

1
n

n∑
i=1

H̃iG̃
′
i

)−1(
1
n

n∑
i=1

H̃iε̂
2
(Y−dW )�G|H�iH̃

′
)(

1
n

n∑
i=1

G̃iH̃
′
i

)−1

�

For each d ∈ D = [dL�dH], we use Σ̂(d) to construct a 1 − α (e.g., 95%) confidence inter-
val C1−α(d) for γ̄j(d) and obtain a 1 − α confidence region CI γ̄j �1−α = ⋃

d∈D C1−α(d) for
the partially identified parameter β̄j = γ̄j ∈ Gj(D). More generally, the interpretation of
γ̄j depends on the functional form of gX(·). In the empirical application, we report esti-
mates for Gj([0�1]) and Gj([−1�1]) as well as the CI γ̄j �1−α for γ̄j that is partially identified
in these regions.

8. Return to education and the black–white wage gap

Card (1999, Section 4 and Tables 4 and 6) surveys several papers that estimate the ef-
fect of educational attainment on earnings. Among these, studies using institutional
features as instruments for education report estimates for the return to a year of edu-
cation ranging from 6% to 15�3%. While these IV estimates are higher than the surveyed
regression estimates, which range from 5�2% to 8�5%, they are much less precise. On
the other hand, the surveyed twins studies report smaller within-family differenced es-
timates for the return to education, with regression estimates ranging from 2�2% to 7�8%
and IV estimates (to correct for any error in reported education) ranging from 2�4% to
11%. Similarly, many studies document a black–white wage gap and study its causes. For
example, Neal and Johnson (1996) employed a test score to control for unobserved skill
and argue that the black–white wage gap reflects primarily a skill gap rather than labor
market discrimination (see also Bollinger (2003) who allows the test score to measure
human capital with classical measurement error). Lang and Manove (2011) provided
a model which suggests that one should control for both education and the test score
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when comparing the earnings of blacks and whites and document a substantial black–
white wage gap in this case. See also Carneiro, Heckman, and Masterov (2005) and Fryer
(2011).

We apply the paper’s framework to study the financial return to education and the
black–white wage gap. Although our framework does not require it, we use the speci-
fication in (12) (or alternatively (13)). This generalizes common specifications for the
wage equation (e.g., Card (1995)) by allowing for unobserved confounders and nonlin-
ear effects, thereby facilitating comparing our findings to the literature. Here, Y denotes
the logarithm of hourly wage and X consists of completed years of education, years of
experience, and a binary variable that takes the value 1 if a person is black and is 0 oth-
erwise.GX ≡ gX(X) is a vector of flexible (e.g. power, threshold crossing) functions ofX
discussed below. The confounder U denotes unobserved skill or “ability” and is poten-
tially correlated with elements ofGX given the covariates S. The proxyW for U denotes
the logarithm of KWW, a test of occupational information. We use data drawn from the
1976 subset of the National Longitudinal Survey of Young Men (NLSYM), described in29

 

Card (1995). The sample used in Card (1995) contains 3010 observations on individuals
who reported valid wage and education. We drop 47 observations with missing KWW
score,30 as in some results in Card (1995), leading to a sample size of 2963. The covari-
ates S consist of 2 indicators for living in the South and in a metropolitan area (SMSA), 8
indicators for region of residence in 1966 and 1 for residence in SMSA in 1966, imputed31

father and mother education and 2 indicators for missing father and mother education
respectively, 1 indicator for the presence of the father and mother at age 14 and another
indicator for having a single mother at age 14. We employ a vector GS ≡ gS(S) of func-
tions of S that contains, in addition to S, 8 binary indicators for interacted mother and
father high school, college, or post-graduate education. Throughout, we also consider
restricting GS to a subset S1 of S, consisting of the two indicators for living in the South
and SMSA, as in Card (1995, Table 2, column 1). Except when otherwise noted, this gen-
erally leads to similar results. The sample also contains data on potential instruments
Z—we consider a vectorHZ ≡ hZ(Z) of functions of Z below.

