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Blurred boundaries: A flexible approach for segmentation
applied to the car market

Laura Grigolon
Department of Economics, University of Mannheim, MaCCI, and CEPR

Prominent features of differentiated product markets are segmentation and prod-
uct proliferation blurring the boundaries between segments. I develop a tractable
demand model, the Ordered Nested Logit, which allows for asymmetric substitu-
tion between segments. I apply the model to the automobile market where seg-
ments are ordered from small to luxury. I find that consumers, when substituting
outside their vehicle segment, are more likely to switch to a neighboring segment.
Accounting for such asymmetric substitution matters when evaluating the impact
of new product introduction or the effect of subsidies on fuel-efficient cars.

Keywords. Discrete choice model, Generalized Extreme Value, Ordered Nested
Logit.
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1. Introduction

In most differentiated product markets, products can be partitioned into segments ac-
cording to shared common features. Segmentation is not only a descriptive process, but
also a practice used by firms to develop targeted marketing strategies and decide the
placement of their products. Often, segments can be ordered in a natural way. Cars can
be ordered from small (subcompact) to luxury according to price, size, engine perfor-
mance, comfort, and prestige; hotels and restaurants can be ordered on the basis of their
ratings (number of stars); retail brands can be ordered in tiers according to quality and
price.

In parallel with segmentation, the variety of products has also dramatically increased
over time: cars, computers, printers, and smartphones are just a few examples of indus-
tries in which product proliferation is visibly prevalent. Broadening the product line has
blurred the boundaries between segments, thus decreasing the distance between them:
a premium subcompact car can be a potential substitute for a compact car. As a conse-
quence, segments tend to overlap with their neighbors. Correlation between segments
has important implications when we want to measure the impact of competitive events,
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such as the introduction of varieties combining features from different segments. En-
vironmental policies aimed at encouraging the adoption of cleaner cars can also affect
sales across segments differently.

I propose a new discrete choice model, the Ordered Nested Logit model, that cap-
tures ordered segmentation in differentiated product markets and allows for asymmetric
substitution toward proximate neighbors. This model is a new member of the General-
ized Extreme Value (GEV) model family developed by McFadden (1978). I construct the
Ordered Nested Logit in the context of market level data. The GEV family is consistent
with random utility theory and yields a tractable closed-form for choice probabilities.
Berry (1994) has provided a framework to estimate two special members of this fam-
ily with market level data: the Logit and the Nested Logit model. The Ordered Nested
Logit model generalizes the Nested Logit model by incorporating an extra parameter
that measures the correlation in preferences between neighboring segments: the Nested
Logit model implicitly sets such correlation to zero. Hence, the Ordered Nested Logit
has the Nested Logit and the Logit as special cases: it can serve as a test for the validity
of the constraints imposed by the Nested Logit and, a fortiori, the Logit model. Apart
from these two models, only a few other members of the GEV model family have been
exploited so far with market level data: notable examples are the principles of differenti-
ation model by Bresnahan, Stern, and Trajtenberg (1997), the flexible coefficient multi-
nomial logit by Davis and Schiraldi (2014), and the inverse product differentiation logit
model by Fosgerau, Monardo, and de Palma (2019).

