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A competing risks model with time-varying heterogeneity and
simultaneous failure
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This paper proposes a new bivariate competing risks model in which both dura-
tions are the first passage times of dependent Lévy subordinators with exponen-
tial thresholds and multiplicative covariates effects. Our specification extends the
mixed proportional hazards model, as it allows for the time-varying heterogeneity
represented by the unobservable Lévy processes and it generates the simultane-
ous termination of both durations with positive probability. We obtain nonpara-
metric identification of all model primitives given competing risks data. A flexi-
ble semiparametric estimation procedure is provided and illustrated through the
analysis of a real dataset.
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1. Introduction

Threshold-crossing models for analyzing durations or time-to-events have recently at-
tracted considerable interest. Instead of directly specifying the hazard rate function,
the basic setup in this paper is to view the duration as the first passage time of a la-
tent stochastic process crossing a random threshold (de Paula (2009), Abbring (2012)).
The main advantages of such a threshold-crossing model can be summarized as fol-
lows. First, it offers a transparent view of the underlying failure/survival mechanism, as
the duration of interest typically represents the termination of certain process reaching
a critical level (Lancaster (1972), Aalen, Borgan, and Gjessing (2008)). Second, it cap-
tures the essential feature of optimal stopping time problems in which the generic solu-
tions are characterized exactly by such threshold-crossing rules (Heckman and Navarro
(2007), Honoré and de Paula (2010), Abbring (2012)). Last but not least, the model gen-
eralizes the mixed proportional hazards model (Lancaster (1979)), as the latter can be
seen as a special case with particular assumptions about the latent process and thresh-
old (Honoré and de Paula (2018)). Along with a variety of promising aspects, it remains
challenging to model multiple durations defined via threshold-crossing rules involving
continuous-time latent stochastic processes.
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In this paper, we construct a bivariate threshold-crossing durations model in which
both durations T1 and T2 are the first passage times driven by bivariate latent stochas-
tic processes. Conditional on observable covariates, the model contains both static
and time-varying heterogeneity terms. The static heterogeneity ν is a positive random
variable that changes the time deformation, which turns out to be equivalent to the
frailty term (van den Berg (2001)) in the mixed proportional hazards model. Considering
the time-varying heterogeneity represented by the unobservable stochastic processes,
throughout this paper we focus on Lévy subordinators L(t) ≡ (L1(t)�L2(t)), that is,
continuous-time processes with stationary, independent, and nonnegative increments
(Sato (2013)). The Lévy subordinator belongs to a subclass of the general Lévy process
and its nonnegative increment or, equivalently, its nondecreasing sample path encap-
sulates the notion that the mechanism leading to the failure/exit is irreversible and al-
ways accumulates in one direction. Meanwhile, the family of Lévy subordinators nests
commonly used (compound) Poisson, gamma, and stable processes as special cases.
Furthermore, the dependence of two marginal Lévy subordinators L1(t) and L2(t) is
completely characterized by the Lévy copula (Kallsen and Tankov (2006)).

We show that the conditional joint survivor function of duration variables admits a
closed-form expression when the thresholds are independent draws from the unit ex-
ponential distribution and the covariates enter the model in a multiplicative way. The
specification could be seen as a natural variant of the bivariate mixed proportional haz-
ards model in the sense that it is boils down to the proportional hazards model with a
shared frailty (Oakes (1989)) in the absence of Lévy processes. By explicitly incorporating
the latent stochastic processes, our model embeds time-varying heterogeneity and gen-
erates the simultaneous termination of both durations, because two dependent Lévy
processes can simultaneously jump over the thresholds. Interestingly, the conditional
survivor function of the two durations extends the bivariate exponential distribution
from Marshall and Olkin (1967) and the conditional copula function falls into the gen-
eral framework laid down by Marshall and Olkin (1988). Compared with the original and
existing generalizations of the Marshall–Olkin-type model, durations in our model are
defined as the first passage times of latent processes and the concurrent termination of
both durations is not necessarily due to some independent and common shock, unlike
the constructions in Marshall and Olkin (1967) and An, Christensen, and Gupta (2004).
Thus, we name the present model the extended Marshall–Olkin model.1

The empirical content of the extended Marshall–Olkin model is studied with com-
peting risks data where only the minimum duration or failure time and the cause of fail-
ure are observed. For the two durations (T1�T2) of interest, economists or econometri-
cians only observe V = min(T1�T2), with the indicator D recording the failure type. The
application of competing risks models in economics goes back to Flinn and Heckman
(1982) and the delicate identifiability issues of such models continue to attract attention
from researchers, including Heckman and Honoré (1989, 1990), Abbring and van den
Berg (2003), Honoré and Lleras-Muney (2006), Khan and Tamer (2009), Lee and Lew-
bel (2013), and Fan and Liu (2018), to name just a few. Our work sheds new light on the

1Honoré and de Paula (2010) showed that the Marshall–Olkin model is observationally equivalent to a
stopping game model with additive interaction effects; see Section 4.2 in Honoré and de Paula (2010).



Quantitative Economics 11 (2020) A competing risks model 537

modeling framework concerning competing risks in the sense that the aforementioned
works typically regard one individual as having different ways to exit a given state; for
example, an unemployed person can leave unemployment by finding a job or going out
of the labor force (Flinn and Heckman (1982)). These applications do not involve simul-
taneous failures at all. In this paper, however, the competing risks arise as two different
agents being exposed to the risk of exiting in one state; they can either do it at the same
time or not.2 The main theoretical contribution here is combining insights from the lit-
erature on the identification of duration models with Lévy processes theory to obtain
the sampling information and nonparametric identification results for this new com-
peting risks model. Because the conditional survivor copula function of two durations
varies with covariates and it has a singular component, existing results do not apply. In-
stead, we make use of the analytical properties of Lévy subordinators and the special
Marshall–Olkin structure to achieve nonparametric identification. When the covariates
effects are parameterized, as in the standard Cox regression, we present a straightfor-
ward semiparametric estimation procedure following the identification strategy closely
and we offer an empirical illustration using data from Honoré and de Paula (2018).

The construction of our model was motivated by empirical studies on the joint re-
tirement decisions of married couples with both spouses working at time zero. It is well
documented for various datasets that a significant portion of married couples choose to
retire at the same time (An, Christensen, and Gupta (2004), Honoré and de Paula (2018)).
We reexamine the joint retirement problem of married couples using data drawn from
eight waves of the Health and Retirement Study. Here, the duration variables of inter-
est (T1�T2) are the retirement dates of the wife and husband. The duration V repre-
sents the first entry into retirement for the corresponding member of the household,
and D = 1�2, or 3 depending on whether the wife retires first, the husband first, or
they retire simultaneously. Our methodology offers a continuous-time model in which
wives and husbands are timing their retirement dates subject to health shocks that ar-
rive randomly. One special case of our setup is employing a compound Poisson process
in which the arrival rate is governed by νλ0(t) and the magnitudes of shocks are repre-
sented by (L1(t)�L2(t)). More generally, we allow (L1(t)�L2(t)) to be Lévy subordina-
tors without any parametric assumption. Various observable household characteristics
such as wealth and health expenditures can be included to account for the covariates
effects φ1(x) and φ2(x) for wives and husbands, respectively. In particular, we assume
that φk(x) acts multiplicatively on the corresponding shock process Lk(t), which im-
plies that an increase (decrease) of φk(x) amplifies (dampens) the magnitude of shocks
and leads to earlier (later) exit for individual k, with k = 1 or 2. An important feature
of the model is the provision for correlated health shocks among the couple and, as a
by-produce, the explicit allowance for simultaneous retirement. This property is also ex-
pected to be useful in other economic applications, including patent racing (Reinganum
(1981, 1982), Choi (1991)), technology adoption (Jensen (1982), Farzin, Huisman, and
Kort (1998)), and the smoking cessation of married couples (Abbring and Yu (2015)), to
name a few.

2I want to thank a knowledgeable referee for this clarifying point.
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Compared with the voluminous work on the mixed proportional hazards models
(van den Berg (2001)), the literature on structural threshold-crossing models driven by
unobservable stochastic processes is relatively scarce. An ancestor in econometrics is
the strike model by Lancaster (1972), in which a Brownian motion is employed to rep-
resent the level of disagreement. Abbring (2012) obtained the nonparametric identifica-
tion results of more general threshold-crossing duration models, in which the duration
is the first passage time of a spectral negative Lévy process crossing a heterogeneous
threshold. Our paper complements Abbring (2012) and the existing literature in sev-
eral ways. The increasing sample path of Lévy subordinators is more suitable for rep-
resenting the accumulation of knowledge in patent-race game (Reinganum (1981)), the
improving profitability in the technology adoption process (Farzin, Huisman, and Kort
(1998)), the underlying aging process in joint retirement decisions (Coile (2004)), and the
degradation of health condition due to smoking (Abbring and Yu (2015)), as opposed to
the spectrally negative Lévy process in Abbring (2012), which fluctuates up and down.
Another notable feature of our model is that its empirical content is studied by examin-
ing the conditional (sub)survivor functions directly, whereas the structural parameters
in Abbring (2012) are expressed through the conditional Laplace transform; see equation
(6) on page 797 of Abbring (2012). As such, it holds great convenience in facilitating the
estimation of our model when the durations are subject to censoring. To extend the uni-
variate duration model driven by a single Lévy subordinator (Gjessing, Aalen, and Hjort
(2003), Botosaru (2016)), we need to consider the dependence structure of Lévy subor-
dinators and how it translates into the dependence of structural durations. For this pur-
pose, we rely on the Lévy copula (Cont and Tankov (2004), Kallsen and Tankov (2006)) in
constructing our model and we show this dependence measure can be identified based
on competing risks data only, which is an advantage, as (V �D�X) corresponds to the
coarsened data of (T1�T2�X) where both durations are observed.

Apart from the univariate stopping time model of Abbring (2012), we would like to
mention de Paula (2009) and Alvarez, Borovickova, and Shimer (2016), who model mul-
tiple durations as first passage times. A simultaneous duration model is proposed by
de Paula (2009) with multiple decision makers to exit a given state. The problem of de-
termining the existence and uniqueness of equilibrium stopping strategies is analyzed
in de Paula (2009), with state variables evolving as general diffusion processes. Interest-
ingly, de Paula (2009) showed that the social interaction effect in this stopping game is
sufficient and necessary for the simultaneous failure. Alvarez, Borovickova, and Shimer
(2016) proposed an empirical search model where the duration of each worker’s unem-
ployment spell is generated when a Brownian motion hits a barrier. In the absence of
heterogeneity, unemployment duration follows an inverse Gaussian distribution (Lan-
caster (1972)). Alvarez, Borovickova, and Shimer (2016) allowed for arbitrary heterogene-
ity across workers in the parameters of this inverse Gaussian distribution and prove that
the distribution of these parameters is identified based on multiple spells per worker.
The identification results in de Paula (2009) and Alvarez, Borovickova, and Shimer (2016)
are not for competing risks data. The only existing competing risks model that involves a
latent continuous-time process is found in Ryu (1993). Ryu (1993) considered two com-
peting forces with one representing the natural failure mechanism caused by a com-
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pound Poisson process and the other one from economic agent’s endogenous optimiza-
tion behavior. There is no formal identification result for such a complicated structural
model.

The rest of this paper is organized as follows. In Section 2, we construct the extended
Marshall–Olkin model for bivariate durations and discuss its probabilistic features. Sec-
tion 3 presents its empirical content under competing risks and suggests a straightfor-
ward semiparametric estimation procedure when the covariates effects are parameter-
ized. We consider a further generalization in Section 4 that incorporates additional ob-
servable time-varying covariates. The empirical application in Section 5 illustrates how
the semiparametric method can be used to obtain meaningful estimates of behavioral
effects with minimal parametric restrictions on the primitives of the model. We con-
clude in Section 6. Appendix A collects the proofs of main theorems and Appendix B
contains some auxiliary results and more technical proofs.

2. The extended Marshall–Olkin model

Because both duration variables are modeled as the first passage times of Lévy subor-
dinators, it is necessary to introduce the definition and characterization of a bivariate
Lévy subordinator L(t) = (L1(t)�L2(t)) with marginal subordinators denoted by L1(t)

and L2(t), respectively (Sato (2013)).

Definition 2.1. A bivariate Lévy subordinator L(t) is a right-continuous stochastic
process with left limits such that for every t and r ≥ 0, the increment L(t + r) − L(t) is
independent of {L(s);0 ≤ s ≤ t} and has the same distribution as L(r). Furthermore, al-
most surely it has nondecreasing sample path, that is, one has L(t)≥ L(s) for t ≥ s.

The class of Lévy subordinators is flexible enough to incorporate a variety of inter-
esting parametric precesses and it also admits an elegant characterization according to
the well-known Lévy–Khintchine representation. For z1� z2 ∈ R+, the joint Laplace trans-
form can be expressed as

E
{
exp

[−z1L1(t)− z2L2(t)
]} = exp

[−t�12(z1� z2)
]
� (2.1)

where �12(·� ·) is known as the joint Lévy–Laplace or Lévy exponent function (Cont and
Tankov (2004)). The bivariate function �12(·� ·) is further determined by the underlying
jump measure or Lévy measureΠ12(·� ·) via the following integral transform:

�12(z1� z2)=
∫∫

R2+

[
1 − e−y1z1−y2z2

]
dΠ12(dy1� dy2)� (2.2)

When it comes to each marginal Lévy subordinator Lk(t), we have

E
{
exp

[−zkLk(t)]} = exp
[−t�k(zk)]� (2.3)

where the marginal Lévy exponent �k(·) is expressible as

�k(zk)=
∫
R+

[
1 − e−zky]Πk(dy)� (2.4)
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with the marginal Lévy measure Πk(·) for k= 1�2. Also, the Lévy density function is de-
noted by πk(·) when Πk(·) is absolutely continuous with respect to the Lebesgue mea-
sure for k= 1�2.

The dependence of two Lévy subordinators is determined by the Lévy copula; see
Cont and Tankov (2004) and Kallsen and Tankov (2006). Note that the Lévy copula is not
a standard copula (Nelsen (2006)) that acts on distribution or survivor functions; rather,
it operates on Lévy measures which determine the jump intensity. Nevertheless, it does
share certain similarities with the standard copula function such as linking the joint and
marginal Lévy measures. For most Lévy subordinators, the jump intensity diverges to
infinity as the jump size approaches zero, that is, limu→0πk(u)= ∞ for k= 1�2. Hence, it
is the tail integral or survivor functional version of a Lévy measure that is more tractable.
The Lévy copula CL(·� ·) is defined as the unique mapping that couples two marginal
Lévy tail integralsΠk(y)= ∫ ∞

y πk(y)dy to generate the joint tail integral:

Π12(u1�u2)= CL
(
Π1(u1)�Π2(u2)

)
� (2.5)

where Π12(u1�u2) is the two-dimensional tail integral (see Appendix B for the precise
definition of the two-dimensional tail integral). The role of the Lévy copula is more
transparent in pinning down the joint Laplace exponent function given two marginal
Lévy densities π1 and π2, according to the following identity from Cont and Tankov
(2004):

�12(z1� z2)=
∫∫ [

1 − e−z1y1−z2y2
] ∂2

∂u1 ∂u2
CL(·� ·)

∣∣∣u1=Π1(y1)

u2=Π2(y2)

π1(y1)π2(y2)dy1 dy2� (2.6)

In sum, a pair of Lévy subordinators is entirely determined by triple time-invariant
measures, including two marginal Lévy measures (Π1�Π2) and the Lévy copula CL. This
time-invariant feature forms the basis of the identifiability of latent processes by only
observing the corresponding first passage times.

