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APPENDIX S1: ASSUMPTIONS AND PROOFS

In the proofs, we denote with K a positive constant that does not depend on » and N,
and can change from one line to another.

S1.1 Assumptions

AssuMPTION A. For the processes (X1~ we have:

(@) For a sequence of stopping times, (T,,)m>1, increasing to infinity, the processes
(@) 20, (BY)j21, (Y51, and (7)1, are all uniformly bounded on [0, T A Ty,).

(b) The processes |Ut0)| and |a,0)| take positive values on [0, T].

(c) For a sequence of stopping times, (T,,) m>1, increasing to infinity and a sequence of
constants, (Kn)m>1, we have uniformly in j > 1:

E[ sup |o-t(0) — O'S(O)|2 +  sup |BU) §1)|2 +  sup |5t(j) — 6§”|2
5,t€[0, T AT 5,t€[0, T AT\ 8,t€[0, T AT )]

+ sup |7(]) DHV(D y§1)|T] < Kplt —sl,

$,t€[0, T AT

) ( ) 0 0
[E(B\r,, = Boer, )| + [E(oir, = o5, ) < Klt =51,
|E(X§}\)Tm,t/\TmX§i)Tm,tATm)| < Kplt s,
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forX equal to B(’) (j) (0) (0), and X(Z) equal to one of(Wt(O) - WS(O))2 —(t—2y9),
(Wt«)) W O\(B, — B,) and (W<0> WO WD — 7Dy,

(d) We have ", AX ) = [y [5 8V (s, wp(ds, du), for j > 0, and where  is a Pois-
son random measure on Ry x E with compensator ds ® v(du), for some o-finite mea-
sure v on a Polish space E. Furthermore, the jump size functions 8 are mappings Q x
R, x E — R which are locally predictable. For j =0,1,..., we have fOT [ 18V (s, u) #
0) dsv(du) < oo. For a sequence of stopping times, (T,,)m>1, increasing to infinity and a
sequence of nonnegative functions (I',,(u))m>1 Satisfying fE(l Vv I‘fn(u))v(du) < 00, we
have |6 (s, u)| < Tp(u), uniformlyin j > 0, for s € [0, T A Tp,].

ASSUMPTION B. We have the following uniform convergence in probabilityas N — N for
some N € (0, ol

sup
t=1,...,T,ke[0,1]

N ~(J) 2
6 g,”
R 9| [ R T )

2
j=1 (Ut—1+x)

2
2 P
(30 7) ] 2o

sup
1=1,...,T,xe[0,1] i
N )
6 ) Yi—1+x P
sup N Z[(Bt 14k ) (0) - At,K ? 0’
i=1,...,T,kef0,11| &V ‘5 o,
J t—1+k

for some w;“K), (b> and A, ., which are cadlag functions of t — 1 + k, and || - || denoting the

Frobenius norm of a matrix. We further set z//(c) = A,,KAIK.

To state the next assumption, we introduce the following notation:

1. 0 . NN
¥z = = Do ez (B0 1)+ 5 (B, 1) T T
= (7,114
@) 2
(,3(/) — )ZM}
t—1+k (0) 2|
( t—1+K)
N ; ) () AT
1 ) . y y
CQ]K(Z’M)ZNZeZ(Z M)BIH'(”Z[(BEJ—)HK_ ) (B§])1+K )2 = 1+K((())t 1—;'()
=1 (Ul—l+K)

~() \2
(B(/)l _ )Z(Util+;<) i|
t—1+«k 0 2|
(a-t(f)1+K)

AssuMPTION C. We have the following convergence in probability as N — N, with some
N € (0, 0]

//‘k (z,u) — kt,K(z,u)|2w(u)w(z)dudz£>0,
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/ / |chK(z, u) — ¢z, u)|2w(u)w(z) dudz i) 0.
RJR

for some random functions k; . (z,u) and c; (z,u), some t € Ny N[0, T] and « € [0, 1],
and with w being the weight function for the £*(w) space defined in equation (10) in the

paper.

S1.2 Localization

AssuMPTION SA. We have Assumption A with T) = oo. Furthermore, the processes
(@9)j>0, (B)j=1, (W) j>1, and (579) >, are uniformly bounded on [0, T, and 10|
is bounded from below by a positive constant on [0, T1].

We will prove the results under the stronger Assumption SA. A standard localization
argument then can be used to show that they continue to hold under the weaker As-
sumption A.

S1.3 Notation and decomposition

We start with introducing some notation that will be used in the proofs. Throughout,
we will use the shorthand notation EY ,(-) = E(-|F;_14(i—1)/») for t € N.. For a generic
process Z;, we set

Zt,K,n:Z[71+LKVZJn*kn7 t€N+7K€ [O> 1]
and
2 -
NYTZ=Zu 1yvipn— Za-tyri-2/ns tE€N4,i=2,...,n.

We denote the spot variances of the asset prices by
0 0))2 ' 0 ~GN2
Vt( )=(0't( )) , Vtm:(B(/)) V( )—i—y“)( (/)) +(‘Tt(j)) , j=1,...,N,

and their continuous martingale components by
e _ [ a0 L) L) )
X, ! :/ BS] Us(O) dI/Vs(O) + 1{j21}/ ')’s] dB; + 1{j21}/ asj dVVsJ » k=0,1,...,N,
0 0 0

where we used the normalization Bgo) =1, fors e [0, T]. We further setfor j =1, ..., N:
i j 0
L LT

and for r e N, and « € [0, 1]:

- t—14+iA, .
(J) _ (J) . 1)VS(0) ds,
t—14(i— 1)An
t—1+iA, .
~(i n
A / v ds.
|z 1~ 14+(i—1)A,

Kl n
i€l
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as well as
- 2 2 ,2
C (2) | ”| Z A" Xc NO . A’Zi Xc’(O))AZi Xc,(ﬂ)]’
zeI"
—(1)
Z ”XC (J)
" ieZn

() (0) ~( ~(0) (]) (0) .
We similarly define C, , and V «aswellas C, , andV, , from C; and V; . Finally, we

denote for r € N and k €0, 1].