Is asymmetric substitution toward neighboring segments captured by the demand
models we currently use? In the Nested Logit model, neighboring segment effects are
ruled out by construction. The model requires the stochastic components of utility at-
tached to the segment choice to be independent. Therefore, while preferences can be
correlated across products within the same segment (or nest), substitution outside a
segment is symmetric to all other segments. In contrast, the Random Coefficients Logit
model by Berry, Levinsohn, and Pakes (1995) has the potential to generate more flexible
substitution patterns, where products tend to be closer substitutes as they share similar
observed continuous characteristics. Grigolon and Verboven (2014) simulate the effect
of a joint 1% price increase of all cars in a given segment and show that the Random Co-
efficients Logit model yields more intense substitution toward neighboring segments.
But flexibility is achieved only if the parameters of the models, which determine how the
random coefficients govern substitution patterns, are correctly and precisely identified.
Berry and Haile (2014) clarify that the identification of those parameters poses a distinct
empirical problem from price endogeneity and provide general results for identifica-
tion in differentiated product markets, showing that those parameters are identified by
standard exclusion restrictions. Reynaert and Verboven (2014) and Gandhi and Houde
(2019) study practical instrumentation strategies for empirical work. With market share
data, we can only use the mean choice probabilities (the market shares) as moments
that identify the parameters measuring heterogeneity. Good instruments would mimic
the ideal experiment of random variation in the characteristics or number of products
to identify the response in terms of market shares; in practice, identification can prove
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difficult in complex set-ups, especially with four or more random coefficients, as docu-
mented by Reynaert and Verboven (2014). The Ordered Nested Logit relies on the same
variation in the data to identify the nesting and neighboring nesting parameters; by as-
suming and estimating a correlation structure based on the proximity of product groups,
the model can be a parsimonious alternative to the Random Coefficients Logit model.
Finally, the Random Coefficients Logit model does not produce a closed form for the
choice probabilities. Earlier work documented sources of numerical issues (e.g., Knit-
tel and Metaxoglou (2014)) and recent articles (Kalouptsidi (2012), Dubé, Fox, and Su
(2012), Lee and Seo (2015)) have proposed methods that improve the performance of
random coefficients models. Berry, Linton, and Pakes (2004) derive the properties of the
nested fixed-point estimator and show that the simulation error in the approximation
of the market shares is bounded only if the number of draws rises with the sample size.1

Avoiding the simulation of market shares altogether may alleviate some of those diffi-
culties.

First, I formally derive the Ordered Nested Logit model and relate it to commonly
used discrete choice models, focusing on the comparison of substitution patterns im-
plied by the Nested Logit and the Ordered Nested Logit model. Using simulated data, I
document the flexibility of the Ordered Nested Logit in producing asymmetric substitu-
tion patterns and handling misallocation of products into nests. I also provide guidance
on the design of the nesting structure.

Next, I apply the Ordered Nested Logit model to a unique data set on the car mar-
ket covering three major European countries between 1998 and 2011. The process of
purchasing a car is modeled as a nested sequence, with the choice between the seg-
ments (including the outside good segment) at the upper node level and the choice of
the specific vehicle at the lower node. I estimate the degree of correlation in consumer
preferences both within each segment, as in the Nested Logit model, and in neighbor-
ing segments. The demand estimates of the Ordered Nested Logit model clearly indicate
a rejection of the simpler Nested Logit model: Correlation in car choices is present not
only within a segment, but also between neighboring segments.

The demand estimates have striking implications for the substitution patterns.
While the Nested Logit model yields symmetric and very low substitution toward other
segments, the Ordered Nested Logit model shows a large substitution effect to the neigh-
boring segments. I look at the impact of the introduction of premium subcompact
cars on sales by vehicle class. The Nested Logit model predicts that only sales of other
subcompact cars are affected by the introduction of those vehicles, while the Ordered
Nested Logit model shows, more plausibly, that the segment immediately above (com-
pact cars) is affected as well. Next, I simulate a subsidy to clean vehicles: such policy is
clearly asymmetric because it favors mainly subcompact and compact cars. The Nested
Logit model predicts again that sales of nonsubsidized cars do not notably change after
the policy, while the Ordered Nested Logit model shows a sizeable decrease in sales of

1Brunner et al. (2017) document that the simulation errors in the approximation of the market shares can
generate failure to convergence to a local minimum, numerical instabilities, and unreliable identification
of the parameters governing the substitution patterns.
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the upper segments, especially the standard segment, which has cars that are just above
the eligibility threshold.2

