Supplementary Material

Supplement to “Inference in nonparametric/semiparametric

moment equality models with shape restrictions”
(Quantitative Economics, Vol. 11, No. 2, May 2020, 609-636)

Yu ZHU
Bank of Canada

This supplemental material has the following content: (1) proofs of all the theo-
retic results in the main paper; (2) a set of low-level conditions that imply Def-
inition 5.1(iii) in the main paper; (3) an example where point-identification is
achieved with a shape restriction, while one cannot rule out any point in the pa-
rameter space without the shape restriction; (4) examples to illustrate that either
my method nor CNS dominates the other.

I start with introducing some additional notation used in this supplemental mate-
rial. Let {8,,}2 ; be a sequence of nonnegative numbers and X, r be a sequence of ran-
dom variables indexed by n and F. Say X,, r = Op(8,) uniformly in F € F if and only if
(iff) for every e > 0, there exists M < oo such thatlimsup,_, . suppc 7 Pr(|1 X, r| > M8,) <
eand X, r = op,(6,) uniformlyin F € Fiff forall M > 0, limsup,,_, . suppc 7 Pr(| Xy, F| >
Mé,) = 0. Similarly, X,, r,r = Op(8,) uniformly in (F, R) € J iff for every € > 0, there
exists M < oo such that limsup,_, o supp.ryes PFUXnFRl > Mby) < € and X, rr =
opy(6,) uniformly in (F, R) € J iff for all M > 0, limsup,,_, Sup g ryeg PF(Xn,F.RI >
Més,) = 0. Because (F,R) € J implies F € F, X, r = Op;(8,) (X, r = 0p.(8,)) uni-
formlyin (F, R) € J it X,, r = Op,(8,) (X, F = 0p;(6,)) uniformly in F € F. Lastly, X}, is
Op+(8,), Pr almost surely iff given any e > 0, for almost every sample realization under
Pr, there exists an M > 0 such that lim, .« Pr, (X, > M§,) < €, where Pr, is induced by
the empirical distribution. Similarly, X, is op+(8,), Pr almost surely iff for almost every
sample realization under Pr, lim,—, oo Pr, (X, > M6,) =0forall M > 0.

For any function g : £°(0 x T) — R, let g(1 — a, g, F) be the 1 — ath quantile of g(GF)
and g} (1 — a, g) be the 1 — ath quantile of g(G};). And 1(-) is the indicator function which
takes value 1 if the event in the bracket is true and value 0 if otherwise.

Other notation can be found in Table S.1, and the text and Appendix A of the main
paper. Assumptions B.1-B.7 can be found in Appendix B of the main paper.

S.1. IDENTIFICATION POWER OF SHAPE RESTRICTIONS

It is commonly known that shape restrictions can play an important role for identifica-
tion in structural models, for example, in BLP estimation and auctions; see Gandhi, Lu,
and Shi (2013), Zhu and Grundl (2014), Komarova (2013), and Fan, He, and Li (2015). But
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TaBLE S.1. Some additional notation.

e Euclidean norm

I-l2.F L? norm under distribution F, that s, || f||%7 r=JIIf )% dF(w)
a?F(A, B) Sup, 4 infpep dr(a, b), directed Hausdorff metric between 4, B C @
du.r(A, B) SUP e 4 infpep du  (a, b) for A, BC O

RS 1(0) 0, NRNB%(6)

E* Expectation under the empirical distribution

I, R0 Projection of 6 on to O, N R, that is, argming_q -z ds (0, 6)

4 Converge from below

d

— Converge in distribution to

even in the simple non-parametric IV regression model, shape restrictions can greatly
help identification. In extreme cases, without shape restrictions, the parameter of in-
terest is not identified at all, that is, one cannot rule out any point from the parame-
ter space. But once a shape restriction is imposed, the parameter of interest is point-
identified. This section provides such an example.

Consider the setup in Example 2.1 in the main paper where the joint distribution of
(X, Y, Z) is such that

Z ~ Uniform[0, 1], X|Z ~ Uniform[Z, Z + 1].

And € can be arbitrarily correlated with X but satisfies Er(e|Z) = 0. For example, € =
Z(X — Z + €1 — 1/2), where €; is a random variable with mean 0 and independent of
both X and Z. From this point on, I restrict 6 to be a bounded continuous function
and the parameter of interest is 67 (xg) for some xg € [0, 2].

Suppose that one uses the conditional moment restriction

Er[Y — 6(X)|Z]=0. (S.1)

Then the identified set of 67 (x() is (—o0, 00). To see this, notice that 6 = 6 + 6 satisfies
equation (S.1) iff Er[6(X)|Z] = 0, which holds iff 6 is a periodic function with period 1
and fol 6(x)dx = 0. For any real number a, there exists such a 6 with 6(x() = a. Hence,
0r(xp) can take any value in (—oo, 00).

Now suppose 6 is weakly increasing and is constant on [b, ¢] € [0, 2] withc — b > 1.
After imposing the weakly increasing restriction, 6r(x¢) is point-identified. To see this,
first notice 6 has to be a constant function. Otherwise, § must decrease in some region
of [b, c] because it has period 1, which means that ¢ + 6 is not weakly increasing. Then
fol 6(x) dx = 0 suggests that § = 0 and 6 is point-identified.

S.2. CHOICES OF ® AND LOW-LEVEL SUFFICIENT CONDITIONS FOR DEFINITION 5.1 (111)

Define A = (Ay, Az, ..., Ap, ) to be a Dy -dimensional vector of nonnegative integers
and w = (wy, wy, ..., wp, ) € W to be a Dy -dimensional vector of real numbers. Let
|A| = lej A; and dAf = 941 f(w) /oM w; - - 3Pw wp,, where f: W — R is a function.
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Introduce the norms

/)5/2

b

Iflle = max sup |d” f(w)|(1 + ww
[Al=m ey

I£12,; =f max |dA f(w)[* (1 +ww')® dw,
[Al<m+myg

where m and m are two integers. Let €]§°b(W) ={f: W= Rs.t |fllsob < B} where 0 <
B < o is a known constant. Define ® = % x £§°b(W)D N where OF is a compact subset
of RPr and Dy is a positive integer. In addition, let 6 = (67, 6N) where 6 € OF and
oN € €§°b(W)DN. Define

161ls = 18lloc = max{ | 67|,z sup |6¥ )], )
wew
:max{||0p||ooE, sup |0 (w)], sup |65 (w)], ..., sup |0%N(w)|],
T weWw weWw weW

where || - ||, is the sup norm in the Euclidean space and ij (w) is the jth element of
6N (w). The following is Assumption 2.1 in Santos (2012).

AssumpTION S.1. (i) For W bounded, ) = 6 = 0 and min{mgy, m} > Dy /2, while for W
unbounded, my > Dy /2 and Dy (m + 8)/(m8) < 2 and 8y > & > Dy /2. (ii) W satisfies a
uniform cone condition.

Santos (2012) showed that under Assumption S.1, 5§°b(W) is compact under | - ||c.
Since | - || is stronger than the sup norm, 5§°b(W) is compact under the sup norm.
Therefore, ® is compact under || - ||5 as it is a product of compact spaces. Moreover, sup-
pose that the shape restriction is

R=1{0:90Y (w)/dw; = 0,Yw e W}.