2.1 The model setup

The duration often records the end of an event, in which the underlying process lead-
ing to this event may not be directly observable. Our econometric model consists of
two agents where each individual k makes an optimal timing decision, which gener-
ates the duration Tk to transit out of the current state with k = 1�2. Let the nonnega-
tive pay-off or utility flow of switching to the alternative state be Lk(t) at time t and let
the lump-sum cost be εk associated with this transition for k= 1�2. Both T1 and T2 are
first passage times of the underlying stochastic processes (L1(t)�L2(t)), as motivated by
the generic solutions in optimal stopping time problems (Honoré and de Paula (2010),
Abbring (2012)). We also introduce the observed covariates X and an unobserved het-
erogeneity ν. Formally, each duration Tk is defined as the first passage time of a latent
process Lk(t) crossing a random threshold εk:

Tk ≡ inf
{
tk :φk(X)Lk

(
νΛ0(tk)

) ≥ εk
}

for k= 1�2� (2.7)
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where the nonnegative functions φ1(·)�φ2(·) represent the effects of covariates and the
monotone time deformation Λ0(t) reveals how time unfolds (Stock (1988)). Consider-
ing the way that covariates influence the underlying failure/survival mechanism, an in-
crease (decrease) of φk(x) amplifies (dampens) the jumping magnitude of Lk(·), which
induces earlier (later) exiting, ceteris paribus. The static heterogeneity ν changes the
magnitude of Λ0(t) and is introduced in the same spirit as Feller (1943), who first used
the mixed Poisson process to demonstrate the distinction between genuine and spu-
rious duration dependence (Elbers and Ridder (1982), Heckman and Singer (1984a)).
For numerous economic models, it is routine to employ a compound Poisson pro-
cess (which is indeed a Lévy subordinator) to model certain monotone pay-off pro-
cess like Lk(t) = ∑N(t)

i=1 ξi�k, where the arrival of shocks is governed by a common ho-
mogeneous Poisson process N(t) and (possibly) correlated shocks (ξi�1� ξi�2) are as-
sumed to be nonnegative for k = 1�2. Our specification offers flexibility regarding the
speed or arrival rate by a random deformation νΛ0(t) so that one has the composition
(L1(νΛ0(t))�L2(νΛ0(t))). Note that we restrict the speed νΛ0(t) for which the shocks
arrive to be the same for both individuals, whereas the magnitude (ξi�1� ξi�2) can be dif-
ferent, though still correlated.

Considering the rich structure involving various modeling components, it is desir-
able to strive for a generality that encompasses commonly encountered situations, while
making necessary assumptions for tractability. We make the following model assump-
tions throughout the paper.

Assumption 2.1. Random variablesX�ν�L(t), and (ε1� ε2) are mutually independent.

Assumption 2.2. The static heterogeneity ν is nonnegative with its distribution func-
tion Fν(·) and Laplace transform ψ(·).

Assumption 2.3. The stochastic process L(t)= (L1(t)�L2(t)) is a bivariate Lévy subor-
dinator.

Assumption 2.4. The thresholds ε1 and ε2 are two independent random variables
drawn from the unit exponential distribution.

Assumption 2.5. The support of covariates X is X , which is an open set in Rd . The
function φk(x) is nonnegative and measurable for k= 1�2.

Assumption 2.6. The deformation function Λ0(t) is continuously differentiable with a
nonnegative derivative function λ0(t).

To elaborate on the different roles played by the static heterogeneity ν and the time-
varying heterogeneity L(t), we consider a univariate compound Poisson process3 as
L(t) = ∑N(t)

i=1 ξi, in which the arrival of shocks is governed by a standard Poisson pro-
cess N(t) and individual shocks {ξi} are assumed to be nonnegative. In the composi-
tion of L(νΛ0(t)), νΛ0(t) determines the speed or arrival rate of the Poisson process

3We refer readers to Marshall and Shaked (1979) for the multivariate compound Poisson process.
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and ξ1� ξ2� � � � represent the jump sizes. It is clear that the heterogeneity regarding the
speed or arrival rate is determined by ν at time 0, whereas the sequence of shocks
ξ1� ξ2� � � � � ξN(t) is generated as time unfolds, demonstrating that the latter source of het-
erogeneity indeed varies over time.

The independence and distributional assumption on thresholds may seem stringent
at first, but it is motivated by recasting the mixed proportional hazards model into the
current framework where the duration variable is viewed as certain first passage time.
For a generic duration T modeled by the mixed proportional hazards model with covari-
ates X and heterogeneity ν, it is straightforward to see that T can also be characterized
by

T ≡ inf
{
t :φ(X)νΛ0(t)≥ ε}� (2.8)

where the threshold ε is drawn from the unit exponential distribution and the under-
lying trend Λ0(t) is the cumulative baseline hazard function (Ridder (1990)). In other
words, given that the cumulative hazard function is deterministic and the randomness
comes from the draw that is unobserved by the econometrician, the duration outcome
(transition out of a given state) is observed only when this deterministic function hits the
threshold.4 Regarding the bivariate mixed proportional hazards model, it models each
marginal duration separately while requiring the independence assumption on expo-
nential thresholds and the dependence is generated from static heterogeneity (Honoré
and de Paula (2018)). This type of construction rules out simultaneous failure from the
very beginning, that is, P{T1 = T2|x} = 0 for any x. The target of Ridder (1990) is to relax
the exponential mixture structure,5 extending it to the generalized accelerated failure
time (GAFT) models. Here, we focus on exponential thresholds and explore another path
by incorporating time-varying heterogeneity. Such an extension is desirable for empir-
ical applications because given the realization of ν, one only has a deterministic trend
Λ0(t) approaching the exponential threshold from below in the mixed proportional haz-
ards model. The individual heterogeneity ν does not evolve over time along the entire
duration.

The importance of allowing for time-varying heterogeneity and simultaneous failure
is further exemplified via the following discussion of motivating applications and the
interpretation of Lévy subordinators for use. Obviously, our model is applicable to the
traditional reliability study in which the equipment is subject to random shocks that can
knock out one or more components at the same time; see Ryu (1993) or Chapter 16 of
Crowder (2012).

Example 2.1. In a sequence of research, Reinganum (1981, 1982) studied the patent-
race game in which the durations of interest are the times to develop new products for
firms engaging in Research and Development (R&D) activities. The time-varying hetero-
geneity is of central importance here, because the R&D progress is inherently stochastic.

4I want to thank one knowledgeable referee for this point.
5The exponential mixture structure has been utilized by Heckman and Singer (1984b) for deriving non-

parametric maximum likelihood estimates, by Horowitz (1999) for obtaining deconvolution of the frailty
term, and by Ridder and Woutersen (2003) for characterizing the nonsingular information bound.
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The increasing sample path of Lévy subordinators signifies the accumulation of knowl-
edge or research efforts in R&D. Our specification restricts that the speed or arrival rate
νλ0(t) for which the innovation becomes available to be the same for both firms (Choi
(1991)), whereas the extent to which each firm utilizes the innovation can be different,
though still correlated, that is, L1(t) and L2(t) are dependent. In these theoretical R&D
models (Reinganum (1981, 1982), Choi (1991)), it is routine to employ a Poisson process
to model the innovation process for both firms, which is indeed a Lévy subordinator. The
covariates X that act multiplicatively on the latent processes can be various measures
of firm size and research investment.

Example 2.2. The preceding example concerns the supply (creation) of new technol-
ogy; however, our model is also applicable to the demand (adoption) of new technology
among firms. Once a new technology becomes available, firms consider the optimal tim-
ing to adopt it. In this context, the latent process encodes the expected profitability (or
cost savings) of adoption (Jensen (1982)). The increasing sample path of Lévy subordina-
tors (L1(t)�L2(t)) reveals that the new technology is indeed more efficient than the cur-
rent state of the art and the uncertainty regarding its profitability is reduced over time.
Here, νλ0(t) represents the speed of the reduction of uncertainty, whereas the Lévy sub-
ordinator (L1(t)�L2(t)) encodes the magnitude or degree of profit gains (Farzin, Huis-
man, and Kort (1998)). The covariates X include the consumers’ response to the new
product and the market structure.

Example 2.3. A significant portion of married couples choose to retire at the same
time, as documented across different datasets (An, Christensen, and Gupta (2004), Hon-
oré and de Paula (2018)). Regarding these joint retirement decisions, the underlying
stochastic processes (L1(t)�L2(t)) characterize the degradation of health conditions in
the elderly. The identical time deformation νλ0(t) determines the arrival rate of health
shocks and the jumping behavior of Lévy subordinators captures sudden health shocks
such as heart attacks or new cancer diagnoses (An, Christensen, and Gupta (2004), Coile
(2004)). The covariates X include health expenditures and family income or wealth in-
formation.

Example 2.4. Our model is also inspired by the stopping-time model in Abbring and Yu
(2015), which determines couples’ decisions to quit smoking. In this context, the dura-
tion variables are the time to stop smoking for wives and husbands and the covariates
X collect the family or demographic characteristics of the couple. The latent Lévy pro-
cesses (L1(t)�L2(t)) represent the degradation of health conditions due to the smoking
behavior and the corresponding jumps mimic shocks due to the diagnosis of lung can-
cer. Our model is also applicable to a related study by Drepper and Effraimidis (2015),
where they examine the first time use of tabacoo/drug for siblings within a family.

2.2 Dependence properties

We present probabilistic features of our model in this subsection. We begin with some
definitions that lead up to the statement of Theorem 2.1. First, define

Ψ1(x)=�12
(
φ1(x)�φ2(x)

) −�2
(
φ2(x)

)
� (2.9)
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Ψ2(x)=�12
(
φ1(x)�φ2(x)

) −�1
(
φ1(x)

)
� (2.10)

Ψ3(x)=�1
(
φ1(x)

) +�2
(
φ2(x)

) −�12
(
φ1(x)�φ2(x)

)
� (2.11)

We prove in Lemma B.1 of Appendix B that Ψj(x)≥ 0 for all x and j = 1�2, and 3. More-
over, let

ω1(x)= Ψ3(x)

Ψ1(x)+Ψ3(x)
and ω2(x)= Ψ3(x)

Ψ2(x)+Ψ3(x)
� (2.12)

The following function belongs to the Marshall–Olkin copula family:

K(u1�u2|x)= u1u2 min
(
u

−ω1(x)
1 �u

−ω2(x)
2

); (2.13)

see Section 3.1.1 in Nelsen (2006). Let the conditional joint survivor function be

ST1�T2(t1� t2|x)≡ P{T1 > t1�T2 > t2|X = x}� (2.14)

with its marginal STk(t|x) ≡ P{Tk > t|X = x} for k = 1�2. The lower-case x stands for
the realization of the random variable X . Also, denote the conditional survivor copula
function (Nelsen (2006)) by C(u1�u2|x). Recall that the Laplace transform of the static
heterogeneity ν is ψ(z) = ∫

e−zu dFν(u). Its derivative is denoted by ψ′(z) accordingly.
The explicit joint survivor function is stated by the following theorem.

Theorem 2.1. If Assumptions 2.1 to 2.6 hold, then the conditional joint survivor function
of (T1�T2) is

ST1�T2(t1� t2|x)=ψ{
Λ0(t1)Ψ1(x)+Λ0(t2)Ψ2(x)+Λ0(t1 ∨ t2)Ψ3(x)

}
� (2.15)

with the conditional marginal survivor function equal to

STk(t|x)=ψ{
Λ0(t)�k

(
φk(x)

)}
for k= 1�2� (2.16)

The conditional survivor copula function is

C(u1�u2|x)=ψ{− logK
(
e−ψ−1(u1)� e−ψ−1(u2)|x)}� (2.17)

Remark 2.1. The static and time-varying unobserved terms play different roles in de-
termining the conditional joint survivor function. Specifically, the characteristics from
the Lévy subordinators are directly absorbed on the covariate effect. This is reminiscent
of McFadden (1974) for binary choice models where different distributions of the ran-
dom error cause changes to the covariate effect.6 Meanwhile, the Laplace transform of
the static heterogeneity term ν becomes the outer link function coupling the covariate
effect and time deformationΛ0(t). If we define the conditional cumulative hazard func-
tion asΘk(t|x)≡ − logSTk(t|x), it becomes

Θk(t|x)= − log
[
ψ

{
Λ0(t)�k

(
φk(x)

)}]
�

6I am grateful to one referee for pointing out this connection.
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for k= 1�2. Now, it is obvious that the time deformationΛ0(t) is equivalent to the cumu-
lative baseline hazard function and ν plays the same role as the frailty term in the mixed
proportional hazards model (van den Berg (2001)).

The hazard rate plays a fundamental role in econometric duration analysis as both a
theoretical and descriptive tool. It has interpretive content in the sense that the duration
dependence can be encapsulated by the shape of the hazard rate function (Elbers and
Ridder (1982), Heckman and Singer (1984a)). To illustrate the different roles of structural
components, we plot conditional hazard rate functions in Figure 1:

θ(t|x)= −∂S(t|x)/∂t
S(t|x) � (2.18)

where S(t|x) is the conditional survivor function, as in (2.16) based on various specifi-
cations of the time deformation, static heterogeneity, and Lévy processes. We include a
scalar regressor with φ(x) = exp(x) and depict θ(t|x) for x = 0�5, 1, and 2. In the base-
line specification, we parameterize Λ0(t) = t2 and let ν be a gamma random variable
with the variance parameter equal to 1, for example, ψ(u) = (1 + u)−1. The Lévy expo-
nent function is taken to be �(z) = z2/3/2, which corresponds to a stable process with
a power parameter equal to 2/3 and a scale parameter equal to 1/2. The resulting con-
ditional hazard rates shown in the top left panel all exhibit an inverse U-shape in the
baseline setup. Then we examine θ(t|x), which differs only in one of the three compo-
nents (L�Λ0�ψ) in the remaining panels. The roles of Λ0(t) and ν are similar to their
roles in standard mixed proportional hazards models (van den Berg (2001)). The bottom
left panel plots the conditional hazard rates for a different choice of Λ0(t) = t, which
causes the hazard shape to decrease. The bottom right panel displays hazard rates for a
different gamma frailty ν with the variance parameter equal to 2, which makes the haz-
ard rates flatter. The top right panel demonstrates the role of time-varying heterogeneity
represented by the Lévy processes. In particular, we switch to a gamma process with the
Lévy exponent function �(z)= 2 log((2 + z)/2). Consistent with (2.16), it is clear in the
plot that the Lévy process mainly changes how the covariate acts on the conditional
hazard rates by mapping φ(x) to � ◦φ(x).

