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Bond risk premia in consumption-based models
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Gaussian affine term structure models attribute time-varying bond risk premia
to changing risk prices driven by the conditional means of the risk factors, while
structural models with recursive preferences credit it to stochastic volatility. We
reconcile these competing channels by introducing a novel form of stochastic
rate of time preference into an otherwise standard model with recursive prefer-
ences. Our model is affine and has analytical bond prices making it empirically
tractable. We use particle Markov chain Monte Carlo to estimate the model, and
find that time variation in bond term premia is predominantly driven by the risk
price channel.
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1. Introduction

Term premia, risk premia in the bond market, are a key object of interest for central
banks. They influence how monetary policy implementation via the short term interest
rate gets transmitted into the real economy through borrowing costs at longer matu-
rities, and ultimately determines its effectiveness. Policy speeches—made by the Fed
Chairs Yellen (2014), Bernanke (2006) and Greenspan (2005), for example, call for the
importance of understanding how and why term premia fluctuate. Our paper aims to
answer these questions by proposing a new consumption based asset pricing model.

Central banks around the world rely on reduced form Gaussian affine term struc-
ture models (ATSM) to produce estimates of term premia for policy discussion, because
they are econometrically flexible and economically interpretable. This class of models
generate variability in term premia through a time-varying risk price that is a func-
tion of the conditional mean of yields; see, for example, Duffee (2002), Wright (2011),
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and Bauer, Rudebusch, and Wu (2012). Conversely, structural consumption-based asset
pricing models studying bond risk premia often use recursive preferences, Bansal and
Shaliastovich (2013) for example. In these models, time-variation in term premia are
driven only by stochastic volatility of consumption growth and inflation, meaning that
the levels of these variables and yields themselves play no role in generating risk pre-
mia. This conclusion is at odds with the empirical evidence from reduced form ATSMs
because it shuts down the channel that makes reduced-form ATSMs empirically suc-
cessful.

We reconcile the two literatures by introducing both time-varying risk prices and
quantities of risk into a consumption-based model, where the former are functions
of the conditional mean of the macroeconomic factors. We introduce a time-varying
risk price using a new formulation of a stochastic rate of time preference. Unlike Albu-
querque, Eichenbaum, Luo, and Rebelo (2016) and Schorfheide, Song, and Yaron (2018),
our preference shock only depends on macroeconomic variables, current and past con-
sumption and inflation, and not on any additional latent factors. Our specification im-
plies that inflation can be nonneutral. Similar to Piazzesi and Schneider (2007) and
Bansal and Shaliastovich (2013), we find that this is a key ingredient for generating an
upward sloping yield curve and a realistic pattern of term premia.

The novelty of our specification for the preference shock is that bond prices remain
analytical and retain an affine structure. The tractability gained from the affine struc-
ture allows us to empirically disentangle the roles that the preference shock, recursive
preferences, and stochastic volatility have on term premia. We introduce time-varying
quantities of risk through stochastic volatility, similar to the long run risk literature. The
difference is that the volatility process in our paper is guaranteed to remain positive,
unlike most of the literature.

The empirical examination of the asset pricing implications requires solving for the
stochastic discount factor.1 However, such a solution does not always exist for regions
of the parameter space that researchers have traditionally found plausible. This is an is-
sue for all models in the literature that use recursive preferences with a few exceptions,
and not specific to our model. We provide conditions on the model’s parameters guar-
anteeing the existence of a solution. These conditions partition the parameter space and
make it cumbersome for econometricians implementing either an optimization-based
frequentist estimator or Bayesian Markov chain Monte Carlo algorithm.

We evaluate the empirical performance of our model by first quantifying the infor-
mation contained in observed inflation and consumption data about macroeconomic
state variables. We use the particle Gibbs sampler to efficiently estimate the state vari-
ables. We then ask how well these macroeconomic state variables do in terms of match-
ing the bond yield data by least squares. We show that empirically our model can ade-
quately capture the time-variation of term premia. It fits other key moments of Treasury

1Specifically, we implement a solution method developed by Bansal and Yaron (2004) that is widely used
in the macroeconomics and finance literatures; see, for example, Bollerslev, Tauchen, and Zhou (2009),
Bansal, Kiku, and Yaron (2012), and Schorfheide, Song, and Yaron (2018). Rudebusch and Swanson (2012)
and Caldara, Fernández-Villaverde, Rubio-Ramírez, and Yao (2012) describe other solution methods.
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bonds as well: it has an upward slope for the yield curve; and it also mimics the time
series dynamics of the average yield and slope of the yield curve well.

Next, we turn to the question that motivates the paper: is a time-varying risk price
that is a function of the conditional mean of macro variables or quantity of risk the key
driver for the time variation in term premia? We answer this question by shutting down
one channel at a time. First, we shut down the price of risk channel. This model is similar
to a long run risk model with stochastic volatility studied in the literature. We find that
although such a model produces time variation in term premia, the implied term premia
are implausible: they are economically insignificant, and have the wrong sign.

On the other hand, a model with the preference shock but not stochastic volatility
mimics the time variation of term premia produced by the reduced form Gaussian ATSM
and our benchmark model. Overall, our empirical evidence attributes the time variation
in the term premia primarily to a time-varying risk price through the preference shock.

We further examine whether it is inflation or consumption growth that drives this
risk price, and we find the crucial component is the price of the expected inflation risk
that comoves with the expected inflation itself. This is consistent with inflation nonneu-
trality as argued by Piazzesi and Schneider (2007) and Bansal and Shaliastovich (2013)
in a structural framework. The important contribution inflation makes to bond price
dynamics are also highlighted in the ATSM literature; see Ang and Piazzesi (2003) and
Rudebusch and Wu (2008).

Introducing the preference shock also has important implications for the uncondi-
tional slope of the yield curve, which has been the main focus for the majority of the
literature. Once the macro factors are pinned down by the observed macro data them-
selves, we show the long run risk model with stochastic volatility implies a counterfac-
tual downward sloping nominal yield curve. Adding the preference shock reverts the
result completely, and implies an unconditional slope just like what we see in the data.

This paper continues as follows. We introduce the new model with the preference
shock and recursive preferences in Section 2, and discusses its properties in Section 3.
In Section 4, we discuss the conditions for a solution to exist. Section 5 describes em-
pirical strategy for estimation and the consequent estimates. Section 7 examines the
model’s implications for bonds. The paper concludes in Section 8. Details on the model,
solution mechanism, and estimation method are available in an Appendix in the Online
Supplementary Material (Creal and Wu (2020)).