Because partial differentiation operators are continuous with respectto || - | ., R is closed
under || - ||.. This implies that @ N R is compact under | - ||, and therefore compact under
Il - ls- If R involves higher-order derivatives, one needs to adjust ® accordingly to satisfy
Assumption B.1(i). Suppose t € T is a D¢-dimensional real vector. Define N(e, ® x T,
|- lIs+ Il - |g) to be the smallest e-covering number of ® x T under || - ||+ | - | £-

LEMMA S.1. Under Assumption S.1, if T is a bounded subset of RPt, then

o0
NG 0 T e 1) de < o

Proor. Lemma A.3 in Santos (2012) shows that

1 )Dw(m+6)/(8m)

InN(e, ELPOV), || - lloo) < K1 <; if W unbounded,

1 Dy /m
InN(e, €]§°b(W), I lloo) < Kz(;) if W bounded,
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where N(e, Sg"b(W), Il - lleo) is the smallest e-covering number of 6§°b(W) under || - ||co-
Notice that

€ €
N(&OxT, |- lIs+1l- k) < N<§, O, ||s>N<§,T, I ||E>

€ P € € osob Dn
SN Ea@ a””OO,E N §7T7””E N E}EB (W)9””OO .

Therefore, there exists a constant K such that

1\ Dw (m+8)/(3m)
) if WW unbounded,

InN(e, @ x T, || - [ls + Il - | ) §K<

€
1 DW/m

InN(e, @ xT, |- ls+ || - lg) < K(—) if W bounded.
€

Let M = maxg,r)coxT(ll0lls + [t £). Then under Assumption S.1,

/ \/IHN(ea@xT,||~||s+||~||E)d651</ (;) de.
0 0

where 1 = Dy (m + 8)/(26m) if W is unbounded and n = Dy /2m if W is bounded. Be-
cause 1 < 1 by Assumption S.1, the right-hand side equals KM'~"/(1 — 1) < oc. O

AssuMPTION S.2. pi and F satisfy () pi(-, 0) is measurable for all (0,t) € @ x T.
(i) supp peoxtlot(-, ) < F() for some function F. (iii) There exists L(-) such that
SUPpc 7 ErL(W;)? < 0o and

oty 5 01) = P, 02)| <LO[161 — alls + 1t — 2 E].
(iv) limsupy, o Supge 7 EFF(W) 2 L{E(W;) > M} =0.

Assumption S.2(iii) is a uniform version of the standard smoothness assumption on
the moment functions. Assumption S.2(iv) is a uniform integrability condition, which
holds if sup . » EFF(W;)?+° < oo for some 8 > 0.

LEMMA S.2. Under AssumptionsS.1 and S.2, if T is a bounded subset of RPt, o is Donsker
and pre-Gaussian uniformlyin F € F.

ProOF. By Assumption S.2(iii),

[o4, (. 61) = piy . 025 o < EFLOW2[1161 — 62 + 1t — toll]".

Let Npj be the bracketing number. By Theorem 2.7.11 in Van Der Vaart and Wellner
(1996),

Nij(2€(ILli2,r +1), 0, Il ll2,r) < Njj(2€llLll2, . 0, [l - l2,r) <N(&, © x T, || - [ls + || - | ).
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Without loss of generality, assume that F(-) > 1. This is because one can always redefine
the envelope function to be max{F(-), 1}. Then

fo sup /Ny (l[Fllo. 7, 0 | - 12.F) de

FeF

€l|F|l2,F

sup 1N LOXT, |-+ lle ) de
Fef/ 2(ILlo,F +1) '

(IL +1)
§sup[ ALer 1) N 0 T, -+ - 1) de
FeF IFll2,F

which is bounded by Lemma S.1. Also by Assumption S.2, limp/_, oo Suppe » EFF? x
1(F > M) = 0. Then Theorem 2.8.4 in Van Der Vaart and Wellner (1996) implies that o
is Donsker and pre-Gaussian uniformly in F € F. O

S.3. ASYMPTOTIC APPROXIMATION OF THE TEST STATISTIC

THEOREM S.1. IfAssumptions B.1 to B.4 hold, then:

(i) Uniformly in (F R) € J, Tu(R) < T¢, F.n,rR(Gy,F) + op, (1), where the inequality
holds as an equality zfdp(@ (R), 0, r(R)) = op. (&) uniformlyin (F,R) € J.

(i) fFe Fand O N R=0, T,;/n — mingcgnr Or(0), Pr almost surely.
Proor. Forany (F,R) e J,

2
du(t)

n

1
N > [pt(Wi, 0) = Eppu(Wi, 0)] + /nEr pu(Wi, 0)

0€®,NR :
i=1

T.(R)= inf /
T

< inf inf [ (G (6, £) + VAErpu (W, 0) > dpa(t)
00, F(R) 0RS"(8) I T

2

dErpe(W;, 0 .
= inf inf Gn,r(0,0) + IM[O— 6]+ Ap(t)| du(t)
0€0,,1(R) 9eR:".(6) I T do
=Tx(R), (S.2)

where A, (t) = A, 1(t) + Ay 2(t) + Ay 3(t) with
Ap1(t) =Gy r(0,0) — Gy r(6, 1),

- dEpp(W;, 6 -
Aya(t) = ﬁ(lEFpt(Wi, 0) —Erpe(W;, 0) — M[e — 0]),

do
A 3(t) = VnEppe(W;, 6).

Isuppress the dependence of the As on F, R, 6, and  to simplify notation. The inequality
in equation (S.2) holds because I shrink the region over which the inf is taken. By the
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triangular inequality,

3
VTa(R) =T, rGnF) + Z SUJ [ WRTOT P

0,, F(R) 0eR:.(B)

where [|A,,,; ()13 W= Jr Ay, ;(©)? du(t). Definition 5.1(iii), Assumptions B.4(iii), and Theo-
rem 2.8.2 in Van Der Vaart and Wellner (1996) imply that

sup sup [Apillau = sup sup |Gy p(01, ) — Gpp(82, )] = op, (1),
60,1 (R) 0<RS"(6) dp(01,07)<&, teT

uniformly in F € F. In addition, under Assumptions B.4(i) and (ii), uniformly in (F, R) €

J

_sup sup (1A 202, < sup sup  sup|A, 2 (t)| = o().
00,1 (R) 0<R:.(B) 60, r(R) <R (B) €T

Lastly, because 6e 0, r(R), Assumption B.1(ii) implies that for any heOrNR,

180313, =n min OF(0) < nQr(Iy,rY) = ndy, p(ITy,r0, 0)* < nCad(IT,, k6, 0)°.

Then Assumption B.2(iii) and the definition of IT,, g0 imply that uniformly in (F, R) € J,

sup sup  [1Au3ll2,. = 0o(1).
00,1 (R) 0RS ()

Therefore, /T,(R) < I¢, . Fn,R(GnF) + opp(1) uniformly in (F,R) € J. Similarly,

one can show that /T,(R) > /T¢, r.ur(Gyr) — op.(1). Therefore, \/T,(R) =

Ve FnrR(Grrp) + op.(1) uniformly in (F,R) € J. Because 0 € Rﬁj‘F(é),
VT e, F.n,R(Gn,F) = Op, (1) uniformly in (F, R) € J. Apply Lemma S.10 with A = 7 to get
T.(R) = I¢,.Fn,R(Gy F) + opp (1) uniformly in (F, R) € J, which 1mp11es that 7,,(R) <
¢, Fn,R(Gu F) + opr (1) uniformly in (F, R) € J. If, in addition, dF(@ (R), 0, r(R)) =
op (&) uniformly in (F,R) € J, Ty(R) = T,(R) with probability approaching 1 uni-
formly in (F,R) € 7. Then T,(R) =T¢, r n,rR(Gy, F) + op, (1) uniformly in (F, R) € J.