The dependence structure of our model falls into the framework of Marshall and
Olkin (1988) who comprehensively studied multivariate distributions generated from
power mixtures. Let K be a copula function that is min-infinitely divisible in the sense
of Joe (2014),7 then

Sν�K(·� ·)=
∫ ∞

0
Ku(·� ·)dFν(u) (2.19)

is a well-defined multivariate survivor function with its survivor copula equal to

Cψ�K(u1�u2)=ψ{− logK
(
e−ψ−1(u1)� e−ψ−1(u2)

)}
� (2.20)

7The power transform Ku(·� ·) should be a well-defined copula function itself for any u > 0, which is
satisfied by (2.13) and more generally by any min-infinitely divisible copula; see Section 3.5 of Joe (2014).



546 Ruixuan Liu Quantitative Economics 11 (2020)

Figure 1. Plots of the conditional hazard rate function θx(t)≡ θ(t|x) for different specifications
of (L(t)�Λ0(t)� ν). The top left panel depicts the baseline specification, where �(z) = z2/3/2,
Λ0(t) = t2, and ψ(u) = (1 + u)−1. The top right panel shows the conditional hazard rate func-
tions for a changed Lévy process with �(z) = 2 log((2 + z)/2). The bottom left panel shows the
conditional hazard rates for a different time deformation Λ0(t)= t. The bottom left panel shows
the conditional hazard rates for another ν with ψ(u)= (1 + 2u)−1/2.

In the extended Marshall–Olkin model, the conditional survivor copula is of the same
form except that K(u�v|x) is defined by (2.13) and it varies with the covariate value x.
Next, we discuss two important subclasses of our model, including the shared-frailty
models (Oakes (1989), van den Berg (2001)) and the multivariate shock models (Mar-
shall and Olkin (1967), Marshall and Shaked (1979)). This illustrates that the extended
Marshall–Olkin model offers a unifying framework for traditionally nonoverlapping ap-
proaches to model multiple durations.

Remark 2.2. If two Lévy subordinators are independent, then �12(u1�u2) = �1(u1) +
�2(u2) (see the independent Lévy copula in Appendix B). This in turn leads to Ψ3(·)= 0
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and

ST1�T2(t1� t2|x)=ψ{
Λ0(t1)Ψ1(x)+Λ0(t2)Ψ2(x)

}
�

with Ψk(x) = �k(φk(x)) for k = 1�2. Therefore, the model is basically identical to the
shared frailty model in Oakes (1989) and Honoré (1993). The conditional survivor copula
function of two durations is Archimedean; we refer readers to Fan and Liu (2018) for a
systematic treatment.

Remark 2.3. In the absence of the static heterogeneity term, our method contains a
new construction of the celebrated Marshall–Olkin model. The original model is gen-
erated by three independent exponential random variables: one leading to the simulta-
neous failure and two causing individual failures. Maintaining the presence of a com-
mon shock, An, Christensen, and Gupta (2004) generalized the Marshall–Olkin model
with covariates and frailty terms as follows. The two durations are generated by T1 =
min(T ∗

1 �T
∗
3 ) and T2 = min(T ∗

2 �T
∗
3 ), where all the latent failure times T ∗

1 , T ∗
2 , and T ∗

3 are
assumed to obey the mixed proportional hazards structure. Clearly, the common failure
source T ∗

3 is the one that produces the simultaneous failure among T1 and T2. Honoré
and de Paula (2010, 2018) criticized this type of generalization due to the lack of struc-
tural interpretation. It is important to note that our modeling strategy has circumvented
the shortcomings from two aspects. First, the durations in our model are defined via the
structural threshold-crossing rules rather than set by the reduced-form hazard functions
for T ∗

1 , T ∗
2 , and T ∗

3 . Second, the simultaneous failure in our model is generated by the
dependent jumping behavior of bivariate Lévy subordinators, not necessarily through
some common component T ∗

3 that terminates both durations.

Remark 2.4. A convenient parametric family is the Lévy–Clayton copula with a single
parameter α> 0:

CL�α(u1�u2)= (
u−α

1 + u−α
2

)−1/α
� (2.21)

One nice property related to the Lévy–Clayton copula is that the joint Lévy–Laplace ex-
ponent function can be further simplified as

�12(z1� z2)=�1(z1)+�2(z2)− κ(z1� z2;α),
where

κ(z1� z2;α)= z1z2

∫∫
R2+
e−y1z1−y2z2CL�α

(
Π1(y1)�Π2(y2)

)
dy1 dy2; (2.22)

see Proposition 1 in Epifani and Lijoi (2010). Note that κ(z1� z2;α) summarizes the en-
tire dependence structure when the Lévy–Clayton copula is adopted. Given the repre-
sentation (2.22), we have the following expressions for functions in the conditional joint
survivor function:

Ψ1(x) = �1
(
φ1(x)

) − κ(
φ1(x)�φ2(x);α

)
�

Ψ2(x) = �2
(
φ2(x)

) − κ(
φ1(x)�φ2(x);α

)
� (2.23)

Ψ3(x) = κ
(
φ1(x)�φ2(x);α

)
�
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Remark 2.5. If one starts with a model with different time deformation functions for
first passage times:

Tk ≡ {
t :φk(X)Lk

(
νΛk(t)

)
> εk

}
� for k= 1�2� (2.24)

then we could obtain

ST1�T2(t1� t2|x)=ψ{
Λ1(t1)Ψ1(x)+Λ2(t2)Ψ2(x)+ [

Λ1(t1)∨Λ2(t2)
]
Ψ3(x)

}
� (2.25)

along the same lines as the proof of Theorem 2.1. Note that the singularity of this type
of model implies that there is positive probability such that Λ1(T1)= Λ2(T2). However,
in applications, the simultaneous failure, that is, P{T1 = T2} > 0, is mainly of interest
(Honoré and de Paula (2018)), which forces the time deformation to be the same. In
Section 4, we present a generalization that can incorporate different baseline hazards
and time-varying covariates while maintaining the simultaneous stopping feature.

3. Identification and estimation with competing risks

In a bivariate competing risks model, two types of durations may occur on a subject, but
only the one occurring first is observed together with its occurrence time; the other du-
ration is censored. Referring to the conditional joint survivor functions, we encounter
the dependent censoring problem in our extended Marshall–Olkin model, which is
known to raise delicate concerns with identifiability (Tsiatis (1975)). Interested readers
are referred to Heckman and Taber (1994) and Crowder (2012) for comprehensive re-
views. Extra difficulties arise because the conditional survival copula function changes
with x, in contrast with the existing literature that assumes an invariant copula, such as
in Heckman and Honoré (1989), Abbring and van den Berg (2003), and Lee and Lewbel
(2013). The conditional survival copula reveals that the current model does not fit into
the framework in Fan and Liu (2018), since the conditional survivor copula is neither
Archimedean, nor does it admit a copula density function for dependent Lévy subordi-
nators. A separate analysis is required for our model.

3.1 Sampling information

Instead of having full access to both durations (T1�T2), the observational setting here
comprises independent and identically distributed (i.i.d.) copies of the minimum V =
min(T1�T2), the indicator of failure type (Honoré and de Paula (2010))

D=

⎧⎪⎪⎨
⎪⎪⎩

1 if T1 < T2,

2 if T1 > T2,

3 if T1 = T2,

and a vector of covariates X . The sampling information is summarized by the condi-
tional subsurvivor functions

SV �D=j(t|x)≡ P{V > t�D= j|X = x}�
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or by their corresponding conditional subdensity functions (Tsiatis (1975)):

fV �D=j(t|x)≡ −∂SV �D=j(t|x)/∂t�

for j = 1�2, and 3. Adding up all conditional subsurvivor functions leads to the condi-
tional survivor function of the minimum V , meaning SV (t|X = x) = ∑3

j=1 SV �D=j(t|x).
We also write its conditional distribution function as FV (t|X = x). Given the explicit
conditional joint survivor function, it is straightforward to compute the conditional
sub-density functions. The following theorem generalizes Basu and Ghosh (1978), who
present the subdensity functions of the original Marshall–Olkin distribution.

Theorem 3.1. If Assumptions 2.1 to 2.6 hold, then the conditional survival function of V
is

SV (t|x)=ψ{
Λ0(t)�12

(
φ1(x)�φ2(x)

)}
� (3.1)

whereas the conditional subdensity functions are

fV �D=j(t|x)= −ψ′{Λ0(t)�12
(
φ1(x)�φ2(x)

)}
λ0(t)Ψj(x)� (3.2)

for j = 1�2, and 3.

Remark 3.1. Referring to the motivating economics applications, the patent-race game
is indeed a competing risks model (Reinganum (1981, 1982), Choi (1991)), as the firm
that produces the invention first wins the game and is awarded a patent. However, in the
technology adoption or joint retirement problems, both durations could be observed for
some pairs (but not all due to the additional censoring problem). For the latter case, the
competing risks data corresponds to a coarsening of the bivariate durations data. It is
an advantage that all model primitives can be identified from the competing risks data.
If the bivariate durations data were available, then one has direct access to the condi-
tional joint survivor functions of both durations, which opens up the possibility of intro-
ducing dependent thresholds or distinct static heterogeneity terms (ν1� ν2) in defining
the bivariate durations; see the model from Begun and Yashin (2018) and Proposition 1
therein.

3.2 Nonparametric identifiability

We assume that an infinite sample from the distribution of (V �D�X) is available so that
we can recover the subdensity functions fV �D=j(·|X) for j = 1�2, and 3, conditional on
observable covariates. Now, we consider assumptions made on model primitives. Be-
cause the trajectory of latent processes is unobserved, some normalization assumptions
cannot be avoided, even when dealing with the univariate duration model. We show the
potential nonidentifiability related to stable processes in Appendix B. A complete char-
acterization of observational equivalent pairs like in Ridder (1990) or Abbring (2012) is
not yet known, as there is no analogous result for multivariate functions such as the joint
Lévy exponent or copula function, so it will not be attempted here.
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Assumption 3.1. There exist points t0 and t1 such thatΛ0(t0)/λ0(t0)= 1 andΛ0(t1)= 1.
Moreover, the range of Λ0(·) contains a nonempty open set.

Assumption 3.2. There exists a known constant r1 such that ψ(1)= r1.

Assumption 3.3. The marginal Lévy measure Πk(u) is absolutely continuous, with its
density function denoted by πk(u) for k = 1�2. There exist some known constants r2�k
such that �k(1)= r2�k for k= 1�2.

Assumption 3.4. The distribution of d-dimensional covariate X is absolutely con-
tinuous with respect to Lebesgue measure for d ≥ 2. We partition it into two parts
X = (X1�X−1) and assume that the effect of covariate φk(x) is continuously differen-
tiable and multiplicatively separable in the following sense:

φk(x)=φk�1(x1)φk�−1(x−1) for k= 1�2� (3.3)

For given points x0
1�x

1
1, the normalization conditions hold as

φk�1
(
x0

1
) =φ′

k�1
(
x0

1
)

and φk�1
(
x1

1
) = 1� (3.4)

where φ′
k�1(·) is the derivative of φk�1(·). Moreover, the support of (φ1(x)�φ2(x)) con-

tains an open rectangle in R2+ for x ∈ X .

Assumption 3.1 imposes the necessary location and scale normalization, following
Assumption (I*2) in Jacho-Chavez, Lewbel, and Linton (2010). This offers some flexibil-
ity regarding the chosen normalization point, because the condition imposed on the
time deformation does not restrict the baseline hazard density at time 0 (Ridder and
Woutersen (2003)). The variation restriction in (A3) on the covariate effect is close to
minimal in view of Abbring and van den Berg (2003). In the same spirit as Abbring (2012),
many of the high-level assumptions in identifying GAFT models are automatically satis-
fied for threshold-crossing models driven by Lévy processes, due to their neat analytical
characterization.

Theorem 3.2. Suppose Assumptions 2.1 to 2.6 and Assumptions 3.1 to 3.4 hold, then
the covariates effects (φ1�φ2), the time deformation function Λ0, the Laplace transform
ψ, the marginal Lévy measures (Π1�Π2), and the Lévy copula CL are identified given the
competing risks data (V �D�X).

We offer a heuristic discussion of our identification strategy here. It is insightful to
take a detour to examine the structure of the marginal distribution of each duration and
its implication for identification. Recall that (2.16) gives

STk(t|x)=ψ{
Λ0(t)�k

(
φk(x)

)}
� for k= 1�2�

Hence, the static heterogeneity ν and time-varying heterogeneityLk(t) affect STk(t|x) in
different ways; that is, the Lévy–Laplace exponent function�k(·) directly transforms the
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covariate effect φk(·), whereas ψ(·) serves as the unknown link function coupling the
multiplicative components Λ0(t) and �k(φk(x)). If STk(t|x) were available, one could
separately identifyψ(·),Λ0(·), and�k◦φk(·) following the approaches in Ekeland, Heck-
man, and Nesheim (2004), Jacho-Chavez, Lewbel, and Linton (2010), and Chiappori, Ko-
munjer, and Kristensen (2015). Then one could disentangle �k(·) and φk(·) based on
the variation of covariates and additional structure on φk(·), as stated in our Assump-
tion 3.4. Obviously, the marginal survivor functions are not available in the competing
risks data and one also must account for the dependence produced by the bivariate Lévy
subordinators. Fortunately, the conditional survivor function of the observed minimum
V in (3.1) exhibits a similar structure such that the aforementioned analysis could be
adapted to identify all components, includingψ,Λ0, and�12(φ1(x)�φ2(x)), utilizing the
results of Jacho-Chavez, Lewbel, and Linton (2010). Thereafter, we make use of the con-
ditional subdensity functions in (3.2) and the algebraic relationships in defining Ψ1(x)

and Ψ2(x) in Section 2 to identify �k(φk(x)) for k= 1�2. Thus, the multiplicative struc-
ture of covariate effects in Assumption 3.4 identifies the marginal Lévy measureΠk and
individual covariate effect φk for k= 1�2. Finally, the Lévy copula is identified invoking
the corresponding Sklar theorem in Kallsen and Tankov (2006).

Remark 3.2. An alternative path that one may take in formulating the multiple dura-
tions model is to incorporate dependent thresholds. When we allow arbitrary depen-
dence between two exponential thresholds, the conditional marginal survivor function
of individual duration still has a closed form. Following the partial identification meth-
ods in Honoré and Lleras-Muney (2006) and Khan and Tamer (2009), one could conduct
analysis by bounding the conditional marginal survivor function via inequalities (1) and
(2) from Bedford and Meilijson (1997), which improve the worst-case bounds from Pe-
terson (1976) in the presence of the simultaneous failure.