2. Model

In this section, we build a model that encompasses the two competing channels that
drive time variation in term premia: time-varying risk prices and quantities of risk.
Unlike a standard model with recursive preferences, our model generates a time-
varying risk price that is a function of macroeconomic variables. Moreover, our model
is tractable because it is affine. The derivations for the equations in this section can be
found in an Appendix in the Online Supplementary Material.
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2.1 Agent’s problem

We consider an endowment economy, where the representative agent optimizes over his
lifetime utility

Vt = max
Ct

[
(1 −β)ΥtC1−η

t +β{
Et

[
V

1−γ
t+1

]} 1−η
1−γ ] 1

1−η � (2.1)

with respect to consumption Ct . Like Albuquerque et al. (2016) and Schorfheide, Song,
and Yaron (2018), Υt introduces variation in the rate of time preference, which is cap-
tured by β, and we will refer to Υt as the stochastic rate of time preference. The param-
eter γ measures risk aversion, and ψ = 1

η is the elasticity of intertemporal substitution
when there is no uncertainty. Agents maximize utility (2.1) subject to the budget con-
straint

Wt+1 = (Wt −Ct)Rc�t+1�

where Wt is wealth and Rc�t+1 is the gross return on the consumption asset between t
and t + 1.

The first-order condition of the agent’s problem implies that the log stochastic dis-
count factor (SDF) is

mt+1 =ϑ ln(β)+ϑ	υt+1 −ηϑ	ct+1 + (ϑ− 1)rc�t+1� (2.2)

where ϑ≡ 1−γ
1−η , 	ct+1 = ln(Ct+1)− ln(Ct) is consumption growth, and rc�t+1 = ln(Rc�t+1)

is the continuously compounded return. These terms are standard in models with re-
cursive preferences. The preference shock 	υt+1 = lnΥt+1 − lnΥt is the key term. Our
formulation enables variation in the pricing kernel to capture the time-varying risk pre-
mium in bond prices through a time-varying risk price. Nominal assets are priced using
the nominal pricing kernel

m$
t+1 =mt+1 −πt+1� (2.3)

where inflation is πt+1 = ln(Πt+1)− ln(Πt) andΠt is the nominal price level.

2.2 Dynamics

In this section, we describe the dynamics of inflation and consumption, and then map
it into a companion form. We model consumption growth 	ct as the sum of a long-
run risk component c̄t and an idiosyncratic measurement error εc1�t as in Bansal and
Yaron (2004). We use a similar model for inflation πt with expected inflation π̄t and an
idiosyncratic shock επ1�t . The model is

πt+1 = π̄t +
√
ht�πεπ1�t+1� (2.4)

	ct+1 = c̄t +
√
ht�cεc1�t+1� (2.5)

π̄t+1 = μπ +φππ̄t +φπ�cc̄t + σπ
√
ht�πεπ2�t+1� (2.6)

c̄t+1 = μc +φc�ππ̄t +φcc̄t + σc�π
√
ht�πεπ2�t+1 + σc

√
ht�cεc2�t+1� (2.7)



Quantitative Economics 11 (2020) Bond risk premia in consumption-based models 1465

where the shocks {επ1�t � εc1�t � επ2�t � εc2�t} are independent and standard normal. In this
model, shocks to expected inflation have a contemporaneous impact on expected con-
sumption growth, and all shocks have stochastic volatility. The conditional variances
ht�π and ht�c follow a noncentral gamma (NCG) process as in Creal and Wu (2015). This
process guarantees the nonnegativity of volatility. This contrasts with the Gaussian pro-
cess that is prevalent in most of the literature; for example, see Bansal and Yaron (2004)
and Bansal and Shaliastovich (2013).

We write the model (2.4)–(2.7) in companion form by defining consumption growth
and inflation as a linear function of a state vector gt which follows a heteroskedastic
vector autoregression

	ct = Z′
cgt� (2.8)

πt = Z′
πgt� (2.9)

gt+1 = μg +Φggt +Φghht +Σghεh�t+1 +Σg�tεg�t+1� εg�t+1 ∼ N(0� I)� (2.10)

Σg�tΣ
′
g�t = Σ0�gΣ

′
0�g +

H∑
i=1

Σi�gΣ
′
i�ghit�

ht+1 ∼ NCG(νh�Φh�Σh)� (2.11)

εh�t+1 = ht+1 − Et (ht+1|ht)�

where Zc and Zπ areG× 1 selection vectors. Mapping the model (2.4)–(2.7) to the com-
panion form, the state vector is gt = (πt�	ct� π̄t� c̄t)′ and theH × 1 vector of conditional
variances is ht = (ht�π�ht�c)

′. See the Appendix in the Online Supplementary Material
for more details. The general process (2.10)–(2.11) nests popular models in the literature
for consumption growth including the vector autoregressive moving average model of
Wachter (2006).

The stochastic volatility model for ht is an affine process that is the exact discrete
time equivalent of a multivariate Cox, Ingersoll, and Ross (1985) process. The condi-
tional mean is Et[ht+1|ht] = Σhνh +Φhht meaning that Φh controls the autocovariance
of ht+1 and Σhνh is the drift. Σh is a matrix of scale parameters and νh are a vector of
shape parameters. The vector εh�t+1 are mean zero, heteroskedastic shocks to volatility,
and Σgh measures the covariance between Gaussian and non-Gaussian shocks, that is,
the volatility feedback effect.

2.3 Preference shock

Empirical evidence from the term structure literature using affine models shows that
risk premia are driven by the levels of the state variables through a time-varying risk
price. We build this channel in our model through the preference shock. In this paper,
we use the term “preference shock” differently than in Albuquerque et al. (2016) and
Schorfheide, Song, and Yaron (2018). In their models, the preference shock is an auto-
correlated latent factor impacting the rate of time preference. In our model, the rate of
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time preference is also stochastic but it depends on the levels of macroeconomic vari-
ables and not a latent factor. The dependence on inflation is motivated by the real effect
of inflation as argued by Piazzesi and Schneider (2007) and Bansal and Shaliastovich
(2013). We will empirically demonstrate its importance in our context for generating re-
alistic term premia dynamics in Section 7.1.