For the second claim, notice that by definition, g is Glivenko-Cantelli under any
F € F. Therefore, Pr almost surely,

sup |pe(0) — Eppe(W;, 0)] = o(1),
(6,)eOxT

where p¢(0) = n~1 Yo pe(W;, 0). Because Epp¢(W;, 0) is continuous in # and ©® N R is
compact under ds, Pr almost surely,

T,(R . .
LB S g \/f|JEFpt(W,-,e>\2du(t>—o<1)z\/mm [ Vo, 0) duco o).
n 0c0,NR T 0cONR JT
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Similarly, by the compactness of ® N R and continuity, Pr almost surely,

T,(R
LIS \/ / \EFpt<m,o>|2du<t>+o(1>—>\/ min, [ [Erpu(W. 0 duco.
n 0€@,NR T 0cONR JT

By the continuous mapping theorem, 7, (R)/n — mingegnr fT |Erpe(Wi, 0)12 du(t), Pr
almost surely. O

Theorem S.1 shows that under the null hypothesisL anZ F.n,R(Gp,F) is, atleast, a con-
servative approximation to 7, (R) regardless how fast dr(0,(R), @, r(R)) vanishes. But
if it vanishes fast enough, this approximation is asymptotically exact. For example, if
|d*Erpu(W;, 01 + (62 — 61))/d7*|,—o| < Cdp(61, 6)%, the approximation is asymptoti-
cally exact if dp(@ (R), O F(R)) = opp(n~ 1/4) 'If p¢ is linear in 6, the approximation is
asymptotically exact if dp(@ (R), 0, r(R)) = op.(1). Under a fixed alternative, 7,,(R) di-
verges to infinity at the rate n.

It is worth pointing out that the validity of the approximation does not depend on the
shape of the restriction set R. In particular, R does not need to be convex. In addition,
even if Assumptions B.4(i) and (ii) are not satisfied, one can still obtain a valid uniform

asymptotic approximation if one replaces the term %(;(W"’é) [0—6]inT en Fn,R(G F)
by alErpe(W;, 0) — Eppe(Wi, 0)].

S.4. PROOF OF THEOREM 5.1

To simplify notation, I suppress the dependence of O, (;);‘; and 6 on vy,, A,, and R when
there is no ambiguity. Let ¢ > 0 and 1 > 0 be two constants. Define

1 ifx>c+mn,
hen(X)=3(x—c)/n ifc+n>x>c, (8.3)
0 ifx<ec.

LemMma S.3. Under the assumptions of Theorem 5.1, uniformly in (F,R) € J, T;;(R) >
Ue, Fon,R(G}) + 0p (D).

Prook. Iestablish this lemma by proving the following chain of inequalities:

THR)> inf inf  nQ(0, yn,0) +op,(1)> inf _TF(R,yy)+op,(1)

én
(')’n,)ln)elne @ o (R) (Yn>An)€ly
= inf Tr(R,vn) +0p,(1) = T, r.nr(G}) + 0pp (1) (S.4)
(YnsAn)€ly

uniformly in (F, R) € J, where
T;: (R, vn)

VndEpp(W;, 0)
deo

2
= inf inf /[G:(é,t)—i— [0(yn, 6, é)—é]—FAn(t)} du(t),

60O, r(R
nF( )9 Rn21:(9)
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T (R, yn)

VndEpp(W;, 6)
de

2
= _inf inf [G;(é,twr [6(Yn, 6, é)—é]] du(t),

0 én
6<Onr (R) 0cR, 2(D)
0(Yn, 0, 0) = yn(6 — 0) + 0, and

dEppe(W;, 0)

Au(t) = Vn\/ﬁ[_’t(o) - \/ﬁ 40

[0(yn, 6, 0) — 8] + G:(0,t) — GE (0, 1).
Again, to simplify notation, I suppress the dependence of A, on F, R, 6, and 6. Notice

that T(R, yn) = infée@" #(R) inf ¢ 100, vn,0).
’ 0eR, 2 (0)
A én
First, Theorem S.3 and Assumption B.5 imply that if 6} € @}, then 6;; € 6, (R) with

probability approaching 1 uniformly in (y,, A,) € I, and (F, R) € J. Therefore, uni-
formlyin (F,R) € J,

T;(R)y= inf _ nQ; (6}, vx,0)>= inf _ inf  nQ}(6, v, 0) + op(1).
(Yn,An)€ln (Yn,An)€ln %’
Oe@n,F(R)

&
This establishes the first inequality in equation (S.4). Next, notice that if 6 € ©,°.(R),

fn -
then 6 € an, r(0) forsome 6 € O, r(R). Therefore, the second inequality in equation (S.4)
follows from

inf  nQx(0,v,,0)> inf inf  nO}(0, ya, 0) =T (R, ya).
£ 6€0, r(R) én

sn e ~
0€0,%(R) 0eR, ()

Now I prove the equality in equation (S.4). By the triangular inequality,

inf TR,y +8,> | inf  Ti(R,y)= | inf _T3(R,va) — 8,
(Yn>An)€ly (Yn>An)€ly (Yn>An)€ly

where §, = SUP (y,, A)eT, SUPGed, r(R) SupeeR‘f”F/z(é) 1Anll2,u- If 8, is op,(1) uniformly in
(F,R)eJ, ’

\/ inf _T;<R,vn)+opF(1)=\/ inf _ T#(R, yn)
(YnsAn)ely (Yn,An)eln

uniformly in (F, R) € J. Then, because inf(%“/\n)efn f,*[(R, Yn) = Op, (1) uniformly in
(F,R) € J, Lemma S.10 implies the equality in equation (S.4). To see 6, = op, (1) uni-
formly in (F, R) € J, first notice that by definition,

VndEpp(W;, 0) _ nyndErpe(W;, 6)
de N de

Then one can write A, = A, 1 + A, 2 + A, 3 where

[6(Yn, 0, 0) — 6] (60— 8.

An1(6) = yu/n(pe(0) — Eppe(W;, 0)),
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dEpp (Wi ®) ) é]>,

Apo(t) = vnﬁ<EFpt(VIG, 0) — 70

Ay 3(t) =Gh(0, 1) — G(0, 1).

By the triangular inequality, [|Anll2,, < 1An, 1112, + 1472112, + 1A7,31l2, .- Because y,/n <
/Kkn and k, Inlnn/n — 0, Definition 5.1(iii) implies that uniformly in (F, R) € 7,

sup sup sup [ Ap il < sup  Vkn|pt(8) —Eppe(Wi, 0)| = op,(1).
(ynsAn)€ln 66, £ (R) 0eREM?(6) (6,0€OxT

Next, by the triangular inequality and the fact that y,/n < /k,,

1Anallop < «/—Kn\/ /T

+m/ fT Epp(Wi, )| du(v).