1.1 Related literature

The model I propose takes inspiration from the literature on Nested Logit models
(Williams (1977); Daly and Zachary (1977); McFadden (1978)) and from the Ordered
Generalized Extreme Value (OGEV) model by Small (1987). The OGEV model was the
first closed-form GEV model to allow for taste correlation between neighboring prod-
ucts. However, it has been developed in settings where a limited number of alternatives
have a natural order so that correlation in unobserved utility between two alternatives
depends on their proximity in the ordering. With market level data, such as a data set
on the car market, ordering hundreds of products in each market would prove impos-
sible, while ordering groups of products, the segments, is a sensible strategy to obtain a
tractable model and flexible substitution patterns. Several other authors have tried to re-
lax the hierarchical structure imposed by the Nested Logit, especially in the transporta-
tion literature; see Chu (1989); Vovsha (1997); Ben-Akiva and Bierlaire (1999). The most
flexible model in this literature is the generalized Nested Logit model by Wen and Kop-
pelman (2001), where an alternative can be a member of more than one nest to varying
degrees. Bresnahan, Stern, and Trajtenberg (1997) develop a principles of differentiation
model, which is an example of a closed-form GEV model applied to market-level data.
Grigolon and Verboven (2014) show in their empirical application to the car market that
sources of market segmentation may not be captured by the continuously measured
characteristics in the Random Coefficients Logit model. They do so by adding a nested
logit structure to BLP’s random coefficients model. This paper builds on that work by
considering a new tractable model from the GEV family to capture an additional fea-
ture of such heterogeneity: ordering in market segmentation. The Ordered Nested Logit
accounts explicitly for this form of vertical differentiation by estimating a parameter
that measures such correlation in preferences between neighboring segments. Davis
and Schiraldi (2014) propose an analytic model capable of generating flexible substi-
tution patterns combining elements of the Paired Combinatorial Logit and the Cross
Nested Logit. Their model is fully flexible as it can potentially avoid the restrictiveness of
Logit and Nested Logit models allowing the second cross derivatives between any pair of
goods to be nonzero. In the Ordered Nested Logit, the second cross derivative between
pairs of products belonging to different nests and neighboring segments is instead zero.
In practice, estimating all the parameters in the model proposed by Davis and Schiraldi
(2014) would prove unfeasible, as it is impossible to estimate all alternative specific con-
stants in a Logit model. The authors impose a form of structure to avoid proliferation of
parameters that arises with a large number of products: they parametrize the correla-
tion parameters to be the function of the distance between products, following Pinkse,

2Green subsidies are usually temporary and naturally call for a dynamic approach to model consumers’
decisions over time, which can be implemented only with additional information on the secondary market
and the patterns of ownership (see Schiraldi (2011)). The Ordered Nested Logit model could also be use-
ful in a dynamic framework, as it avoids the need of simulating the market share integral thus potentially
alleviating some numerical difficulties.
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Slade, and Brett (2002). In the same spirit, the Ordered Nested Logit explicitly models the
idea of varying degrees of distance between nests.3 Finally, Fosgerau, Monardo, and de
Palma (2019) propose an empirical model specified in terms of inverse demand: their
model extends the nested logit by allowing segmentation to be nonhierarchical, while
maintaining tractability.

The remainder of the article is organized as follows. Section 2 puts forward the Or-
dered Nested Logit model. A study using simulated data illustrates the flexibility of the
model. Section 3 describes the application data set and the econometric procedure, in-
cluding the identification issues. Section 4 provides the empirical results and the implied
price elasticities. Section 5 presents the policy counterfactuals. Section 6 concludes.

2. Modeling correlation between neighboring segments

The GEV family Demand is modeled within the discrete choice framework. Consider T
markets, t = 1� � � � �T , with Lt potential consumers in each market. Markets are assumed
to be independent, so I suppress the market subscript t to simplify notation. Each con-
sumer i chooses a specific product j, j = 1� � � � � J. Consumer i’s indirect utility is

Uij = xjβ− αpj + ξj + εij

≡ δj + εij�

where xj is a vector of observed product characteristics, pj is price, and ξj is the unob-
served product characteristic. Following Berry (1994), I decompose Uij into two terms:
δj , the mean utility term common to all consumers, and εij , the utility term specific to
each consumer.