ﬁn(/) 0(0) 0)) nA;‘iW(O)A:‘iB—i—U(O) ~(J) nAfiW(O)A;’iWU)

1, tc,n Yt k,n t,15,n 91,1k,
+ (B, = )V (n(ar W @) —1), k=1,...,N, (S1)
) = S A ST ONZE Sl W O 2O
+%( D= D, (AW Y —2), k=1,...,N, (S2)
T =V (n (a7 W) 1), (S3)

and we use them to define the following processes:

e 2= 1z Z—” Y@, = |In Z T Licoy — Lieen),  (S4)
" ieZn i€y
0 1 —n,(0 ~ (0 1 —n,(0
Vie=m s V=1 i (Lo — Liegg))- (S5)
Zl = 5 P
iell i€l

S1.4 Preliminary results

We start with establishing some preliminary results about the moments of components
of the differences C,(,],Z(Z) c? and V(] ) Vt(f() n aswell as C;’ (] ) and V(O)

t,k,n
Lemwma S1. Assume Assumption SA holds. For j,1=0,1,..., N and p > 1, we have

(J) j, 1 ()
Gl - <2>|p+E”LWHIVE’K) Vil

~(0)
Vt, K |P

n
Et, lkn]—kp+1 |

o _F=p
EY Len)— k+1{ClK | +EY Len)—kp 11

<K(k1 PAyTPEeD A,f,’”(z’”‘“), t=1,...,T,ke[0,1],

for some positive constant K, which can depend on p and w but does not depend on k.

Proor oF LEMMA S1. We show only the bound for the terms involving 632(2) and C[(’,Z,
with the result for the terms involving IZE{;I) and IZS?;D established analogously. For j, [ =
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0,1,..., N, we can make the decompositions:

. ! G .
A;’,iX(])A;Z’iX()l —A?’iXC (])A?,iXC()

A

— _ A" Y& An ye, (D) .
= A[JX A[’ZX 1{(.A§fl’-l))c}

+ A7 XEDAL XD auny + (A7 XODNLXED L A7 X EDAY x D)1 ADp

n,2 x(j) A2y (D) . ) n,2yr¢,() AT-2 yre, (1)
At,i XY At,i X I{AUTI) nAUDY — At,i X Az,i X°

ti—1

— A2y (A2 e () . . 1,2 yd, () A2 3rd, ()
= At,i X At,i X 1{(A£’T1)1)CU(.A£f;I))C} +At,i X At,i X 1

i—
s

G~ AGD
(ANATS

i—
B

n,2 yrc,(j) A2 yrd, () 1,2 yd,(j) A2 yrc, (1) ) _
+ (At,i X At,i X + At,i X A;,,‘ X )1{A(/,1> mAi/;})}-

t,i—1

Next, using the bounds for the continuous and jump components of It6 semimartingales
in Section 2.1.5 of Jacod and Protter (2012), together with Holder’s inequality, we get for
p > 1 and arbitrary small ¢ > 0:

i 1—
]E:ii(|A’ZiXC’(1)AﬁiXC’(1)|p1{(A£j,_z>)c}) <KAPTT (S6)
(7 2 1—
By (|A7 XOA X0 o)) < KApZHPesisy (S7)
i 1+2
E’;’i(|A;’,iXd’(/)AziXd’(l)\pl{Ag,';1>}) < KA,P7. (S8)

Combining these bounds, and using successive application of Burkholder-Gundy-Davis
inequalities as well as inequality in means, the result of the lemma follows. O

LEMMA S2. Assume Assumption SA holds. For j=0,1,...,N,t=1,...,T and « € [0, 1],
we have

=) ~()p ) (e 5() | p
E7 o)kt Crne@ = Colel” + B et Vi = Vere |+ EF ek [Col

@) P ) p v (0) [P
+E’ZLKnJ—kn+l|Cl7K(2)| +E} LKnj—kn+l|Vl,K +]EZLKnJ—kn+1|Vt,K

~() =) ~0) =0 _
p p p/2
E:Z,anj—k,,+1|ct,:< - Ct,x| + E?,I_Knj—kn-‘rlin,K - Vt,x| <Kk,”", p=2,

for some positive constant K which can depend on p but does not depend on j. Further-
more, we have the following decompositions:

=) ~(J j j =0 >0 0
Con@=Cli+Ch@+RL . Vi =V + Vi + R,
~(J) () 5() = (j) ~(0) < (0) 0)

Ct,K = Ct,K + Ct,K + Rt,K,n’ Vt,K = Vt,K + Y}l(,K + Rt,x,n;

where for Ry x.n = R Ri wn» R*)

t,K,n t.en OF R i.n, we have

n p
E[’ LK”J,kn+1|Rl,K,n| = p—2
ki
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and for any bounded function w : [0, 1] — R4, we also have

n 2

Z w (SAn)Rz,sAn,n

s=kp

E <Kk,.

Proor oF LEMMA S2. The first result of the lemma follows by (successive) use of
Burkholder-Davis-Gundy inequality. We now show the remaining claims for C;J ,)((2)

—(0)

O)
only, with the corresponding result for C o Vi and V being established in an analo-

gous way. Using Itd’s lemma, we have
.2 x-¢,(j) 1,2 x7¢,(0)\ A2 3¢, (0) _ ) A2 () 1, (j)
”(At,i X0 — At,i X° )At,i X° - nAt,i cV+ Ny,i (2),
where the term n” ") (2) satisfies

E (@ -7 @) =0, B0t @ -7 @) <Kke/n, p=2,

and for the second result we made use of the smoothness in expectation assumption
for the processes o', 8, v and &’ as well as Burkholder-Davis-Gundy inequality.