. dEpp(W;, b - |?
Erpo (Wi, 0) — Eppu(W, ) — %[o — a1l duco

Therefore, uniformly in (F, R) € J, SUP(y, Anel, SUPGeo, r(R) SupaeRﬁ”F(é) 1As,202,, = o(1)
by Assumptions B.1(ii), B.2(iii), and B.4(ii). ’

Lastly, if w € £°(@ x T), define gr,¢(w) =sup_y 5 < SUPrer 1@ (6, 1) — w(0,1)].1first
show that for any € > 0

lim sup Pr(gr,¢, (G}) > €)= lim sup Erl(gr,z, (G}) > €) =0.

" FeF " peF

Notice 1(gr,,(G}) > €) < hg,% o gr,¢,(Gy) where h%,g is defined by equation (S.3).
Then H = {hg,g} and G = {gr,¢ : ¢ > 0, F € F} satisfy the assumptions of Lemma S.5.
Lemma S.5 implies that

i * —_ € €
nhﬁn;o;lig?inFh%’% OgF,g(Gn) Ehi’i o gF,g(GF)|
— i * € € * —_ € €
= nlgg();gg_sgg}ﬁ)@pﬂi hi’z ogFf((G”) Eh§=§ ogF’,g(GF)|
< lim sup  sup EFE*hs,s o8 G* —Ehg’g o8 (GF)
n—>ooFE]_-§>0’ﬁe}_| 2°2 F’f( ”) 2°2 F,& |
< lim supEr sup ’E*h%’% Ogﬁ’g(G;’;) —Ehag ogﬁ’g(GF)| =0.

"TOFeF  g0,FeF
The last inequality holds by Jensen’s inequality. This means that

lim sup \Eph%,% O 8F,¢, (G;’;) —Eh

n_)OOFE‘F

0 gr,&,(Gp)| =0. (S.5)

£ €
2°2
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By Definition 5.1(iii), o is uniformly pre-Gaussian. Then equation (S.5) and Assump-
tion B.4(iii) suggest

lim sup]EFI(gF £,(G}) > €) < lim supEphe < 0 gF, & (G)) = hm sup Ehs < o gr.¢,(Gr)

< lim supP( sup  sup|Gp(6,t) — GF(6,0)| > ):().
=0 peF dp(0,0)<é&, teT

Uniformly in (F,R) € J, sup,, ,ei, SUPGea,, 1 (R) SUPgerén2 (4) 1An3ll2,n < &F,,(G}) =
op,(1). The above bounds imply that §,, = op, (1) uniformly in (F, R) € J and the equal-
ity in equation (S.4) follows.

To prove the last inequality in (S.4), I only need to show that if 6 € R% F(é), then
0(yn, 0, 6) € Rflt‘F(é) for sufficiently large »n and all (y,, A,) € I,. Notice that if # is
sufficiently large, y, < «/k,/n < 1 for all (y,, A,) € I,. Therefore, 6(y,,0,0) € @, N R
by convexity (Assumption B.2(i)) and the fact that 6, 6 € ®, N R. Because, in addi-
tion, drp(0(yp, 0, 0), 0) < &,, O(yn, 0, 0) € Ri'jF(é) for all (y,, A,) € I, if n is sufficiently
large. d

ProoF oF THEOREM 5.1. Proof of the first claim. Because T,/ (R) is weakly decreasing
in I,, I only need to prove the first claim under I, = I,,. Notice that by Lemma S.3,
Ci(1—a,R) > qi(1—a,T¢, F.ur)+opy(1) uniformly in (F, R) € 7. Define G = (T pm.Rr :
k>0, (F,R) € J,me Z"}. Then by Theorem S.1,

limsup sup Pr(T.(R)>Ci(1—a+mn,R)+n)
n— 00 (F,R)ej

<limsup sup IP’F(an,FnR(GnF)>qn<1—a+ an,p,,R>+72’>
n—oo (F,R)eJ

<limsup sup SUPPF<g(Gn,F)>CI(1_aag,F)+ﬂ)
n—00 (F,R)eJ geG 4

+limsup sup supPF<q<1—a,g,F>>q;:(1—a+ﬂ,g)+ﬂ).
n—00 (F,R)eJ geG 2 4

The second inequality follows because I'¢, r , g € G for all n and (F, R) € J. Lemma S.7
ensures that G satisfies the assumptions in Proposition S.1. Therefore, equations (S.6)
and (S.7) of Proposition S.1 imply that the first term after the second inequality is no
larger than « and the second term is 0. This implies that the test is valid if n > 0.

Now suppose that in addition, Assumption B.7 holds. For any € > 0, Proposition S.1,
Lemmas S.6 and S.7 imply that for any sufficiently small n > 0,

lim sup sup Pr(Ta(R) > Cii(1 —a, R))
=00 (F,R)eJy; (@)

<limsup sup Pp(ly (Gyp)>ql—a—n,T, 5, F)—n)

n—oo Jej,f(a)
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<limsup sup Pp(lyj(Gyp)>ql—a+n,T, 5, F)+n)

n—oo JEJ,,E(OZ)

+limsup sup Pr(¢(l—a+mn,Tyy, F)+n=T, (G, p)>ql —a—n,T, 5, F)—n)
=00 JeJyg(a)

<oa+limsup sup ]P)F(CF(l —a+2n, Fn,J) +2n > Fn,J(GF) >Cp(l—a—2n7, Fn,]) — 27]),
n— o0 JEJnE(CV)
whereI', ; =T¢, F.n,r and J = (F, R). The second term in the last line converges to 0 as
n — O under Assumption B.7(i). This suggests that limsup,,_, ., SUp(r gy 7¢(a) PF(Tn(R) >
C:(1—-a,R)) <aforall e > 0. Therefore, there exists €, | 0 such that

limsup  sup  Pr(T(R)>Ci(1—a,R)) <a.
=00 (F,R)eJ,;" (a)

This implies that

limsup sup Pr(T,(R) > C;(1—a,R))
n—oo (F,R)eJ

<limsu su Pr(To(R) > C*(1—a, R)
p P n
=00 (F,R)eJ\JT " (@)

v osuip Pe(Tu(R) > Ci(1-a,R))]
(F.R)eT;" (e)

< [limsup sup Pr(Tw(R) > Cii(1 — a, R))]
=00 (F,R)eJ\T 5" (a)

v [limsup sup  Pp(Tw(R) > Ci(1 —a, R))].
=00 (F,R)eJ," ()

Assumption B.7(ii) implies that the first term is at most «. And the second term is at most
a by the above argument. Therefore, the test is valid with » = 0.
Proof of the second claim. For any (vy,, A,) € I,

f 0, yn, A
TH(R) nQn( Vn,) eeglmRnQ”( Vs An)

Kn Kn Kn

By Theorem 3.6.2 in Van Der Vaart and Wellner (1996), G};(6, t) converges in distribu-
tion to Gr(6,t), Pr almost surely. This implies supy ¢)cox1 |G (0, )| = Op«(1), Pr al-
most surely. In addition, sup 4 ¢)c@xt |0t(0) — EFpe(W;, 0)| = o(1), Pr almost surely. Then
Yn < /kn/n — 0and k, — oo imply that P almost surely

/ G (6, > dp(t)

