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Appendix B: Summary

In the Online Supplementary Material, we first give the proofs of asymptotic theory re-
sults in the main text. We then report results from a sensitivity analysis we carried out to
check the robustness of our empirical results. In Section D.1, we report additional QSF
estimates obtained for different regions of interest, with grids of values of X of varying
cardinality and length, as well as with additional quantile levels. We also compare ASF
estimates obtained by least-squares projection, as described in Remark 4 in the main
text, to those obtained by QR. In Section D.2, we report more flexible QSF estimates in-
cluding additional powers of the control variable �−1(V )k as well as interaction terms
X ·�−1(V )k, Z1 ·�−1(V )k, andX ·Z1 ·�−1(V )k. The selection of these additional terms
is investigated for the ASF by means of a least-squares cross-validation procedure. In
Section D.3, we exploit knowledge of the control function distribution and implement a
simulation-based integration procedure as an alternative to sample averaging over the
estimated control function. Finally, in Section E, we perform several Monte Carlo simu-
lations in order to assess the finite sample performance of our estimators. We compare
the DR and QR estimators of structural functions with several designs calibrated to the
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empirical application. We give a detailed description of our calibration procedure for
the Monte Carlo simulations. Overall, our robustness checks show that our empirical re-
sults are robust to the modeling, estimation, and integration choices, and our additional
simulation results confirm the main findings for the ASF discussed in the main text.

Appendix C: Asymptotic theory

C.1 Notation

In what follows, ϑ denotes a generic value for the control function. It is convenient also
to introduce some additional notation, which will be extensively used in the proofs.
Let Vi(ϑ) := ϑ(Xi�Zi), Wi(ϑ) := w(Xi�Z1i� Vi(ϑ)), and Ẇi(ϑ) := ∂vw(Xi�Z1i� v)|v=Vi(ϑ).
When the previous functions are evaluated at the true values, we use Vi = Vi(ϑ0), Wi =
Wi(ϑ0), and Ẇi = Ẇi(ϑ0). Also, let ρy(u�v) := −1(u≤ y) logΛ(v)−1(u > y) logΛ(−v). Re-
call thatA := (Y�X�Z�W �V ), T(x)= 1(x ∈X ), and T = T(X). For a function f : A �→ R,
we use ‖f‖T�∞ = supa∈A |T(x)f (a)|; for a K-vector of functions f : A �→ R

K , we use
‖f‖T�∞ = supa∈A ‖T(x)f (a)‖2. We make functions in Υ as well as estimators ϑ̂ to take
values in [0�1], the support of the control function V . This allows us to simplify notation
in what follows.

We adopt the standard notation in the empirical process literature (see, e.g., van der
Vaart (2000)),

En[f ] = En
[
f (A)

] = n−1
n∑
i=1

f (Ai)�

and

Gn[f ] =Gn
[
f (A)

] = n−1/2
n∑
i=1

(
f (Ai)− EP

[
f (A)

])
	

When the function f̂ is estimated, the notation should interpreted as

Gn[f̂ ] =Gn[f ] |f=f̂ and EP [f̂ ] = EP [f ] |f=f̂ 	

We also use the concepts of covering entropy and bracketing entropy in the proofs. The
covering entropy logN(ε�F�‖ · ‖) is the logarithm of the minimal number of ‖ · ‖-balls of
radius ε needed to cover the set of functions F . The bracketing entropy logN[](ε�F�‖ · ‖)
is the logarithm of the minimal number of ε-brackets in ‖ · ‖ needed to cover the set
of functions F . An ε-bracket [��u] in ‖ · ‖ is the set of functions f with � ≤ f ≤ u and
‖u− �‖< ε.

For a sequence of random functions y �→ fn(y) and a deterministic sequence an, we
use fn(y)= ōP(an) and fn(y)= ŌP(an) to denote uniform in y ∈ Y orders in probability,
that is, supy∈Y fn(y) = oP(an) and supy∈Y fn(y) = OP(an), respectively. The uniform in

y ∈ Y deterministic orders ō(an) and Ō(an) are defined analogously suppressing the P

subscripts.
We follow the notation and definitions in van der Vaart and Wellner (1996) of boot-

strap consistency. Let Dn denote the data vector and En be the vector of bootstrap



Supplementary Material Semiparametric estimation of structural functions 3

weights. Consider the random element Zen = Zn(Dn�En) in a normed space Z. We say
that the bootstrap law of Zen consistently estimates the law of some tight random ele-
ment Z and write Zen �P Z in Z if

sup
h∈BL1(Z)

∣∣EePh(
Zen

) − EPh(Z)
∣∣ →P∗ 0� (C.1)

where BL1(Z) denotes the space of functions with Lipschitz norm at most 1, EeP denotes
the conditional expectation with respect to En given the dataDn, and →P∗ denotes con-
vergence in (outer) probability.

C.2 Proof of Lemma 3

We only consider the case where Y is a compact interval of R. The case where Y is finite
is simpler and follows similarly.

C.2.1 Auxiliary lemmas We start with two results on stochastic equicontinuity and
a local expansion for the second stage estimators that will be used in the proof of
Lemma 3.

Lemma C.1 (Stochastic equicontinuity). Let e ≥ 0 be a positive random variable with
EP [e] = 1, VarP [e] = 1, and EP |e|2+δ <∞ for some δ > 0, that is independent of (Y�X�Z�
W �V ), including as a special case e= 1, and set, forA= (e�Y�X�Z�W �V ),

fy(A�ϑ�β) := e · [Λ(
W (ϑ)′β

) − 1(Y ≤ y)] ·W (ϑ) · T	

Under Assumptions 3–5, the following relations are true:

(a) Consider the set of functions

F = {
fy(A�ϑ�β)

′α : (ϑ�β�y) ∈ Υ0 ×B ×Y�α ∈R
dim(W )�‖α‖2 ≤ 1

}
�

where Y is a compact subset of R, B is a compact set under the ‖ · ‖2 metric containing
β0(y) for all y ∈ Y , Υ0 is the intersection of Υ , defined in Lemma 2, with a neighborhood
of ϑ0 under the ‖ · ‖T�∞ metric. This class is P-Donsker with a square integrable envelope
of the form e times a constant.

(b) Moreover, if (ϑ�β(y))→ (ϑ0�β0(y)) in the ‖ ·‖T�∞ ∨‖·‖2 metric uniformly in y ∈ Y ,
then

sup
y∈Y

∥∥fy(A�ϑ�β(y)) − fy
(
A�ϑ0�β0(y)

)∥∥
P�2 → 0	

(c) Hence for any (ϑ̃� β̃(y))→P (ϑ0�β0(y)) in the ‖ · ‖T�∞ ∨ ‖ · ‖2 metric uniformly in
y ∈ Y such that ϑ̃ ∈ Υ0,

sup
y∈Y

∥∥Gnfy(A�ϑ̃� β̃(y)) −Gnfy
(
A�ϑ0�β0(y)

)∥∥
2 →P 0	
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(d) For any (ϑ̂� β̃(y))→P (ϑ0�β0(y)) in the ‖ · ‖T�∞ ∨ ‖ · ‖2 metric uniformly in y ∈ Y ,
so that

‖ϑ̂− ϑ̃‖T�∞ = oP(1/
√
n)� where ϑ̃ ∈ Υ0�

we have that

sup
y∈Y

∥∥Gnfy(A�ϑ̂� β̃(y)) −Gnfy
(
A�ϑ0�β0(y)