As discussed in Section 7, using Theorem A.1 and equations (12) (or (13)), we can
express the components of γ̄ by γ̄j = RY�G|H�j − RW�G|H�jδ̄ where G ≡ (G′

X�G
′
S)

′ and
H ≡ (H ′

Z�G
′
S)

′ (recall thatHZ may equalGX ). The average effect ofX onY is then given
by β̄(x�x∗)= [gX(x∗)− gX(x)]′γ̄. We consider the magnitude restriction on confound-

ing δ̄≡ | δ̄Y
δ̄W

| ≤ 1. Recall that in (12), 100δ̄Y% and 100δ̄W % denote semi-elasticities. Thus,

|δ̄Y | ≤ |δ̄W | assumes that, given the covariates, an increase in U leads to an average ap-
proximate direct percentage change in wage that is at most as large as the percentage
change in KWW. This is weaker than imposing δ̄Y = 0, which would ensure exogeneity

29This sample is reported at http://davidcard.berkeley.edu/data_sets.html and in Wooldridge (2012).
30The sample also contains IQ score. However, 949 observations report missing an IQ score. Using the

available observations, the sample correlation between IQ and KWW is 0�43 and is strongly significant. Us-
ing log(IQ) instead of log(KWW ) as a proxy often leads to tighter bounds and confidence intervals. However,
this could be partly due to sample selection.

31Among the 2963 observations, 11�68% (22�78%) are missing the mother’s (father’s) education. We follow
Card (1995) and impute the missing values using the averages of the reported observations.

http://davidcard.berkeley.edu/data_sets.html
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when RW�G|H�j �= 0 and U depends on HZ given S. Further, this admits, but does not

require, the perfect proxy estimates of δ̄Y
δ̄W

reported below. The assumption |δ̄Y | ≤ |δ̄W |
is also in accord with the several findings discussed in Section 2.2 that suggest that the
elasticity of wage with respect to ability may be modest. As we discuss shortly, weaken-

ing this restriction to | δ̄Y
δ̄W

| ≤ d for d > 1 leads to wide identification regions, in which the

values of d that exceed 1 correspond to implausible estimates of the average return to
education and the black–white wage gap. Sometimes, we also restrict the average effects

of ability on wage and KWW to have the same sign, 0 ≤ δ̄Y
δ̄W

. Alone, this sign restriction

determines the direction of the (IV) regression bias. For example, it implies that a regres-
sion estimand gives an upper bound on the average return to education when the con-
ditional correlation between log(KWW ) and education is positive, which often holds.

8.1 Linear return to education

We begin by settingHZ =GX whereGX ≡ gX(X) consists of education, experience, ex-
perience squared, and the black binary indicator, as in the specification in Card (1995,
Table 2, column 5). In this case, the average approximate32 linear return to education is
100γ̄1% and the average approximate black–white wage gap is 100γ̄4%. Below, we con-
sider more general GX configurations that allow for nonlinear effects. Table 1 reports
the results.

Column 1 reports the results for the regression estimator R̂Y�G�j , which consistently
estimates γ̄j under conditional exogeneity, along with heteroskedasticity-robust stan-
dard errors (s.e.) and 95% confidence intervals (CI 0�95). The regression estimates for the
return to education and the black–white wage gap,33 with robust s.e. in parentheses, are
7�2% (0�4%) and −18�7% (2�0%), respectively. Column 2 reports the results for the linear

regression estimator R̂Y�(G′�W ′)′�j which consistently estimates γ̄ and δ̄Y
δ̄W

if W is a per-

fect proxy34 for U given S. The coefficient on W in R̂Y�(G′�W ′)′ estimates δ̄Y
δ̄W

to be 0�2,

with robust s.e. 0�03, and the perfect proxy estimates of the average return to education
and black–white wage gap, with robust s.e. in parentheses, are 5�7% (0�4%) and −14�6%
(2�1%), respectively. Next, we impose the magnitude and sign restriction 0 ≤ δ̄Y

δ̄W
≤ 1

or the magnitude restriction | δ̄Y
δ̄W

| ≤ 1 on confounding that are weaker than imposing

δ̄Y
δ̄W

= 0 (which ensures exogeneity) or requiring the perfect proxy estimate for δ̄Y
δ̄W

(with

CI 0�95 [0�14�0�26]). This enables studying the consequences of reasonable deviations
from these standard assumptions. Column 3 reports estimates Ĝj([0�1]) of the identi-

fication region for γ̄j obtained under 0 ≤ δ̄Y
δ̄W

≤ 1, along with the 95% confidence inter-

val CI γ̄j �0�95 for γ̄j . The estimated bounds on the return to education are [0�1%�7�2%]
32The coefficient on a binary variable in a log-linear equation does not exactly correspond to a semi-

elasticity but we employ this approximation here since it is relatively accurate when the magnitude of the
coefficient is small, as is the case for our estimates (see, e.g., Halvorsen and Palmquist (1980)).