L& { [ [Erocm. o +
Kp Ge@ ﬂR Kn
2 [ [Erpu, 0)G;6. 0] dut
+ T \/K_ +0]p*(1)}

= min Qfr(6)+ op«(1).
0c®NR
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Therefore, 7;F(R) = Op+(k,), Pr almost surely. Because @ N R is compact and Or N R = {,
mingepnr Qr(0) > 0 by the continuity of Qr(-). By Theorem S.1, T,,(R) diverges to infin-
ity at rate n, which is faster than «,. Therefore, the second claim holds. If (0, k) € I,
then T;}(R) < fT |G} (65, ¢) 12du = Op+(1), Pr almost surely. Hence, under a fixed alterna-
tive, the bootstrap critical value does not diverge. O

S.5. POWER COMPARISON WITH CNS: AN EXAMPLE

In this section, I show that one can construct examples where for each sequence of
rescaling parameters in my test, there exists a sequence of tuning parameters in CNS
and a sequence of data generating processes along which the test based on CNS has
better size control or power. Similarly, for each sequence of tuning parameters in CNS,
one can find a sequence of rescaling parameters and a sequence of data generating pro-
cesses along which my test has better size control or power.

ExaMPLE S.1 (Asymptotic Size). Consider the case where WW; = (X;, Y;) is bivariate nor-
mal with the identity covariance matrix and has mean 6f, = (61 ,, 62 ,) as n — oco. One
would like to test Hy : 6r > 0 against H; : 6r # 0. Then the moment conditions are
Er(W; — 6) = 0, where 0 = (61, 6,). The test statistic that gives equal weights to both
moment conditions is

2

2
1 & 1 & -
[ﬁ D (X = 01,,) — V(0 — el,n)} - [% D (Y = 6p,) — V/n(6; - Bz,n)}
=1 i=1

T,(R)= min
(01,62)=0 2
1 - z 1 M- 2
- X—-01,)—M| +|— X —01,)—hy
= min ’
(h1,h2)€V(0F,) 2

where the true local parameter space is
Vu(0F,) = {(h1, h2) 1 b /Nn = =010, ha /= =024}
Similarly, the bootstrap statistic with I;, = {(\/k,/n, 0)} is

2
1 & _ 1 & _
[ﬁ Z(X;‘ - X) - hl} + [% Z(yl.* ~Y) - h2:|
Ti(R)=  min i=1 5 =1 +op, (1),
(h1,h2)eV)" (0F,)

where V" (0F,) = ((h1, h2) : hi /N> =Yn01,n, ha/ /B = —Yn02,4).
If one follows the method proposed in CNS to estimate the local parameter space,
one can obtain a bootstrap statistic

2

52
\/ﬁ i=1

2 2
* % 1 - * \/
(XF - X) - hl} + [ﬁ Z(Yi ~-Y) - hz]
T:,CNS(R) = min

(h1,hp)eVE (B,) 2 ’
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where 6, = (91,,,, éz,n) is the minimizer obtained from the minimization problem for
T.(R), r, is a sequence of positive numbers that converges to 0, and

o hy
V;{'(f)n)={(h1,h2) ﬁ> 91n+mln(01n,rn),ﬁ

Given y, = O(y/1/Inn),letr, = 1/y,v/n, 61, =0and 6, , = ¢/y,/n where c is a con-
stant. And let Z; and Z, be two independent standard normal random variables. Along
Fy, T,(R) and T} (R) converge to min(Zy,0)?/2 and [min(Zy, 0)? + min(Z; + ¢, 0)?]/2 in
distribution, respectively.

Suppose ¢ = 1.01. Because 6, , = 0, , + Op,, (n~1/?),

> _éZ,n +min(62,na rn)}-

Pr, (62,0 > 1) =P, (82,0 — 02,0 > rn — 02.0) =P, (% (12> L=< )

')’nﬁ
converges to 1. This suggests that along F,,, T* CNS(R) converges to min(Z;, 0)2/2. There-
fore, T,; ns(R) leads to a test that has the exact asymptotic size for all « > 0.5 along F,,.
On the other hand, a 10% test using 7,*(R) has a rejection probability that converges
to 8.75%, while a 5% test has a rejection probability that converges to 4.4%. Therefore,
T,’: cns(R) has better size control.

Now suppose ¢ = 0.99. Given any r, such that \/Inn/n = O(r,), let y, = 1/r,/n. Let
01., and 6, , be the same as the above. Along F,, PFn(éZ,n >r,) — 0and T;‘;CNS(R) con-
verges to [min(Z, 0)2+min(Z,,0)2]/2. Then a 10% test and a 5% test based on T:’CNS (R)
have asymptotic sizes 4.29% and 1.99%, respectively. The corresponding values based
on T*(R) are 8.69% and 4.37%, respectively. Along this F,,, my method has better size
control.

ExamMPLE S.2 (Local Power). Consider the same testing problem as in the previous
example. Construct F, in the same way as above except that 6; , = —1//n. Then
F, is a sequence of local alternatives. Along F,, the limiting distribution of 7,(R) is
min(Z; — 1,0)2/2. The limiting distributions of the bootstrap statistics are the same as
the ones calculated in the previous example. If ¢ = 1.01, a 5% test using 7,;(R) rejects
with a probability converging to 36.07%, while a 5% test using T} -5 (R) rejects with a
probability converging to 38.91%, which is about 3% higher. If c = 0.99, a 5% test based
on 7T;(R) has a rejection probability that converges to 35.94%, while a test based on

T, cns(R) has a rejection probability that converges to 23.63%. Now T;7(R) has better
power. A similar result holds for a 10% test.

S.6. USEFUL RESULTS
LEMMA S.4. If Assumptions B.1-B.3 hold, then JF(@n(R), 0,,F(R)) = op, (1) uniformly
in(F,R)e J.
THEOREM S.2. IfAssumptlons B.1to B.3 hold, then uniformly in (F R) € j, w, F(@ (R),
OF NR) = Op,(n17"/2), du ;(On(R), Oy £ (R)) = Op,(n~2), and dp(On(R), O 5 (R)) =
1
Op,(&in~ 2”).
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The first claim in Theorem S.2 says that under c?w, F, the convergence rate is para-
metric even though 6 contains unknown functions. Hong (2017) obtains the same con-
vergence rates in conditional moment equality models with semi/nonparametric un-
known parameters. My result is stronger in the sense that the rates are valid uniformly
on J. It holds because Definition 5.1(iii) implicitly restricts the complexity of ®. With
a more complex parameter space, the convergence rate can be lower. The convergence
rate under dr is generally slower than the parametric rate because ¢;, — oo.

THEOREM S.3. IfAssumptions B.1 to B.3 hold and «,, — oo, k,Inlnn/n— 0, then

. R _1
limsuplimsup sup Pg( sup dw,p(@j‘;(yn, An, R), OF ﬂR) > Mk, 2) =0,
Mtoo  n=00 (F,R)eJ (Yn,An)Ein
)-o.

S A o _1
limsuplimsup sup Pp( sup  dp (05 (vn, Ans R), O p(R)) > My & 2”) =0.
Mtoo  n=00 (F,R)eJ ('}’n,)\n)EI_n

=

limsuplimsup sup Pg( sup C_iw,F(@:(')’n, My R), 0, F(R)) > Mk,
Mtoo  n—=00 (F,R)eJ (Yna)\n)EI_n

Notice that the convergence rate of @:(yn, An, R) has an upper bound that depends
only on «,, which allows me to freely change vy, without significantly changing the im-
posed identified set. This is possible because of the additional penalty term A,,Q,,(0).