)∥∥
2 →P 0	

Proof of Lemma C.1. The proof is divided in subproofs of each of the claims.
Proof of Claim (a). The proof proceeds in several steps.
Step 1. Here, we bound the bracketing entropy for

I1 = {[
Λ

(
W (ϑ)′β

) − 1(Y ≤ y)]T : β ∈ B�ϑ ∈ Υ0� y ∈ Y
}
	

For this purpose, consider a mesh {ϑk} over Υ0 of ‖ · ‖T�∞ width δ, a mesh {βl} over B of
‖ · ‖2 width δ, and a mesh {yj} over Y of ‖ · ‖2 width δ. A generic bracket over I1 takes the
form[
i01� i

1
1
] = [{

Λ
(
W (ϑk)

′βl −κδ
) − 1(Y ≤ yj − δ)

}
T�

{
Λ

(
W (ϑk)

′βl +κδ
) − 1(Y ≤ yj + δ)

}
T

]
�

where κ=LW maxβ∈B ‖β‖2 +LW , and LW := ‖∂vw‖T�∞ ∨ ‖w‖T�∞.
Note that this is a valid bracket for all elements of I1 because for anyϑ located within

δ from ϑk and any β located within δ from βl,∣∣W (ϑ)′β−W (ϑk)′βl
∣∣T ≤ ∣∣(W (ϑ)−W (ϑk)

)′
β

∣∣T + ∣∣W (ϑk)′(β−βl)
∣∣T

≤ LW δmax
β∈B

‖β‖2 +LW δ≤ κδ� (C.2)

and the ‖ · ‖P�2-size of this bracket is given by

∥∥i01 − i11
∥∥
P�2 ≤

√
EP

[
P

{
Y ∈ [y ± δ] |X�Z}

T
]

+
√

EP
[{
Λ

(
W (ϑk)′βl + κδ

) −Λ(
W (ϑk)′βl − κδ

)}2
T

]
≤

√∥∥fY (· | ·)∥∥T�∞2δ+ κδ/2�

because ‖λ(·)‖T�∞ ≤ 1/4, where λ=Λ(1 −Λ) is the derivative of Λ.
Hence, counting the number of brackets induced by the mesh created above, we ar-

rive at the following relationship between the bracketing entropy of I1 and the covering
entropies of Υ0, B, and Y ,

logN[]
(
ε�I1�‖ · ‖P�2

)
� logN

(
ε2�Υ0�‖ · ‖T�∞

) + logN
(
ε2�B�‖ · ‖2

) + logN
(
ε2�Y�‖ · ‖2

)
� 1/

(
ε2 log4 ε

) + log(1/ε)+ log(1/ε)�

and so I1 is P-Donsker with a constant envelope.
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Step 2. Similar to Step 1, it follows that

I2 = {
W (ϑ)′αT :ϑ ∈ Υ0�α ∈R

dim(W )�‖α‖2 ≤ 1
}

also obeys a similar bracketing entropy bound

logN[]
(
ε�I2�‖ · ‖P�2

)
� 1/

(
ε2 log4 ε

) + log(1/ε)

with a generic bracket taking the form [i02� i12] = [{W (ϑk)′βl − κδ}T� {W (ϑk)′βl + κδ}T ].
Hence, this class is also P-Donsker with a constant envelope.

Step 3. In this step, we verify the claim (a). Note that F = e · I1 · I2. This class has
a square-integrable envelope under P . The class F is P-Donsker by the following ar-
gument. Note that the product I1 · I2 of uniformly bounded classes is P-Donsker, for
example, by Theorem 2.10.6 of van der Vaart and Wellner (1996). Under the stated as-
sumption, the final product of the random variable e with the P-Donsker class remains
to be P-Donsker by the multiplier Donsker theorem, namely Theorem 2.9.2 in van der
Vaart and Wellner (1996).

Proof of Claim (b). The claim follows by the dominated convergence theorem, since
any f ∈ F is dominated by a square-integrable envelope under P , and, uniformly in y ∈
Y , Λ[W (ϑ)′β(y)]T → Λ[W ′β0(y)]T and |W (ϑ)′β(y)T − W ′β0(y)T | → 0 in view of the
relation such as (C.2).

Proof of Claim (c). This claim follows from the asymptotic equicontinuity of the em-
pirical process (Gn[fy ]� fy ∈ F) under the L2(P) metric, and hence also with respect to
the ‖ · ‖T�∞ ∨ ‖ · ‖2 metric uniformly in y ∈ Y in view of Claim (b).

Proof of Claim (d). It is convenient to set f̂y := fy(A� ϑ̂� β̃(y)) and f̃y := fy(A� ϑ̃�

β̃(y)). Note that

max
1≤j≤dimW

∣∣Gn[f̂y − f̃y ]
∣∣
j
≤ max

1≤j≤dimW

∣∣√nEn[f̂y − f̃y ]
∣∣
j
+ max

1≤j≤dimW

∣∣√nEP(f̂y − f̃y)
∣∣
j

�
√
nEn[̂ζ] + √

nEP [̂ζ] � Gn[̂ζ] + 2
√
nEP [̂ζ]�

where |fy |j denotes the jth element of an application of absolute value to each element
of the vector fy , and ζ̂ is defined by the following relationship, which holds with proba-
bility approaching one uniformly in y ∈ Y ,

max
1≤j≤dimW

|f̂y − f̃y |j � |e| · {∥∥W (ϑ̂)−W (ϑ̃)∥∥2 + ∣∣Λ[
W (ϑ̂)′β̃(y)

] −Λ[
W (ϑ̃)′β̃(y)

]∣∣} · T

� ζ̂ := e · κ�n�
where κ= LW maxβ∈B ‖β‖2 +LW , LW = ‖∂vw‖T�∞ ∨ ‖w‖T�∞, and �n = o(1/

√
n) is a de-

terministic sequence such that

�n ≥ ‖ϑ̂− ϑ̃‖T�∞	
By part (c), the result follows from

Gn[̂ζ] = ōP(1)�
√
nEP [̂ζ] = ōP(1)	
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Indeed,

‖e · κ�n‖P�2 = ō(1) ⇒ Gn[̂ζ] = ōP(1)�
and

‖e · κ�n‖P�1 ≤ EP |e| · κ�n = ō(1/√n) ⇒ EP |̂ζ| = ōP(1/
√
n)�

since �n = o(1/√n).