3.3 Semiparametric estimation

We propose a flexible semiparametric procedure to obtain consistent estimates of the
model primitives with minimal parametric restrictions. The exact regularity conditions
and large sample properties of the estimates are deferred to future work, considering the
amount of details required. The estimation of our model is based on a random sample
{(Vi�Di�Xi) : i = 1� � � � � n} of (V �D�X). We adopt the commonly used parameterization
by setting φ1(x)= exp(x�γ1) and φ2(x)= exp(x�γ2), where γ1 and γ2 are the regression
coefficients as in the standard Cox regression. This specification is consistent with our
Assumption 3.4. For rotational simplicity, we denoteΩ12(x)=�12(φ1(x)�φ2(x)).

One important observation regarding the regression coefficient γj is that it can be
viewed as the linear coefficient in the single-index model (Ichimura (1993)) because of

�1
(
φ1(x)

) =�1
(
exp

(
x�γ1

))
and �2

(
φ2(x)

) =�2
(
exp

(
x�γ2

))
� (3.5)

where the Lévy–Laplace exponent functions become the unknown link functions. There-
fore, γj is proportional to the following partial derivative (Stoker (1986), Powell, Stock,
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and Stoker (1989)):

γj ∝ ∂

∂x
�j

(
φj(x)

) = ∂

∂x

[
Ω12(x)−Ψk(x)

]
� for j�k= 1�2 and j �= k; (3.6)

given the relationships between Ψ1(x), Ψ2(x), and Ψ3(x) in Section 2.2.
Our semiparametric estimation procedure can be roughly divided into three steps.

First, we explore the structure associated with the conditional distribution function of V
to obtain consistent estimates of Λ̂0(·), ψ̂(·), and Ω̂12(·). Second, we use certain weighted
average derivatives to estimate the regression coefficients γ1 and γ2. Then the marginal
Lévy exponent functions �1 and �2 can also be estimated as link functions in the as-
sociated single-index models, for example, via (3.5). In the last step, we can construct a
minimum distance type estimator for the Lévy copula function or the finite dimensional
parameter of a parameterized Lévy copula function. The details are as follows.

First, referring to the identities in our Theorem 3.1, we use the kernel-type method
to consistently estimate the conditional distribution function of V and its conditional
(sub)density functions, denoted by F̂V (t|x), f̂V (t|x), and f̂V �D=j(t|x), for j = 1�2, and 3.
We denote r̂i ≡ r̂(Xi�Vi)= F̂V (Vi|Xi) and ŝi ≡ ŝ(Xi�Vi)= f̂V (Vi|Xi) for i = 1� � � � � n. Then
we obtain a consistent estimator of q̄(z� t0)≡ E[s(X�V )|r(X�V )= z�V = t0] by running a
nonparametric regression of ŝi on r̂i and Vi for those r̂i and Vi in the local neighborhood
of (z� t0). Denote the resulting estimate by ̂̄q(z� t0). Thereafter, given the multiplicative
structure of FV (t|x), one can resort to Steps (3*)–(5*) on page 395 of Jacho-Chavez, Lew-
bel, and Linton (2010) to consistently estimate the functions Λ̂0(t), ψ̂(u), and Ω̂12(x).
Specifically, for a constant r1, define an estimate ofM(x� t)≡Ω12(x)Λ0(t) by

M̂(x� t)≡ exp
(∫ r̂(x�t)

r1

dẑ̄q(z� t0)
)
� (3.7)

ThenΩ12(x) and Λ0(t) are estimated (up to a scale factor) by the marginal integration:

η̂P1(x)=
∫
M̂(x� t)dP1(t)� η̂P2(t)=

∫
M̂(x� t)dP2(x)� (3.8)

for some normalizing measures P1 and P2. Define the normalizing constant

c̃ ≡ (1/2)
[∫

η̂P1(x)dP2(x)+
∫
η̂P2(t)dP1(t)

]
�

and scaled estimates Ω̂12(x) = η̂P1(x)/c̃, Λ̂0(t) = η̂P2(t)/c̃, and M̃(Xi�Vi) = Ω̂12(Xi) ×
Λ̂0(Vi)c̃. The link function ψ(·) and its derivative ψ′(·) can be estimated by the intercept
term and slope coefficient, respectively, in a local quadratic regression (Fan and Gijbels
(1996)) of (1 − r̂i) on the regressor M̃(Xi�Vi). We denote the resulting estimates by ψ̂(·)
and ψ̂′(·).

Second, we explore (3.2) and borrow the key insight from Horowitz (1996) to obtain

Ψ̂j(x)= −
∫

f̂V �D=j(t|x)wT (t)
λ̂0(t)ψ̂

′{Λ̂0(t)Ω̂12(x)
} ∨ ρ dt� j = 1�2� (3.9)
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for a weight function wT (t) along the time dimension. Also, we introduce a trimming
parameter ρ to overcome the instability of the denominator λ̂0(t)ψ̂

′{Λ̂0(t)Ω̂12(x)}. In
(3.9), the derivative of deformation function λ0(t) is estimated by the following kernel-
smoothed estimate:

λ̂0(t)= 1
hλ

∫
K

(
(t − u)/hλ

)
dΛ̂0(u)� (3.10)

with the corresponding kernel function K(·) and bandwidth hλ. Regarding the re-
gression coefficients, we estimate the weighted average derivatives (Powell, Stock, and
Stoker (1989)):

γ̂∗
j =

∫
∂

∂x

[
Ω̂12(x)− Ψ̂k(x)

]
wX(x)dx� j�k= 1�2 and j �= k� (3.11)

with some weight functionwX(x) operating on the support ofX . These estimates deliver
the estimated regression coefficients upon scale normalization, that is, γ̂j = γ̂∗

j /|γ̂∗
j | for

j = 1�2, if we impose the normalization that |γj| = 1 for both j = 1 and 2. Then we denote
φ̂j(x)≡ exp(x�γ̂j) for j = 1�2. The consistency results of the aforementioned estimates
can be shown by adapting Theorem 1 of Horowitz (1996).

With the estimated Ω̂12(x), Ψ̂1(x), and Ψ̂2(x) at hand, we can obtain estimated �̂j(·)
by collecting the intercept term in the local linear regression (Fan and Gijbels (1996)) of
(Ω̂12(Xi)−Ψ̂k(Xi)) on exp(X�

i γ̂j) for j�k ∈ {1�2} and j �= k. Finally, the Lévy copula func-
tion CL can be estimated using the sieve minimum distance estimator (see Section 2.2.4
of Chen (2007)):

min
CL∈S

∥∥Ω̂12(x)−�12
(
φ̂1(x)� φ̂2(x)

)∥∥
�
� (3.12)

where S is an appropriate sieve space and ‖ · ‖� denotes the suitable norm for the
joint Lévy–Laplace exponent function. In particular, Wood (2003) advocateed thin plane
splines for approximating smooth bivariate functions. Alternatively, one can also pa-
rameterize the Lévy copula function, such as the Lévy–Clayton copula in Remark 2.4,
and conduct a parametric estimation in the last step.

4. Generalizations

In the benchmark case of our extended Marshall–Olkin model studied in Section 2, the
time deformation function Λ0(t) is equivalent to a common cumulative baseline haz-
ard function for both durations T1 and T2. Because a baseline hazard function encodes
genuine duration dependence (Elbers and Ridder (1982)), it is desirable to consider
a more flexible specification that allows different baseline hazards. Moreover, one of-
ten encounters time-varying covariates in practice. In this section, we propose a more
general model that accommodates these features and study the empirical content with
competing risks data.

In defining structural durations, we add idiosyncratic trend functions Λk(t|W )
driven by time-varying covariatesW (t) in the following way:

Tk ≡ inf
{
tk :φk(X)Lk

(
νΛ0(tk)

) +Λk(tk|W )≥ εk
}

for k= 1�2� (4.1)
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with

Λk(t|W )=
∫ t

0
β�
k (s)W (s)ds� (4.2)

where βk(t) stands for the time-varying covariate effect in the sense of Aalen (1980) for
k= 1�2. The additive-multiplicative specification resembles the symmetric entry model
of Bresnahan and Reiss (1991). Adopting a static threshold-crossing model, Bresnahan
and Reiss (1991) specified the potential benefit of entry as a multiplicative function in
terms of the variable profit and market size, whereas the cost function is decomposed
additively into observable and unobservable parts.

Considering the technology development/adoption examples in Section 2, W (t)
represents various characteristics that do not directly intervene with the latent innova-
tion process, such as the firm’s financial capacities, control of various costs of borrowing
capital, hiring labor, and use of input. All these factors are allowed to vary with time as
well. Likewise, for the retirement decisions, W (t) collects individual job characteristics
for husbands and wives, such as the skill level of the job, union status, etc. Regarding the
smoking cessation, the time-varying covariates, which do not directly interact with the
latent health process, may include the external changes of cigarette prices and tobacco
control policies.

Before we present more details of the model, it is useful to introduce some shorthand
notation to facilitate the remaining discussion. We define

�(t�x)≡ψ{
Λ0(t)�12

(
φ1(x)�φ2(x)

)}
� (4.3)

and

γ(t�x)≡ −ψ′{Λ0(t)�12
(
φ1(x)�φ2(x)

)}
λ0(t)� (4.4)

We assume that Λ1(·|W ) and Λ2(·|W ) are absolutely continuous with the nonnegative
derivatives denoted by λ1(t|W ) = β�

1 (t)W (t) and λ2(t|W ) = β�
2 (t)W (t), respectively. In

our context, the time-varying covariates W (t) are assumed to be predictable or weakly
exogenous processes (Ridder and Tunali (1999)) and independent of Lévy subordinators
L(t)= (L1(t)�L2(t)). In this context, the conditional survivor function P{Ti > t|X�W̄ (t)}
becomes a stochastic process and W̄ (t) collects the history of time-varying covariates
{W (s) : 0 ≤ s ≤ t} (Ridder and Tunali (1999)). The lower-case w(t) and w̄(t) stand for the
realization of the processesW (t) and W̄ (t).

The next two theorems generalize Theorems 2.1 and 3.1. The proofs are straight-
forward modifications based on Theorems 2.1 and 3.1; thus, they are deferred to Ap-
pendix B.

Theorem 4.1. For the generalized version defined by (4.1), the joint survivor function is

ST1�T2

(
t1� t2|x� w̄(t1 ∨ t2)

)
= e−Λ1(t1|w)−Λ2(t2|w)ψ

{
Λ0(t1)Ψ1(x)+Λ0(t2)Ψ2(x)+Λ0(t1 ∨ t2)Ψ3(x)

}
� (4.5)

The conditional marginal survivor function is

STk
(
t|x� w̄(t)) = e−Λk(t|w)ψ{

Λ0(t)�k
(
φk(x)

)}
� for k= 1�2� (4.6)
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Theorem 4.2. For the generalized version defined by (4.1), the conditional survivor func-
tion for V is

SV
(
t|x� w̄(t)) = e−Λ1(t|w)−Λ2(t|w)�(t�x)� (4.7)

And the conditional subdensity functions are

fV �D=1
(
t|x� w̄(t)) = λ1(t|w)e−Λ1(t|w)−Λ2(t|w)�(t�x)

+ e−Λ1(t|w)−Λ2(t|w)γ(t�x)Ψ1(x)� (4.8)

fV �D=2
(
t|x� w̄(t)) = λ2(t|w)e−Λ1(t|w)−Λ2(t|w)�(t�x)

+ e−Λ1(t|w)−Λ2(t|w)γ(t�x)Ψ2(x)� (4.9)

fV �D=3
(
t|x� w̄(t)) = e−Λ1(t|w)−Λ2(t|w)γ(t�x)Ψ3(x)� (4.10)

Referring to the conditional cumulative hazard function Θk(t|x) for k= 1�2, we get

Θk
(
t|x� w̄(t)) =Λk(t|w)− log

[
ψ

(
Λ0(t)�k

(
φk(x)

))]
� (4.11)

which simplifies to

Θk
(
t|x� w̄(t)) =Λk(t|w)+Λ0(t)�k

(
φk(x)

)
� (4.12)

without the time-invariant heterogeneity ν. Thus, the idiosyncratic trend function
Λk(t|W ) measures the excess risk on top of Λ0(t) for k = 1�2. A further simplification
occurs when both marginal Lévy subordinators are stable processes with a power pa-
rameter b0 and a unit scale parameter (see Section B.2 in Appendix B) and covariates
effects are parameterized as in Section 3.3. In this case, the conditional hazard rate func-
tion is

θk
(
t|x� w̄(t)) ≡ ∂

∂t
Θk

(
t|x� w̄(t)) =w(t)�βk(t)+ λ0(t)exp

(
b0x

�γk
)
� for k= 1�2� (4.13)

which coincides with the specification of Martinussen and Scheike (2002); see their
equation (1) on page 283. Interestingly, this generalized version of our model induces
the additive-multiplicative hazards model of Martinussen and Scheike (2002), which
encompasses both the Cox proportional hazards model and the Aalen additive hazards
model.

We need an extra assumption that states the full rank condition on the time-varying
covariatesW (t) and allows us to resort to the identification-at-limit strategy.

Assumption 4.1. (i) There exists a limit point x0 in the support ofX such that

lim
x→x0

φ1(x)= lim
x→x0

φ2(x)= 0�

(ii) For any t, the matrix E[W (t)W �(t)|X = x0] is of full rank.8

8I am grateful to an anonymous referee who suggested the rigorous formulation.
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The introduction of time-varying covariates W (t) functions as the exclusion restric-
tion in the sense that the observable processW (t) does not directly interact with the la-
tent Lévy processes. Another type of exclusion restrictions for competing risks models is
utilized by Heckman and Honoré (1990), in which the instrument exists and affects only
one type of latent duration; see Section 2.3 in Heckman and Honoré (1990). Our pur-
pose is somewhat different, as the existence of W (t) offers flexible conditional (on ob-
servables) marginal hazard functions. The following theorem asserts that we can point
identify all structural components with the help of Assumption 4.1. Intuitively speaking,
if we let the covariates effect from static covariatesX converge to zero and condition on
the time-varying covariatesW (t), the model can be seen as the independent competing
risks model from Berman (1963) where both idiosyncratic trends Λ1(t|W ) and Λ2(t|W )
can be explicitly solved. Next, the time-varying covariate effects βk(t) are identified uti-
lizing the rank condition in Assumption 4.1(ii) for k = 1�2. Then the identification of
other structural components are shown by analogous arguments used to prove Theo-
rem 3.2. The detailed proof is relegated to Appendix B.

Theorem 4.3. Suppose Assumptions 2.1 to 2.6, Assumptions 3.1 to 3.4, and 4.1 hold, then
all structural components of the model defined by (4.1) are identified given the competing
risks data (V �D�X�W ).