The consumer-specific error term εij is an individual realization of the random vari-
able ε. The distribution of ε determines the shape of demand and the implied substi-
tution patterns. McFadden (1978) has proposed a family of random utility models, the
Generalized Extreme Value (GEV) family, in which those patterns can be modeled in dif-
ferent ways according to the specific behavioral circumstances. A GEV model is derived
from a generating function G = G(eδ0�����δJ ), a differentiable function defined on RJ+: (i)
which is nonnegative; (ii) which is homogeneous of degree 1; (iii) which tends toward
+∞ when any of its arguments tend toward +∞; (iv) whose nth cross-partial derivatives
with respect to n distinct eδj are non-negative for odd n and nonpositive for even n.

According to the GEV postulate, the choice probability of buying product j is

sj = eδj ·Gj

(
eδ0�����δJ

)
G

(
eδ0�����δJ

) � (1)

where Gj is the partial derivative of G with respect to eδj .

3There is a long tradition of estimating demand in product space assuming weak separability across
product groups when defining consumer preferences, which reduces the dimensionality of the problem
but imposes mutually exclusive product groupings. Blundell and Robin (2000) break weak separability by
developing the concept of latent separability, in which products from different groups can interact through
subutilities stemming from latent activities. While firmly in the discrete choice literature in characteristics
space, my work echoes Blundell and Robin (2000) in its attempt of breaking the rigidity of nesting structure.
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The ordered nested logit model Assume that the set of products j is partitioned into N

mutually exclusive and collectively exhaustive nests. In addition, assume that those N

nests are naturally ordered, with n increasing along its natural ordering: n = 1� � � � �N .
The ordering may correspond to an increasing value of important characteristics such
as price and quality. I define the Ordered Nested Generalized Extreme Value model (in
short, Ordered Nested Logit) as the model resulting from the following G function within
the GEV class:

G =
N+M∑
r=1

(∑
n∈Br

wr−n

(∑
j∈Sn

exp
(

δj

1 − σn

)) 1−σn
1−ρr

)1−ρr

� (2)

where n is the nest to which the products belongs; M is a positive integer; wm ≥ 0 and∑
mwm > 0. The weight wm is the allocation weight of a nest into a “neighborhood of

nest,” the set of nests B. The parameters σn and ρr are constants satisfying 0 ≤ ρr ≤
σn < 1. Those conditions are sufficient to satisfy the four properties of GEV generating
functions; Appendix A provides the proof for each condition.4 Finally, define the set of
N nests as Br = {Sn ∈ {S1� � � � � SN}|r −M ≤ n ≤ r}.5 Each of the (N +M) sets contains up
to M + 1 contiguous nests (and all the alternatives in those nest).

Consider a simple example with five nests S, ten alternatives and M = 2:

j = 1;3︸︷︷︸
S1

; 2�5︸︷︷︸
S2

; 4�6︸︷︷︸
S3

; 7;9︸︷︷︸
S4

;8;10︸︷︷︸
S5

Alternatives within a nest need not to be ordered, but nests are. In our example,
the sets of nests are: B1 = {S1}, B2 = {S1� S2}, B3 = {S1� S2� S3}, B4 = {S2� S3� S4}, B5 =
{S3� S4� S5}, B6 = {S4� S5}, B7 = {S5}. where each nest Sn belongs to M + 1 different sets.
The degree of proximity between neighboring nests can be modeled flexibly as each set
of nests can have its own parameter ρr . The shape of the demand function crucially de-
pends on the two parameters, σn and ρr , that parameterize the cumulative distribution
of the error term ε. The first one, σn, corresponds to a pattern of dependence in ε across
products sharing the same nest (as in the Nested Logit). The second one, ρr , corresponds
to a pattern of dependence in ε across products belonging to neighboring nests. Con-
sider, for example, the effect of a price shock to alternative one belonging to segment S1.
The dependence in ε measured by σn determines that a share of consumers, who had
initially chosen alternative one in S1, will switch to another alternative in segment S1.
The dependence in ε measured by ρr determines that a share of consumers will switch