Lemma C.2 (Local expansion). Under Assumptions 3–5, for

δ̂(y) = √
n
(
β̃(y)−β0(y)

) = ŌP(1);
�̂(x� r) = √

n
(
ϑ̂(x� r)−ϑ0(x� r)

) = √
nEn

[
�(A�x� r)

] + oP(1) in �∞(XR)�∥∥√
nEn

[
�(A� ·)]∥∥

T�∞ = OP(1)�

we have that

√
nEP

[{
Λ

[
W (ϑ̂)′β̃(y)

] − 1(Y ≤ y)}W (ϑ̂)T ] = J(y)δ̂(y)+ √
nEn

[
gy(A)

] + ōP(1)�

where

gy(a)= EP
{[
Λ

(
W ′β0(y)

) − 1(Y ≤ y)]Ẇ + λ(W ′β0(y)
)
W Ẇ ′β0(y)

}
T�(a�X�R)	

Proof of Lemma C.2. Uniformly in ξ := (X�Z) ∈XZ and y ∈ Y ,

√
nEP

{
Λ

[
W (ϑ̂)′β̃(y)

] − 1(Y ≤ y) |X�Z}
T

= √
nEP

{
Λ

[
W ′β0(y)

] − 1(Y ≤ y) |X�Z}
T

+ λ[W (ϑ̄ξ)′β̄ξ(y)]{W (ϑ̄ξ)′δ̂(y)+ Ẇ (ϑ̄ξ)′β̄ξ�̂(X�R)
}
T

= √
nEP

{
Λ

[
W ′β0(y)

] − 1(Y ≤ y) |X�Z}
T

+ λ[W ′β0(y)
]{
W ′δ̂(y)+ Ẇ ′β0(y)�̂(X�R)

}
T +Rξ(y)�

and

R̄(y)= sup
{ξ∈XZ}

∣∣Rξ(y)∣∣ = ōP(1)�

where ϑ̄ξ is on the line connecting ϑ0 and ϑ̂ and β̄ξ(y) is on the line connecting β0(y)

and β̃(y). The first equality follows by the mean value expansion. The second equality
follows by uniform continuity of λ(·), uniform continuity ofW (·) and Ẇ (·), and by ‖ϑ̂−
ϑ0‖T�∞ →P 0 and supy∈Y ‖β̃(y)−β0(y)‖2 →P 0.

Since λ(·) and the entries of W and Ẇ are bounded, δ̂(y) = ŌP(1), and ‖�̂‖T�∞ =
OP(1), with probability approaching one uniformly in y ∈ Y ,

√
nEP

{
Λ

[
W (ϑ̂)′β̃(y)

] − 1(Y ≤ y)}W (ϑ̂)T
= EP

{
Λ

(
W ′β0(y)

) − 1(Y ≤ y)}Ẇ T �̂(X�R)



Supplementary Material Semiparametric estimation of structural functions 7

+ EP
{
λ
[
W ′β0(y)

]
WW ′T

}
δ̂(y)+ EP

{
λ
[
W ′β0(y)

]
W Ẇ ′β0(y)T �̂(X�R)

} +OP

(
R̄(y)

)
= J(y)δ̂(y)+ EP

[{
Λ

(
W ′β0(y)

) − 1(Y ≤ y)}Ẇ + λ[W ′β0(y)
]
W Ẇ ′β0(y)

]
T�̂(X�R)

+ oP(1)	

Substituting in �̂(x� r) = √
nEn[�(A�x� r)] + oP(1) and interchanging EP and En, we

obtain

EP
[{
Λ

(
W ′β0(y)

) − 1(Y ≤ y)}Ẇ + λ[W ′β0(y)
]
W Ẇ ′β0(y)

]
T�̂(X�R)

= √
nEn

[
gy(A)

] + ōP(1)�

since [{Λ(W ′β0(y)) − 1(Y ≤ y)}Ẇ + λ[W ′β0(y)]W Ẇ ′β0(y)]T is bounded uniformly in
y ∈ Y . The claim of the lemma follows.

C.2.2 Proof of Lemma 3 The proof is divided in two parts corresponding to the FCLT
and bootstrap FCLT.

Part 1: FCLT. In this part, we show
√
n(β̂(y)−β0(y))� J(y)−1G(y) in �∞(Y)dw .

Step 1. This step shows that
√
n(β̂(y)−β0(y))= ŌP(1).

Recall that

β̂(y)= arg min
β∈Rdim(W )

En
[
ρy

(
Y�W (ϑ̂)′β

)
T

]
	

Due to convexity of the objective function, it suffices to show that for any ε > 0 there
exists a finite positive constant Bε such that uniformly in y ∈ Y ,

lim inf
n→∞ P

(
inf

‖η‖2=1

√
nη′

En[f̂η�Bε�y ]> 0
)

≥ 1 − ε� (C.3)

where

f̂η�Bε�y(A) := {
Λ

[
W (ϑ̂)′

(
β0(y)+Bεη/

√
n
)] − 1(Y ≤ y)}W (ϑ̂)T	

Let

fy(A) := {
Λ

[
W ′β0(y)

] − 1(Y ≤ y)}W T	
Then uniformly in ‖η‖2 = 1,

√
nη′

En[f̂η�Bε�y ] = η′
Gn[f̂η�Bε�y ] + √

nη′EP [f̂η�Bε�y ]
=(1) η′

Gn[fy ] + ōP(1)+η′√nEP [f̂η�Bε�y ]
=(2) η′

Gn[fy ] + ōP(1)+η′J(y)ηBε +η′
Gn[gy ] + ōP(1)

=(3) ŌP(1)+ ōP(1)+η′J(y)ηBε + ŌP(1)+ ōP(1)�

where relations (1) and (2) follow by Lemma C.1 and Lemma C.2 with β̃(y) = β0(y) +
Bεη/

√
n, respectively, using that ‖ϑ̂ − ϑ̃‖T�∞ = oP(1/

√
n), ϑ̃ ∈ Υ , ‖ϑ̃ − ϑ0‖T�∞ =

OP(1/
√
n) and ‖β0(y)+Bεη/√n−β0(y)‖2 = Ō(1/√n); relation (3) holds because fy and

gy are P-Donsker by step-2 below. Since uniformly in y ∈ Y , J(y) is positive definite, with
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minimal eigenvalue bounded away from zero, the inequality (C.3) follows by choosing
Bε as a sufficiently large constant.

Step 2. In this step, we show the main result. Let

f̂y(A) := {
Λ

[
W (ϑ̂)′β̂(y)

] − 1(Y ≤ y)}W (ϑ̂)T	
From the first-order conditions of the distribution regression problem,

0 = √
nEn[f̂y ] = Gn[f̂y ] + √

nEP [f̂y ]
=(1) Gn[fy ] + ōP(1)+ √

nEP [f̂y ]
=(2) Gn[fy ] + ōP(1)+ J(y)√n(β̂(y)−β0(y)

) +Gn[gy ] + ōP(1)�
where relations (1) and (2) follow by Lemma C.1 and Lemma C.2 with β̃(y) = β̂(y), re-
spectively, using that ‖ϑ̂ − ϑ̃‖T�∞ = oP(1/

√
n), ϑ̃ ∈ Υ , and ‖ϑ̃ − ϑ‖T�∞ = OP(1/

√
n) by

Lemma 2, and ‖β̂(y)−β0(y)‖2 = ŌP(1/
√
n).

Therefore, by uniform invertibility of J(y) in y ∈ Y ,
√
n
(
β̂(y)−β0(y)

) = −J(y)−1
Gn(fy + gy)+ ōP(1)	

The function fy is P-Donsker by standard argument for distribution regression (e.g.,
step 3 in the proof of Theorem 5.2 of Chernozhukov, Fernández-Val, and Melly (2013)).
Similarly, gy is P-Donsker by Example 19.7 in van der Vaart (2000) because gy ∈ {hy(A) :
|hy(A)− hv(A)| ≤M(A)|y − v|;EPM(A)2 <∞; y� v ∈ Y}, since

|gy − gv| ≤LEP
[
T

∣∣�(a�X�R)∣∣]|a=A|y − v|�
with L= 2LW +L2

W maxβ∈B ‖β‖2/4, LW := ‖∂vw‖T�∞ ∨ ‖w‖T�∞, and EP [T�(A�X�R)2]<
∞ by Lemma 2. Hence, by the functional central limit theorem

Gn(fy + gy)�G(y) in �∞(Y)dw�

where y �→ G(y) is a zero mean Gaussian process with uniformly continuous sample
paths and the covariance function C(y� v) specified in the lemma. Conclude that

√
n
(
β̂(y)−β0(y)

)
� J(y)−1G(y) in �∞(Y)dw 	

Part 2: Bootstrap FCLT. In this part, we show
√
n(β̂e(y) − β̂(y)) �P J(y)

−1G(y) in
�∞(Y)dw .