33The tables also report point estimates and bounds for the coefficients associated with experience and
experience squared. For brevity, we do not discuss these in detail.

34For instance, this hold if ᾱW = 0 and Cov(UY � (G′�U)′)= 0 in equations (13).
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Table 1. Regression-based estimates of the log wage equation conditional on covariates under
restrictions on confounding.

j R̂Y�G�j R̂Y�(G′�W ′)′�j Ĝj([0�1]) Ĝj([−1�1])

1 Education 0�072 0�057 [0�001�0�072] [0�001�0�142]
(s.e.) and [p-value] (0�004) (0�004) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�064�0�079] [0�049�0�066] [−0�007�0�079] [−0�007�0�151]

2 Experience 0�083 0�073 [0�035�0�083] [0�035�0�131]
(s.e.) and [p-value] (0�007) (0�007) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�070�0�096] [0�060�0�087] [0�019�0�096] [0�019�0�148]

3 1
100 Experience2 −0�220 −0�202 [−0�220�−0�133] [−0�307�−0�133]
(s.e.) and [p-value] (0�032) (0�032) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�283�−0�156] [−0�266�−0�139] [−0�283�−0�057] [−0�389�−0�057]

4 Black indicator −0�187 −0�146 [−0�187�0�015] [−0�388�0�015]
(s.e.) and [p-value] (0�020) (0�021) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�226�−0�148] [−0�187�−0�104] [−0�226�0�057] [−0�438�0�057]

30 log(KWW ) 0�203
(s.e.) – (0�031) – –
CI 0�95 [0�141�0�264]

Note: Y is the logarithm of hourly wage. The proxy W is log(KWW ). G= (G′
X�G

′
S)

′ where GX consists of education, expe-
rience, experience squared, and a binary indicator taking the value 1 if a person is black. GS is the function of the covariates
S described in the text. The sample size is 2963. It is a subset of the 3010 observations used in Card (1995) and drawn from the
1976 subset of NLSYM. Robust standard errors (s.e.) appear in parentheses. The p-value associated with a t-test for the null
hypothesis RW �G�j = 0 against the alternative hypothesis RW �G�j �= 0 appears in brackets below Ĝj([0�1]).

with CI γ̄1�0�95 [−0�7%�7�9%] and those for the black–white wage gap are [−18�7%�1�5%]
with CI γ̄4�0�95 [−22�6%�5�7%]. We also report the p-value associated with a t-test of the
null hypothesis that the width of this identification region is zero, RW�G�j = 0, against
the alternative hypothesis RW�G�j �= 0. Under our assumptions, if we cannot reject that
RW�G�j = 0 in favor of RW�G�j �= 0 then we cannot reject that RU�G�j = 0, and thus that
γ̄j = RY�G|H�j . Last, column 4 reports estimates Ĝj([−1�1]) of the identification region
for γ̄j obtained under |δ̄Y | ≤ |δ̄W |, along with CI γ̄j �0�95. Note that weakening δ̄ ∈ [0�1] to

δ̄ ∈ [0� d] for d > 1 to allow the wage to be on average more sensitive to ability than the
test score is, extends the estimated identification regions as follows:

Education: Ĝ1
([0� d]) ≈ [

7�2% − (d× 7%)�7�2%
]
� and

Wage gap: Ĝ4
([0� d]) ≈ [−18�7%�−18�7% + (d× 20�1%)

]
�

In particular, the values of d that are larger than 1 correspond to mostly negative es-
timates of the average return to education and to a black–white wage gap in favor of
blacks, which is unlikely and inconsistent with the general findings in the literature. In
this sense, the empirical findings in this paper corroborate the assumption |δ̄Y | ≤ |δ̄W |.
In sum, the regression estimates provide an upper bound for the average (assumed lin-
ear for now) return to education and the average black–white wage gap. Further, the
estimate of the black–white wage gap is particularly sensitive to deviations from either
the regressor exogeneity or the perfect proxy assumption.
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Table 2. Regression-based estimates of the log wage equation with an education and race in-
teraction term conditional on covariates under restrictions on confounding.