ProrosiTION S.1. Let M(-, -) be a function on R? such that SUP(,, xy)ek M(x1, x2) < 00
for any bounded set K C R?. G is a collection of nonnegative functions on £ (0 x T) such
that forany g € G and w1, wy € £°(0 x T),

|g(@1) — g(@2)| < M([[@1lloo, |@2ll00)doo(@1, @2).
Then, for any n > 0 and « € [0, 1]

limsup sup supPr(g(Gy,r) > g(1 —a, 8, F) +1m) < e, (S.6)
n—oo FeF geG

lim sup sup supPF(q(l -, 8 F)>q(1—a+n,8) + n) =0. (S.7)
n—oo FeF geG

LeEMMA S.5. Let H be a class of bounded Lipschitz functions with Lipschitz constant y and
bound B. If the set of functions G satisfies the assumptions of Proposition S.1, then

lim sup Ef sup sup|E*h o g(G}) —Ehog(Gp)| =0, (S.8)
N=>OFcF  heHgeG
lim sup sup sup|Erh o g(G,,r) —Eho g(Gp)| =0. (S.9)
N=OFeF heH geG

LEMMA S.6. Under the assumptions of Proposition S.1, for any n > 0,

limsup sup sup sup [Pr(g(Gn,r) € la,bl) —P(g(GF) €[a—n,b+1])] <0.
n—oo FeF geGa<beR
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LEMMA S.7. ForallmeZ*, (F,R) e J, k>0, and w1, wy € £°(O x T),

T m R(01) — T Fom, g (@02)| < 4max([|@1 lloo, [@2]lo0)doo (@1, ©2).

S.7. PROOFS FOR RESULTS IN SECTION S.6
Proor oF LEMmMA S.4. Notice that Lemmas S.8 and S.9 imply that Ve > 0, uniformly in
(F,R)eJ,
Pr(dp(On(R), Op r(R)) > €)

<P

< 0u(0) < inf 0u(0))

( inf
0€0,NR:dF (0,0, F(R))>€

. 1
= QF(O)—@lrngQF(O) 50]P’F<ﬁ>>

Pr inf
Be@nr‘\R:dF(e,@n,p(R))x

1
<Pp <Sn(€) < Opy <ﬁ)> — 0.
The third inequality holds by Assumption B.3(i). O

ProoF oF THEOREM S.2. Ibegin with the first claim. Let 6r r be a point in @r N R. This
point exists as long as (F, R) € 7. By Lemma S.9,

|0n(I1,ROF,R) — QF (I, ROF,R)| < 2dw, (I, ROF,R, OF,R) An,F + Bu,F,

where A, F = OPF(n_1/2), B, r= O]pF(n_l) uniformly in F € 7. By Assumptions B.1(ii)
and B.2(iii),

2C 1
2dy, r(, ROF,R, OF,R) An,F < C; ds(I1,, ROF,R, OF,R) An,F = Opp <;>,

which implies uniformly in (F, R) € 7,

1
|On(I1,,ROF,R) — Qr (T, ROF,R)| = Op; <;> (8.10)
Because d, r(0, OF) = dy, r (6, Or N R) for (F, R) € J, Lemma S.9 implies
Qn(‘g) > QF(G) - 2dw,F(0a @F mR)An,F - Bn,F- (8.11)

Therefore, for sufficiently large »

Pr(v/ndyr(0,(R), O N R) > M)

=Pr( inf 0.(0) = QI x0r.1))
oe@nmR:dw,Fw,@FmRb%

E]P)F( inf [QF(H) _Zdw,F(ea @F rjle)/ln,l‘" _Bn,F] =< QF(Hn,ReF,R) +O]]7’F(n_1)>
He@nﬂR:d“,_F(l),@FﬁRb%

< Pr(inf (> — 26V, 1) < O, (D). (S.12)
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The first inequality holds by Lemma S.8 and the fact that II,, r0r r € ®, N R. The sec-
ond inequality holds by equations (S.10) and (S.11). Because Qr(8) = dy, (6, Or N R)?
and B,y = Op,(n~!), one can multiply both sides by n and use the change of variable
x = /ndy, (6, Or N R) to obtain the last inequality. Lastly, notice that \/nA, r = Op, (1)
uniformly in (F, R) € 7. As M — oo, the probability in the last line of equation (S.12)
converges to 0 uniformly in (F, R) € J because inf,> w(x? — 2x/nAp r) diverges to in-
finity. This concludes the first claim.
For the second claim, notice that for any 6; € 0, 6, € ®r N R, and 63 € O, r(R),

dw,r (01, 02) <dy, r (01, 03) + dy, (02, 63).

By the definition of @, r(R),

duw,F (02, 03) = OF(03) < \/Qr(I1, R02) = dy p(I1,, RO2, 02) = 0(n"/?).

This shows that d,, r(01, 62) < dy, (61, 63) + o(n~Y2). Because this holds for all 6, €
OrNRand 03 € O, F(R), dy,F(01,Or NR) <dy (61,0, F(R)) + o(n~1/2) uniformly in
(F,R) € 7. Similarly, dy, £ (81, @ r(R)) < dy (81, O NR) + o(n~/2). This implies that
uniformly in ®; c ® and (F, R) € J,

;lw,F(@l , 0, F(R)) = dw F (01,0 NR) + o(n=12). (5.13)

Therefore, dy, p(On(R), Oy (R)) = dy (04 (R), OF N R) + o(n~"/?) = Op, (1/ /).
For the last claim, by Lemma S.4, ©,(R) C 0;, -(R) with probability converging to 1
uniformly on 7. Then by Assumption B.3(ii),

1
limsup sup Pp <67F(@n(R), 0, F(R)) > M<i> )
n—0o (F,R)eJ vn

<limsup sup IP’F< sup dF(O,@,,,F(R))V>M"ﬁ)
n—oo (F,R)eJ 096, (R) «/ﬁ

<limsup sup PF<¢E§” sup dw,p(a,@mF(R))>M”§n).
n—o00 (F,R)eJ 6c@,(R)

As M goes to infinity, the last term goes to zero by the second part of this proposition. O

Proor oF THEOREM S.3. To simplify exposition, I suppress the dependence of (;);’; on
Yn, An, R and the dependence of O} on v,, A,. Again, 6 g is an arbitrary pointin @r N R.