Step 1. This step shows that
√
n(β̂e(y) − β0(y)) = ŌP(1) under the unconditional

probability P.
Recall that

β̂e(y)= arg min
β∈Rdim(W )

En
[
eρy

(
Y�W

(
ϑ̂e

)′
β

)
T

]
�

where e is the random variable used in the weighted bootstrap. Due to convexity of the
objective function, it suffices to show that for any ε > 0 there exists a finite positive con-
stant Bε such that uniformly in y ∈ Y ,

lim inf
n→∞ P

(
inf

‖η‖2=1

√
nη′

En
[
f̂ eη�Bε�y

]
> 0

)
≥ 1 − ε� (C.4)
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where

f̂ eη�Bε�y(A) := e · {Λ[
W

(
ϑ̂e

)′(
β0(y)+Bεη/

√
n
)] − 1(Y ≤ y)}W (

ϑ̂e
)
T	

Let

f ey (A) := e · {Λ[
W ′β0(y)

] − 1(Y ≤ y)}W T	
Then uniformly in ‖η‖2 = 1,

√
nη′

En
[
f̂ eη�Bε�y

] = η′
Gn

[
f̂ eη�Bε�y

] + √
nη′EP

[
f̂ eη�Bε�y

]
=(1) η′

Gn
[
f ey

] + ōP(1)+η′√nEP
[
f̂ eη�Bε�y

]
=(2) η′

Gn
[
f ey

] + ōP(1)+η′J(y)ηBε +η′
Gn

[
gey

] + ōP(1)
=(3) ŌP(1)+ ōP(1)+η′J(y)ηBε + ŌP(1)+ ōP(1)�

where relations (1) and (2) follow by Lemma C.1 and Lemma C.2 with β̃(y) = β0(y) +
Bεη/

√
n, respectively, using that ‖ϑ̂e − ϑ̃e‖T�∞ = oP(1/√n), ϑ̃e ∈ Υ and ‖ϑ̃e −ϑ0‖T�∞ =

OP(1/
√
n) by Lemma 2, and ‖β0(y) + Bεη/

√
n − β0(y)‖2 = Ō(1/

√
n); relation (3) holds

because f ey = e · fy and gey = e · gy , where fy and gy are P-Donsker by step-2 of the proof

of Theorem 3 and EPe2 < ∞. Since uniformly in y ∈ Y , J(y) is positive definite, with
minimal eigenvalue bounded away from zero, the inequality (C.4) follows by choosing
Bε as a sufficiently large constant.

Step 2. In this step, we show that
√
n(β̂e(y)− β0(y)) = −J(y)−1

Gn(f
e
y + gey)+ ōP(1)

under the unconditional probability P.
Let

f̂ ey (A) := e · {Λ[
W

(
ϑ̂e

)′
β̂e(y)

] − 1(Y ≤ y)}W (
ϑ̂e

)
T	

From the first-order conditions of the distribution regression problem in the weighted
sample, uniformly in y ∈ Y ,

0 = √
nEn

[
f̂ ey

] = Gn
[
f̂ ey

] + √
nEP

[
f̂ ey

]
=(1) Gn

[
f ey

] + ōP(1)+ √
nEP

[
f̂ ey

]
=(2) Gn

[
f ey

] + ōP(1)+ J(y)√n(β̂e(y)−β0(y)
) +Gn

[
gey

] + ōP(1)�

where relations (1) and (2) follow by Lemma C.1 and Lemma C.2 with β̃(y)= β̂e(y), re-
spectively, using that ‖ϑ̂e − ϑ̃e‖T�∞ = oP(1/

√
n), ϑ̃e ∈ Υ and ‖ϑ̃e −ϑ0‖T�∞ = OP(1/

√
n)

by Lemma 2, and ‖β̂e(y)−β0(y)‖2 = ŌP(1/
√
n).

Therefore, by uniform invertibility of J(y) in y ∈ Y ,

√
n
(
β̂e(y)−β0(y)

) = −J(y)−1
Gn

(
f ey + gey

) + ōP(1)	

Step 3. In this final step, we establish the behavior of
√
n(β̂e(y)−β̂(y)) under Pe. Note

that P
e denotes the conditional probability measure, namely the probability measure
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induced by draws of e1� 	 	 	 � en conditional on the dataA1� 	 	 	 �An. By Step 2 of the proof
of Theorem 1 and Step 2 of this proof, we have that under P:

√
n
(
β̂e(y)−β0(y)

) = −J(y)−1
Gn

(
f ey + gey

) + ōP(1)�
√
n
(
β̂(y)−β0(y)

) = −J(y)−1
Gn(fy + gy)+ ōP(1)	

Hence, under P
√
n
(
β̂e(y)− β̂(y)) = −J(y)−1

Gn
(
f ey − fy + gey − gy

) + rn(y)
= −J(y)−1

Gn
(
(e− 1)(fy + gy)

) + rn(y)�
where rn(y)= ōP(1). Note that it is also true that

rn(y)= ōPe(1) in P-probability�

where the latter statement means that for every ε > 0, Pe(‖rn(y)‖2 > ε)= ōP(1). Indeed,
this follows from Markov inequality and by

EP

[
P
e
(∥∥rn(y)∥∥2 > ε

)] = P
(∥∥rn(y)∥∥2 > ε

) = ō(1)�
where the latter holds by the law of iterated expectations and rn(y)= ōP(1).

Note that f ey = e · fy and gey = e · gy , where fy and gy are P-Donsker by step-2 of the

proof of the first part and EPe2 <∞. Then, by the conditional multiplier functional cen-
tral limit theorem, for example, Theorem 2.9.6 in van der Vaart and Wellner (1996),

Gen(y) := Gn
(
(e− 1)(fy + gy)

)
�P G(y) in �∞(Y)dw 	

Conclude that
√
n
(
β̂e(y)− β̂(y)) �P J(y)

−1G(y) in �∞(Y)dw 	

C.3 Proof of Theorems 2–4

In this section, we use the notation Wx(ϑ) = w(x�Z1� V (ϑ)) such that Wx = w(x�Z1�

V (ϑ0)). Again we focus on the case where Y is a compact interval of R.

C.3.1 Proof of Theorem 2 The result follows by a similar argument to the proof of
Lemma 3 using Lemmas C.3 and C.4 in place of Lemmas C.1 and C.2, and the delta
method. For the sake of brevity, here we just outline the proof of the FCLT.

Let ψx(A�ϑ�β) := Λ(Wx(ϑ)
′β)T such that GT(y�x) = EPψx(A�ϑ0�β0(y))/EPT

and Ĝ(y�x) = Enψx(A� ϑ̂� β̂(y))/EnT . Then, for ψ̂y�x := ψx(A� ϑ̂� β̂(y)) and ψy�x :=
ψx(A�ϑ0�β0(y)),

√
n
[
Enψx

(
A�ϑ̂� β̂(y)

) − EPψx
(
A�ϑ0�β0(y)

)]
=Gn[ψ̂y�x] + √

nEP [ψ̂y�x −ψy�x]
=(1) Gn[ψy�x] + ōP(1)+ √

nEP [ψ̂y�x −ψy�x]
=(2) Gn[ψy�x] + ōP(1)+Gn[hy�x] + ōP(1)�
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where relations (1) and (2) follow by Lemma C.3 and Lemma C.4 with β̃(y) = β̂(y), re-
spectively, using that ‖ϑ̂ − ϑ̃‖T�∞ = oP(1/

√
n), ϑ̃ ∈ Υ , and ‖ϑ̃ − ϑ‖T�∞ = OP(1/

√
n) by

Lemma 2, and
√
n(β̂(y)−β0(y))= −J(y)−1

Gn(fy + gy)+ ōP(1) from step 2 of the proof
of Lemma 3.