From here, the result of the lemma follows. O

Lemwma S3. Assume Assumption SA holds. For j=0,1,...,N,t=1,...,T,and k € [0, 1],
we have

IEIZ

~() o p )] o |p
t,|kn|— k,,+1(‘ct, Ct K n’ 1{k7ﬁ0}) +Et Lkn]— kn+1|V Vt K, 1

= (J) p < (J)
+EY Ln)— 1 (Cril Tiazoy) +EF Licn | — kn+1’VtK| <Kkn/n, p=z=2,

for some positive constant K which can depend on p but does not depend on j. In addi-

tion, for w : [0, 1] — Ry that is Lipschitz continuousand t =1, ..., T, we have
~( 2
1 - Cisa ! D) 1)2 kn
- - SA i = s—t+1 1) ds+0 (—),
n—k,,+1s§[“’( ”)(V;gi ) ] [_1“’( )(Bs" —1) |,

withj=1,...,N.

Proor oF LEMMa S3. Using Assumption SA regarding the smoothness in expectation of

the processes ,8(’ ) and O_t(O) as well as the boundedness of these processes, we can write

) ) 510 )
iEt lkn|— k,,+1(Ct,] Ct]K n)| + | t, kn]— k,,+1(V p Vt {c n)| = Kk"/”’
EZLKank,,+1|Cz(,j) Ct(jlz af +E] £, Lkn)—kn+1 |V(j) thi),nip <Kkn/n, p=2,

where the constant K does not depend on «. From here, the results of the lemma follow
directly by taking into account that w is Lipschitz continuous. O
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LEMMA S4. Assume Assumption SA holds and knA%_‘*w — o0. For j,l=0,1,...,N and
p=>1, we have

1 . p
a2 (AL XOALXDL yon)| <K, 1=1,.., Tokel0, 1)

n
]Et, lkn]—kp+1 ’In’
Kl jeZn

Proor oF LEMmMA S4. The result of the lemma follows by application of the bounds in
(56)—(S8) together with an application of Burkholder-Davis-Gundy inequalities, and fur-
ther taking into account that k,A2~47 — oo. O

S1.5 Proofof Theorem 1

Second-order Taylor expansion yields for j=1, ..., N:
(65,’2(2))2 : (5’5{2)2
— >(0,)) | =
thg,;) Vi >an} fo@

~()\2
) . c . . .
()] 0] i,k )] 0] (0))
= Zt,x,n + Bt,K,n - ((V(O)) + Zt,x,n + B[,K,}’l) 1{1’};(2,1)50{”} + Rt,K,I’l’

1K
where
=) ~()
. C 1 [~ ~ Cloo~i0 i o~
o _ K )] ) t,k (73(0,) (0)
Zt,K,n - 217(0) ~(0) (Ct,x(z) - Ct,K - I7(()) (Vt,K - Vt,K ))a
t,K t,K 1,k
5 (€ 50 son 1 ) (D2
K =0, ~ -~ ~
t,JK,n =3 ~ 4 (I/t,KJ - I/t,K ) + = 2 (Ct,]K(z) - Ct,jk) (89
V(O) 0)
( I,K) t,k

c ~(j
GO P Eh ~E).

K

and the residual term F(j ) satisfies

t,k,n
S0) 4500 FOB 1500
|Rt,jl<,n| = Kan4(|th2}) - Vlfg)| v |th21) - th(l)<)|6)
a1 A ~(N1150,0)  THO 2 50,0 30) 4
+Kay |G = CRIT =V v 7L = PR
+ K, ! [CR@) = CRIP (V" =PRIV TS =P, 510
where the constant K does not depend on j. Finally, in what follows we use the following
notation:
alll i 2 n
Zt,]K,l’l = 2( l(‘,jl)<,l’l - 1) m Z [A:l,i—lw(O)A;l,iW(O)]
K iefz,'('
n
IZ4]

K

+ ( yr)wl - 1)
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5

)
Yt k,n n,2117(0) AN2 Ot,k,n 1,2017(0) A12 137 ()
X E 0 ATWEUATB + o A TWUATW (S11)

ieZn-“trn Ot,k,n

The proof of the theorem consists of a sequence of lemmas.

Lemwma S5. Under Assumption SA, and provided k, A, — 0 and knA}l‘zw — 00, we have
fort=1,...,Tand k €0, 1]:

iﬁm 1 Xn: Z RV i k2AICe-D 1
~ [Kﬂ _kn_i_lrk —~ t,sAp,n ai k3/2

Proor oF LEMMA S5. The result of the lemma follows by an application of Hélder’s in-
equality and making use of the bounds of Lemmas S1-S2 as well as the inequality in

(S10). 0
LemMA S6. Under Assumption SA, and provided w € (1/4,1/2), o € (0,1/2) and
knA2=47 5 0o, we have fort =1, ..., T, k € [0, 1] and some arbitrary small v > 0:
N . 1+2QRw—1)— 1—¢
—~ 1 1 /A k 1
N o0 _ n n
BZ,K_ ﬁ;Bt’K’”_OP(a_ﬁ(TV (7) VW)), (812)

and further for any bounded function o : [0, 1] — R:

1 1 i)
n—k +1 Z w(SA”) tsA,, N Bt,sA,,,n

s=kn j=1
1 A1+2(2m‘71)7b k 1—¢ 1
=0,(—(— v [ V—=1]. S13
(G —G) i) 513
Proor oF LEMMA S6. We start with defining the processes for j =1,..., N (recall the

notation in equations (S1)—(S5)):

gL _ (Bl (PO 4 3 (D2
JK, N 2 JK 2 LK)
(Vi) 207i5n)
() 2 ()
2.y _ 5 (Belen = 1) VOV 4 (€2))? Bl =) 0 o)
t,K,n (I/I(O) )2 LK [(0) )2 t,K (I/t(O) [ K t K
LK, LK1 LK,