4Small (1987), Vovsha (1997), and Bresnahan, Stern, and Trajtenberg (1997) impose the condition that
the sum of the weights is equal to one. Those weights are then interpreted as allocation parameters of
nests to sets of nests. As long as weights are nonnegative and at least one of the weights is strictly positive,
the generating function G belongs to the GEV family, as shown in Bierlaire (2006) and in Appendix A. The
condition that the sum of the weights equals one is empirically useful to ensure that the estimation of the
model is feasible: I make use of it in the empirical application. Using simulated data, I expand on the role
of the weights and show that possible misspecifications in weights do not seem to affect the parameter
estimates of interest and the resulting substitution patterns (see Section 2.3).

5Although Br was defined as a nest of nest indices, I will sometimes write, with a slight abuse of notation,
Sn ∈ Br .
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to the neighboring segments: In our example, with M = 2, the neighboring segments are
S2 and S3.

If the random components follow the G function in equation (2), by the GEV postu-
late in equation (1) the choice probability of buying product j ∈ Sn is

sj =
n+M∑
r=n

s(j|n) · s(n|Br) · s(Br)� (3)

where

s(j|n) =
exp

(
δj

1 − σn

)
Zn

�

s(n|Br) = wr−nZ
1−σn
1−ρr
n

exp(Ir)
�

s(Br) = exp
(
(1 − ρr)Ir

)
N+M∑
s=1

exp
(
(1 − ρs)Is

) �

Zn =
∑
j∈Sn

exp
(

δj

1 − σn

)
�

Ir = ln
∑
n∈Br

wr−nZ
1−σn
1−ρr
n �

Equation (3) involves algebraic rearrangements from the choice probabilities ex-
pressed according to the GEV postulate in equation (1): Appendix A provides a derivation
of this expression.

The nested logit model To clarify the logic of the modeling strategy for the Ordered
Nested Logit, consider the G function associated with a traditional specification, the
Nested Logit model, in which the ordering of the segments is not explicitly modeled. The
model incorporates potential correlation among products only within a nest (segment),
not between nests. The J alternatives are grouped into N nests labeled S0� � � � � SN . The
G function takes the form:

G=
N∑
n=1

(∑
j∈Sn

e
δj

1−σn

)1−σn

� (4)

where σn captures correlation among products within the same nest. Consistency with
random utility maximization requires σn to lie in the unit interval. In the Nested Logit
model, only alternatives belonging to the same nest have stochastic terms that are cor-
related, and such correlation is directly related to σn. The generating function G of the
Ordered Nested model in equation (2) reduces to the Nested Logit model in equation
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(4) if ρr = 0. In addition, if σn = 0 for all nests, the model becomes the standard Logit in
which each element of ε is independent.

Following Berry (1994), I can write the choice probability of a product j for the
Nested Logit model as follows:

sj = s(j|n) · s(n)� (5)

where

s(j|n) =
exp

(
δj

1 − σn

)
Zn

�

s(n) = Z1−σn
n

exp(In)
�

Zn =
∑
j∈Sn

exp
(

δj

1 − σn

)
�

In = ln
N∑
n=1

Z1−σn
n �

Compare the market shares of the Ordered Nested Logit model in equation (3) with
the market shares of the one-level Nested Logit model in equation (5): similarly to the
one-level Nested Logit model, in the Ordered Nested Logit model, a change in the at-
tributes of alternative j (say, a price increase) will determine that sj is diminished by
the presence of attractive alternatives within a nest n. Differently from the Nested Logit
model, in the Ordered Nested Logit sj is also diminished by the presence of attractive
alternatives in neighboring nests Br . Ceteris paribus, this effect is increasing in ρr : one
may expect that if the values of σn and ρr are sufficiently high, products belonging to the
same segment or to neighboring segments will be closer substitutes compared to prod-
ucts belonging to further segments. The substitution patterns will be more precisely il-
lustrated in the next paragraph.