5. An empirical application

To illustrate the model (2.7), we apply the proposed semiparametric estimation proce-
dure to the joint retirement problem of married couples, using the data in Honoré and
de Paula (2018) drawn from eight waves of the Health and Retirement Study (every 2
years from 1992 to 2006). Here, the duration variables of interest (T1�T2) are the retire-
ment dates of the wife and husband.9 In terms of the measurement of individual dura-
tions, we follow Honoré and de Paula (2018), who measure time in terms of family age,
which is set to zero when the older partner in the couple reaches age 60; the duration
of the other spouse is then recorded by examining the age difference. The original re-
tirement information is recorded at a monthly frequency and we take the logarithmic
transformation to avoid a long right tail in the distribution. The competing risks data
(Vi�Di) for the ith household is understood as follows for i = 1� � � � � n. The duration V
represents the first entry into retirement for the corresponding member of the house-
hold, andD= 1�2, or 3 depending on whether the wife retires first, the husband first, or
they retire simultaneously. In this example, the latent stochastic processes (L1(t)�L2(t))

characterize the aging processes for the elderly. These processes are assumed to be ir-
reversible and accumulate incrementally in one direction. Also, the jumping behavior
of Lévy subordinators captures sudden health shocks such as heart attacks or new can-
cer diagnoses (An, Christensen, and Gupta (2004), Coile (2004)). Moreover, the common

9We adopt the retirement classification suggested by the Rand Corporation, as in Honoré and de Paula
(2018), which classifies a respondent as retired if she/he is not working and not looking for work or there
is any mention of retirement in employment status or in the answers to questions that ask the respondent
whether he or she considers him or herself to be retired.
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time deformation νλ0(t) governs the speed of arrival rate of health shocks. Two contin-

uous covariates10 X = (X1�X2)
� include (1) the total health expenditure of the house-

hold in the previous 12 months for the first two waves and the previous 2 years for the

subsequent years (inflation adjusted using the CPI to Jan/2000 dollars); (2) the financial

wealth of the family (inflation adjusted using the CPI to Jan/2000 dollars). For these two

covariates, we use the transformation sgn(x)
√
x, in the spirit of a logarithmic transfor-

mation of positive variables.11 Referring to the effects of covariates, we adopt the fol-

lowing parameterization: φ1(x)= exp(x1γ1�1 + x2γ1�2) and φ2(x)= exp(x1γ2�1 + x2γ2�2).

We exclude observations with missing values for health expenditure or the minimum

duration V being censored, which leaves us with 821 households in total. Further de-

tails of the data set are given in Honoré and de Paula (2018) and not repeated here. In

principle, the discrete regressors can also be included because the key estimation steps

of Jacho-Chavez, Lewbel, and Linton (2010) or the weighted average derivatives for the

covariate effects can be extended to allow for discrete regressors; see Section 6 in Jacho-

Chavez, Lewbel, and Linton (2010) and Horowitz and Hardle (1996). Note that the data

in Honoré and de Paula (2018) contains a wealth of discrete covariates such as socioe-

conomic, demographic, and self-reported health information. The empirical usefulness

of incorporating such discrete regressors will be pursued in future work.

We briefly discuss the distinction with respect to the specification of Honoré and

de Paula (2018). First, the key difference is regarding the modeling framework, as Hon-

oré and de Paula (2018) employ a cooperative game to model the bargaining and joint

retirement decisions. In comparison, the couples act noncooperatively in our model.

As a matter of fact, our model resembles Honoré and de Paula (2010) more closely, be-

cause Honoré and de Paula (2010) showed the Marshall–Olkin model is observationally

equivalent to a particular version of their noncooperative stopping game model with ad-

ditive interaction effects. For a general discussion of noncooperative games for within-

marriage decisions, we refer readers to Lundberg and Pollak (1994). In terms of the esti-

mation and inference of the complicated model in Honoré and de Paula (2018), a fully

parametric indirect inference is adopted. One advantage of the model from Honoré and

de Paula (2018) is that the baseline hazard functions are allowed to be different for wives

and husbands. In comparison, our semiparametric procedure allows the common time

deformation, Laplace transform of ν, and marginal Lévy exponent functions to be com-

pletely nonparametric.

Here, we fill in the details regarding the implementation of our semiparametric esti-

mation procedure12. We start with the kernel-type estimation of the conditional subdis-

10In Appendix B, we report additional estimation results with the inclusion of a third regressor, “age
difference.” Given that the age difference is neither significant for the wife nor for the husband, we delegate
the details to Section B.4 in Appendix B.

11In the computations, we also divide the transformed variable by 100 for total health expenditure and
by 1000 for financial wealth to avoid overflow, as in Honoré and de Paula (2018).

12Liu (2020) contains the code for the implementation of our estimators.
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tribution and density functions as follows:

F̂V �D=j(t|x)=

n∑
i=1

I{Vi ≤ v�D= j}K
(
(Xi − x)/hx

)
n∑
i=1

K
(
(Xi − x)/hx

) � and

f̂V �D=j(t|x)=

n∑
i=1

I{D= j}K(
(Vi − t)/hv

)
K

(
(Xi − x)/hx

)

hv

n∑
i=1

K
(
(Xi − x)/hx

) � j = 1�2�3�

where we use the quartic kernel functionK(u)= 15
16(1 − u2)2I{|u| ≤ 1} and the boldfaced

version K(·) to denote the product kernel, for example, K((Xi − x)/hx)= ∏2
j=1K((Xij −

xj)/hxj ). The bandwidths (hv�hx1�hx2) are chosen by the Sheather–Jones rules
(Sheather and Jones (1991)) for the dependent variable and two covariates. The con-
ditional distribution function F̂V (t|x) or the density function f̂V (t|x) are taken to be
the sum of the above estimates over three categories. Then we set r̂i = F̂V (Vi|Xi) and
ŝi = f̂V (Vi|Xi) as the initial inputs of the approach in Jacho-Chavez, Lewbel, and Linton
(2010). To estimate the q̄(z� t0) function, we use the k-nearest-neighbor estimator with
bivariate regressors r̂i and Vi. The number of neighbors is set to be the integer part of
n3/5. The numerical integration involved in M̂(x� t) is computed by the trapezoidal rule
and the normalizing scalar r1 is the sample mean of V . Regarding the marginal inte-
gration in the fourth and fifth steps of Jacho-Chavez, Lewbel, and Linton (2010), we set
P1(t) and P2(x) to be FV (t) and FX(x), which are the distribution functions of V andX ,
respectively. In the actual estimation, we replace these marginal distributions by their
empirical counterparts so that

η̂P1(x)= 1
n

n∑
i=1

M̂(Vi�x)� η̂P2(t)= 1
n

n∑
i=1

M̂(t�Xi)�

Regarding the final step of Jacho-Chavez, Lewbel, and Linton (2010), we run the local
quadratic regression with the dependent variables (1 − r̂i)

n
i=1 to obtain the estimated

Laplace transform ψ̂ and its derivative ψ̂′, where the latter is required for estimating the
finite dimensional coefficients via (3.9). The kernel bandwidth here is selected using the
method of Ruppert, Sheather, and Wand (1995). In (3.10), the bandwidth hλ is taken to
be the same as hv. The weighting function wT (·) is the uniform kernel with the same
support of V and wX(·) in constructing the weighted average derivatives is taken to be
the standard Gaussian kernel. Finally, the trimming parameter ρ in (3.9) is set to be 0�01.

We now present our estimation results in Table 1. The effects of two continuous co-
variates are rather similar for wives and husbands in terms of the magnitude and sign.
The reported standard errors are calculated by perturbing all the nonparametric esti-



Quantitative Economics 11 (2020) A competing risks model 559

Table 1. Estimated effects of covariates.

Covariates Estimated Coeff. S.E.

Health expenditure-wife 0�862 0�057
Financial wealth-wife 0�507 0�106
Health expenditure-husband 0�999 0�403
Financial wealth-husband 0�030 0�352

mates with the Bayesian bootstrap weights13
 (Rubin (1981)), based on 100 replications.

Namely, the bootstrap multipliers are given by Mni =�i/(
∑n
i=1�i) for 1 ≤ i ≤ n and we

take �i to be i.i.d. draws from the unit exponential distribution (Rubin (1981)). For ex-
ample, the conditional subdistribution function is estimated by

F̂∗
V �D=j(t|x)=

n∑
i=1

MniI{Vi ≤ v�D= j}K
(
(Xi − x)/hx

)
n∑
i=1

MniK
(
(Xi − x)/hx

) � for j = 1�2�3�

in the bootstrap sample. The same set of weights is also applied to the other nonpara-
metric estimates in order to quantify the estimation uncertainty. The total health ex-
penditure serves as a significantly positive predictor for both males and females as ex-
pected (Coile (2004)). The positive effect of financial wealth on both partners owes to the
fact that the richer family is less concerned about the income effect due to retirement.
Nonetheless, this effect is only significant for the wife. The insignificance of financial
wealth for the husband is also evident in the model of Honoré and de Paula (2018).

Figure 2 depicts the estimated time deformation function (in the left panel) and the
estimated Laplace transform of the static heterogeneity ν (in the right panel). The pat-
tern of the time deformation (or the baseline cumulative hazard function) exhibits posi-
tive duration dependence overall, confirming that retirement becomes more likely as the
household ages. This type of duration dependence is also found in Honoré and de Paula
(2018) for their model with Weibull-type baseline hazard functions. The decreasing ten-
dency of ψ̂(·) is also consistent with the shape of the Laplace transform of a positive
random variable, despite some minor fluctuations in the middle range due to the un-
constrained nonparametric estimation.

Regarding the features of latent Lévy processes, we first run the local linear regres-
sions to obtain the marginal Lévy–Laplace exponent functions �k(·) for k= 1�2, as dis-
played in Figure 3. The bandwidths are selected according to the rules given by Ruppert,
Sheather, and Wand (1995). Clearly, �̂1(·) (in the left panel) is an increasing function,
consistent with the shape of a Lévy–Laplace exponent function, so is �̂2(·) (in the right
panel), except for the parts near the left or right boundaries. There is substantial dif-
ference between these two marginal Lévy–Laplace exponent functions, which translates

13The Bayesian bootstrap is a smooth alternative to the nonparametric bootstrap, because all observa-
tions are assigned with positive probability mass in the resampling procedure.
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Figure 2. Estimated Common Time Deformation and Laplace Transform of Static Heterogene-
ity for the Couple.

into different aging processes of males and females. Regarding the dependence mea-

sure of the two marginal Lévy processes, one could use the thin plate spline basis (Wood

(2003)) for approximating the Lévy copula function. To offer a more concise summary,

we parameterize the Lévy copula function to be Lévy–Clayton with the unknown scalar

α, as in Section 2.2. Hence, the functions Ψj(x) with j = 1�2, or 3 are of the forms pre-

sented in Remark 2.4. Maintaining this parametric specification, the minimum distance

estimation (3.12) boils down to the nonlinear parametric version with a single unknown

Figure 3. Estimated marginal Lévy exponent functions for the couple.
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parameter α:

α̂≡ arg min
α

n∑
i=1

(
Ω̂12(Xi)−�12

(
φ̂1(Xi)� φ̂2(Xi);α

))2
� (5.1)

where�12(·� ·;α) signifies the dependence of the joint Lévy exponent function on α. The
estimate α̂ is found to be 0�018 (with the bootstrap standard error equal to 0�006), in-
dicating that the dependence of health shocks to the couple is relatively weak but still
significant. This is not too surprising given that around 3�7% of the observed couples re-
tired simultaneously. The percentage of approximate joint retirement increases to 7�4%
for couples who retire within 1 month of each other and to 10�2% for couples retiring
within 2 months.

6. Conclusion

In this paper, we propose a new bivariate durations model in which the underlying dura-
tions are driven by dependent continuous-time stochastic processes, without any para-
metric assumption. The duration variables in our model are closely related to the deci-
sion rules suggested by optimal stopping time models, while at the same time providing
a rich and tractable statistical description of the underlying failure/survival mechanism.
This extended Marshall–Olkin model can be seen as the natural variant of the mixed
proportional hazards model from a process point of view and it is transparent how the
structural parameters can be identified from reduced-form functions with competing
risks data. Because the sampling information is explicitly presented by the conditional
(sub)survivor functions for our model, this opens the possibility of flexible semipara-
metric estimation.

Numerous extensions are possible. First, one could incorporate endogenous and
time-varying covariates by explicitly modeling additional stochastic processes, as in Re-
nault, van den Heijden, and Werker (2014). Second, it remains challenging to consider
arbitrarily distributed thresholds combined with Lévy subordinators, as the characteri-
zation is more complicated and only available for the univariate case. Very little is known
about the analytical properties of the first passage times associated with general multi-
variate stochastic processes. Last but not least, it is much more ambitious to charac-
terize the empirical content of stochastic game models driven by latent Lévy processes,
extending de Paula (2009) and Honoré and de Paula (2018).

Appendix A: Proofs of main results

In this Appendix, we prove the theorems stated in Sections 2 and 3 of the paper.

Proof of Theorem 2.1. The main appealing property of Lévy subordinators com-
bined with exponential thresholds lies in the concrete analytical characterization in
(2.1). Moreover, the monotonic sample path implies that if Tk > tk, then the process
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φk(x)Lk(νΛ0(tk)) is still below the threshold εk for k = 1�2. Conditional on the time-
varying and static heterogeneity terms and for t1 ≤ t2, we have

P{T1 > t1�T2 > t2|x�L� ν}
= P{

ε1 >φ1(x)L1
(
νΛ0(t1)

)
� ε2 >φ2(x)L2

(
νΛ0(t2)

)|x�L� ν
}

= e−φ1(x)L1(νΛ0(t1))−φ2(x)L2(νΛ0(t2))

= e−φ1(x)L1(νΛ0(t1))−φ2(x)L2(νΛ0(t1))e−φ2(x)[L2(νΛ0(t2))−L2(νΛ0(t1))]�

Given that Lévy subordinators have independent increments, we obtain

P{T1 > t1�T2 > t2|x�ν}
=E[

e−φ1(x)L1(νΛ0(t1))−φ2(x)L2(νΛ0(t1))|x�ν]E[
e−φ2(x)[L2(νΛ0(t2))−L2(νΛ0(t1))]|x�ν]

= e−vΛ0(t1)�12(φ1(x)�φ2(x))e−v(Λ0(t2)−Λ0(t1))�2(φ2(x))�

by integrating out L = (L1�L2) and using equations (2.1) and (2.3). Integration with re-
spect to ν gives

P{T1 > t1�T2 > t2|x} =ψ{
Λ0(t1)�12

(
φ1(x)�φ2(x)

) + [
Λ0(t2)−Λ0(t1)

]
�2

(
φ2(x)

)}
�

Over the region where t1 ≥ t2, one could proceed in a similar fashion to obtain

P{T1 > t1�T2 > t2|x} =ψ{
Λ0(t2)�12

(
φ1(x)�φ2(x)

) + [
Λ0(t1)−Λ0(t2)

]
�1

(
φ1(x)

)}
�

The desired formula of the conditional joint survivor function can be obtained by com-
bining the two cases together. To get the conditional marginal survivor function, we sim-
ply set either t1 or t2 to zero.