By direct calculation,

1 1 2
E:l |kn]— kn+1(c( )) |In| Vt(?c)n'yt(j;)c n('y;]:z n)T + }In| Vt(g)n( t(]rz n)

1 .
+ |In| (I/tf(:'?n)z( f‘,jl)c,n - 1)27

K
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h a2 3Tk SN2
E:l,txnj—kn—kl(ct(,]lz(z)) = §ﬁEZanJ—kn+1(cf(,jfZ) ’
K

0)\2 “O0n2 2 0) \2
E:l, lkn|—kp+1 (Vf(,K) = EZ I_Knj—kn+1(vl(,K)) = ‘In‘ (VlfK?”) ’
K

) () —_(nW (0)\2
E?, lkn|—kn+1 (VI,KCI,K(Z)) - ( t,k,n 1)E?, lkn]—kn+1 (VI,K) :
From here, using the first bound in Lemma S2, we have
K

: (S14)
k

2 2
E[(Brn) "+ (Bdn) ] =<

L() _ 2y - K

|Elt1 Lkn]—ky+1 (Bt,K,n - BZ,K,n)| = p’

n

where the constant K does not depend on ¢, « and j. Next, using Lemmas S1-S2,
Cauchy-Schwarz and Burkholder-Davis-Gundy inequalities and taking into account

that w > 1/4 and o € (0, 1/2), we have

. . 1+22w-1)
E|BY) , —B;) <K(A” v )

t,K,n t,k,n| — k \/—
n kuyn

We proceed with analyzing the difference BN — % Zf]: 1 Btl,fj ,)l First, using Lemma S1-

tL,K,n
S4, Holder’s inequality as well as the restriction knAff‘“” — oo of the lemma, we have

5(0,7)2 K1 1 da—
v, 1,50 <= —|—vVA ,
(Vi) {KEE”)>an}|— 2 knlky "

L7

for some arbitrary small « > 0. We continue with introducing the following notation:

a2 )
G Bik=1owoy Bikn =10

Lk T T50,)) Lk - 0) t,Kk>
Vt,K t,k,n
Go_ b =p 1 s
Lk T SO ChK T ) bk
Vt,K VI,K,n

Then we have

. K o o~ : 0 i o g
I .y = SSED O S = )72 A2
’ n

K . o~ : —~) i —~()
(0) (,0) (,0) 0,/) ) |2 0,)) (0)
+ ? Vt,K ({CZ,K - Ct,K,n| Vv |Vt,K - Vt,K,n 4 |Vt,K - Vt,K,n )9
n
(:2) K= sy K ish50.0) 0
|§t,l< |1{I7(0’f)>a } = —|Cix _CI,K| + _‘Ct,KHVt,K —Viknls
t,Kk n ap (677

where we denote

~i n .
CHY = —- S ar xar x O

&

(AU
(815)
. t .
Ct(J,O):/ Bgﬂys(o)ds, j=1,...,N.
0
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From here, using Lemmas S1-S3, we have

. . 1+2Qw—1)—t 1—
" G2 (02 o 1 K AT 1 (ks
Ez,anJ—kn+1[(|§t,K "+ ’ft,x )1{14f2’f)>a,,}] s k, v K2 v n ’

for some arbitrary small « > 0. Similarly, we have

o K 1 k 1— AZw—l
’C(j) Npoi_ J<=5(=z V(= ’ :
L,k (Vi >an} aZ k3/2 n k2
n n n

Furthermore, given the lower bound restriction on Vt(o) in Assumption SA, we have

i1) 2
E?, Lkn]—kp+1 [(|§§,JK ) HVZ(,OK)’ + |§IE,]K )

(0 ~>(0)|p
Loy SKplVid =V vp=1,

where the constant K, depends on p. Therefore, by making use again of Lemmas S1-S3
and taking into account the restriction on @ and g of the lemma, we have altogether

N 1+2Qw—1)—t 1-
B _1231,</‘><£ AT 1 (kT
t,k,n N t,k,n| — a4 kn k3/2 n ’
n n

j=1
where again the constant K does not depend on ¢, k and j. Combining the above bounds,
we get the first bound of the lemma in (512). For the second bound in (513), we make in
addition use of the following:

E

K
k,n’

n
iz Z[wZ(SAn)(BL(]) _82,(1) _En
n

L) 2,(j) 2
t,sAp,n t,sAp,n t,s—kp+1 (B A - B )) ] =

t,sA,,n t,sA,,n
s=ky

which in turn follows by application of Cauchy-Schwarz inequality and the second
bound in (S14). O

LemMA S7. Under Assumption SA, and provided o € (0,1/2) we havefort=1,...,T and
k € [0, 1] as well as some arbitrary small v > 0:

n G =0 p2w ., Kn o (e 1=
|]EZ,LKI1J—kn+1(Zt,K,n_Zt,K,ﬂ)|SK n Y- VI|— )

n n [k
1—e
G S0 |2 2 k o1
E;Z,anj—knﬂ (Zt,]K,n - Zt,K,n) = K<Anw v (f) k_ v 22 )
n kn

where the constant K does not depend on t, k, and j, and Z U and 7;1 ,i’n

fon are defined in
(89) and (S11), respectively.

the counterpart of Z )

t,Kk,n

ProoF oF LEMMA S7. We denote with Zt(J,zn, in which a(,j,z(Z)
=)

and 12(2] ) are replaced with C;, (2) and 75,0,1, respectively. Then, using Lemma S1 and
taking into account that o € (0, 1/2), we have