j R̂Y�G�j R̂Y�(G′�W ′)′�j Ĝj([0�1]) Ĝj([−1�1])

1 Education 0�068 0�055 [0�004�0�068] [0�004�0�131]
(s.e.) and [p-value] (0�004) (0�005) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�060�0�076] [0�0460�064] [−0�005�0�076] [−0�005�0�141]

2 (Education-12) × Black 0�017 0�012 [−0�012�0�017] [−0�012�0�046]
(s.e.) and [p-value] (0�006) (0�006) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�005�0�030] [−0�0010�024] [−0�027�0�030] [−0�027�0�063]

3 Experience 0�081 0�072 [0�036�0�081] [0�036�0�127]
(s.e.) and [p-value] (0�007) (0�007) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�068�0�095] [0�0590�086] [0�020�0�095] [0�020�0�143]

4 1
100 Experience2 −0�210 −0�196 [−0�210�−0�139] [−0�280�−0�139]
(s.e.) and [p-value] (0�033) (0�033) [0�003] –
CI 0�95 and CI γ̄j �0�95 [−0�273�−0�146] [−0�260 − 0�132] [−0�273�−0�062] [−0�360�−0�062]

5 Black indicator −0�193 −0�152 [−0�193�0�018] [−0�403�0�018]
(s.e.) and [p-value] (0�020) (0�021) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�231�−0�154] [−0�193 − 0�110] [−0�231�0�062] [−0�454�0�062]

31 log(KWW ) 0�194
(s.e.) – (0�032) – –
CI 0�95 [0�1320�257]

Note: The results use the specification in Table 1 and augment GX with an interaction term (Education-12) × Black. The
remaining notes in Table 1 apply analogously here.

8.2 Black–white return to education differential

We augmentGX to include, as its second component, the interaction term (Education−
12)× Black. Table 2 reports the conditional on GS results. Columns 1 and 2 report the

exogeneity and perfect proxy estimates. Under the weaker restriction 0 ≤ δ̄Y
δ̄W

≤ 1 on con-

founding, the bounds on the average return to education for nonblacks is [0�4%�6�8%]
with CI γ̄1�0�95 [−0�5%�7�6%], those on the average black–white return to education dif-
ferential is [−1�2%�1�7%] with CI γ̄2�0�95 [−2�7%�3�0%], and those on the average black–
white wage gap for individuals with 12 years of education is [−19�3%�1�8%] with CI γ̄5�0�95

[−23�1%�6�2%]. Thus, the average return to education for the black subpopulation may
differ slightly from the nonblack subpopulation, if at all. Below, we follow Card (1995)
and maintain that these average returns are equal.

8.3 Distance to school instrument

A useful solution to the endogeneity problem assumes the availability of valid instru-
ments. For example, Card (1995) used an indicator for the presence of a 4-year college in
the local labor market, age, and age squared as instruments for education, experience,
and experience squared in the specification from Table 1. What if the college proxim-
ity instrument is in turn correlated with ability, and thus invalid? For example, Carneiro
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Table 3. IV regression-based estimates of the log wage equation conditional on covariates un-
der restrictions on confounding.

j R̂Y�G|H�j R̂Y�(G′�W ′)′ |(H′�W ′)′�j Ĝj([0�1]) Ĝj([−1�1])

1 Education 0�134 0�147 [0�029�0�134] [0�029�0�240]
(s.e.) and [p-value] (0�052) (0�091) [0�001] –
CI 0�95 and CI γ̄j �0�95 [0�032�0�237] [−0�030�0�324] [−0�078�0�237] [−0�078�0�372]

2 Experience 0�061 0�064 [0�006�0�061] [0�006�0�115]
(s.e.) and [p-value] (0�025) (0�019) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�011�0�110] [0�027�0�102] [−0�044�0�110] [−0�044�0�178]