Given the conditional joint and marginal survivor functions for both durations, it is
straightforward to obtain the conditional survivor copula function as

C(u1�u2|x)= ST1�T2

(
S−1
T1
(u1|x)�S−1

T2
(u2|x)|x

)

=

⎧⎪⎪⎨
⎪⎪⎩
ψ

{
ψ−1(u1)+ (

1 −ω2(x)
)
ψ−1(u2)

}
� if

ψ−1(u1)

Ψ1(x)+Ψ3(x)
≥ ψ−1(u2)

Ψ2(x)+Ψ3(x)

ψ
{(

1 −ω1(x)
)
ψ−1(u1)+ψ−1(u2)

}
� if

ψ−1(u1)

Ψ1(x)+Ψ3(x)
≤ ψ−1(u2)

Ψ2(x)+Ψ3(x)
�

which is of the same form as in (2.20).

Proof of Theorem 3.1. The conditional survivor function of the minimum V is ob-
tained by letting t1 = t2 = t in Theorem 2.1. The simplification occurs because

Ψ1(x)+Ψ2(x)+Ψ3(x)=�12
(
φ1(x)�φ2(x)

)
�

The conditional subdensity functions are computed using a modified version of Tsiatis’
(1975) theorem stated in Theorem 1 of Arnold and Brockett (1983) that copes with simul-
taneous failure. Considering the case where D= 1, the conditional subdensity function
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is calculated by

fV �D=1(t|x)= − lim
s↑t

∂

∂s
ST1�T2(s� t|x)� (A.1)

Over the range where t1 < t2, the conditional joint survivor function is

ST1�T2(t1� t2|x)=ψ{
Ψ1(x)Λ0(t1)+ [

Ψ2(x)+Ψ3(x)
]
Λ0(t2)

}
� (A.2)

The claimed formula of fV �D=1(t|x) follows immediately from (A.2) and (A.1). A simi-
lar derivation gives fV �D=2(t|x). Finally, the subdensity attached to the singular part fol-
lows by subtracting the sum of fV �D=1(t|x) and fV �D=2(t|x) from the conditional density
fV (·|x):

fV �D=3(t|x)= fV (t|x)− fV �D=1(t|x)− fV �D=2(t|x)�
Proof of Theorem 3.2. Due to the length of the proof, we outline the key steps and
defer some technical details to Appendix B. We proceed by the following steps.

Step 1. First, consider the conditional survivor function of the minimum V :

SV (t|x)=ψ{
Λ0(t)�12

(
φ1(x)�φ2(x)

)}
�

which belongs to the GAFT model in Ridder (1990). We define r(t�x)= SV (t|x), s(t�x)=
∂r(t�x)/∂t, and q(t� z) = E[s(V �X)|V = t� r(V �X) = z]. Then Corollary 2.1 in Jacho-
Chavez, Lewbel, and Linton (2010) gives us

Λ0(t)�12
(
φ1(x)�φ2(x)

) = exp
(∫ r(t�x)

r1

dz

q(t0� z)

)
�

We present the detailed verification of assumptions required by Jacho-Chavez, Lewbel,
and Linton (2010) in Lemma B.3 in Appendix B. Invoking the normalization condition
Λ0(t1)= 1, we have

�12
(
φ1(x)�φ2(x)

) = exp
(∫ r(t1�x)

r1

dz

q(t0� z)

)
�

which becomes identified. The identification of Λ0(t) is also obvious. The outer link
function ψ is the Laplace transform and it is identified given the variation of Λ0(t) on
an open interval by Proposition 1 in Abbring and van den Berg (2003).

Step 2. From the conditional subdensity functions fV �D=1(t|x) and fV �D=2(t|x), we
can identify

Ψk(x)= − fV �D=k(t|x)
ψ′(Λ0(t)�12

(
φ1(x)�φ2(x)

))
λ0(t)

� (A.3)

for any t and k = 1�2. This leads to the identification of �1(φ1(x)) and �2(φ2(x)) be-
cause

�k
(
φk(x)

) =�12
(
φ1(x)�φ2(x)

) −Ψj(x)� j�k ∈ {1�2}�k �= j� (A.4)
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and �12(φ1(x)�φ2(x)) has already been determined from Step 1. Given the multiplica-
tive separable structure on

�k
(
φk(x)

) =�k
{
φk�1(x1)φk�−1(x−1)

}
� (A.5)

the same identification strategy in Step 1 can be adapted to point identifyφk�1 andφk�−1
for k= 1�2. The details are shown in Lemma B.4 of Appendix B.

Step 3. Given the identification ofφk, we show that the marginal Lévy exponent func-
tions �k can be identified without the large support condition for φk for k= 1�2. Recall
that the marginal Lévy exponent function is

�k(z)=
∫ [

1 − e−yz]Πk(dy)� for k= 1�2�

which is a Bernstein function, meaning its derivative is completely monotone as in The-
orem 3.2 in Schilling, Song, and Vondracek (2012). Thus, by Criterion 2 on page 417 in
Feller (1966), the function exp(�k(z)) is completely monotone and, therefore, real ana-
lytic. Hence, by Proposition 1 in Abbring and van den Berg (2003), we can identify�k(z),
as long as we get enough variation on some nonempty open sets as in Assumption 3.4.
Thereafter, the marginal Lévy measuresΠk are also identified for k= 1�2 by the unique-
ness of Lévy–Khintchine representation in Sato (2013).

Step 4. It suffices to identify the Lévy copula function to fully pin down the charac-
teristics of the Lévy subordinators. So far, we have already identified �12(φ1(x)�φ2(x))

and φk(x) for k = 1�2. Thus, �12(·� ·) is identified according to the bivariate version of
Proposition 1 in Abbring and van den Berg (2003), given that it is real analytical as stated
in Lemma B.2 in Appendix B. Therefore, we can identify the joint Lévy measureΠ12(·� ·).
Finally, the Lévy copula function CL is unique by the Sklar theorem in Kallsen and Tankov
(2006) given the continuity of the tail integrals associated with two marginal Lévy mea-
sures.

Appendix B: Auxiliary results and proofs of technical lemmas

In Appendix B, we first collect necessary notions and key theorems related to the Lévy
copulas and Lévy exponent functions in Section B.1. A nonidentifiability result is stated
in Section B.2. In Section B.3, we prove some auxiliary results that have been used in
Appendix A and the identification results concerning the generalized model from Sec-
tion 4. Section B.4 reports additional empirical results for the regression coefficients,
when a third regressor, “age difference,” is included.

B.1 Lévy copula

There are mainly two advantages of the Lévy copula compared with the standard distri-
butional copula (Nelsen (2006)). First, the laws of bivariate Lévy subordinators are con-
veniently specified by their Lévy measures; only in a few cases the distribution or proba-
bility density function could be given in closed forms. Second, the distributional copula
implied by the joint Lévy processes is typically time-varying, whereas the Lévy copula is
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time-invariant. Nevertheless, it does share certain similarities with the standard distri-
butional copula function, including the Sklar theorem and Frechet–Hoeffding-type in-
equalities. We refer interested readers to Cont and Tankov (2004) and Kallsen and Tankov
(2006) for the authoritative treatment.

For most Lévy processes, the jump intensity would grow or explode as the jump size
converges to zero (Sato (2013)), therefore it is the tail integral or survivor functional ver-
sion of Lévy measure that is more tractable. The two marginal Lévy tail integrals are sim-
ply defined as Πk(y) = ∫ ∞

y πk(u)dμ(u) with marginal Lévy densities as πk for k = 1�2.
Before we formally introduce the two-dimensional tail integral, we need some terminol-
ogy from Kallsen and Tankov (2006).

Definition B.1. A bivariate function C(·� ·) is called 2-increasing if

C(b1� b2)− C(a1� b2)− C(b1� a2)+ C(a1� a2)≥ 0�

for any a1 ≤ b1 and a2 ≤ b2.

Definition B.2. A bivariate function C(u1�u2) is said to be grounded if C(u1�u2) �= +∞
for (u1�u2) �= (+∞�+∞).

Definition B.3 (Tail Integral). A two-dimensional tail integral is a function Π : R2+ →
R+ such that:

(1) Π is a 2-increasing function;

(2) Π is equal to zero if one of its arguments is equal to +∞;

(3) Π is finite everywhere except possibly at zero.

With the tail integral in hand, we define the Lévy copula and highlight its role in
connecting the joint and marginal Lévy measures.

Definition B.4. (Lévy copula) A two-dimensional Lévy copula is a 2-increasing
grounded function CL(u1�u2) : [0�∞]2 → [0�∞] with uniform margins, that is,
CL(u�∞)= CL(∞�u)= u.

Theorem B.1 (Sklar theorem). Let Π12 be a two-dimensional tail integral with margins
Π1�Π2, then there exists a Lévy copula CL such that

Π12(u1�u2)= CL
(
Π1(u1)�Π2(u2)

)
� (B.1)

If Π1�Π2 are continuous, then the copula function CL is unique. Conversely, for a given
Lévy copula CL and two marginal tail integralsΠ1�Π2, CL(Π1(u1)�Π2(u2)) defines a two-
dimensional tail integral.

Theorem B.2 (Frechet–Hoeffding inequalities). For any bivariate Lévy subordinator, its
Lévy copula CL is bounded between two extreme cases:

CL�⊥(u1�u2)≤ CL(u1�u2)≤ CL�‖(u1�u2)� (B.2)
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where

CL�⊥(u1�u2) = u1 · I{u2 = ∞} + u2 · I{u1 = ∞}� (B.3)

CL�‖(u1�u2) = min{u1�u2}� (B.4)

CL�⊥(u1�u2) is the independent Lévy copula and CL�‖(u1�u2) stands for the completely
dependent Lévy copula.

Lemma B.1. The following inequalities hold for any bivariate Lévy subordinator:

max
{
�1(z1)��2(z2)

} ≤�12(z1� z2)≤�1(z1)+�2(z2),

which induce Ψj(·)≥ 0 for j = 1�2, and 3.

Proof. Note that Fz1�z2(y1� y2) ≡ 1 − e−y1z1−y2z2 is the joint distribution function of a
pair of independent exponential random variables with hazard rates equal to (z1� z2). It
is clear that

�12(z1� z2)

=
∫∫

R2+

[
1 − e−y1z1−y2z2

]
dCL

(
Π1(y1)�Π2(y2)

)

= −
∫∫

R2+
CL

(
Π1(y1)�Π2(y2)

)
dFz1�z2(y1� y2)

≤ −
∫∫

R2+
CL�⊥

(
Π1(y1)�Π2(y2)

)
dFz1�z2(y1� y2)

=�1(z1)+�2(z2)�

where integration-by-parts is used in the second equality and the first part of Frechet–
Hoeffding inequalities has been applied. Similarly, we have

�12(z1� z2)

= −
∫∫

R2+
CL

(
Π1(y1)�Π2(y2)

)
dFz1�z2(y1� y2)

≥ −
∫∫

R2+
CL�‖

(
Π1(y1)�Π2(y2)

)
dFz1�z2(y1� y2)

=
∫∫

R2+

[
1 − e−y1z1−y2z2

]
dCL�‖

(
Π1(y1)�Π2(y2)

)
≥ max

{
�1(z1)��2(z2)

}
,

where the final inequality follows from the fact that

1 − e−y1z1−y2z2 ≥ max
{
1 − e−y1z1�1 − e−y2z2

}
, (B.5)
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and the integration is computed over the set {(y1� y2) : Π1(y1) = Π2(y2)} on which the
measure CL�‖ is supported.

Here, we record a lemma stating the analytical property of the joint Lévy–Laplace
exponent function, see also Begun and Yashin (2018).

Lemma B.2 (Theorem 2.1 in Brychkov, Glaeske, Prudnikov, and Tuan (1992)). The bivari-
ate Lévy–Laplace exponent function �12(z1� z2) is an analytic function on

Hb ≡ {
(z1� z2)|Re(z1) >−b�Re(z1) >−b}

and, therefore, it is a real analytical function on ReHb for any positive b. Since �1(z) =
�12(z�0) and �2(z)=�12(0� z), we also have �1(·) and �2(·) to be real analytical.

B.2 A nonidentifiability result

We state a nonidentifiability result of model primitives even when the conditional
marginal distribution ST1(t|x) or ST2(t|x) is identified. Recall that the conditional
marginal survivor function is

STk(t|x)=ψ{
Λ0(t)�k

(
φk(x)

)}
� k= 1�2�

Without necessary normalization, we cannot separately identify ψ, Λ0, �k, and φk.
The structure is in analog with the GAFT model, in which the observationally equiva-
lent pairs can be constructed if the heterogeneity is drawn from the stable distribution
(Lancaster (1979), Ridder (1990)). Our construction of observationally equivalent pairs
makes use of the stable process.14 The stable process is commonly parameterized by a
power parameter b ∈ (0�1) and a scale parameter a ∈ (0�2], such that the Lévy exponent
function is equal to �S(u)= aub; see Aalen, Borgan, and Gjessing (2008).

Theorem B.3. Let a� ã ∈ (0�2] and b� b̃ ∈ (0�1). For any given ψ, Λ0, φk, and �k(u) =
aub, there exists an observationally equivalent construction consisting of ψ̃, Λ̃0, φ̃k, and

�̃k(u)= ãub̃ for k= 1�2 where

ψ̃(u)=ψ(
u1/l)� (B.6)

φ̃k(x)=φmk (x)� (B.7)

Λ̃0(t)= alΛl0(t)/ã� (B.8)

for some positive numbers l > 1 andm= bl/b̃. The observational equivalence means

ψ
{
Λ0(t)�k

(
φk(x)

)} = ψ̃{
Λ̃0(t)�̃k

(
φ̃k(x)

)}
� (B.9)

for all t� x, and k= 1�2.

14I would like to thank one knowledgeable referee who suggests this example.
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Proof. As shown in problem 13 on page 439 in Feller (1966), for any Laplace transform
ψ(u) of ν and l > 1, the random variable νlτ has a Laplace transform equal to ψ(u1/l),
where τ is an independent stable random variable with stable index equal to 1/l. There-
fore, ψ̃(u) is a legitimate Laplace transform (Ridder (1990)). It is straightforward to verify
both sets of model primitives lead to the same conditional marginal survivor function
STk(t|x) for k= 1�2.

B.3 Auxiliary lemmas and proofs

We prove three auxiliary lemmas that have been used in the proof of Theorems 3.2 and
4.3. The first two lemmas verify the conditions in Jacho-Chavez, Lewbel, and Linton
(2010).

Lemma B.3. If Assumption 2.1 to Assumption 2.6 and Assumption 3.1 to 3.4 hold, then
we get

Λ0(t)�12
(
φ1(x)�φ2(x)

) = exp
(∫ r(t�x)

r1

dz

q(t0� z)

)
� (B.10)

where r(t�x)= SV (t|x) and q(z� t)=E[s(V �X)|V = t� r(V �X)= z] with s(t�x)= ∂r(t�x)/
∂t.