6] (6] 0)) 0 2 2
]E?, |kn) —kn+1‘Zl,K,n - Zt,K,n‘ + EZ Lkn] —kn+1‘Zl‘,K,n - Zt,K,n‘ = KAnwa
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where the constant K does not depend on ¢, k and j. Using successive conditioning and
Assumption SA, we have

k
|EZ LK”J,kn+1(X1,nX2,n)| = Kzn’

for
~ ~(0 0 0] =0 =0
X1,n= Ct(,j) Ct(jfl n or V( ) VI(K)n’ 2,n = Ct]K n(z) Ct(]lz n or Vt,x - I/IEK?I’!
From here, using Taylor expansion and Lemmas S2-S3, we have
y k k 1— 1
B 29, -2 )] <K(_n y <_n> )
L] —kn+1\Z1 tin) | =
t, | kn]—kn+ K1 K,n n n \/le
Similar analysis leads to
1—¢
0 () \2 kn o1
E} et +1 (Bt = Zien) SK((;) oV 2)
n n
From here, the results of the lemma follow. O

LEMMA S8. Under Assumption SA, and provided k,A, — 0 and k,,A}fz’” — 00, we have
fort=1,...,T,ke[0,1],and j=1,...,N:

. k 1 L —1)—t
E;Z,Lknj—k,,+1[(1 + |Zt(,]:i n| + |B§]K n|) V(g’j)fa,,}] = K( n v W v k1 - A1+p(2m' b ),
n

for some arbitrary big p > 2 and some arbitrary small . > 0, and where the constant K
depends on p but noton j, t, and k.

Proor or LEMmMA S8. Using the inequality 1 PO KP|IZE?<’j) — I7tf?<)|p, for arbitrary

P = 1) we have
(1+ |Z§J:1 n| + |B§J,)< "|)1{Y7t(0’j)§an}
§K|f/‘tf?<,j) (0)| (1+ |C(/)(2) C(/)| + \61(,12(2) _ 5;]}2 2)’

for some arbitrary p > 2 and with the constant K not depending on j, ¢, and k. From
here, the result of the lemma follows by application of Lemmas S1-S3 as well as the as-
sumed relative growth conditions for k,,. O

For th the statement of the next lemma, we need some additional notation. We denote
with Avar(D ) the counterpart of Avar(D ) in which we replace A(’ ) with g/ V(O)

t—1+«k’
with V%), Ct(],z with /), and V¥ with V(O) In addition, we set

AN 9 ( D) 1S o0 ’
J 9 K J
Avar(D = NZ‘In’ Z|: Bt 1+ (0_(0) :| |In ( Z t 14k )

2
t—1+K) j=1
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N (€] _ ()] N (€)) 1) (yP T
+’%2’(_Z (8" 1+K(0> )y, 1+K>(%Z (Bl = D10 )

(0)
j=1 O 14k j=1 Or—1+x

LeMmA S9. Under Assumption SA, and provided — € (0,1/2), o € (0,1/2), and

kuA2=47 5 0o, we have fort =1, ..., T, and « € [0, 1] and some arbitrary small v > 0:

En t, kn|—kp+1 |Avar( t K) Avar(DN )|

K 1 1 AZw—L A1+2(2w—1)—b
< — (— V— Vv 2 v 2 ),
\/ﬁ ki/z kn kn

E?, Lkn]—kn+1 (X\:a/r(lf)\g,() - Avar(b\f’]K)) =0,

2
B} nj—t1 (Avar(DY,)) — Avar(D),))” <

B

ProoFr orF LEMMA S9. We start with the first bound. If we denote

()
Ga  Bl=1.6) _ Bin =1
L,k T A(O ) t,k (0) t,Kk>
Vt,Kj t,k,n
a0 2 @) 2
G4 _ (Brlx = 1) 70 _ (Brikn—1) PO
K —0,)) K 0) P
Ve Viikon
then direct calculation shows
(J,3)
€% |1{I7‘°’”>a,,}
~(J,0) (J,0) >0,)) (0) SOV {0)]
S_2(|C ClKn|\/|Vt,K VtKn|VI)|Ct,K_Ct,K
an
(DN (170,0) (,0) 7>(0,)) O 12,1770, )
012 ‘C (’C Ctkn|V|Vt,K _Vt,K,n| V|Vt,K Vtkn)
n
(OX5)
|§t,K |1

=(0,)
V) >an)

= K2 v 7 v, Pl -
I’l

PP -

o Ny
VPP V| B — I 1 -

tKn)

where we use the notation 6,<f,;0) and C,(j’o) as defined in the proof of Lemma S6 (see
equation (S15)). From here, using Lemmas S1-S3, we have

( 3) ( 4) K A1+2(2’m’—1)—b 1 k 17L
Et Lkn]— kn+1[(|§j | +|§] | ) {V(OJ) ]fag(nk—n\/p\/ nn .
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for some arbitrary small ¢ > 0. Similarly, we have

n

G| o (20D (15D 1 9O K (1 k) AT
Ez |kn]— kn+1[(|§ | + |§ )(|Ct | + |V ) {V((,J()>an}] = 3 W v 2 :
’ n n n
From here, using again Lemmas S1-S3, we get the first bound of the lemma. The second
and third results of the lemma follow by direct calculation

O
For the statement of the next lemma, we introduce some additional notation. We
denote
"(a) (a) Z(b) _ (b)
fK" th t,k,n’ ZIK"_ Z i,t,k,n’
LeI,'g ief,’g
Z = foi{m, t=1,...,T,k€[0,1],
LEI,’}
where
(@ 1 n G, .0 T n2 25
a _ J 9t,k,n £n, 0) A7 )
thxn ~ Z|:( t,k,n ) 0) A W A W ]