3 1
100 Experience2 −0�113 −0�119 [−0�113�0�009] [−0�235�0�009]
(s.e.) and [p-value] (0�123) (0�110) [0�090] –
CI 0�95 and CI γ̄j �0�95 [−0�354�0�129] [−0�3340�097] [−0�354�0�256] [−0�545�0�256]

4 Black indicator −0�162 −0�178 [−0�162�0�026] [−0�351�0�026]
(s.e.) and [p-value] (0�029) (0�041) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�218�−0�107] [−0�258�−0�099] [−0�218�0�085] [−0�424�0�085]

30 log(KWW ) −0�090
(s.e.) – (0�298) – –
CI 0�95 [−0�673�0�494]

Note: The results use the specification in Table 1 with instrumentsHZ forGX that consist of an indicator for whether there
is a 4-year college in the local labor market, age, age squared, and the black indicator, withH = (H′

Z�G
′
S)

′ . The remaining notes
in Table 1 apply analogously for the IV-based results here.

and Heckman (2002) provided evidence suggesting that distance to college may be en-
dogenous. To study this possibility, we apply our framework to relax the assumption that
the instrument is conditionally exogenous by allowingHZ to be correlated with ability35

given the covariates. As reported in Table 3, the estimates (and robust s.e.) for the av-
erage return to education and black–white wage gap are respectively 13�4% (5�2%) and
−16�2% (2�9%) under exogeneity and 14�7% (9�1%) and −17�8% (4�1%) when assuming
a perfect proxy. Note that, when employing this IV specification, the perfect proxy esti-

mate −0�09 (0�30) for δ̄Y
δ̄W

has an unlikely sign and is imprecisely estimated. For instance,

when using this IV specification and conditioning on the subset S1 ofGS only, the perfect

proxy estimate for δ̄Y
δ̄W

becomes 0�21 (0�08), leading to the estimates 5�7% (2%) and −14%
(2%) for the average return to education and black–white wage gap, respectively. Under

0 ≤ δ̄Y
δ̄W

≤ 1, the conditional on GS IV-based identification region estimate for the aver-

age return to education is [2�9%�13�4%], which is wider than the regression-based one,
with wider CI γ̄1�0�95 [−7�8%�23�7%]. Similarly, the estimated bounds [−16�2%�2�6%] on
the average black–white wage gap are slightly tighter than the regression-based estimate
albeit with comparable CI γ̄4�0�95 [−21�8%�8�5%]. Similar but less precise results obtain
when, as in Card (1995), we augment GS with an indicator for a four year college in the
local labor market and employ the product of this indicator with an indicator for low

35In particular, we let GX and GS be as in the specification from Table 1 and let H = (H ′
Z�G

′
S)

′ where
HZ = hZ(Z) consists of the proximity to college indicator, age, age squared, and the black indicator.
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parental education as an instrument instead. Last, in both IV specifications, condition-
ing on the subsetGS = S1 of the covariates yields generally similar bounds.36 In sum, the
IV-based bounds are generally wider than, or comparable to, the above regression-based
ones and yield especially wider confidence intervals.

8.4 Nonlinear return to education

Returning to the regression-based estimates withHZ =GX , we allow for nonlinear year-
specific incremental return to education. Specifically, we let GX contain binary indica-
tors for having at least t years of education, where t = 2� � � � �18 as in the sample, instead
of the total years of education. Thus, γt encodes the incremental return β(t� t + 1) to
year t + 1 of education. Table 4 reports the results. Column 1 reports the results of the
regression estimator which is consistent under exogeneity. Column 2 reports the perfect

proxy results, yielding the estimate 0�21 for δ̄Y
δ̄W

with s.e. 0�03. Under the weaker restric-

tion 0 ≤ δ̄Y
δ̄W

≤ 1, we find evidence37 for nonlinearity in the return to education, with the

12th, 16th, and 18th year, corresponding to obtaining a high school, college, and possibly
a graduate degree, yielding a high average return. For example, the estimated bounds
for the average return to the 12th year are [1�6%�14�6%] with CI γ̄11�0�95 [−5�4%�21%]
and those for the 16th year are [13�3%�19�5%] with CI γ̄15�0�95 [6�3%�26�2%]. Similarly,
the estimated bounds for the return to the 18th year are [13�9%�14�9%] with CI γ̄17�0�95