Proof. We shall verify Assumption (I*) in Jacho-Chavez, Lewbel, and Linton (2010).
First, the set of (I*1) is directly satisfied by assumptions. Considering the set of (I*2)(i),
the outer link function ψ is a strictly monotonic and continuously differentiable func-
tion, as the Laplace tranform is know to be completely monotone, that is, it is infinitely
order differentiable with derivatives of alternating signs. As for the two normalization
conditions within the current context, it is true that Λ0(t0)/λ0(t0) = 1 and ψ(1) = r1 for
some constant r1.

Lemma B.4. If Assumption 2.1 to Assumption 2.6 and Assumption 3.1 to 3.4 hold, then
we get

φk�1(x1)φk�−1(x−1)= exp
(∫ ζk(x1�x−1)

r2�k

dz

ηk
(
x0

1� z
))
� (B.11)

where ζk(x1�x−1)=�k(φk(x1�x−1)) and ηk(x1� z) = E[ξk(x1� z)|ζk(X1�X−1)= z�X1 =
x1] with ξk(x1�x−1)= ∂ζk(x1�x−1)/∂x1.

Proof. By a similar argument as in the proof of Lemma B.3, one gets identification
of φk�1(x1)φk�−1(x−1) where the outer link function is the Laplace exponent function
�k for k = 1�2. Since the Laplace exponent function has a derivative being completely
monotone, the required monotonicity and differentiability are again satisfied.

The remaining part is about the proofs of theorems regarding the generalization in
Section 4.
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Proof of Theorem 4.1. Given the assumed nonnegative λk(t|W ) for k= 1�2, both first
passage times are driven by increasing trends crossing exponential thresholds. Thus, we
can proceed in the same way as the proof of Theorem 2.1.

Conditional both on the observable covariates and heterogeneity terms, we have

P{T1 > t1�T2 > t2|x� w̄�L� ν}
= P{

ε1 >Λ1(t1|w)+φ1(x)L1
(
νΛ0(t1)

)
� ε2 >Λ2(t2|w)+φ2(x)L2

(
νΛ0(t2)

)|x� w̄�L� ν
}

= e−Λ1(t1|w)−Λ2(t2|w)e−φ1(x)L1(νΛ0(t1))−φ2(x)L2(νΛ0(t2))

= e−Λ1(t1|w)−Λ2(t2|w)e−φ1(x)L1(νΛ0(t1))−φ2(x)L2(νΛ0(t1))e−φ2(x)[L2(νΛ0(t2))−L2(νΛ0(t1)))]�

for t1 ≤ t2. After integrating out the time-varying and static heterogeneity terms, one has

P{T1 > t1�T2 > t2|x� w̄}
= e−Λ1(t1|w)−Λ2(t2|w)ψ

{
Λ0(t1)�12

(
φ1(x)�φ2(x)

) + [
Λ0(t2)−Λ0(t1)

]
�2

(
φ2(x)

)}
�

Over the region where t1 ≥ t2, one could proceed in a similar fashion to obtain

P{T1 > t1�T2 > t2|x� w̄}
= e−Λ1(t1|w)−Λ2(t2|w)ψ

{
Λ0(t2)�12

(
φ1(x)�φ2(x)

) + [
Λ0(t1)−Λ0(t2)

]
�1

(
φ1(x)

)}
�

The desired formula of the conditional joint survivor function follows by combining two
cases together. To get the conditional marginal survivor function, we simply set either t1
or t2 as zero.

Proof of Theorem 4.2. The conditional survivor function of the minimum V is ob-
tained by letting t1 = t2 = t in Theorem 4.1. Considering the case where D= 1, the con-
ditional subdensity function is calculated by

fV �D=1(t|x� w̄)= − lim
s↑t

∂

∂s
ST1�T2(s� t|x� w̄)�

Over the range where t1 < t2, the conditional joint survivor function is

ST1�T2(t1� t2|x� w̄)= e−Λ1(t1|w)−Λ2(t2|w)ψ
{
Ψ1(x)Λ0(t1)+ [

Ψ2(x)+Ψ3(x)
]
Λ0(t2)

}
�

The claimed identify of fV �D=1(t|x� w̄) follows immediately from preceding two for-
mulas. A similar derivation gives fV �D=2(t|x� w̄). Moreover, the conditional density
fV (t|x� w̄) of the minimum V can be computed directly by differentiating −SV (t|x� w̄):

fV (t|x� w̄)= (
λ1(t|w)+ λ2(t|w)

)
e−Λ1(t1|w)−Λ2(t2|w)�(t�x)

+ e−Λ1(t1|w)−Λ2(t2|w)γ(t�x)�12
(
φ1(x)�φ2(x)

)
�

Finally, the subdensity attached to the singular part follows by subtracting the sum of
fV �D=1(t|x� w̄) and fV �D=2(t|x� w̄) from fV (t|x� w̄):

fV �D=3(t|x� w̄)= fV (t|x� w̄)− fV �D=1(t|x� w̄)− fV �D=2(t|x� w̄)�
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Lemma B.5. If Assumption 2.1 to Assumption 2.6, Assumption 3.1 to 3.4, and Assump-
tion 4.1 hold, then we get

lim
x→x0

fV �D=j
(
t|x� w̄(t)) = λj(t|w)e−Λ1(t|w)−Λ2(t|w)� j = 1�2�

and

lim
x→x0

SV
(
t|x� w̄(t)) = e−Λ1(t|w)−Λ2(t|w)�

Proof. The results follow from analytical properties about the Laplace transformation
and Lévy–Laplace exponent function. Specifically, we have

lim
u→0

ψ(u)= 1� (B.12)

and

lim
z→0

�k(z)= 0� k= 1�2� (B.13)

Meanwhile, for the joint Lévy–Laplace exponent, we get

lim
z1→0�z2→0

�12(z1� z2)= 0� (B.14)

The first fact in (B.12) is well known, since ψ(0) = 1 and ψ(·) is completely monotone
hence continuous at 0. The statement regarding Lévy subordinator in (B.13) follows from
the preceding argument, because the Laplace exponent function is simply the negative
logarithm of the Laplace transform of Lk(t) evaluated at t = 1. The conclusion in (B.14)
follows from an analogous result regarding the bivariate Laplace transform. Now, it is
clear that for any t,

lim
x→x0

�(t�x)= 1� (B.15)

and

lim
x→x0

Ψj(x)= 0� (B.16)

for j = 1�2, and 3, which give rise to the stated results.

Proof of Theorem 4.3. We start with an extra step to identify Λ1(t) and Λ2(t) as fol-
lows.

For any realization of the time-varying covariates w(t), we have shown the following
results hold:

lim
x→x0

fV �D=j
(
t|x� w̄(t)) = λj(t|w)e−Λ1(t|w)−Λ2(t|w)� j = 1�2� (B.17)

and

lim
x→x0

SV
(
t|x� w̄(t)) = e−Λ1(t|w)−Λ2(t|w)� (B.18)
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Thus, the derivatives of two idiosyncratic trend functions are both identified following
the classical result of Berman (1963) as

λj(t|w)=
lim
x→x0

fV �D=j
(
t|x� w̄(t))

lim
x→x0

SV
(
t|x� w̄(t)) � j = 1�2� (B.19)

Then the time-varying coefficient can be identified by the standard least squares argu-
ment:

βk(t)=E[
W (t)W �(t)

]−1
E

[
W (t)λk(t|W )

]
� k= 1�2� (B.20)

following Aalen (1980) for additive hazards models.
Given the identification of Λ1(t|w) and Λ2(t|w) and the equality

SV
(
t|x� w̄(t))eΛ1(t|w)+Λ2(t|w) =ψ{

Λ0(t)�12
(
φ1(x)�φ2(x)

)}
� (B.21)

we can point identify ψ(u), Λ0(t) and�12(φ1(x)�φ2(x)) as in Step 1 of the proof of The-
orem 3.2. The rest of the proof goes through with no essential change. Starting from the
conditional subdensities, we can pin down �k(φk(x)) for k= 1�2. The identifiability of
covariates effect and characteristics of Lévy subordinators follow the same argument in
the proof of Theorem 3.2, mutatis mutandis.

B.4 Additional empirical results

In this section, we report estimation results with the inclusion of an additional regressor
Xi3, the age difference between the couples as in Honoré and de Paula (2018). Recall that
individual durations are measured in terms of family age, which is set to zero when the
older partner of the couple reaches age 60 and the age difference allows us to track the
duration of the other spouse. The original age difference is measured as the husband’s
age minus wife’s age in years and we use the standardized version to avoid the overflow
and discreteness, for example, X3 = (Age Difference−Mean(Age Difference))/std(Age
Difference). For the data set in Honoré and de Paula (2018), we also must exclude those
observations whose age differences are recorded as “Inf,” which leaves us with overall
798 observations.

The implementation of our semiparametric estimation extend in a straightforward
way. For example, the conditional subdistribution function is estimated by

F̂V �D=j(t|x)=

n∑
i=1

I{Vi ≤ v�D= j}K
(
(Xi − x)/hx

)
n∑
i=1

K
(
(Xi − x)/hx

) � j = 1�2�3�

where Xi = (Xi1�Xi2�Xi3)
� and K((Xi − x)/hx) ≡ ∏3

j=1K((Xij − xj)/hxj ). Regarding
the bandwidth choices for each coordinate in the kernel estimation, we still follow the
Sheather–Jones rule in estimating the conditional subdensity functions and adopt the
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Table 2. Estimated effects of covariates.

Covariates Estimated Coeff. S.E.

Age difference-wife −0�460 0�339
Health expenditure-wife 0�879 0�316
Financial wealth-wife 0�131 0�192
Age difference-husband 0�195 0�232
Health expenditure-husband 0�912 0�381
Financial wealth-husband 0�360 0�386

Ruppert–Sheather–Wand choice in the local quadratic regression or local linear regres-
sion. When it comes to the estimation of ̂̄q(·� ·), we set the number of neighborhoods in
the k-nearest-neighbor to be the largest integer not exceeding n2/5.

The estimated coefficients with the bootstrap standard errors are reported in Table 2.
The reported standard errors are calculated by perturbing all the nonparametric esti-
mates with the Bayesian bootstrap weights (Rubin (1981)), based on 100 replications.
The effects from the total health expenditure or the financial wealth exhibit patterns
very similar to the ones reported in the main text excluding the age difference, in terms
of both the sign and magnitude. As expected, the standard errors have all increased (ex-
cept for the health expenditure for the husband) due to the less precise nonparametric
estimates in the presence of the additional regressor. In particular, both coefficients as-
sociate with the age difference for wives and husbands are insignificant. Nonetheless,
the estimated signs are consistent with the model from Honoré and de Paula (2018), so
that the age difference tends to increase the retirement hazard for men and decrease it
for women. This empirical result can be understood as Honoré and de Paula (2018) did,
by noting that men are typically older and that “family age” is counted from the 60th year
of the older partner; thus a larger age difference implies that the wife is younger at time
zero and less likely to retire at any “family age” than an older woman would be.

References

Aalen, O. (1980), “A model for nonparametric regression analysis of counting processes.”
In Mathematical Statistics and Probability Theory, 1–25. [554, 571]

Aalen, O., O. Borgan, and H. Gjessing (2008), Survival and Event History Analysis: A Pro-
cess Point of View. Springer. [535, 567]

Abbring, J. H. (2012), “Mixed hitting-time models.” Econometrica, 80 (2), 783–819. [535,
538, 540, 549, 550]

Abbring, J. H. and G. J. van den Berg (2003), “The identifiability of the mixed propor-
tional hazards competing risks model.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 65 (3), 701–710. [536, 548, 550, 563, 564]

Abbring, J. H. and Y. Yu (2015), “The empirical content of synchronization games.” Work-
ing paper. [537, 538, 543]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/aalen1980additive&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/aalen2008process&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/abbring2012mixed&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/abbring2003mph&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/aalen1980additive&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/aalen2008process&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/abbring2003mph&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:4/abbring2003mph&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P


Quantitative Economics 11 (2020) A competing risks model 573

Alvarez, F., K. Borovickova, and R. Shimer (2016), “Decomposing duration dependence
in a stopping time model.” NBER working paper, No. 22188. [538]

An, M. Y., B. J. Christensen, and N. D. Gupta (2004), “Multivariate mixed proportional
hazard modelling of the joint retirement of married couples.” Journal of Applied Econo-
metrics, 19 (6), 687–704. [536, 537, 543, 547, 556]

Arnold, B. and P. Brockett (1983), “Identifiability for dependent multiple decre-
ment/competing risk models.” Scandinavian Actuarial Journal, 2, 117–127. [562]

Basu, A. and J. Ghosh (1978), “Identifiability of the multinomial and other distributions
under competing risks model.” Journal of Multivariate Analysis, 8, 413–429. [549]

Bedford, T. and I. Meilijson (1997), “A characterization of marginal distributions of (pos-
sibly dependent) lifetime variables which right censor each other.” The Annals of Statis-
tics, 25, 1622–1645. [551]

Begun, A. and A. Yashin (2018), “Study of the bivariate survival data using frailty models
based on Lévy processes.” AStA Advances in Statistical Analysis, 1–31. [549, 567]

Berman, S. (1963), “Note on extreme values, competing risks and semi-Markov pro-
cesses.” The Annals of Mathematical Statistics, 34, 1104–1106. [556, 571]

Botosaru, I. (2016), “A duration model with dynamic unobserved heterogeneity.” Work-
ing paper. [538]

Bresnahan, T. F. and P. C. Reiss (1991), “Entry and competition in concentrated markets.”
Journal of Political Economy, 99, 977–1009. [554]

Brychkov, Y., H. Glaeske, A. Prudnikov, and V. Tuan (1992), Multidimensional Integral
Transformations. Gordon and Breach Science Publisher. [567]

Chen, X. (2007), “Large sample sieve estimation of semi-nonparametric models.” In
Handbook of Econometrics, Vol. 6, 5549–5632, Elsevier. [553]

Chiappori, P. A., I. Komunjer, and D. Kristensen (2015), “Nonparametric identification
and estimation of transformation models.” Journal of Econometrics, 188 (1), 22–39. [551]

Choi, J. (1991), “Dynamic R&D competition under hazard rate uncertainty.” The RAND
Journal of Economics, 22, 596–610. [537, 543, 549]

Coile, C. (2004), “Health shocks and couples’ labor supply decisions.” NBER working
paper, No. 10810. [538, 543, 556, 559]

Cont, R. and P. Tankov (2004), Financial Modelling With Jump Processes. Chapman &
Hall. [538, 539, 540, 565]