Because /ny, < /kn,

nQ;(6) = /T G(0, 0% dpu(t) +2/nyn [T G (0, ©pe(0) d(t) + Ky /T pr(0)* dpu(t)
z/GZ(B,t)ZdM(t)JrAn(B)—Bn(O)EQ,";,l(O),
T

nQy (I, rROF,R) < /T(G%Z(Un,RGF,R,t)2 du(t) + A,(I1, rOF,R) + By(I11, ROF R)

= 0, ,(I14,ROF,R);



Supplementary Material Nonparametric/semiparametric models 17

where

An(0) = Kn/Tﬁt(O)sz(t), Bn(9)=2\/Kn/TGZ(0, t)2dﬂ(t)/rﬁt(0)2d,u(t)~

Notice Q7 | and Qy , are both independent of (yx, A,). By Lemma S.8 and the fact that
I, ROF R €O, NR,

IPF< sup \/K_nc_iw,F(@:;,@FﬂR) >M)
(')’ny)\n)ein

<Pr (30 A €1y inf nQ;(6) < nQ} (I, R0r,))
Oe@ﬂR:dw,F(G,@FﬂRb%

<P inf [01(6) = OF 5 (I, R0r,R)] <0).
Oe@ﬂR:dw,F(e,@Fan%

To prove the first claim, I only need to show that for M sufficiently large, the last line is
arbitrarily small uniformly in (F, R) € J as n — oc.
To see this, first notice by the triangular inequality,

K K
knQF(0) +./—  sup |G r(0,0)] =V Au(0) = VinQr(0) — [— sup |G r(6,0)].
n (9,0)eOxT n (9,)eOxT

Because sup g ¢)c@x1 |Gn,7 (0, t)| = Op, (1) uniformly in F € F and «,/n = o(1), this im-
pliesV0 € R

VAn(0) = k2 QF (0) + 08, (1) = /K, (6, OF N R) + 0p, (1) (S.14)

uniformly in F € 7. Then by Assumption B.2(iii), uniformly in (F, R) € J,

\/An(nn,ReF,R)=0<\/¥> + opg (1) = op(1). (8.15)

Because g is uniformly Donsker, by Lemma A.2. in Linton, Song, and Whang (2010),
for any € > 0,

lim sup sup ]PF( sup |G} (6,1 >M) < sup ]P’F< sup  |Gr(6,1) >M—e>,
n—oo FeF (6,)eOxT FeF (6,)eOxT

which converges to 0 as M — oo. Hence, sup g peoxt |G, (0, )] = Op, (1) uniformly in
F € F. This and equation (S.15) imply that

B, (I1,, ROF,R) =2\//T G (I, ROF,R, ©)? du(t),/ Ay(I1, ROF,R) = 0P, (1)

uniformly in (F, R) € J.
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Next, notice by equation (S.14), V6 € R,

An(0) = Bu(0) = [/Kndw,F (6, OF NR) + op(1)]

X («/K_ndw,p((?, Or NR) + op, (1) — 2\// G(6,1)? d,UL(t))-
T
Define x = \/kndy, (0, O N R). Then V6 € R, uniformly in (F, R) € J,

0% 1(0) — O, (T b ) = /T G0, 02 dpa(t) — /T G (1T kO 1, O dp (V)

+ An(e) - Bn(e) - [An(Hn,ROF,R) + Bn(Hn,RGF,R)]
= —|0p, ()| + x* — |Op, (1) |x + op,. (D).

Then the first claim of the lemma follows because

limsuplimsup sup P inf [051(0) = 0 Ik, rOF,R)] <0)
Mtoo n—oo (F,R)eJ Oe@mR:dw,p(O,@meb\/’% ’ ’

=limsuplimsup sup Pr (

inf (~|Op; ()] + ¥ = |0z, (1)]x + 05, (1)) =0) =0.
Mtioo n—o0 (F,Rjeg  *>M

The second claim holds because of equation (S.13). The third claim follows by Assump-
tion B.3(ii). O

Proor or ProposITION S.1. I start with proving equation (S.6). Let 4. , be defined as
in equation (S.3). Then # = {h, 5 : c € R} is a collection of Lipschitz functions with Lips-
chitz constant 1/7 and upper bound 1. By equation (S.9) in Lemma S.5,

lim sup sup sup sup]Eic’n 08(Gyu ) —Eheyo g((GF)‘ =0. (S.16)
n—o0 FeF geG ceR

Because Erhe p o (G r) > Pr(g(Gnr) > ¢ +n) and Ephe , 0 g(Gr) < P(g(GF) > ¢),
equation (S.16) implies

limsup sup supsup[Pr(g(Gn,r) > ¢ + 1) — P(§(GF) > ¢)] < 0.
n—oo FeF geG ceR

Therefore,

limsup sup sup[Pr(g(Gy,r) > (1 —a, g, F) +n) —P(g(Gp) > g1 — a, g, F))]
n—o0 FeF geG

< limsup sup supsup[Pr(g(Gn,r) > c+n) —P(g(Gr) > ¢)] <0.
n—o0 FeF geG ceR

This implies equation (S.6) because P(g(Gr) > g(1 —a, g, F)) < a.
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Now I show equation (S.7). Because /(1—q,g,F)—n,n(X) < 1(x > g(1—a, g, F) —n) and
th(l—a,g,F)—n,n 08(Gr)=>a,Ve>0,

limsup sup supPr(g(1 —a, g, F) > qi(1—a+e,8) +1n)
n—oo FeF geG

<limsup sup supPr(E*1(g(G}) > g1 —a, g, F) — n) <a —¢)
n—oo FeF geG

<limsup sup supPr(E*hy(1-q,g,F)—n,n © &(G}) — a < —€)
n—oo FeF geG

<limsup sup supPr (E*g(1-a,g,F) 5.7 © 8(G) — Bhg(1-a.g.F) .7 © §(GF) < —¢)
n—o0 FeF geG

1.
< —limsup sup Ef sup|E*hq(1_a,g,F)_n,n o g(G’,‘l) —Ehy1-a,g,F)—n,n © g(GF)|.
€ n—soo FeF  geG
Notice that G and H satisfy the assumptions of Lemma S.5. Then equation (S.7) follows
because by equation (S.8),

limsup sup Ef Sup}E*hq(l_mg’F%n o g(G;’;) —Ehg1-a,g,F),m© g(GF)|
n—oo FeF geg

<limsup sup Ersupsup|E*h¢ y 0 g(G};) — Ehe y 0 g(Gp)| =0.

n—-oo FeF ceR gegG U

Proor oF LEMMA S.5. I only prove equation (S.8). Equation (S.9) follows in a similar
way. First, let K be a positive number. For g € G, define gk (w) = g(wg) where wg (6, t) =
sign(w (6, t)) min(Jw (6, )|, K) and Gk = {gx : g € G}. Notice wg(0,t) € £*°(O x T),
and it is bounded by K. Therefore, & o gx(w) is Lipschitz with a constant
SUP |y, <K, x| < kK M(X1, X2)Y and has a bound B for all g € G and & € H. By the triangu-
lar inequality,

Er sup sup|E*h o g(G};) —Eh o g(Gr)| < D1+ Dy + D3,
heH geG

Dy =Ep sup sup|E*h o g(G}) —E*h o gk (G})
heH geG

D, =Ep sup sup|Eh o g(Gr) —Eh o gx(GF)|,
heH geG

D3 =EF sup sup|E*h o gg (G};) — Eh o gx (GF)|.
heH geG

>

Notice D < ZBPF(sup(g)t)eng |G} (0,t)| > K) and D, < ZBP(supw’t)englGF(O, | >
K). Lastly, because / is bounded by B, Ve > 0,