[5%�23�7%] and we cannot reject at comfortable significance levels that the width of
this region is zero or, under the maintained assumptions, that a regression consistently
estimates this return by 14�9% with robust s.e. 4�5%. In contrast, the estimated bounds
for the return to the 13th year are [0�7%�7�8%] with CI γ̄12�0�95 [−4�2%�12�4%]. Figure 1
illustrates the nonlinearity in the return to education. In addition to the regression and
perfect proxy estimates, it plots the estimated bounds and CI γ̄j �0�95 for the incremen-
tal average returns to the 9th up to the 18th year of education under the restriction

0 ≤ δ̄Y
δ̄W

≤ 1. Last, using this specification, the estimate of the identification region for

the black–white wage gap under 0 ≤ δ̄Y
δ̄W

≤ 1 is similar to that in Table 1 and given by

[−17�8%�1�9%] with CI γ̄20�0�95 [−21�6%�6�1%].

8.5 Discussion and summary

This empirical analysis employs a parametric specification in which U enters additively
separably. Further, it assumes that there is one confounder U denoting “ability,” which

36SettingGS = S1 sometimes leads to tighter identification regions albeit with possibly wider confidence
intervals (e.g., [−10�1%�2�4%] with CI γ̄4�0�95 [−24�8%�17�4%] for the average black–white wage gap in the
first IV specification and [−0�6%�8�1%] with CI γ̄1�0�95 [−3�0%�10�3%] for the average return to education in
the second IV specification).

37Although we do not conduct a formal test for linearity, we note that, under the restriction 0 ≤ δ̄Y
δ̄W

≤ 1,

the 95% CI for the partially identified return to the 16th year of education does not overlap with the 95%
CI for the partially identified return to, for example, the 15th year and overlaps with that of the 17th year
slightly.
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Table 4. Regression-based estimates of the log wage equation with year-specific education in-
dicators conditional on covariates under restrictions on confounding.

j R̂Y�G�j R̂Y�(G′�W ′)′�j Ĝj([0�1]) Ĝj([−1�1])

10 Educ ≥ 11 years 0�118 0�102 [0�039�0�118] [0�039�0�198]
(s.e.) and [p-value] (0�042) (0�042) [0�011] –
CI 0�95 and CI γ̄j �0�95 [0�036�0�201] [0�020�0�184] [−0�057�0�201] [−0�057�0�308]

11 Educ ≥ 12 years 0�146 0�119 [0�016�0�146] [0�016�0�276]
(s.e.) and [p-value] (0�033) (0�032) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�082�0�210] [0�056�0�182] [−0�054�0�210] [−0�054�0�359]

12 Educ ≥ 13 years 0�078 0�063 [0�007�0�078] [0�007�0�148]
(s.e.) and [p-value] (0�024) (0�023) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�032�0�124] [0�017�0�109] [−0�042�0�124] [−0�042�0�205]

13 Educ ≥ 14 years 0�034 0�020 [−0�035�0�034] [−0�035�0�103]
(s.e.) and [p-value] (0�032) (0�032) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�029�0�096] [−0�042�0�081] [−0�101�0�096] [−0�101�0�177]

14 Educ ≥ 15 years −0�020 −0�028 [−0�056�−0�020] [−0�056�0�015]
(s.e.) and [p-value] (0�038) (0�038) [0�048] –
CI 0�95 and CI γ̄j �0�95 [−0�095�0�054] [−0�101�0�046] [−0�134�0�054] [−0�134�0�102]

15 Educ ≥ 16 years 0�195 0�183 [0�133�0�195] [0�133�0�258]
(s.e.) and [p-value] (0�034) (0�034) [0�000] –
CI 0�95 and CI γ̄j �0�95 [0�129�0�262] [0�117�0�248] [0�063�0�262] [0�063�0�335]

16 Educ ≥ 17 years 0�012 −0�005 [−0�070�0�012] [−0�070�0�093]
(s.e.) and [p-value] (0�039) (0�039) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�065�0�088] [−0�081�0�071] [−0�147�0�088] [−0�147�0�178]

17 Educ ≥ 18 years 0�149 0�147 [0�139�0�149] [0�139�0�159]
(s.e.) and [p-value] (0�045) (0�045) [0�512] –
CI 0�95 and CI γ̄j �0�95 [0�061�0�237] [0�060�0�234] [0�050�0�237] [0�050�0�257]