Crowder, M. (2012), Multivariate Survival Analysis and Competing Risks. CRC Press.
[542, 548]

de Paula, Á. (2009), “Inference in a synchronization game with social interactions.” Jour-
nal of Econometrics, 148, 56–71. [535, 538, 561]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/an2004multivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/arnold1983competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/basu1978competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/bedford1997marginal&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/begun2018bivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/berman1963note&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/bresnahan1991entry&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/brychkov1992multi&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/chiappori2015transformation&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/choi1991dynamic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/cont2004financial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/crowder2012surv&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/paula2009inference&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/an2004multivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/an2004multivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:8/arnold1983competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/basu1978competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/bedford1997marginal&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:10/bedford1997marginal&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/begun2018bivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/berman1963note&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/bresnahan1991entry&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:15/brychkov1992multi&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/chiappori2015transformation&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/choi1991dynamic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:20/cont2004financial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/paula2009inference&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P


574 Ruixuan Liu Quantitative Economics 11 (2020)

Drepper, B. and G. Effraimidis (2015), “Social interaction effects in duration models.”
Working paper. [543]

Ekeland, I., J. Heckman, and L. Nesheim (2004), “Identification and estimation of hedo-
nic models.” Journal of Political Economy, 112 (1), 60–109. [551]

Elbers, C. and G. Ridder (1982), “True and spurious duration dependence: The identifi-
ability of the proportional hazard model.” The Review of Economic Studies, 49 (3), 403–
409. [541, 545, 553]

Epifani, I. and A. Lijoi (2010), “Nonparametric priors for vectors of survival functions.”
Statistica Sinica, 20, 1455–1484. [547]

Fan, J. and I. Gijbels (1996), Local Polynomial Regression. Chapman and Hall. [552, 553]

Fan, Y. and R. Liu (2018), “Partial identification and inference in censored quantile re-
gression.” Journal of Econometrics, 206, 1–38. [536, 547, 548]

Farzin, Y., K. Huisman, and P. Kort (1998), “Optimal timing of technology adoption.” Jour-
nal of Economic Dynamics and Control, 22, 779–799. [537, 538, 543]

Feller, W. (1943), “On a general class of “contagious” distributions.” The Annals of Math-
ematical Statistics, 14, 389–400. [541]

Feller, W. (1966), An Introduction to Probability Theory and Its Applications, Vol. 2. John
Wiley & Sons. [564, 568]

Flinn, C. and J. Heckman (1982), “New methods for analyzing structural models of labor
force dynamics.” Journal of Econometrics, 18, 115–168. [536, 537]

Gjessing, H., O. Aalen, and N. Hjort (2003), “Frailty models based on Lévy processes.”
Advances in Applied Probability, 35, 532–550. [538]

Heckman, J. J. and B. E. Honoré (1989), “The identifiability of competing risks model.”
Biometrika, 76, 325–330. [536, 548]

Heckman, J. J. and B. E. Honoré (1990), “The empirical content of the Roy model.” Econo-
metrica: Journal of the Econometric Society, 58, 1121–1149. [536, 556]

Heckman, J. J. and S. Navarro (2007), “Dynamic discrete choice and dynamic treatment
effects.” Journal of Econometrics, 136, 341–396. [535]

Heckman, J. J. and B. Singer (1984a), “The identifiability of the proportional hazard
model.” The Review of Economic Studies, 51 (2), 231–241. [541, 545]

Heckman, J. J. and B. Singer (1984b), “A method for minimizing the impact of distribu-
tional assumptions in econometric models for duration data.” Econometrica, 52, 271–
320. [542]

Heckman, J. J. and C. Taber (1994), “Econometric mixture models and more general
models for unobservables in duration analysis.” Statistical Methods in Medical Research,
3, 279–299. [548]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/ekeland2004hedonic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/elbers1982true&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:26/epifani2010priors&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:27/fan1996local&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/fan2018partial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/farzin1998timing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/feller1943contagious&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/feller1966prob&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/flinn1982labor&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/gjessing2003frailty&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/heckman1989competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/heckman1990empirical&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/heckman2007dynamic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/heckman1984identifiability&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/heckman1984duration&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/heckman1994mixture&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/ekeland2004hedonic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/elbers1982true&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/elbers1982true&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:26/epifani2010priors&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/fan2018partial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/farzin1998timing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:30/feller1943contagious&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:31/feller1966prob&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:32/flinn1982labor&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/gjessing2003frailty&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/heckman1989competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/heckman1990empirical&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/heckman2007dynamic&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/heckman1984identifiability&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/heckman1984duration&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/heckman1984duration&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/heckman1994mixture&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:39/heckman1994mixture&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P


Quantitative Economics 11 (2020) A competing risks model 575

Honoré, B. E. (1993), “Identification results for duration models with multiple spells.”
Review of Economic Studies, 60, 241–246. [547]

Honoré, B. E. and Á. de Paula (2010), “Interdependent durations.” Review of Economic
Studies, 77, 1138–1163. [535, 536, 540, 547, 548, 557]

Honoré, B. E. and Á. de Paula (2018), “A new model for interdependent durations with
an application to joint retirement.” Quantitative Economics, 9, 1299–1333. [535, 537, 542,
543, 547, 548, 556, 557, 559, 561, 571, 572]

Honoré, B. E. and A. Lleras-Muney (2006), “Bounds in competing risks models and the
war on cancer.” Econometrica, 74, 1675–1698. [536, 551]

Horowitz, J. L. (1996), “Semiparametric estimation of a regression model with an un-
known transformation of the dependent variable.” Econometrica, 64, 103–137. [552, 553]

Horowitz, J. L. (1999), “Semiparametric estimation of a proportional hazard model with
unobserved heterogeneity.” Econometrica, 67 (5), 1001–1028. [542]

Horowitz, J. L. and W. Hardle (1996), “Direct semiparametric estimation of single-index
models with discrete covariates.” Journal of the American Statistical Association, 91,
1632–1640. [557]

Ichimura, H. (1993), “Semiparametric least squares (SLS) and weighted SLS estimation
of single-index models.” Journal of Econometrics, 58. [551]

Jacho-Chavez, D., A. Lewbel, and O. Linton (2010), “Identification and nonparametric
estimation of a transformed additively separable model.” Journal of Econometrics, 156
(2), 392–407. [550, 551, 552, 557, 558, 563, 568]

Jensen, R. (1982), “Adoption and diffusion of an innovation of uncertain profitability.”
Journal of Economic Theory, 27. [537, 543]

Joe, H. (2014), Dependence Modeling With Copulas. CRC Press. [545]

Kallsen, J. and P. Tankov (2006), “Characterization of dependence of multidimensional
Lévy processes using Lévy copulas.” Journal of Multivariate Analysis, 97 (7), 1551–1572.
[536, 538, 540, 551, 564, 565]

Khan, S. and E. Tamer (2009), “Inference on endogenously censored regression mod-
els using conditional moment inequalities.” Journal of Econometrics, 152, 104–119.
[536, 551]

Lancaster, T. (1972), “A stochastic model for the duration of a strike.” Journal of the Royal
Statistical Society: Series A, 135, 257–271. [535, 538]

Lancaster, T. (1979), “Econometric methods for the duration of unemployment.” Econo-
metrica, 47, 939–956. [535, 567]

Lee, S. and A. Lewbel (2013), “Identification of a competing risks model with unknown
transformations of latent failure times.” Econometric Theory, 29 (5), 905–919. [536, 548]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/honore1993identify&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/honor2010interdependent&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/honore2016new&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/honore2006bounds&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/horowitz1996semiparametric&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/horowitz1999mph&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/horowitz1996direct&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:47/ichimura1993single&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/jacho2010additive&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/jensen1982adoption&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:50/joe2014copulas&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/kallsen2006Levy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/khan2009censored&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:53/lancaster1972strike&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:54/lancaster1979duration&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:55/lee2013competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:40/honore1993identify&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/honor2010interdependent&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/honore2016new&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/honore2006bounds&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/horowitz1996semiparametric&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/horowitz1999mph&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/horowitz1996direct&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:46/horowitz1996direct&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:47/ichimura1993single&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/jacho2010additive&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/jacho2010additive&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/jensen1982adoption&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:51/kallsen2006Levy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/khan2009censored&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:53/lancaster1972strike&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:54/lancaster1979duration&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:55/lee2013competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P


576 Ruixuan Liu Quantitative Economics 11 (2020)

Liu, R. (2020), “Supplement to ‘A competing risks model with time-varying heterogeneity
and simultaneous failure’.” Quantitative Economics Supplemental Material, 11, https://
doi.org/10.3982/QE1159. [557]

Lundberg, S. and R. A. Pollak (1994), “Noncooperative bargaining models of marriage.”
The American Economic Review, 84, 132–137. [557]

Marshall, A. W. and I. Olkin (1967), “A multivariate exponential distribution.” Journal of
the American Statistical Association, 62, 30–44. [536, 546]

Marshall, A. W. and I. Olkin (1988), “Families of multivariate distributions.” Journal of
the American Statistical Association, 83, 834–841. [536, 545]

Marshall, A. W. and M. Shaked (1979), “Multivariate shock models for distributions with
increasing hazard rate average.” Annals of Probability, 7, 343–358. [541, 546]

Martinussen, T. and T. H. Scheike (2002), “A flexible additive multiplicative hazard
model.” Biometrika, 89 (2), 283–298. [555]

McFadden, D. (1974), “Conditional logit analysis of qualitative choice analysis.” In Fron-
tiers in Econometrics, 105–142, Academic Press. [544]

Nelsen, R. B. (2006), An Introduction to Copulas, second edition. Springer. [540, 544, 564]

Oakes, D. (1989), “Bivariate survival models induced by frailties.” Journal of the American
Statistical Association, 84, 487–493. [536, 546, 547]

Peterson, A. (1976), “Bounds for a joint distribution function with fixed sub-distribution
functions: Applications to competing risks.” Proceedings of the National Academy of Sci-
ences USA, 73, 11–13. [551]

Powell, J., J. Stock, and T. Stoker (1989), “Semiparametric estimation of index coeffi-
cients.” Econometrica, 57, 1403–1430. [551, 552, 553]

Reinganum, J. (1981), “Dynamic games of innovation.” Journal of Economic Theory, 25,
21–41. [537, 538, 542, 543, 549]

Reinganum, J. (1982), “A dynamic game of R and D: Patent protection and competitive
behavior.” Econometrica, 50, 671–688. [537, 542, 543, 549]

Renault, E., T. van den Heijden, and B. Werker (2014), “The dynamic mixed hitting-time
model for multiple transaction prices and times.” Journal of Econometrics, 180, 233–250.
[561]

Ridder, G. (1990), “The non-parametric identification of generalized accelerated failure-
time models.” Review of Economic Studies, 57, 167–181. [542, 549, 563, 567, 568]

Ridder, G. and I. Tunali (1999), “Stratified partial likelihood estimation.” Journal of
Econometrics, 92, 193–232. [554]

Ridder, G. and T. M. Woutersen (2003), “The singularity of the information matrix of the
mixed proportional hazard model.” Econometrica, 71 (5), 1579–1589. [542, 550]

Rubin, D. (1981), “Bayesian bootstrap.” The Annals of statistics, 9, 130–134. [559, 572]

https://doi.org/10.3982/QE1159
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:57/lundberg1994noncooperative&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/marshall1967exponential&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:59/marshall1988multivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:60/marshall1979shock&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:61/martinussen2002flexible&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:63/nelsen2006copula&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:64/oakes1989frailties&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:65/peterson1976bounds&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:66/powell1989index&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:67/reinganum1981innovation&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:68/reinganum1982patent&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:69/renault2014mht&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:70/ridder1990gaft&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:71/ridder1999partial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:72/ridder2003singularity&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:73/rubin1981bayesian&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
https://doi.org/10.3982/QE1159
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:57/lundberg1994noncooperative&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/marshall1967exponential&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:59/marshall1988multivariate&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:60/marshall1979shock&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:61/martinussen2002flexible&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:64/oakes1989frailties&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:65/peterson1976bounds&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:65/peterson1976bounds&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:66/powell1989index&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:67/reinganum1981innovation&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:68/reinganum1982patent&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:69/renault2014mht&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:70/ridder1990gaft&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:71/ridder1999partial&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:72/ridder2003singularity&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P


Quantitative Economics 11 (2020) A competing risks model 577

Ruppert, D., S. J. Sheather, and M. P. Wand (1995), “An effective bandwidth selector for
local least squares regression.” Journal of the American Statistical Association, 90, 1257–
1270. [558, 559]

Ryu, K. (1993), “Structural duration analysis of management data.” Journal of Economet-
rics, 57, 91–115. [538, 542]

Sato, K. (2013), Lévy Processes and Infinitely Divisible Distributions. Cambridge Univer-
sity Press. [536, 539, 564, 565]

Schilling, R., R. Song, and Z. Vondracek (2012), Bernstein Functions: Theory and Applica-
tions. SIAM. [564]

Sheather, S. J. and M. C. Jones (1991), “A reliable data-based bandwidth selection
method for kernel density estimation.” Journal of the Royal Statistical Society: Series B
(Methodological), 53, 683–690. [558]

Stock, J. (1988), “Estimating continuous-time processes subject to time deformation: An
application to postwar US GNP.” Journal of the American Statistical Association, 83, 77–
85. [541]

Stoker, T. (1986), “Consistent estimation of scaled coefficients.” Econometrica, 54, 1461–
1481. [551]

Tsiatis, A. A. (1975), “A nonidentifiability aspect of the problem of competing risks.” Pro-
ceedings of the National Academy of Sciences USA, 72, 20–22. [548, 549]

van den Berg, G. (2001), “Duration models: Speciifcation, identification, and multiple
durations.” In Handbook of Econometrics, Vol. 5, 3381–3460, Elsevier. [536, 538, 545, 546]

Wood, S. (2003), “Thin plate regression splines.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 65, 95–114. [553, 560]

Co-editor Christopher Taber handled this manuscript.

Manuscript received 20 June, 2018; final version accepted 16 September, 2019; available online 25
September, 2019.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:74/ruppert1995bandwidth&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:75/ryu1993management&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:76/sato2013Levy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:77/schilling2012bernstein&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:78/sheather1991kernel&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:79/stock1988cont&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:80/stoker1986scaled&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:81/tsiatis1975competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:83/wood2003thin&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:74/ruppert1995bandwidth&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:74/ruppert1995bandwidth&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:75/ryu1993management&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:76/sato2013Levy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:77/schilling2012bernstein&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:78/sheather1991kernel&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:78/sheather1991kernel&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:79/stock1988cont&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:79/stock1988cont&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:80/stoker1986scaled&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:81/tsiatis1975competing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:83/wood2003thin&rfe_id=urn:sici%2F1759-7323%282020%2911%3A2%3C535%3AACRMWT%3E2.0.CO%3B2-P

	Introduction
	The extended Marshall-Olkin model
	The model setup
	Dependence properties

	Identiﬁcation and estimation with competing risks
	Sampling information
	Nonparametric identiﬁability
	Semiparametric estimation

	Generalizations
	An empirical application
	Conclusion
	Appendix A: Proofs of main results
	Appendix B: Auxiliary results and proofs of technical lemmas
	Lévy copula
	A nonidentiﬁability result
	Auxiliary lemmas and proofs
	Additional empirical results

	References