The functions (y�x) �→ψy�x and (y�x) �→ hy�x are P-Donsker by Example 19.7 in van
der Vaart (2000) because they are Lipschitz continuous on YX . Hence, by the functional
central limit theorem

Gn(ψy�x + hy�x)�Z(y�x) in �∞(YX )�

where (y�x) �→Z(y�x) is a zero mean Gaussian process with uniformly continuous sam-
ple paths and covariance function

CovP [ψy�x + hy�x�ψv�u + hv�u]� (y�x)� (v�u) ∈ YX 	

The result follows by the functional delta method applied to the ratio of Enψx(A� ϑ̂�
β̂(y)) and EnT using that (

Gnψx
(
A�ϑ̂� β̂(y)

)
GnT

)
�

(
Z(y�x)

ZT

)
�

where ZT ∼N(0�pT (1 −pT )),

CovP
(
Z(y�x)�ZT

) =GT(y�x)pT (1 −pT )�

and

CovP [ψy�x + hy�x�ψv�u + hv�u | T = 1]

= CovP [ψy�x + hy�x�ψv�u + hv�u] −GT(y�x)GT (v�u)pT (1 −pT )
pT

	

Lemma C.3 (Stochastic equicontinuity). Let e ≥ 0 be a positive random variable with
EP [e] = 1, VarP [e] = 1, and EP |e|2+δ <∞ for some δ > 0, that is independent of (Y�X�Z�
W �V ), including as a special case e= 1, and set, forA= (e�Y�X�Z�W �V ),

ψx(A�ϑ�β) := e ·Λ(
Wx(ϑ)

′β
) · T	

Under Assumptions 3–5, the following relations are true:

(a) Consider the set of functions

F := {
ψx(A�ϑ�β) : (ϑ�β�x) ∈ Υ0 ×B ×X

}
�

where X is a compact subset of R, B is a compact set under the ‖ · ‖2 metric containing
β0(y) for all y ∈ Y , Υ0 is the intersection of Υ , defined in Lemma 2, with a neighborhood
of ϑ0 under the ‖ · ‖T�∞ metric. This class is P-Donsker with a square integrable envelope
of the form e times a constant.
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(b) Moreover, if (ϑ�β(y))→ (ϑ0�β0(y)) in the ‖ ·‖T�∞ ∨‖·‖2 metric uniformly in y ∈ Y ,
then

sup
(y�x)∈YX

∥∥ψx(A�ϑ�β(y)) −ψx
(
A�ϑ0�β0(y)

)∥∥
P�2 → 0	

(c) Hence for any (ϑ̃� β̃(y))→P (ϑ0�β0(y)) in the ‖ · ‖T�∞ ∨ ‖ · ‖2 metric uniformly in
y ∈ Y such that ϑ̃ ∈ Υ0,

sup
(y�x)∈YX

∥∥Gnψx(A�ϑ̃� β̃(y)) −Gnψx
(
A�ϑ0�β0(y)

)∥∥
2 →P 0	

(d) For any (ϑ̂� β̃(y))→P (ϑ0�β0(y)) in the ‖ · ‖T�∞ ∨ ‖ · ‖2 metric uniformly in y ∈ Y ,
so that

‖ϑ̂− ϑ̃‖T�∞ = oP(1/
√
n)� where ϑ̃ ∈ Υ0�

we have that

sup
(y�x)∈YX

∥∥Gnψx(A�ϑ̂� β̃(y)) −Gnψx
(
A�ϑ0�β0(y)

)∥∥
2 →P 0	

Proof of Lemma C.3. The proof is omitted because is similar to the proof of Lemma
C.1.

Lemma C.4 (Local expansion). Under Assumptions 3–5, for

δ̂(y) = √
n
(
β̃(y)−β0(y)

) = ŌP(1);
�̂(x� r) = √

n
(
ϑ̂(x� r)−ϑ0(x� r)

)
= √

nEn
[
�(A�x� r)

] + oP(1) in �∞(XR)�∥∥√
nEn

[
�(A� ·)]∥∥

T�∞ = OP(1)�

we have that
√
n
{

EPΛ
[
Wx(ϑ̂)

′β̃(y)
]
T − EPΛ

[
W ′
xβ0(y)

]
T

}
= EP

{
λ
[
W ′
xβ0(y)

]
WxT

}′
δ̂(y)+ EP

{
λ
[
W ′
xβ0(y)

]
Ẇ ′
xβ0(y)T�(a�X�R)

}|a=A + ōP(1)�
where ōP(1) denotes order in probability uniform in (y�x) ∈ YX .

Proof of Lemma C.4. The proof is omitted because is similar to the proof of Lemma
C.2.

C.3.2 Proof of Theorem 3 The result follows from Theorem 2 and the functional delta
method, because the map φ : H �→ ∫

Y+ 1(H(y�x) ≤ τ)dy − ∫
Y− 1(H(y�x) ≥ τ)dy is

Hadamard differentiable at H = GT under the conditions of the theorem by Proposi-
tion 2 of Chernozhukov, Fernández-Val, and Galichon (2010) with derivative

φ′
GT
(h)= − h

(
φ(·�x)�x)

gT
(
φ(·�x)�x) 	
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C.3.3 Proof of Theorem 4 The result follows from Theorem 2 and the functional delta
method, because the map ϕ :H �→ ∫

Y [1(y ≥ 0)−H(y�x)]dy is Hadamard differentiable
atH =GT by Lemma C.5 with derivative

ϕ′
GT
(h)= −

∫
Y
h(y�x)ν(dy)	

Lemma C.5 (Hadamard differentiability of ASF Map). Let Y be bounded. The ASF map
ϕ : �∞(YX )→ �∞(X ) defined by

H �→ ϕ(H) :=
∫
Y

[
1(y ≥ 0)−H(y�x)]ν(dy)�

is Hadamard-differentiable at H = G, tangentially to the set of uniformly continuous
functions on YX , with derivative map h �→ ϕ′

G(h) defined by

ϕ′
G(h) := −

∫
Y
h(y�x)ν(dy)�

where the derivative is defined and is continuous on �∞(YX ).

Proof of Lemma C.5. Consider any sequence Ht ∈ �∞(YX ) such that for ht := (Ht −
G)/t, ht → h in �∞(YX ) as t ↘ 0, where h is a uniformly continuous function on YX .
We want to show that as t ↘ 0,

ϕ
(
Ht

) −ϕ(G)
t

−ϕ′
G(h)→ 0 in �∞(YX )	

The result follows because by linearity of the map ϕ

ϕ
(
Ht

) −ϕ(G)
t

= −
∫
Y
ht(y�x)ν(dy)→ −

∫
Y
h(y�x)ν(dy)= ϕ′

G(h)	

The derivative is well-defined over �∞(YX ) and continuous with respect to the sup-
norm on �∞(YX ).