VN J|Tr| o 1cn

b 1 G 2

(b) _ J 0) 0)

Xiten = 2<NZ( I,K,n_l) ) A:‘Zl 1W A:l,iW >
j=1 |I"|

1 n N 7

(c) _ ) tKn 1,2077(0) A7,2

Xl t,k,n N ZI:( t,k,n 1) 0) A W A B:|
\Zn| =1 Otk,n

and we note that we have

1 —() 1 ~ 1 ~ ~
N Z Zt,]K,n = ~4Zt(,al<),l’l + — (Zt(,bk),n + Z(C) )
j=1 | Ze[VN 72|

t,k,n):

LEMMA S10. Assume Assumptions SA and B hold. For n — oo, k, — oo and N — N, with
N € (0, oo, we have

t,k>

7@ )  Z() L-s (a) ~(a) (b) »(b) (©) 7 (6)
{ZtKn’ZtKn’ZtKﬂ}teT KEIC {\/lﬂ Zt K’\/lp 4 \/‘/j }tET wek

fort € T, k € K, with K being an arbitrary finite set of distinct points in (0,1), and
{Zﬁfl,g},efr,,(e;g, {Zﬁf’,f}tefr,,(elc and {Zifg}ze”r,xe/c being three sequences of i.i.d. standard

normal random variables defined on an extension of the original probability space and
independent of F and each other.

ProoF oF LEMMA S10. We denote

~k)y (k) (k) (k) (k) _
thKn XltKI’l E (XllKﬂ)+Etl+l(Xt+1IKn) (Xz+1txn) k—(l,b,C.
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Then, for k = a, b, ¢, we have

2
~(k) (k) _ ~(k) (k)
E:l Lkn]— k,,<2()(1 t,K,n _Xl t, Kn)) =0, E:Z,I_Knj—k,,(Z(Xl t, K0 _Xl t, Kﬂ)) =
iell iell

K

il

and from here

k k
Z(XEI)KH_XZ(I)KVI)_OP(l)’ k:a,b,c.
ieI,’j

~(k)

thn

Therefore, it suffices to prove the convergence result with X(k) replaced by x
(k)
Z

1.x.n- Such a convergence result will follow by an application of Theorem IX.7.3 of Jacod

~(k)
Xl t,k,n

and Shiryaev (2003) (by noting that E7 ;(
gence results:

) = 0) if we show the following conver-

~ 2 P ~(b 2 P b
ZEIZi(XE,ut?K,n) - g,alg’ Z]E?,i(/\/g,t?mn) - E,Ig’

i€y ieZn
(S16)
~ 2

ZE fct)xn —>¢§C,2>

zeIfj
SELGEE RO )0, kl=a,bcwithk#! (S17)

ttxn i,t,Kk,n ’ ’ > Y )

zeZ,’('
D EL( (T, A0 M) =50, k=a,b,c, (S18)
zeI{(’

for M being W, a component of B, or a bounded martingale orthogonal to them
(in a martingale sense). The first two convergence results in (516) and (S17) follow di-
rectly by taking into account that the volatility processes and the beta process all have
cadlag paths. The last convergence result in (S18) when M is W(® or a component
of B holds trivially because due to the symmetry of the standard normal distribution,
]E” (~fl§)K " ” M) =0 in this case.

Suppose now that M in (S18) is equal to a bounded martingale orthogonal to W

and B. First, Ef, (5(’1( t)K LA".M) =0 for k = b, c because M is orthogonal to W® and B.

Second, if M is a discontinuous martingale, we again trivially have E , ()“(’EI?K LA M) =
for k = a, b, c. Thus, we are left with showing (518) with k = 4 and M being a Continuous
bounded martingale that is orthogonal to W and B. In this case, we can write

E (A7

t,i—1

0 ~ .
wOAT WDAL M) =0,
and
0 57 (j 0 N
E?,i(A?,iW( )A?,iW(])A?,i ) ]En (An W( )An W(})Zt 1+t/n)

where Zﬁv = E(A?iM|f§N)) forse[t—1+4+(i—1)/n,t—1+i/n] and for {]:tN)}tzo being
the filtration generated by the Brownian motions W, B and {W(},_; _ n. Note that
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7N isa FN)-martingale for s € [t — 14 (i — 1)/n, t — 1 + i/n]. Therefore, by a martingale
representation theorem, the orthogonality of M to W(® and B, the fact that W(® and B
are independent from each other, and using integration by parts, we have

0
B (Ar WO WOZY, )

n [ an 170 An () X, et OFTEAG)
=K, At,iW At,iW Z ns dW;
o3 i1/

X, et (0) (0) 0
=E}, / W —w, ds|,
" ; t71+(i71)/n( y BEAC 1)/”) s

where {ngj ) }j=1,..,n are some Fs-adapted processes. From here, using the shorthand no-

tation £/} , = (BY) , — )3, ,, we can write

Z( ;J’Zn ZEn An W(0>An W(J)A” ))

j=1 zeI,'g

t—1+i/n
@) 0 (0) ()
- ZE <Z g K,n/t ) (Ws( )_W —1+(i— 1)/n)”’75 dS).

leIﬁ —14(i—1)/n

From here, by applying Cauchy-Schwarz inequality, we have

t—1+i/n
g < / wo _ () ds)
t,i tfl+(i71)/n( s —1+(i— 1)/n)

K [t-14i/n

En ()2 ds.
\/— t—14+(i—1)/n ( )

Using inequality in means, we have

N
3 et < W (o1, ()

j=1
and therefore by another application of equality in means, we have

N t—1+4i/n /— / f Ltifn = N
Z/ (]) ds <K ]En Z (])
t—14(i—1)/n z 1+Gi-1)/n

j=1 j=1

t 1+i/n
< K,/ " d(ZN, ZN )S).
t 1+(i—1)/n

Applying again inequality in means, we can finally write

(Z /tt 1+‘l/n ( (/)) ds) <K\/7\/7 Z]E An ZN ZN))

ieZn j=1 I+=D/n ieln
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Now, using the definition of the martingale ZN successive conditioning and Jensen’s
inequality, we have

~ 2 ~ 2
E(a7(z". ZV) =EE(A7 M7, ) - EEOLMIFY, y)0)
<2E(A"M)’.