The preference shock is specified as follows:

	υt+1 =Λ1(gt)+Λ2(gt)
′εg�t+1� (2.12)

which depends on the levels of past inflation and consumption growth as well as their
shocks in the current period. We parameterize the functions in (2.12) as

Λ2(gt)= −ηΣ−1
g�t(λ0 + λggt)� (2.13)

whereΛ1(gt)= −ϑη2

2 (λ0 +λggt)′(Σg�tΣ′
g�t)

−1(λ0 +λggt) cancels out the Jensen’s inequal-
ity term. The novelty in our choice of the functional form is two-fold. First, it allows the
model to stay within the affine family and have analytical bond prices. Second, using
macro variables allows us to understand the driving force in macroeconomic fundamen-
tals.

This specification can be readily extended to a more complex model where the pref-
erence shock 	υt+1 also depends on the volatilities and their shocks; see the earlier
working paper version, Creal and Wu (2015). This extension could potentially introduce
more complex channels to explain movements in asset prices. Instead, we intentionally
keep the model simple and examine how well the current channels can explain yields.
Compared to models with recursive preferences, our model is more flexible because it
introduces an additional channel (the preference shock) through which a representative
agent perceives risk. Nevertheless, our model is still significantly restricted compared to
a standard no-arbitrage affine model because it has no latent yield factors.

2.4 Solving rc�t+1

The SDF in (2.2) is a function of the return on the consumption asset rc�t+1, which is
generally regarded as unobserved in the data. We solve for it using the log-linearization
technique of Campbell and Shiller (1989), applied by, for example, Bansal and Yaron
(2004) and Bansal, Kiku, and Yaron (2012).2 We express the return as a function of the
price to consumption ratio

rc�t+1 ≡ ln
(
Pt+1 +Ct+1

Pt

)
= 	ct+1 −pct + ln

(
1 + exp(pct+1)

)

≈ κ0 + κ1pct+1 −pct +	ct+1� (2.14)

where Pt+1 is the price of consumption goods, pct = ln( PtCt ) is the log price to consump-
tion ratio. The parameters κ0 and κ1 are log-linearization constants that depend on the
average price to consumption ratio p̄c = E(pct).

2The solution method used by Campbell, Giglio, Polk, and Turley (2018) for their ICAPM model is similar,
only they substitute out consumption instead of the return on the consumption asset.
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As the real pricing kernel in (2.2) must also price the consumption good

1 = Et
[
exp(mt+1 + rc�t+1)

]
(2.15)

we can guess and verify a solution for

pct =D0 +D′
ggt +D′

hht� (2.16)

Together, (2.14) and (2.16) express rc�t+1, and hence the pricing kernelmt+1 as functions
of the underlying state variables gt and ht . This is a fixed-point problem: pct depends
on κ0, κ1 through D0, Dg, Dh, which in turn depend on p̄c. This fixed-point problem
makes the model more complex as the parameter space needs to be restricted to the
region where a solution exists. We discuss the details of this fixed-point problem in the
Appendix in the Online Supplementary Material and the existence of a solution in Sec-
tion 4.

3. Model properties

This section examines the different components contributing to time variation in bond
risk premia. Specifically, we examine how the preference shock specification in the pre-
vious section translates into a time-varying risk price, and hence time-varying risk pre-
mium.

3.1 Sources of risk premia

Using the solution method described in Section 2.4, the nominal log-SDF in deviation
from the mean form becomes

m$
t+1 − Et

(
m$
t+1

) = −λ$�′
g�tΣg�tεg�t+1 − λ$�′

h Σh�t ε̃h�t+1� (3.1)

where the vector of shocks to volatility ε̃h�t+1 = Σ−1
h�tεh�t+1 have been standardized to

have unit variance. Both the Gaussian and non-Gaussian shocks are heteroskedastic and
have a time-varying quantity of risk.

Due to the stochastic rate of time preference, shocks to the SDF have time-varying
risk price λ$

g�t given by

λ$
g�t = γZc +Zπ ← power utility

+ κ1
γ−η
1 −ηDg ← recursive preferences

+ϑη(Σg�tΣ′
g�t)

−1(λ0 + λggt) ← preference shock� (3.2)

The first two terms are inherited from power utility, the second line comes from recur-
sive preferences, and the third is due to the preference shock.

The key term in (3.2) is λggt . The model has a time-varying risk price and produces
time-varying term premia that are functions of gt only if λg is nonzero. This channel
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still exists even when we shut off the stochastic volatility in the dynamics (2.10)–(2.11).
Conversely, if there were no preference shock, that is, λ0 = 0, λg = 0, the risk price λ$

g�t is
constant as in the literature on consumption-based models with recursive preferences.
A time-varying risk price that comoves with the levels of macroeconomic variables and
yields is a feature of benchmark Gaussian affine models that makes it successful empir-
ically, and it is a feature that is absent in standard models with recursive preferences.

If there were no preference shock, that is, if λ0 = 0 and λg = 0 =⇒ Υt = 1 in (2.1), then
the price of short run consumption growth risk is equal to the risk aversion coefficient
γ, the price of short run inflation risk is 1 for the nominal pricing kernel, and 0 for the
real pricing kernel. These are consistent with the literature.

Next, we decompose the risk price for the non-Gaussian shocks as

λ$
h = Σ′

gh(γZc +Zπ) ← power utility

+ κ1
(γ−η)
(1 −η) (Σ

′
ghDg +Dh) ← recursive preference�

These terms have similar features and functional forms as those in (3.2). Power utility
only has an impact on the risk price of volatility if there is a volatility feedback effect with
Σgh �= 0, while recursive preferences generate a risk price even whenΣgh = 0. To keep our
model simple and tractable, as in the standard models with recursive preferences, our
model does not have a time-varying risk price for volatility. Like the standard models,
we also have time-varying quantities of risk through stochastic volatility.

3.2 Bond prices and term premium

The price of a zero-coupon nominal bond with maturity n at time t is the expected price
of the same asset at time t + 1 discounted by the stochastic discount factor

P
$�(n)
t = Et

[
exp

(
m$
t+1

)
P

$�(n−1)
t+1

]
� (3.3)

Following Creal and Wu (2015), nominal yields are an affine function of both the Gaus-
sian state vector and volatility

y$�(n)
t = a$

n + b$�′
n�ggt + b$�′

n�hht� (3.4)

where the key coefficient is b$
n�g = − 1

n b̄
$
n�g, and b̄$

n�g follows the recursion

b̄$
n�g = (Φg −ηϑλg)′b̄$

n−1�g + b̄$
1�g� (3.5)

The bond-loadings are similar to those found in Gaussian affine models; see the Ap-
pendix in the Online Supplementary Material.