Appendix D: Robustness of empirical results

D.1 Sensitivity analysis

To further check the robustness of our empirical findings, we implemented a thorough
sensitivity analysis and investigated several alternative specifications. We replicated all
results of the empirical application in the main text using a probit specification for DR,
as well as enforcing a trimming rule, yielding very similar results which we do not report
for brevity. For both QR and DR, we report additional QSF estimates with varying grids
of values ofX , as well as for a different number of quantile levels.

For the equispaced grids 0	1 = t1 < · · · < tK = 0	9 and 0	15 = t∗1 < · · · < t∗K =
0	85, let X̃K = {Q̂X(t1)� 	 	 	 � Q̂X(tK)} and X̃ ∗

K = {Q̂X(t∗1 )� 	 	 	 � Q̂X(t∗K)}. Further let T̃3 =
{1/4�1/2�3/4} and T̃5 = {1/6�1/3�1/2�2/3�5/6}. Then Figures D.1–D.4 display QSFs and
their uniform confidence bands obtained by setting the regions of interest as follows:
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Figure D.1. QSF over T̃3X̃3. Quantile (left) and distribution regression (right).

(1) Figure D.1: we set IQ = T̃3X̃3,

(2) Figure D.2: we set IQ = T̃3X̃7,

(3) Figure D.3: we set IQ = T̃5X̃5,

(4) Figure D.4: we set IQ = T̃5X̃ ∗
5 .

QSF estimates across varying regions of interest confirm the results of the empirical ap-
plication in the main text. For QR, varying the number of grid points has very little effect
on the QSF estimates and confidence bands. For DR, QSF estimates are also almost iden-
tical across specifications, and only the shape of confidence bands varies according to
K. For both goods, and both DR and QR methods, all specifications capture the features
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Figure D.2. QSF over T̃3X̃7. Quantile (left) and distribution regression (right).

emphasized in the main text: for both goods QSF estimates display heteroskedasticity,

and estimates for leisure display asymmetry. These features are especially apparent in

Figure D.3 which shows the QSF at 5 different quantile levels. Finally, comparing Fig-

ures D.1–D.4 shows that the length of confidence bands over X̃ is affected by the choice

of end-points for X̃K , especially so for DR estimates, but is robust to the choice ofK.

For QR, we also check the robustness of our ASF estimates by comparing them to

those obtained based on the least-squares projection characterization of the ASF for the

QR baseline given in Remark 4 in the main text. Figure D.5 shows that the two estimates

are very similar for both food and leisure share expenditure.
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Figure D.3. QSF over T̃5X̃5. Quantile (left) and distribution regression (right).

D.2 Flexible specifications

Our estimators can also easily accommodate additional powers of the control function
�−1(V )k as well as interaction terms X ·�−1(V )k, Z1 ·�−1(V )k, and X · Z1 ·�−1(V )k.
We consider augmenting our baseline specifications by adding quadratic and both
quadratic and cubic transformations of the control function and associated interactions
terms. The control function and its powers are interacted with total expenditure (X), the
children variable (Z1), and their interaction (X ·Z1).

In Figure D.6, we display the corresponding QSF for k= 2�3, for both methods. The
main difference with the baseline specifications is the increased curvature in the DR-
based 0.75-QSFs in the right panel of Figures D.6(A)–(B). Augmenting the model pro-
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Figure D.4. QSF over T̃5X̃ ∗
5 . Quantile (left) and distribution regression (right).

vides further evidence that our QSF estimates are robust are robust to the inclusion of
higher-order terms in the control function.

To investigate further the selection of higher-order control function terms, we im-
plement a leave-one-out cross-validation (CV) procedure for the ASF. For conditional
mean specification of the QR baseline model, powers of the control function �−1(V )k

as well as interaction termsX ·�−1(V )k,Z1 ·�−1(V )k, andX ·Z1 ·�−1(V )k, k= 2� 	 	 	 �5,
are added in increasing order to the specification of E[Y |X�Z1� V ]. Figure D.7 displays
the CV criterion values for each specification. The results confirm that adding additional
powers of the control function does not improve the model fit markedly for the quantile
regression specification of the ASF, for both food and leisure.
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Figure D.5. Comparison of ASF estimates. Food (left) and leisure (right); QR (red) and OLS
(blue).

The extensions considered in this section further illustrate the complementarity of
our estimation methods and their relevance for empirical work.

D.3 Robustness to integration method

In this section, we compare the QSF obtained by replacing integration over the control
function by sample averaging in the construction of the DSF by integration based on
simulation of the control function. This can be done since the control function has a
known distribution. Let ỸS , X̃K and T̃N be defined as in Algorithm 1 in the main text.
Algorithm D.1 describes estimation of structural functions with control function inte-
gration by simulation.

Figure D.8 compares QSF estimates for QR and DR methods, obtained by imple-
menting sample averaging (red) and integration by simulation (blue), for both food and
leisure. The obtained ASFs are very similar, with slight differences for the DR based 0	75-
QSF for food and the QR based 0	5, 0	75-QSF for leisure which are slightly steeper. Over-
all, the shape of the estimated QSF is essentially the same for both integration methods.

Appendix E: Numerical simulations

E.1 Simulation results

To assess the performance of our estimators, we implement Monte Carlo experiments
based on three different designs, calibrated to the leisure empirical application. The first
two experiments are based on Gaussian location-scale and DR triangular models, de-
signed to reflect the respective strengths of the QR and DR estimators. The third exper-
iment is a location triangular model, for which both estimators are consistent for the
corresponding structural functions.
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Figure D.6. QSF including additional powers of the control function. Baseline (red): {p(X)⊗
r1(Z1)} ·�−1(V ); Quadratic specification (blue): baseline spec. + {p(X)⊗r1(Z1)} ·�−1(V )2; cubic
specification (green): quadratic spec. + {p(X)⊗r1(Z1)}·�−1(V )3. Quantile (left) and distribution
(right) regression.

Design QR. Our first design is the linear location-scale shift system of equations

X = π11 +π21Z + (π12 +π22Z)η�

Y = θ11 + θ21X + (θ12 + θ22X)ε	

The ASF and QSF of this model are linear,

μ(x)= θ11 + θ21x� Q(τ�x)= θ11 + θ21x+ (θ12 + θ22x)�
−1(τ)	
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Figure D.7. Least-squares CV criterion ×1000. Food (left) and leisure (right).

Algorithm D.1 Estimation of structural functions—Integration by simulation.