20 Black indicator −0�178 −0�137 [−0�178�0�019] [−0�374�0�019]
(s.e.) and [p-value] (0�020) (0�021) [0�000] –
CI 0�95 and CI γ̄j �0�95 [−0�216�−0�139] [−0�178�−0�096] [−0�216�0�061] [−0�423�0�061]

46 log(KWW ) 0�207
(s.e.) – (0�032) – –
CI 0�95 [0�145�0�269]

Note: The results extend the specification in Table 1 to include in GX indicators for having at least t years of education,
where t = 2� � � � �18 corresponding to the sample, instead of total years of education. For brevity, Table 4 does not report the
estimated bounds for the average return to education for t < 11; these are often relatively imprecise with wide CI γ̄j �0�95 . Also,

Table 4 omits the estimates associated with experience; these are similar to those reported in Table 1. The remaining notes in
Table 1 apply analogously here.

we proxy using log(KWW ), and that 0 ≤ δ̄Y
δ̄W

≤ 1 or |δ̄Y | ≤ |δ̄W |. Of course, one should

interpret the results carefully if these assumptions are suspected to fail. For example,
the analysis relaxes the assumption of exogeneity by allowing ability to act as a con-
founder. But if other confounders are present and strong valid instruments or proxies
for these are not available then additional assumptions are needed to (partially) iden-
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tify the average effects of X . Similarly, the analysis allows W to be an imperfect proxy,
with UW nondegenerate and conditionally uncorrelated with GX (or HZ) in (13). How-
ever, this can in turn fail, for example, if UW denotes test taking skill (resp., access to
counseling) and is conditionally correlated with education (resp., distance to school).
Section A.1.2 in Appendix A in the Online Supplemental Material reports complemen-
tary results that obtain under some alternative assumptions, such as assuming that the
measurement error in the proxy is classical or using the W equation to substitute for U
in the Y equation and then assuming that certain excluded covariates (e.g., parental
education) from GS are valid instruments for W . Nevertheless, an advantage of the
above empirical analysis is that it does not require several commonly employed assump-
tions thereby enabling a sensitivity analysis. Specifically, (1) it does not require regressor
or instrument exogeneity or restrict the dependence of U on X or Z (given S), (2) it
does not require a linear return to education, and (3) it permits a test score to be an
error-laden proxy for unobserved ability, with possibly nonclassical measurement er-
ror.

In sum, the estimated bounds for the black–white wage gap are relatively wide, sug-
gesting that, under the imposed assumptions that are weaker than requiring exogeneity
or a perfect proxy, this data set is inconclusive about the extent of discrimination in the
labor market. In contrast, the average return to education for the black subpopulation
may differ slightly from the nonblack subpopulation, if at all. Last, we find evidence sug-
gesting a nonlinearity in the return to education, with graduation years yielding a high
average return.

9. Conclusion

This paper studies measuring average causal effects in general structural systems with
unobserved confounders (omitted variables). We study the identification of coeffi-
cients in a linear structure, covariate-conditioned average nonparametric discrete and
marginal effects (e.g., average treatment effect on the treated), and local and marginal
treatment effects. The first contribution of this paper is to characterize the OVB of com-
mon (nonparametric) regression and IV (e.g., Wald and LIV) estimands for these various
average effects, thereby generalizing the classic linear regression OVB formula. Using an
imperfect proxy for the unobserved confounders, this paper then introduces magnitude
and sign restrictions on confounding that are weaker than standard assumptions such
as the conditional exogeneity of the treatment or the instrument or requiring a perfect
proxy. The paper’s second contribution is to demonstrate how these restrictions on con-
founding can be used to partially identity average effects and to conduct a sensitivity
analysis to deviations from the stronger benchmark assumptions. The paper discusses
estimation and inference and applies its framework to study the return to education
and the black–white wage gap. Extensions for future work include imposing distribu-
tional restrictions on confounding (e.g., a prior distribution on δ̄) and using restrictions
on confounding to identify the distribution of a causal effect or features of it other than
the mean. It is also of interest to apply this paper’s framework to estimate production
functions.
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