Because of the boundedness of the martingale M and its continuity, we therefore have

D E(A7AZY, ZV) <2E((M, M),y vy — (M M), entotasn) O,

ief,’g
ask,/n— 0. O

Combining Lemmas S3, S5-S8, we have for @ € (1/4,1/2), o € (0,1/2) with o > 2 —

4t
N
~ ~ 1 —() 1 /1 k
N J w
Dix=Brx = Diy= ?1: Ziwnt Op(a_ﬁ (k_n vy 7” VAT

Moreover, from Lemma S9 and Assumption B, under the same conditions for = and
as above,

w0 | oo Avar (DY)
Avar(DY, ) ’ LN+ 4 gl .

Combining these results with Lemma S10, we get the result of the theorem.

S1.6 Proofof Theorem 2

We start with showing the counterpart of Lemma S10 in the current context. The result
of Lemma S11 below is slightly more restrictive than what we showed in Lemma S10
when N = oo. Nevertheless, it suffices for the purposes of proving Theorem 2.

LEMwMmA S11. Assume Assumptions SA and B hold and let {w;},c; be Lipschitz real-valued
continuous functions on [0, 1], where I is a countable set. For n — oo, k, — oo and N —
N, with N € (0, 00), we have

n

Y osANZE),
s=ky
kn |+ 5(b)
N oA Zy ),

n

s=1

n

Y wisA)Z),
s=kn teT,iel
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t
[ oils =502y azie
—
o t
= /1w,-(s—m) yl) | dz® : (S19)
t—

t
/1a)i(S—|_SJ) i), dZ°
—

teT ,iel

where Z{*, Zs(b) and Z\° are three independent Brownian motions sequences defined on
an extension of the original probability space and independent of F . If in the above setting
— , . o 7(b) —(c)

N = oo, then the convergence result in (S19) for the sums involving Z, o, and Z,
continues to hold.

Proor oF LEMmMmA S11. Using the notation and the bounds derived in Lemma S10, we
have

\/ Z 3 oA (R s = ) =0,k k=a,b,c.

s=kp ZEI”

From here, the proof of the lemma follows exactly the same steps as corresponding ones
in the proof of Lemma S10. O

Combining Lemmas S3, S5-S8, we have for w € (1/4,1/2), 0 € (0, 1/2) with o > 2 —
4w and for w as in Lemma S11 above:

1 ey ‘
n_k +1 ; w(SA )( t,sA, Bt,sA,i)]_[_lw(s_t+l)Dts |_st

— o) (L, (k Tt e
T n—k, +1Zw(sA) ZzzsAn, (ai<ki/2v(”> VAT )

Moreover, from Lemma S9 and Assumption B, under the same conditions for @ and o
as above, we have for arbitrary o, o’ that are Lipschitz real-valued continuous functions
on[0,1]:

n

Z [En ($)@"(s) (Avar(/D\ﬁ\f(svkn)An) + Avar(ﬁfy’(ﬁkn /\n)A,,))]

=1 P
sn 1,

Z[En (9)@"(s) (Avar(ﬁff(svknmn) + Avar(ﬁi\,[(wkn/\nm,,))]

s=1

and

n

1k, Z[E”(s)m/”(s) (AVaf(Bﬁ,V(svknm,z) + Avar(ﬁﬁ\,[(s+kn/\n)A,,))]
s=1 P

2n [f L
b
/l[w(s t Dw/(s t D("”S,as)—LsJ/N LLE,S)—LSJ ll‘ECs) LsJ)] s
t_
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where we define @” (i) and @ (i), fori=1, ..., n, from w and ' exactly as in equation
(7) in the paper.

Furthermore, the above two convergences hold uniformly for o, »" belonging to
the set of weighting functions of the theorem. Overall, the above results, together with
Lemma S11 imply the convergence result of the theorem holds finite-dimensionally, that
is, for any finite set of points in ¢/. Therefore, we are left with showing tightness of the
sequence in the space of continuous functions on ¢/ equipped with the uniform topol-
ogy. For this, we make use of Theorem 12.3 of Billingsley (2013) and Lemmas S3, S5-S8
as well as the smoothness of w,(z) in u assumed in the statement of the theorem.

S1.7 Proof of Corollary 1

Part (a) follows from Theorem 2 while part (b) follows from Theorem 1 of Bierens (1982).

S1.8 Proof of Theorem 3

Throughout this proof, ||f|| = (f, f) is the norm of f € £*(w). We start the proof with
denoting the function

gu,x,y)= eli i foru, x, yeR.