First and second stages. Repeat the first and second stages in Algorithm 1.
Third stage. [Structural functions via integration by simulation]

(1) Draw n realizations {V̌i}ni=1 from a Uniform [0�1].
(2) For the DSF, set, for (y�x) ∈ ỸSX̃K , Ĝ(y�x) = ∑n

i=1 F̂Y (y | x� V̌i)Ti/n. For the ASF
and QSF, set, for (τ�x) ∈ T̃N X̃K ,

Q̂S(τ�x)= δ
S∑
s=1

[
1(ys ≥ 0)− 1

{
Ĝ(ys�x)≥ τ}]� μ̂S(x)= δ

S∑
s=1

[
1(ys ≥ 0)− Ĝ(ys�x)

]
	

Design DR. Our second design is the nonlinear location-scale shift system of equations

X = −
(
π11 +π12Z

π21 +π22Z

)
+

(
1

π21 +π22Z

)
η�

Y = −
(
θ11 + θ12x

θ21 + θ22x

)
+

(
1

θ21 + θ22x

)
ε	

The ASF and QSF of this model are nonlinear,

μ(x)= −
(
θ11 + θ12x

θ21 + θ22x

)
� Q(τ�x)= −

(
θ11 + θ12x

θ21 + θ22x

)
+

(
1

θ21 + θ22x

)
�−1(τ)	

Design LOC. Our third design is the linear location shift system of equations

X = π11 +π21Z + σηη�
Y = θ11 + θ21X + σεε�
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Figure D.8. QSF by sample averaging (red) and integration by simulation (blue). Quantile (left)
and distribution regression (right).

for which the QR and DR models are correctly specified. The ASF and QSF of this model
are

μ(x)= θ11 + θ21x� Q(τ�x)= θ11 + θ21x+ σε�−1(τ)	

For all three experiments, the sample size is set to n= 1655, the number of observa-
tions in the empirical application, and 500 simulations are performed. For the regions
of interest, we use the same T3 and X 5 as in the empirical application. We let (η�ε) be
jointly normal scalar random variables with zero means, unit variances and correlation
ρ, and assess the performance of our estimators under two different levels of endogene-
ity by setting ρ= −0	2, for low endogeneity, and ρ= −0	9, for extreme endogeneity. Ac-
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Table 1. Average Lp estimation errors of ASF ×1000 for the DR and QR estimators and their
ratio ×100, for p= 1�2 and ∞. Average Lp estimation errors of ASF ×1000 for OLS are included
as a benchmark.

QR LOC DR

Design L1 L2 L∞ L1 L2 L∞ L1 L2 L∞

ρ= −0	2
DR 6	9 8	1 15	2 5	2 6	7 8	3 5	9 7	4 10	2
QR 2	7 3	4 3	5 4	7 6	0 6	9 8	2 9	7 15	4
Ratio ×100 251	1 237	2 426	8 110	3 111	9 121	2 72	4 76	6 66	2
OLS 10	6 10	9 22	4 14	9 15	4 26	0 15	4 16	0 33	0

ρ= −0	9
DR 4	7 6	0 7	7 6	4 7	9 10	5 7	8 9	5 13	6
QR 3	8 4	5 9	4 4	9 6	0 7	3 9	2 10	5 24	4
Ratio ×100 123	6 132	7 82	0 131	1 131	9 144	7 84	4 90	4 56	0
OLS 47	2 47	3 100	2 66	2 66	3 117	9 73	2 73	3 152	8

cordingly, the DR estimator is implemented with the probit link function. We report sim-
ulation results for the ASF and the QSF.

Table 1 reports a first set of results regarding the accuracy of ASF estimates by DR and
QR. For comparison purposes, Table 1 also includes ASF estimates by ordinary least-
squares (OLS), providing a benchmark with no correction for endogeneity. We report
average estimation errors across simulations of QR and DR estimators, and their ratio in
percentage terms. Estimation errors are measured in Lp norms ‖ · ‖p, p = 1�2, and ∞,
where for a function f : X �→R, ‖f‖p = {∫

R
|f (s)|p ds}1/p, and are then averaged over the

500 simulations.
For this design, DR and QR-based estimators both perform very well and signifi-

cantly improve over the OLS benchmark, including for ρ= −0	2. As expected, the accu-
racy of the estimates obtained by each method dominates for the corresponding design.
For the QR design, the ratio of average estimation errors ranges from 82 to 426	8. Interest-
ingly, the relative accuracy of DR-based estimates for ρ= −0	9 is close to the accuracy of
QR estimates, with the ratio of average estimation errors ranging from 82 to 132	7, across
norms; this feature is specific to the ASF and does not apply to the QSF. For the DR de-
sign, the ratio of average estimation errors ranges from 56 to 90	4. The larger reduction
in average errors in L∞ norm reflects the higher accuracy in estimation of extreme parts
of the support where the ASF displays some curvature. Finally, for the LOC design, the
performance of both methods is very similar for ρ= −0	2, and the QR-based estimator
dominates more markedly for ρ= −0	9.

Table 2 reports the results regarding the accuracy of DR and QR estimates of the
QSF, for quantile levels 0	25, 0	5, and 0	75, respectively. Compared to the results for the
ASF, the main feature of the results is the stronger relative performance of the QR-based
estimator for all three designs, although the DR-based estimator still dominates for the
DR design.

Overall, the simulations show that both DR- and QR-based estimation methods per-
form well for their respective designs, and yield substantial correction for endogeneity.
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Table 2. Average Lp estimation errors of {0	25�0	5�0	75}-QSF ×1000 for the DR and QR estima-
tors and their ratio ×100, for p= 1�2, and ∞.

Design QR LOC DR

L1 L2 L∞ L1 L2 L∞ L1 L2 L∞

τ = 0	25
ρ= −0	2 DR 10	4 11	5 28	2 7	0 8	9 12	6 7	9 9	9 12	5

QR 3	4 4	3 5	6 6	0 7	5 8	6 9	1 11	2 15	9
Ratio ×100 302	0 266	1 506	6 117	4 118	3 145	6 86	3 88	7 78	6

ρ= −0	9 DR 5	7 6	8 11	5 7	4 9	4 15	3 7	7 9	6 14	0
QR 2	6 3	3 3	2 5	3 6	7 9	0 8	8 10	6 18	6

Ratio ×100 218	4 207	5 355	9 139	7 140	1 170	1 87	2 91	0 75	2

τ = 0	50
ρ= −0	2 DR 7	9 9	3 20	0 6	5 8	3 9	9 7	2 9	2 13	2

QR 2	7 3	5 4	0 5	6 7	1 7	8 9	4 11	1 16	5
Ratio ×100 289	2 267	8 497	5 116	4 117	1 127	6 77	0 83	0 80	1

ρ= −0	9 DR 6	1 7	3 17	0 5	4 6	8 7	9 6	2 7	8 10	8
QR 2	4 3	0 3	5 4	6 5	7 6	5 8	3 9	6 18	5

Ratio ×100 256	4 246	1 491	6 118	5 118	9 120	9 74	9 81	1 58	7

τ = 0	75
ρ= −0	2 DR 10	0 11	6 16	5 7	3 9	3 14	3 7	6 9	5 15	7

QR 3	4 4	3 5	0 6	1 7	6 8	6 10	3 11	9 21	1
Ratio ×100 297	0 271	9 330	7 119	6 122	1 165	8 73	6 79	5 74	6

ρ= −0	9 DR 8	1 10	0 20	9 7	0 8	9 15	4 9	2 11	5 24	8
QR 2	9 3	6 4	6 5	3 6	6 9	1 10	3 11	7 29	3

Ratio ×100 279	3 276	7 457	0 131	6 135	4 168	7 89	5 98	7 84	6

QR-based estimation dominates for both the QR and LOC designs, but the DR estimator
is able to correct for endogeneity in data generating processes displaying nonlinearities
in the structural functions. These simulation results illustrate further the complemen-
tarity of the two estimation methods introduced in this paper.

E.2 Calibration

In this section, we give a detailed description of how the three data generating processes
used for the Monte Carlo were calibrated to our empirical application.