One key insight from the term structure literature is the difference between the auto-

covariances under the risk neutral and physical measures; given byΦQ$

g ≡Φg −ηϑλg �=
Φg. The basic intuition is that the autoregressive coefficient driving the physical dynam-
ics Φg is separated from the parameters that determine the cross-section (slope) of the
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yield curve ΦQ$

g . It is this feature that enables Gaussian affine models to fit the data and
generate enough variation in term premia. We demonstrate how to generate this key
channel with a stochastic rate of time preference in a structural model.

Another contribution of our paper is to map a consumption-based model with the
preference shock and recursive preferences into an affine framework. The benefit of this
is two-fold. First, the analytical structure makes it transparent how the alternative mech-
anisms that can drive risk premia work inside the model. Second, it makes the model
more tractable empirically.

The nominal term premium is defined as the difference between the model implied
yield y$�(n)

t and the average of expected future short rates over the same period

tp$�(n)
t = y$�(n)

t − 1
n

Et
(
r$
t + r$

t+1 + · · · + r$
t+n−1

)
� (3.6)

The term premium has a simple portfolio interpretation. An investor can buy an n-
period bond and hold it until maturity or he can purchase a sequence of 1 period bonds,
repeatedly rolling them over for n periods. The term premium measures the additional
compensation a risk averse agent needs to choose one option over another. Empirical
evidence in the term structure literature shows the term premium is time-varying, which
implies λg �= 0 in (2.13).

4. Feasible parameter regions

Empirical examination of the asset pricing implications of recursive preferences re-
quires solving for the SDF. We base our analysis on the approximation method of Camp-
bell and Shiller (1989), used by Bansal, Kiku, and Yaron (2012) and Schorfheide, Song,
and Yaron (2018), among many others. With this approach, we need to solve for the re-
turn on the consumption asset rc�t+1 as a function of the underlying state of the econ-
omy as described in Section 2.4. Whether such a solution exists amounts to a fixed-point
problem. In this section, we characterize the conditions that lead to a valid solution for
the Euler equation and asset prices.3

We partition the vector of all parameters of the model θ = (β�ψ�γ�θP� θλ) into the
preference parameters (β�ψ�γ), the parameters governing the physical dynamics θP,
and the parameters controlling the preference shock θλ. We condition our analysis on
(θP� θλ) and characterize the restrictions on the parameter space for the more intuitive
parameters (β�ψ�γ).

4.1 General case

Laid out briefly in Section 2.4, the fixed-point problem can be rephrased more explicitly
as follows. Define the function f (p̄c�θ) as

f (p̄c;θ)=D0(p̄c�θ)+Dg(p̄c�θ)′ḡ+Dh(p̄c�θ)′h̄� (4.1)

3Hansen and Scheinkman (2012) also discussed conditions that guarantee a solution to the representa-
tive agent’s problem under recursive preferences.
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For a given value of θ, a solution to the fixed-point problem is obtained when f (p̄c;θ)=
p̄c. Such a solution does not always exist. Instead, the parameters must lie in a restricted
space that ensures a solution.

Before we discuss the solution for the fixed-point problem to exist, the parameters
need to satisfy some conditions that are specific to models with stochastic volatility.4

Assumption 1. The parameters θ ∈Θr must satisfy that for any real p̄c:

1. the loadingsDh(p̄c�θ) are real,

2. the expectation in (2.15) exists forDh(p̄c�θ).

The first part of the assumption is used to guarantee that f (p̄c�θ) is real. It amounts
to a real solution for a system of H quadratic equations in H unknowns, that is, their
respective discriminant must be positive.5 Second, the guess and verify technique used
to solve the coefficients in (2.16) requires the expectation in (2.15) to exist. This expecta-
tion does not always exist when stochastic volatility follows a multivariate Cox, Ingersoll,
and Ross (1985) process, and the second part of Assumption 1 guarantees the existence
of the integral. These conditions are discussed in more detail in the Appendix in the On-
line Supplementary Material.

Given these conditions, the following proposition provides a general condition that
guarantees a solution to the representative agent’s problem.

Proposition 1. Given Assumption 1, there is a value β̄(ψ�γ�θP� θλ) such that if β < β̄,
then there exists a real solution for the fixed-point problem.

For the proof, see the online appendix.
We use the proposition to characterize the joint restrictions that exist among all the

parameters. Given the dynamics of the economy in θP and the parameters determining
the preference shock in θλ, agents’ risk appetite γ, and the intertemporal elasticity of
substitution ψ, the representative agent needs to be sufficiently impatient (small β) in
order for a solution to exist. The nature of the fixed-point problem requires that all three
conditions be jointly satisfied. The proposition above provides sufficient conditions for
a solution to exist. One can check the uniqueness of the solution numerically using the
method proposed in Doh (2013). In a subsequent work, Borovicka and Stachurski (2020)
developed conditions for the existence and uniqueness of recursive utility for a slightly
different class of dynamics of the state variables.

4.2 Special cases

In this section, we provide more intuition by discussing a special case where the dynam-
ics are Gaussian by imposing ht = 0 in (2.10)–(2.11). In this case, we are no longer con-
strained by Assumption 1. We can provide stronger conditions that apply to any β ≤ 1,

4Models with rare consumption disasters with time-varying jump intensities following a Cox, Ingersoll,
and Ross (1985) process will require similar conditions.

5This condition is similar to an existence condition discussed by Campbell et al. (2018) in their ICAPM
model. They do not provide a condition guaranteeing a solution to the fixed-point problem.
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that is, it reduces to relationships between γ and ψ. The following corollary also charac-
terizes the upper bound β̄ as a monotonic function in γ.

Corollary 1. 1. If Z∞′
1 μ∗

g ≤ 0 and β ≤ 1, then 1−γ
1−ψ > 0 guarantees the existence of a

solution.

2. If β≤ 1, then there is a value γ̄(θP� θλ) such that γ̄−γ
1−ψ > 0 guarantees a solution.

3. For any ψ, β̄ is monotonic in γ: for ψ> 1, then dβ̄
dγ > 0; for ψ< 1, then dβ̄

dγ < 0.

Under the condition specified in part 1 of Corollary 1, a solution exists if (γ > 1, ψ>
1) or (γ < 1, ψ< 1). This divides the parameter space for (γ�ψ) into four quadrants, and
only two of these four have a solution. Part 2 of Corollary 1 says that (γ > γ̄, ψ > 1) or
(γ < γ̄, ψ < 1) guarantees a solution, regardless of how patient the agent is. Again, two
out of the four quadrants have a solution, similar to part 1. The intuition behind the two
parts of the Corollary is also similar. Although the cutoff for ψ is always 1, the difference
between them is the boundary on γ in part 2 depends on the parameters θP and θλ.