2.1 Substitution patterns

The flexibility introduced by the Ordered Nested Logit model is easily assessed by look-
ing at the matrix of own- and cross-price elasticities, as presented in Corollary 1, page
38 in Davis and Schiraldi (2014):

∂ ln si
∂ lnpj

=
(
I(j = i)+ eδjGij

Gi
− sj

)
(−αpj)�

Table 1 compares the substitution patterns implied by the Nested Logit and the Or-
dered Nested Logit model. The elasticities of the Ordered Nested Logit reduce to the
ones of the Nested Logit if ρr = 0. More generally, the elasticities of the Ordered Nested
Logit model depend not only on the conditional probability of choosing alternative i in
nest n, but also on the conditional probability of choosing nest n in a set of nests Br . In
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Table 1. Segment elasticities: Ordered Nested Logit vs. Nested Logit.

Nested Logit Ordered Nested Logit

GEV Generating function G

G= ∑N
n=0(

∑
j∈Sn exp( δj

1−σn
))1−σn G = ∑N+M

r=1 (
∑

n∈Br
wr−n(

∑
j∈Sn exp( δj

1−σn
))

1−σn
1−ρr )1−ρr

Own Elasticities ∂ ln si
∂ lnpi

( 1
1−σn

− σn
1−σn

· s(i|n)− si)(−αpi) ( 1
1−σn

− ∑n+M
r=n ( ρr

1−ρr
s(i|n)s(n|Br)− ρr−σn

(1−ρr)·(1−σn)
s(i|n))− si)(−αpi)

Cross elasticities ∂ ln si
∂ lnpj

(a) same nest i� j ∈ Sn
( σn

1−σn
s(j|n)+ sj)αpj ((

∑n+M
r=n

ρr
1−ρr

s(j|n) · s(n|Br)− ρr−σn
(1−ρr)·(1−σn)

s(j|n))+ sj)αpj

(b) different nest, same set of nests i� j /∈ Sn; i� j ∈ Br

αsjpj (
∑n+M

r=n ( ρr
1−ρr

s(j|n) · s(n|Br))+ sj)αpj

(c) different nest, different set of nests i� j /∈ Sn; i� j /∈ Br

αsjpj αsjpj

Note: The table compares the substitution patterns generated in the Nested Logit and the Ordered Nested Logit generated
according to the GEV generating functions G (first row).

Appendix A, I provide a derivation of the expressions for the first and second derivatives

(Gi and Gij).

I focus on the cross-price elasticities. In the Nested Logit, when two products belong

to different nests, we see that a price reduction reduces the probabilities for all the other

alternatives by the same percentage, a pattern of substitution that is a manifestation of

the Independence from Irrelevant Alternatives (IIA) property (cases b and c in Table 1).

In the Ordered Nested Logit, if two products belong to different nests but to the same

set of nests Br (case b in the table), proportionate shifting does not hold. Another way

to look at this is to focus on the ratio of probabilities between alternatives. In the Nested

Logit model the second cross-partial derivative, Gij , is equal to zero for product i in a

different nest than product j. In the Ordered Nested Logit, Gij �= 0 for j in a different nest

than j but in the same set of nests Br . In both the Nested Logit and the Ordered Nested

Logit models, the IIA property holds for two products in the same nest, so the ratio of

probabilities of alternative i and j is independent of the attributes or existence of the

other alternatives.6 The Nested Logit model relaxes the IIA property across nests only to

a certain extent: the ratio of probabilities of products in different nests will only depend

on the attributes of products in nests that contain i and j, but not on all other nests:

Train (2009) described this property as “independence from irrelevant nests.” In contrast,

in the Ordered Nested Logit this form of IIA is weakened as the ratio of probabilities of

two products will depend not only on the attributes and existence of the alternatives in

the two nests, but also all the alternatives in the neighboring nests.