E.2.1 Linear Gaussian location-scale model (QR specification) Consider the hetero-
scedastic normal system of equations

X = π11 +π21Z + (π12 +π22Z)η�

Y = θ11 + θ21X + (θ12 + θ22X)ε�

where (ξ�ε) are jointly normal with zero means, unit variances and correlation ρ. The
reduced form of this system is

QX(v | z) = π11 +π21z+ (π12 +π22z)�
−1(v)�
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QY(u | x�v) = θ11 + θ21x+ (θ12 + θ22x)
(
ρ�−1(v)+ (

1 − ρ2)1/2
�−1(u)

)
	

This system thus admits the QR representation

QX(v | z) = π1(v)+π2(v)z�

QY (u | x�v) = θ1(u)+ γ1(u)�
−1(v)+ θ2(u)x+ γ2(u)�

−1(v)x�

with

π1(v) = π11 +π12�
−1(v)�

π2(v) = π21 +π22�
−1(v)�

θ1(u) = θ11 + θ12
(
1 − ρ2)1/2

�−1(u)�

θ2(u) = θ21 + θ22
(
1 − ρ2)1/2

�−1(u)�

γ1(u) = θ12ρ�

γ2(u) = θ22ρ	

Define the fine meshes of M values 0	01 = v1 < · · · < vM = 0	99 and 0	01 = u1 < · · · <
uM = 0	99, withM = 599, as in the empirical application. The vectors of parameter values
are calibrated following the method suggested in Koenker and Xiao (2002).

For the first stage parameters, we estimate the QR coefficients (π̂1(v)� π̂2(v)) for
quantile indexes v ∈ {v1� 	 	 	 � vM}. The value of the coefficients π1 = (π11�π12)

′ and
π2 = (π21�π22)

′ are then set to the estimates obtained from linear regression of (π̂1(vm)�

π̂2(vm)) on (1��−1(vm)).
For the second stage, we estimate the QR coefficients (θ̂1(u)� θ̂2(u)) for quantile in-

dexes u ∈ {u1� 	 	 	 � uM}. The value of the coefficients θ1 = (θ11� θ12)
′ and θ2 = (θ21� θ22)

′
are then set to the estimates obtained from linear regression of (θ̂1(um)� θ̂2(um)) on
(1� (1 − ρ̂2)1/2�−1(um)). The correlation coefficient ρ̂ is calibrated to the correlation be-
tween ε̂i = �−1(Ĝ(Yi�Xi)) and η̂ = �−1(F̂X(Xi | Zi)), where Ĝ(Yi�Xi) and F̂X(Xi | Zi)
are the DSF and FX QR-based estimates evaluated at the n sample points. We find
ρ̂≈ −0	1.

E.2.2 Nonlinear Gaussian location-scale model (DR specification) Consider the linear
DR system of equations:

η = (π11 +π21X)+ (π12 +π22X)Z�

ε = (θ11 + θ21Y)+ (θ12 + θ22Y)X�

where (η�ε) are jointly normal with zero means, unit variances and correlation ρ. The
reduced form of this system is

FX(x | z) = �
(
(π11 +π21x)+ (π12 +π22x)z

)
�
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FY (y | x�v) = �

(
1(

1 − ρ2)1/2 (θ11 + θ21y)

+ 1(
1 − ρ2)1/2 (θ12 + θ22y)x− ρ(

1 − ρ2)1/2�
−1(v)

)
	

This system thus admits the Gaussian DR representation

FX(x | z) = �
(
π1(x)+π2(x)z

)
�

FY (y | x�v) = �
(
θ1(y)+ γ1(y)�

−1(v)+ θ2(y)x
)

with

π1(x) = π11 +π12x�

π2(x) = π21 +π22x�

θ1(y) = 1(
1 − ρ2)1/2 [θ11 + θ12y]�

θ2(y) = 1(
1 − ρ2)1/2 [θ21 + θ22y]�

γ1(y) = − ρ(
1 − ρ2)1/2 	

Define the fine mesh of M values 0	01 = t1 < · · · < tM = 0	99, with M = 599, as in the
empirical application. The vectors of parameter values are calibrated by implementing
the DR analog to the method suggested in Koenker and Xiao (2002).

For the first stage parameters, we estimate the DR coefficients (π̂1(x)� π̂2(x)) for a
fine mesh ofX values x ∈ {Q̂X(t1)� 	 	 	 � Q̂X(tM)}, setting the link function to the gaussian
CDF. The value of the coefficients π1 = (π11�π12)

′ and π2 = (π21�π22)
′ are then set to the

estimates obtained from linear regression of (π̂1(Q̂X(tm))� π̂2(Q̂X(tm))) on (1�QX(tm)).
For the second stage, we estimate the DR coefficients (θ̂1(y)� θ̂2(y)) for the fine mesh

of Y values y ∈ {Q̂Y (t1)� 	 	 	 � Q̂Y (tM)}, setting the link function to the Gaussian CDF.
The value of the coefficients θ1 = (θ11� θ12)

′ and θ2 = (θ21� θ22)
′ are then set to the esti-

mates obtained from linear regression of (θ̂1(Q̂Y (tm))� θ̂2(Q̂Y (tm))) on ((1− ρ̂2)−1/2� (1−
ρ̂2)−1/2Q̂Y (tm)). The correlation coefficient ρ̂ is calibrated to the correlation between
ε̂i =�−1(Ĝ(Yi�Xi)) and η̂=�−1(F̂X(Xi |Zi)), where Ĝ(Yi�Xi) and F̂X(Xi |Zi) are the
DSF and FX DR-based estimates evaluated at the n sample points. We find ρ̂≈ −0	1.

In practice, the corresponding ASF and QSFs calibrated to our data are very close to
being linear over the range of values of X considered, as can be seen from Figure E.1
which displays the true {0	25�0	5�0	75}-QSFs generated by our calibration (black lines).
This yields simulation results favorable to our QR-based estimators. In order to assess
our methods for a data generating process which is less favorable to the QR specifica-
tion, the parameter values for θ12 and θ22 used in the simulations are set to the parame-
ter values from our initial calibration multiplied by 1	5 and 2	25, respectively. This modi-
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Figure E.1. True QSFs for DR Calibration. Initial calibration (black) and modified calibration
used in simulations (red).

fication generates some curvature in the QSF as shown in Figure E.1 which also displays
the true {0	25�0	5�0	75}-QSFs generated by our adjusted calibration (red lines).

E.2.3 Linear Gaussian location model (LOC specification) The QR and DR specifica-
tions coincide for the location shift model

X = π11 +π21Z + σηη�
Y = θ11 + θ21X + σεε	

For this model, both the conditional quantile and distribution functions are linear in
the covariate, and so are the structural functions. After substitution, the reduced-form
equation for the second stage is

Y = θ11 + θ21X + [
ρη+ (

1 − ρ2)1/2
ξ
]

= θ11 + θ21X + σερη+ σε
(
1 − ρ2)1/2

ξ	

The value of the coefficients (π11�π21)
′ are then set to the estimates obtained from linear

regression of Xi on (1�Zi), and the scale parameter ση is set to the corresponding esti-
mate σ̂η = [(n − 1)−1 ∑n

i=1(Xi − π̂11 − π̂21Zi)
2]1/2. Letting η̂i = (Xi − π̂11 − π̂21Zi)/σ̂η,

the value of the coefficients (θ11� θ21)
′ are then set to the estimates of the first two coef-

ficients in the linear regression of Yi on (1�Xi� η̂i). We then set the scale parameter σε to
the corresponding estimate σ̂ε = [(n− 1)−1 ∑n

i=1(Yi − θ̂11 − θ̂21Xi)
2]1/2. The correlation

coefficient ρ̂ is calibrated to the correlation between ε̂i = (Yi − θ̂11 − θ̂21Xi)/σ̂ε and η̂.
We find ρ̂≈ −0	2.
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