The separation of the parameter space into quadrants makes estimation more chal-
lenging. For example, if the optimum is within the upper-right region and we start from
the lower left region, a numerical optimization algorithm or a Bayesian MCMC algo-
rithm, can have a hard time getting through the tiny bottleneck and reaching the correct
part of the parameter space. In practice, we observe these algorithms hitting the regions
where no solution exists and often stopping. Estimation gets more complicated when
the structural parameters interact with the remaining parameters of the model as the
boundaries can shift creating strong dependencies among the model’s parameters.

Corollary 1, part 3 states the relationship between the upper bound for β and γ. If
ψ < 1, then an agent cannot have a high risk aversion and be patient at the same time.
The more risk averse he is, the less patient he needs to be, and vice versa. If ψ > 1, the
opposite is true. Numerical illustrations can be found in the Appendix in the Online
Supplementary Material.

5. Estimation

We estimate the model using a procedure similar to Piazzesi and Schneider (2007),
where we first estimate a stochastic process for consumption growth and inflation and
then use these macroeconomic state variables to fit the yield curve. The differences are
how we implement the steps. First, we use Bayesian procedures to estimate the state
variables because of the presence of stochastic volatility. Next, instead of calibrating
the structural parameters as in Piazzesi and Schneider (2007), we use nonlinear least
squares to estimate them by minimizing a quadratic form in the average pricing er-
rors. This approach ensures that the macroeconomic variables (expected inflation, ex-
pected consumption growth, and their stochastic volatilities) maintain their intended
economic interpretation because it only uses macroeconomic data to estimate them.
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5.1 Data

The data we use are standard in the literature. Our measure of monthly real per capita
consumption growth is constructed from nominal nondurables and services data down-
loaded from the NIPA tables at the U.S. Bureau of Economic Analysis. We deflate each of
these series by their respective price indices, add them together, and divide by the civil-
ian population. The population series and monthly U.S. CPI inflation are downloaded
from the Federal Reserve Bank of St. Louis. Yields are the Fama and Bliss (1987) zero
coupon bond data available from the Center for Research in Securities Prices (CRSP)
with maturities of (3�12�24�36�48�60) months. The data spans from February 1959
through June 2014 for a total of T = 665 observations.

5.2 Parameter restrictions

In the model with stochastic volatility, Σ0�g is set to zero for identification. We also im-
pose Φh, Σh to be diagonal, and Φgh = 0 and Σgh = 0 to reduce the number of parame-
ters. In the Gaussian model without stochastic volatility, the parameters of Σ0�g are esti-
mated.

If there is no preference shock, there are three structural parameters (β�ψ�γ) to fit
the cross-section of yields. In models with the preference shock, we only introduce four
new parameters into the matrix λg (the elements related to expected consumption, ex-
pected inflation, and their cross terms) while we set λ0 = 0.

Even with the new parameters in λg, the new model still imposes more restrictions
than a Gaussian no arbitrage affine model. For example, if we compare the two classes
of models assuming the same dynamics for consumption growth and inflation as in this
setting, there are 34 free parameters in a Gaussian affine model while there are 26 pa-
rameters in our model. No-arbitrage term structure models impose considerably less
structure under the Q dynamics than that implied by a structural model. Equivalently,
the bond loadings contain more free parameters to fit asset prices.

5.3 Estimation of consumption growth and inflation dynamics

We estimate the model of consumption growth and inflation (2.4)–(2.7) by Bayesian
methods. We place a prior distribution over the parameters of the model and estimate
them along with the state variables gt and ht by drawing from the posterior distribution
using Markov chain Monte Carlo and a particle Gibbs sampler; see Creal and Wu (2017)
for an application to interest uncertainty. A detailed description of how the model is es-
timated as well as empirical results for the model can be found in the Appendix in the
Online Supplementary Material.

5.4 Cross sectional regression

Stacking yields (3.4) forN different maturities n1� n2� � � � � nN and adding a vector of pric-
ing errors et , the observation equations for yields are

y$
t =A$ +B$

ggt +B$
hht + et� et ∼ i.i.d.

(
0�ω2I

)
� (5.1)
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where y$
t = (y

$�(n1)
t � y

$�(n2)
t � � � � � y

$�(nN)
t ), A$ = (a$

n1
� � � � � a$

nN
)′, B$

g = (b
$�′
g�n1� � � � � b

$�′
g�nN )

′,and

B$
h = (b$�′

h�n1
� � � � � b$�′

h�nN
)′.

Given the estimated parameters θ̂P and the estimates of the state variables ĝt and
ĥt , we estimate the structural parameters θQ = (β�γ�ψ�θλ) through nonlinear least
squares. We compute the pricing error for the vector of yields

et = y$
t −A$(θQ� θ̂P) −B$

g

(
θQ� θ̂P

)
ĝt −B$

h

(
θQ� θ̂P

)
ĥt � (5.2)

and estimate θQ by minimizing the average squared pricing errors

argmin
θQ

1
T

T∑
t=1

e′tet � (5.3)

In practice, we optimize over the free parameters inΦQ$

g instead of λg as we have a better

prior knowledge of their scale. We can then solve for λg viaΦQ$

g =Φg −ηϑλg.
Table 1 contains parameter estimates from the model. The first column reports the

maximum when the state variables gt and ht are estimated at their posterior means ĝt
and ĥt . The time discount factor β is 1�002, the intertemporal rate of substitution ψ is

0�8, and the risk aversion parameter γ is 1�7. The risk-neutral autoregressive matrix ΦQ$

g

is much more persistent than its time series counterpart Φg, with both eigenvalues at
0�985 or greater. This high persistence reflects the smooth and slow decay of the yield
curve as a function of maturity.

There exists a long standing debate in the finance literature about the qualitative
feature of the structural parameters, for example, whether ψ is greater or less than one.