D3 <€e+2Bsup ]P’F<sup sup|E*h o gk (G}) — Eh o gk (Gp)| > e).
FeF heH geG

By Lemma A.2 in Linton, Song, and Whang (2010), the second term on the right-hand
side converges to 0 as n — oo. Hence, limsup,,_, ., supp. = D3 < € for every € > 0. Conse-
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quently, Ve > 0, K > 0,

lim sup Eg sup sup|E*h o g(G};) — Eho g(GF)|
N=>OFcF  heMHgeG

<2B lim supPr( sup |G)(6,t)|>K
N0 peF <(0,t)e(~)xT| " | )

+2B lim supIP’( sup  |Gr(6, 1) >K>+e.
" FeF  N6,)eOxT
By Lemma A.2. in Linton, Song, and Whang (2010) and Definition 5.1(iii), the first two
terms are arbitrarily small for sufficiently large K and e can be arbitrarily small. There-
fore, equation (S.8) follows. O

ProoF oF LEMMA S.6. Just notice that the set of function H = {hyn — hp n :a < b e R}
is a collection of bounded Lipschitz functions with Lipschitz constant y < 2/7. Then by
Lemma S.5,

supsup sup [Pr(g(Gnr) € [a,b]) —P(¢(Gr) € [a—n,b+])]
FeF geG a<beR

<supsup sup [Er(ho—nn—hpy)o8(Gur) —P(g(GF) €la—mn,b+7])]
FeF geG a<beR

— supsup sup [Ep(hg—n,n— hp y) 0 8(Gr) —P(g(GFr) € [a—n, b+ n])] <0. 0
FeF geG a<beR

ProoFr or LEMMA S.7. Without loss of generality, assume 'y 7 m r(®1) > I F.m r(w2).
By the definition of I'y r ,, r, Y€ > 0, 30 e Om,r(R) and 30 € R, F(é) such that

2

/T wz<é,t)+ﬂﬂ@”’;7(6%é)[e—é] dp(t) < Ty g F.m(®2) + €. (S.17)
Therefore,
L rym,r(@01) — i Fym,R(02)
s/T‘wl(é,t>+ﬂ‘”E”’;7(6m’é)w—é] 2dM(t)
—fT wz(é,t>+ﬁ‘”5”;7(0m’é)[e—é]2dmt)+e
sdoo(wl,wz)fT‘m(é, t)+zﬁ‘m”’;7;%é)w—é]+wz<é, t)‘du(t)Jre
gzdoo(wl,wz)fT‘m(é, t)+ﬂ%§m’(s)[0—é]‘du(t)

+doo(w1,wz>/T|w1(é,t> — w2(0, O] du(t) + €.



Supplementary Material Nonparametric/semiparametric models 21

Because 6 € Ry, F(é), TR Fm(w2) < fT lw2(0, £)|> du(t) < ||w2||go. Therefore, by equa-
tion (S.17) and Jensen’s inequality,

< dEppy(W;, 6 -
f (0, t)+\/m%[o—e]‘dﬂ(t)
T
~ dErpe(0, W; .2
5\//‘0)2(0, t)+\/m$[e—e] du(t)
T

< VTR Fm(2) + Ve < |oalloo + Ve < max([|i]loos | @2]l00) + €.
In addition, [3|w1(6, t) — w2(6, )] dpu(t) < 2max(||w1llso, [lw2llo). Therefore,

L rom,r(01) = T pom,R(@2) < 4doo (w1, @2)[max(|l 1o, |@2]lcc) + V€] + €.

Because e can be any positive number, the lemma follows. O

S.8. SUPPLEMENTAL LEMMAS

LEmMA S.8. Let f be a nonnegative function defined on © and d is a metric such that for
some C > 0, d(6y, 62) < Cds(6y, 6) for every 61, 6, € O. If @, = arginfoco,nr f(0), then
forany AcO®,NRande>0,d(0,, A) = SUPy.6, inf;_ , d(0, ) > € only if

inf f(0)< inf f(0).
6€O@,NR,d(0,A)>€ 6cO®,NR

PROOF. Because d(0,, A) > e, there exists 8 € 0, such that d(8, A) > € + 6 for some
8 > 0. By the definition of arginf, there exists a sequence {6;};-, in ©, N R such that
ds(0, 0;) — 0 and limy_, o f(6x) = infyc@,nr f(6). Therefore, for any sufficiently large k,

d(0y, A)>d(6, A) —d(0, 0;) > e+ 6— Cdg(0, ;) > €.
As aresult,

inf 0) < lim f(6;)= inf 0).
Oe@nﬂR,d(e,A)>ef( )_k—>oof( K) Ge@nﬁRf( ) =

Lemma S.9. There exist random variables A, r and B, r such that uniformly in F € F,
Ap g =0p,(n"1?), B, p =Op,(n"), and

|OF(0) — 0n(0)| < 2dy, r (8, OF) Ay F + By p = Op, (n~1/?).
ProoF. First notice that

Z/TGn,F((?, OErpc(W;, 6) du(t) /TGn,F(H, t)zdlb(t)
NG * n

|OF(0) — 0n(0)| =

2dy, (0, @F)\/fTGn,F(O, )2 du(t) /Gn’p(ﬂ,t)zd,u,(t)
T

< -
Vn n
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2
sup |Gy, (6,0 sup |Gy, r(6, )]
(0,H)eOxT N (0,0€OxT

Jn n
=2dy,F(0,0F) Ay F + By F,

<2dy,r(0,0F)

where A, r = sup g eoxt |Gnr(0,0]/v/n and Bu,r = sup gecoxt|Gnr(6,0)?/n.
By Definition 5.1(iii), sup g ¢yc@xt|Gn,F(0,t)] = Op, (1) uniformly in F € F. Conse-
quently, A, r = Op,(n~'/?) and B, = Op,(n~!) uniformly in F € F. Lastly, notice that
dw.F(0,0p)% < supp.» EFF(W;)? < co. Therefore, 2d,, (0, OF) Ap F + By = Op,(n~1/?)
uniformly in F € F. O

LeEMMA S8.10. {X,,4}7°, and {Yy 4}, are sequences of random variables indexed by

a € A and defined on the same probability space. For every a € A, P, is a probabil-
ity measure on this probability space. g is a continuous function on the real line. If
limsup,,_, .. SUp,c 4 Pa(|Xn,a — Yn,al > €) =0 Ve > 0 and X, , is asymptotically tight uni-
formlyina e A, thenVe > 0, limsup,,_, . sSup,c 4 Pa(18(Xn,a) —&(Yn,a)| > €) =0.

Proor. By Assumption, Vn > 0, 3M > 0 such that limsup,,_, ., sup,c 4 Pa(|1Xn,al > M) <
7. Because g is continuous, it is absolutely continuous on [—2M,2M]. For any € > 0,
there exists 0 < 6 < M such that |g(x) — g(y)| <eifx,y e [-2M,2M] and |x — y| < §,

Po(|g(Xn,a) = 8(Yn,a)| > €) <Pa(|Xn,a — Yn,al > 8, | Xnal <M, |Vl <2M)
+Pu(|Xnal <M, |Ynal > 2M) + Py(|Xp,al > M)
<Pu(IXna — Ynal > 8)
+Pu(|Xna — Ynal > M) +Po(1Xn,al > M).

The first two terms converge to 0 uniformly in a € A. Therefore,

limsup sup Py (|g(Xn,a) — 8§(Yn,a)| > €) <limsupsup Py (| Xp,al > M) < 7.

n—oo aeA n—0o0 ae_A
This concludes the proof because n can be any positive number. O
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