Using Taylor expansion, we then have the decomposition
o~ 0’ 5 ~(7
g(u’ I/tEK ])’ Cz(,],Z(z)) _ ( I/t(2)7 C(})) Zt(]i n(u) + R(J) (u),
where

Zt(]ll n(u) — (Lt V(O) C(l))(V(O §)) V(O)) + vyg(u I/t(?()’ C(J))(C(])(z) _ alg,ji)’

t,k >

and the residual term R(j ) (1) satisfies

(R0 = K(ulv D)1 g, +K (v )77 =T + (€@ - CR)°),

with a constant K that does not depend on 7, j and u. We further denote

=)
Zt,K,n(u)

up? o)) 0 0
=e”‘B%K7"1u( Z A}, lW( )AﬁiW( )

Lkn |In|
zeI,’g

(6]
1m3(1) . () n 'YtKn 1,2757(0) A 152
+5e eniu(By i — 1) 7 E o A WA
kI jeTn Ot,k,n

a0

lEI” t K,n

O
Z Ot,k, nAn ZW(O)AH ZW(J)>
z"y
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Using Lemmas S1-S3 and Lemma S8 and the exponential tail decay of the weighting
function w, we have

N
1 al K1 kg
E|—Y RV <=(—v=2),
N Z S az (kn n
j=1 n
where we have made use of the fact that @ > 1/4. Similarly, using Lemmas S1-S3, we
have that
1 GO =0 K (1 ky , [k, 1
E z) —7 <—|—v2Z)<kKk(a@v,/Ev—).
NZ( t,Kk,n tKn) —az kn n — n n kn

n

Given the rate condition on the sequence k,, we are left with showing
/— 7 L=s
Z Zt K,n Zt K>

with Z; , being the limit in the statement of the theorem. Using Bessel’s inequality and
dominated convergence, we have

N 2
k o
IE(E <NHZZ¥,)<’”,€,-> ) —0, asl— oo,

i~I j=1

where {e;};>1 denotes an orthonormal basis in £%(w). This means that the sequence is
asymptotically finite-dimensional; see 1.8 in Vaart and Wellner (1996). Therefore, the
limit result of the theorem will follow from Theorem 1.8.4 in Vaart and Wellner (1996) if

we can establish
‘/ E_
< Z Ejin’ >_g <Zt,K7h)7

for Z; . denoting the limit of Theorem 1 and 4 an arbitrary element in £2(w). This con-
vergence follows by an application of Lemma S11.

APPENDIX S2: ADDITIONAL EVIDENCE
S2.1 Cross-sectional dispersion of betas and jumps

In the paper, we eliminate all jumps in the individual assets as well as the market. To
verify that the documented contraction of betas over the trading day is not due to this
truncation procedure, we reproduce the quantile plot of Figure 3 in the paper using the
following standard estimator of beta, which includes returns with jumps:

ZA?,!'X(DAZ!'X(O)
s jcTn
) _ 1% , j=1,...,N. (S20)

/ n
iell




20 Andersen, Thyrsgaard, and Todorov Supplementary Material
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11:00 12:00 13:00 14:.00 15:00

Ficure S1. Cross-sectional distribution of total market betas across the trading day. The fig-
ure plots the cross-sectional quantiles of the un-truncated betas defined in equation (S20). All
quantities are treated as functions of the trading day and computed by averaging over the entire
sample. The selected quantiles are: 10th, 25th, 50th, 75th, and 90th.

The results are displayed in Figure S1. As seen from the figure, the impact of truncation
on the cross-sectional distribution of betas is minimal. Furthermore, the strong contrac-
tion of betas towards unity is preserved even when jumps are included.

§2.2 Cross-sectional dispersion of betas and microstructure effects

While stocks can be traded continuously throughout the trading day, only a finite num-
ber of trades of a given stock are made over any fixed period of time. These trade times
are not necessarily the same across stocks. This asynchronicity will cause the estimated
covariances to be downward biased (Epps effect). Note that the sign of this bias is inde-
pendent of the stocks beta, thus if staleness is to explain our findings it would need to
be high (low) in the morning and low (high) near the close for low (high) beta stocks.

To assess whether this is the case, we compute for each stock the average staleness
at any time of the day. In the left panel of Figure S2 we plot the cross-sectional average
staleness over the trading day. Several things are worth highlighting. First, staleness is
below 12 seconds across the trading day, which is low when compared to the 6-minute
frequency used in calculating the covariances. Thus, staleness is not going to have a
major effect on our inference procedures. Second, staleness gradually increases during
the first part of the trading day, and then decreases over the second-half of the trading
day, ending at an average staleness of less than 1 second.

However, this does not address the question of whether staleness of high and low
beta stocks evolves differently. To access whether this is the case, we sort the stocks
based on their beta at the open into 5 groups. For each group of stocks, we compute
the average staleness. The resulting series are plotted in the right panel of Figure S2.
The key takeaway is that high and low beta stocks exhibit the same intraday pattern in
staleness, thus staleness cannot explain our findings.
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F1GuRre S2. Staleness of prices. The left figure plots the cross-sectionally averaged average stal-

eness. The right figure plots the average staleness for of prices of stocks sorted according to their
beta at market open.

As a secondary robustness check for potential adverse effects on our results from
the presence of market microstructure noise, we compute the cross-sectional disper-
sion of market betas using 30 minute returns (thus relying on the time-series dimension
rather than infill one). We then compute the cross-sectional deviation from 1, that is,
% Zj-v: 1(Bj.k — 1)?, where B, x is the OLS estimate of market beta in the following time-
series regression:
rfjﬁ=aj+ﬁjrfoﬁ+ff’,){, t=1,...,T, (S21)
where rt(j,z is the return of the asset j over the k'th, k =1, ..., 13, half hour interval of the
trading day on day ¢. The result is plotted in Figure S3.
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0.14
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0.1

0.08
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0.02 . . . . .
09:00 10:00 11:00 12:00 13:00 14:00 15:00

FiGuRre S3. Cross-sectional dispersion of low-frequency betas. The figure plots the cross-sec-
tional dispersion of betas estimated using 30 minute returns according to equation (S21).
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Note that this approach differs in one important way from the one taken in the paper.
Here, we are computing the dispersion of time-series averaged betas, whereas in the
main text we compute the time-series average of the cross-sectional dispersion of betas.
The dispersion presented below will be lower by construction. However, the finding of
monotonically decreasing cross-sectional dispersion of market betas during the day can
be clearly seen even when using lower frequency returns.
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