Table 1. Parameter estimates.

mean: 10th: 90th:

ψ
0�800 0�742 0�615

(0�372) (0.005) (0�001)

β
1�002 1�001 1�003

(0�001) (0�0002) (0�000)

γ
1�704 1�537 0�455

(0�935) (0�014) (0�136)

New
ΦQ$

g

0�977 −0�023 0�964 −0�192 0�605 0�229
(0�017) (0�078) (0�005) (0�007) (0�000) (0�012)

0�011 1�018 0�020 1�134 0�071 0�951
(0�009) (0�037) (0�002) (0�004) (0�004) (0�000)

λg
0�002 0�025 0�010 0�123 −0�268 0�006

−0�004 −0�018 −0�011 −0�087 0�164 −0�002

Note: Parameters estimates for the benchmark model. First column: the global estimates when macroeconomic factors ĝt
and ĥt are estimated at the posterior mean. Second column: estimates when macroeconomic factors ĝt and ĥt are estimated
at the 10th percentile. Third column: estimates when macroeconomic factors ĝt and ĥt are estimated at the 90th percentile.
Standard errors are Newey and West (1987).
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The long run risk literature (Bansal and Yaron (2004)) argues that values of ψ> 1 should
be the case. On the other hand, Campbell (2011) argues the opposite to be consistent
with the aggregate evidence. Our estimate of ψ is less than one, although the standard
error is large when the state variables are estimated at their posterior mean. The value
of β is estimated close to 1. The risk aversion parameter γ is estimated at 1�7, which is
low compared to much of the asset pricing literature.

To capture the uncertainty induced by the two-step estimation procedure, we re-
port estimates when the state variables gt and ht are estimated at their 10th and 90th
percentiles in the last two columns of Table 1. For the 10th percentile, the parameters
are very similar to the maximum when the state variables are estimated at the posterior
mean. At the 90th percentile, the estimates ofψ andβ are similar but the estimated value

of risk aversion is much lower. Some elements inΦQ$

g and λg also change sign.

6. Model-implied yield curve

This section assesses how well the model fits the data in terms of both the unconditional
yield curve and its dynamics.

6.1 Unconditional yield curve

Table 2 contains estimates of the cross section of the yield curve, averaged over time.
The top row is the unconditional sample mean of the data. A well-established feature of
the unconditional nominal yield curve is that it slopes upwards as maturity increases.
In our sample, the slope is 1�04%. The second row contains the sample means of the
model-implied yields constructed from the posterior mean of the factors. It mimics
the first row closely, and implies a slope of 0�94%. The next two rows are the sample
means of the model-implied yields constructed using the 10th and 90th percentiles of
the MCMC draws of the macroeconomic factors. The results look similar to the previ-
ous two rows. Row 5 is a model that includes the preference shock but shuts down the
stochastic volatility channel, and it paints the same picture as our benchmark model.

Table 2. Unconditional yield curves.

3 12 24 36 48 60 level slope

data 4�94 5�33 5�54 5�72 5�88 5�98 5�57 1�04

SV w/ preference shock 5�19 5�26 5�40 5�59 5�83 6�13 5�57 0�94
10th 5�08 5�25 5�47 5�67 5�86 6�07 5�57 0�99
90th 5�11 5�24 5�46 5�68 5�87 6�05 5�57 0�94

Gaussian w/ preference shock 5�08 5�25 5�47 5�69 5�89 6�09 5�58 1�01
SV w/o preference shock 5�65 5�62 5�58 5�54 5�51 5�49 5�57 −0�17

Note: Average nominal yields in annualized percentage points across time in the data (first row), our benchmark model
with both stochastic volatility and preference shock (second to fourth rows), model without stochastic volatility (fifth row), and
model without preference shock (last row) for maturities of 3–60 months across the columns. The last two columns are the
average level of yields across all 6 maturities, and the slope is defined as the difference between the 60 month and 3 month
yields.
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In contrast, if we do not allow preference shocks to play a role by imposing λg = 0,
then the last row of Table 2 shows a counterfactual downward slope of −0�17%. While
this stochastic volatility model seems to be flexible with 2 Gaussian factors and 2 volatil-
ity factors, there are only 3 structural parameters (β�γ�ψ) to fit the cross-section, and
all of them mainly impact bond yields through the intercept term a$

n in (3.4). Changes in
these parameters allow parallel shifts in the yield curve but are limited in their ability to
impact the slope. When λg = 0, the autocovariance matrixΦg determines both the time
series dynamics of the factors and the slope of the yield curve at the same time; see the
bond loading recursion for b̄$

n�g in (3.5). In the term structure literature, Duffee (2002)
has shown that the separation between the two is important for capturing key features
of the data. Using our model, we are able to separate the risk neutral parameter from the

times series dynamicsΦQ$

g ≡Φg −ηϑλg �=Φg to fit the cross-section of the yield curve.
We have demonstrated that our model fits the cross-section of the yield curve well

when preferences are allowed to be more flexible. The more challenging task is to see if
it fits the time series as well. Although term premia have been studied extensively in the
term structure literature, they are fundamentally an unobserved object. Consequently,
we evaluate our model’s ability to fit the observable moments in the data: level and slope
of the yield curve. We will discuss the dynamics of the term premia in Section 7.1.

The literature on structural modeling of yields emphasizes the role that the parame-
ter φc�π plays in fitting the yield curve; most papers report that φc�π should be negative
for an upward sloping yield curve. Our model is able to generate an upward sloping yield
curve when we use the posterior mean value of −0�003, which is negative but statistically
insignificant. Estimates of the dynamics of the model are available in the Appendix in the
Online Supplementary Material. Our model can generate the same shape for the yield
curve even if φc�π is positive. We conduct the following exercise: instead of using the
mean estimate for φc�π , which is negative, we replace it with its 90th percentile, which
is positive 0�011. Then we reoptimize the objective function, and we find the implied
slope is 0�8%. Interestingly, once we introduce the preference shock, our model can fit
both cross sectional and time series properties of the yield curve with a positive or neg-
ative value of φc�π . Moreover, our results are robust if we use multiple volatility factors
for each macro variable or a VARMA model for the dynamics of consumption growth
and inflation; see the Appendix in the Online Supplementary Material and the earlier
working paper version, Creal and Wu (2015).

6.2 Dynamics

In the left panel of Figure 1, we plot the level of the yield curve over time, defined as the
average of yields across all maturities in our sample. The solid line depicts the mean es-
timate from our model, and the dashed line is the data. In the right panel, we plot the
slope of the yield curve defined as the 5-year yield minus the 3-month yield. Our model
implied level and slope trace the data well, considering our model uses only macroe-
conomic factors rather than latent yield factors. We also plot the model-implied level
and slope of the yield curve when the macroeconomic factors are estimated by the 10th
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Figure 1. Level and slope. Left: level defined as average of yields across all maturities. Right:
slope defined as the 5-year minus 3-month yield. Light dotted line: data; solid line: mean esti-
mate; lower bold dashed line: 10th percentile; upper bold dashed line: 90th percentile. Y -axis:
annualized percentage points.

(lower dashed lines) and 90th (upper dashed lines) percentiles of the MCMC draws. Pos-
terior mean estimates of the level and slope of the yield curve are close to those esti-
mated from the percentiles.

Table 3 shows mean absolute errors for the level and slope of the yield curve. The
first row is our model with both preference shock and stochastic volatility, the second
row is the Gaussian model with only the preference shock, and the last row is the model
with stochastic volatility but without a preference shock. The pricing errors for the level
of the yield curve are similar across the three models. The difference is mainly in the
slope of the yield curve. While having both stochastic volatility and preference shocks
allows our model to fit the slope the best, the Gaussian model with preference shock is a
close second. Similar to Section 6.1, the pricing error for the slope is much larger when
the model has stochastic volatility but no preference shock.

The pricing errors in all the structural models are larger than a typical Gaussian
affine model, which is natural for the following reasons. First, structural models are more
restrictive than an affine model with fewer free parameters. Second, we restrict our at-
tention to macroeconomic factors. And, our estimated factors are fixed after the first

Table 3. Mean absolute errors.

level slope

Structural SV w/ preference shock 1�61 0�80
Gaussian w/ preference shock 1�56 0�85
SV w/o preference shock 1�59 1�30

Regression gt 1�60 0�78
gt , ht 1�55 0�75

Note: Mean absolute errors in percentage points. The first row is our model with both
stochastic volatility and preference shock. The second row uses the model with only the pref-
erence shock. The third row uses the model with only stochastic volatility. The next two rows are
regression-based results: the fourth row regresses level or slope on gt only; the fifth row regresses
level or slope on both gt and ht .
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stage of estimation and are functions of only macroeconomic data. We do not allow the
factors to adjust to fit the yield curve in the second stage.

The next two rows of Table 3 break down the contributions of the two sources by
regressing level or slope on the macroeconomic factors. In these regressions, we are ex-
plaining the variation in yields using the macro factors but without imposing any pa-
rameter restrictions on the factor loadings that a structural model requires. In row 4, the
independent variables are the conditional means of inflation and consumption growth
within gt . The result in this row is very similar to what we see in the Gaussian model
with a preference shock but with no stochastic volatility in row 2. In this case, the re-
strictions imposed by the structural model do not introduce significantly higher pricing
errors once the preference shock is introduced.

In row 5, we see that adding both conditional mean factors gt and variance factors
ht further improves the pricing errors for both the level and slope when the loadings are
unrestricted. Comparing rows 3 and 5 shows that the structural model imposes strong
restrictions on the loadings for stochastic volatility. By restricting the loadings on the
stochastic volatility factor, the mean absolute errors for the slope increase by 0�55 basis
points.

7. Bond term premium

Bond term premia are a crucial input for central banks to implement monetary policy
and a key object of interest in this paper. In this section, we examine whether the model
proposed in Section 2 adequately captures the time-variation of term premia. Then we
decompose this time variation into the alternative channels that contribute to it. Em-
pirically, we find that the key term is the price of expected inflation risk, which loads on
expected inflation itself.

7.1 Term premium and its sources

We plot the 1 year (left) and 5 year (right) term premia from our main model in Figure 2.
The solid lines are estimated from the posterior mean of the state variables. The long
term (5-year) term premium displays more variation than the medium term (1-year)
term premium. The 5-year term premium was low at the beginning of our sample. It in-
creased through the 1960s and 70s, peaked in the early 1980s at about 2�5%, and then
it trended down. To capture the uncertainty induced by the two-step estimation proce-
dure, we also plot the term premia calculated from the 10th and 90th percentiles of the
MCMC draws. Their dynamics are similar to those of the estimates calculated from the
posterior mean. The one exception is the 90th percentile for the 1-year term premium.
This is expected from the estimates in Table 1 as the 90th percentile produces estimates
of the structural parameters that have different properties than the mean and 10th per-
centile.

For comparison, we plot the term premia implied by a three factor reduced form
Gaussian ATSM in the top left of Figure 3, which serves as a benchmark for many policy
discussions (for implementation details see, for example, Hamilton and Wu (2012) and
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Figure 2. Estimated term premia from our main model. Estimated 1- and 5-year term premia
from our main model with both preference shock and stochastic volatility. Solid line: mean es-
timate; dashed line: 10th percentile; dotted line: 90th percentile. Y -axis: interest rates measured
in annualized percentage points.

Creal and Wu (2015)). Both the size and time variation of our estimates (bottom right)
resemble the reduced form ATSM estimates.

With both time-varying risk prices and quantity of risk built in, our model does
an adequate job of capturing the pattern of term premia exhibited in the data. The

Figure 3. Estimated term premia from alternative models. Estimated 1- and 5-year term premia
from alternative models. Top: reduced-form 3 factor Gaussian ATSM. middle: SV model with no
preference shock; Bottom: Gaussian model with preference shock. Dashed lines: 1 year; solid
lines: 5 year. Y -axis: interest rates measured in annualized percentage points.
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question is then which channel contributes more? The literature provides two oppo-
site answers: reduced form Gaussian affine models attribute the time-varying term pre-
mia completely to a time-varying price of risk; while the literature on recursive prefer-
ences attributes it completely to a time-varying quantity of risk. Our unifying framework
equips us with a more comprehensive view to answer this question. We study how much
time variation there would be if we shut down one channel at a time.

First, we shut down the risk price channel by setting λg = 0, or equivalently ΦQ$

g =
Φg. This model is similar to those in the long run risk literature, Bansal and Shaliastovich
(2013), for example. The difference is that we model the volatility process with a non-
central Gamma process guaranteeing its nonnegativity, whereas the literature models it
with a Gaussian process. We reoptimize the objective function subject to the constraint
λg = 0, and plot the implied term premium in the bottom left of Figure 3. Without the
preference shock, the term premia are essentially constant and economically insignif-
icant. Moreover, the term premia generated by this model are negative, which is the
wrong sign.6 A simple model with only a time-varying quantity of risk is not sufficient to
account for variation in term premia.

Next, we shut down the time variation in the quantity of risk channel by setting ht = 0
in (2.10)–(2.11), but still allow a preference shock λg �= 0. Then the factor dynamics follow
a Gaussian VAR. The resulting term premia from reoptimizing this restricted model are
depicted in the top right panel. Interestingly, both the size and time variation of the
term premia resemble the estimates in our main model (bottom right) and the GATSM.
Hence, a time-varying risk price that is a function of expected inflation and expected
consumption growth generates the amount of variation of term premia as we observe
from the reduced form estimates.

We have established that a time-varying risk price through the preference shock is a
channel that can explain almost all of the variation in the bond term premia. We then
further ask: is the price of inflation risk or consumption risk time varying? What drives
the variation in this price? First, we only allow the price of expected inflation risk to vary
over time, and also restrict it to comove with the expected inflation itself. We implement
this by imposing the following restrictions: all components in λg are zero but the λπ̄�π̄ ,

or equivalentlyΦQ$

g =Φg for all but one component φQ$

π̄�π̄ �=φπ̄�π̄ . We reestimate the re-
maining parameters given this restriction. The implied 5-year term premium is plotted
in the left panel of Figure 4, which is very similar to the estimates from Figure 2. There-
fore, the variation in the term premium is primarily coming from the price of expected
inflation risk loading on itself, and this one single component allows us to capture the
predominant variation in the term premium.

As a contrast, we plot in the right panel of Figure 4 estimates of the term premia
when we only allow the price of expected consumption risk to be nonzero, and to vary
with itself. Although displaying as much variation, it does not resemble the key eco-
nomic feature in the term premium in Figure 2. For example, the term premium was

6Our results are not specific to our estimates for the structural parameters. If we calibrate the structural
parameters using the values from Bansal and Yaron (2004) for (β�γ�η), the model still produces the same
pattern.
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Figure 4. Five-year term premia. Left: model implied term premium when the matrix λg is set
to 0 except the diagonal entry allowing the price of expected in ation risk to load on itself. Right:
model implied term premium when the matrix λg is set to 0 except the component allowing the
price of expected consumption risk to load on itself.

lower in the 1960s, and peaked in the early 1980s in the benchmark model. Estimates in
Figure 4 show an opposite pattern: it was high in the middle of the 1960s, and became
negative during the 1970–1980s when the term premium was generally considered to be
extremely high. This is counterintuitive.

To capture the variability of the estimated macroeconomic variables from the first
stage, we plot the 10th percentile in dashed lines. They mimic the solid lines. As we ex-
plained earlier in this section, the 90th percentile converges to an alternative local max-
imum. It exhibits a different economic interpretation and we do not plot it.

7.2 Conditional Sharpe ratios

This section studies the conditional Sharpe ratio, which is closely related to term premia.
First, denote r(n)�$t+1 as the return of buying an n period bond at time t, holding it for one
period, and selling it at t + 1 as an n− 1 period bond. The excess return is

rx(n)�$t+1 ≡ r(n)�$t+1 − r$
t �

The corresponding risk premium is

Et
(
rx
(n)�$
t+1

) + 1
2
Vt

(
rx
(n)�$
t+1

) ≡ − cov
(
rx
(n)�$
t+1 �m

$
t+1

)
�

The conditional Sharpe ratio of this asset in terms of log nominal returns is defined as

s(n)�$t ≡
[
Et

(
r(n)�$t+1

) − r$
t + 1

2
Vt

(
r(n)�$t+1

)]
/

√
Vt

(
r(n)�$t+1

)
� (7.1)

where an explicit expression is available in the Appendix in the Online Supplementary
Material.

Figure 5 plots the conditional Sharpe ratio for the 1-year bond on the left, and 5-
year bond on the right. The lines use the posterior mean estimates of the factors. We
also report the conditional Sharpe ratios estimated using the 10th (dashed lines) and
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Figure 5. Estimated conditional Sharpe ratios. Estimated conditional Sharpe ratios for log re-
turns from the main model with preference shocks. Left: 1-year bond held for 1 month; Right:
5-year bond held for 1 month. Each graph plots the conditional Sharpe ratio when the factors gt
and ht are estimated at their posterior mean, 10th, and 90th quantiles.

90th percentiles (dotted lines) of the MCMC draws. The Sharpe ratios increased between
1960 and 1980 from about 0�1 to the highest of 0�3 for the 1-year maturity, and 0�2 for the
5-year maturity. Then they decrease over the second-half of the sample, and became
negative during the Great Recession, and end around where they started.

Both the dynamics and the level of the Sharpe ratio are sensible. The average Sharpe
ratio is 0�13 for 1 year and 0�10 for the 5 year for the mean macro variables. The 10th and
90th percentiles range from 0�10 to 0�17 for the 1-year maturity bond, and 0�07 to 0�12 for
the 5-year bond. Duffee (2010) showed that the Sharpe ratios in Gaussian ATSMs can be
implausibly high when there are no over-identifying restrictions imposed. The restric-
tions in our structural model allow a lower and reasonable Sharpe ratio. In this sense,
the restrictions imposed by economic theory disciplines the term structure model.

8. Conclusion

Two strands of related literature attribute time variation in bond term premia to two dif-
ferent sources: Gaussian ATSMs credit time-varying risk premia to risk prices that are
functions of the conditional mean of the risk factors, whereas structural models with re-
cursive preferences and long run risk attribute it to time-varying quantities of risk. We
developed a consumption based model to capture both of these competing sources. We
introduced time-varying risk prices through a preference shock that depends on cur-
rent and past components of consumption growth and inflation. This generates a time-
varying risk premia even when the shocks are homoskedastic. Our novel formulation of
the preference shock yields analytical bond prices, gaining tractability for this class of
models. We introduce a time varying quantity of risk through stochastic volatility, which
follows a nonnegative affine process. We found that the time-varying price of expected
inflation risk driven by expected inflation itself is the primary channel empirically. On
the contrary, once the preference shock is a component in the model, the presence of
stochastic volatility does not alter the economic implication of the dynamics of term
premia. Moreover, a stochastic volatility model without preference shock cannot match
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the upward sloping unconditional nominal yield curve, the fundamental moment in the
term structure. Adding the preference shock solves this problem as well.

Empirical implementation of recursive preferences requires careful attention when
solving for the stochastic discount factor. A solution does not exist for certain combi-
nations of structural parameters. Our paper provided conditions that guaranteed the
existence of a solution. We make the first step to understand the parameter space, and
implementing these in empirical estimation could be an interesting area of future work.

Several authors have studied term structure models with recursive preferences in
DSGE models, for example, Rudebusch and Swanson (2008), Rudebusch and Swanson
(2012), van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramírez (2012), and
Dew-Becker (2014). How to introduce our technology of capturing realistic dynamics of
term premia and other key aspects of bonds and other assets into a DSGE framework
remains an open question, and logical next step for the literature.
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