6Note that in the Random Coefficients Logit model the IIA property remains present at individual level,
as the individual-level choice probabilities are a multinonomial logit.
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2.2 The Ordered Nested Logit versus other GEV models

The OGEV model The OGEV model derived by Small (1987) is based on the following G

function (see Definition 1 in Small (1987)):

G =
J+M∑
r=1

(∑
j∈Br

wr−j exp
(

δj

1 − ρr

))1−ρr

�

where M is a positive integer; the weights wm are overlapping parameters for alterna-
tives; the parameter ρr is a measure of correlation between alternatives, rather than
nests as in our model, and Br is a set of alternatives, not nests.

The OGEV model responds to different modeling needs with respect to the Ordered
Nested Logit: The OGEV is designed for situations where individual-level data are avail-
able, with a limited number of alternatives can be naturally ordered. Instead, the Or-
dered Nested Logit model is designed for situations in which numerous alternatives are
present. Groups of those alternative can be naturally ordered, while alternatives in each
group do not need to be ordered.7

The Generalized Nested Logit model The Ordered Nested Logit model can be viewed
as a special case of the Generalized Nested Logit (GNL) by Wen and Koppelman (2001).
Recall the generating function of the GNL model:

G=
K∑

k=1

(∑
j∈Sk

(
αjk exp(δj)

) 1
1−ρk

)1−ρk

�

where Sk is the set of all alternatives included in nest k, αjk is the allocation parameter
which is the portion of alternative j assigned to nest k.

The Ordered Nested Logit model can be written as a special case of the GNL if (i) al-
ternatives are positioned in the nest to which they originally belong, so Sn = {j ∈ Sn}; (ii)
all the alternatives in neighboring nests are put together in a nest Br formed by combi-
nations of nests in ordered position: Br = {Sn ∈ {1� � � � �N}|r−M ≤ n ≤ r}; (iii) the weights
or allocation parameters αjk are equal for all alternatives in nest Br . Hence, weights are
associated to the nest Br rather than its alternatives.

Summary The Ordered Nested Logit model generalizes the Nested Logit model by cap-
turing asymmetric interactions across nests. It differs from the OGEV model by Small
(1987) because it is designed to capture asymmetric interactions across nests, not across
alternatives. Hence, it does not impose an order across alternatives, but across groups of
alternatives (nests). The Generalized Nested Logit model by Wen and Koppelman (2001)
is the most general instance of a GEV model, but the complexity requires normalization

7The Ordered Nested Logit model also differs with respect to the nested version of the OGEV model
described by Small (1994) and Bhat (1998), which is similar to a nested logit except that at the lower node
the alternatives (not segments) are grouped according to the OGEV model rather than the standard logit.
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assumptions to identify the parameters and constraints to make the estimation feasi-
ble: see Bierlaire (2006).8 The Ordered Nested Logit includes an ordered nesting struc-
ture motivated by features commonly found in differentiated product markets: Those
restrictions render the model easy to handle for estimation while retaining flexibility.

2.3 Simulated data

The Ordered Nested Logit model is appealing for its closed-form formulation and its
ability to capture more complicated substitution patterns than the Nested Logit. As a
first step to test the benefits of the Ordered Nested Logit model, I consider two main sets
of Monte Carlo experiments. In the first experiment, I generate data according to the Or-
dered Nested Logit model and fit the Nested Logit. In the second experiment, I generate
data according to a Random Coefficients Logit and fit the Ordered Nested Logit model.
All the details on the experiments and the tables are reported in the Online Supplemen-
tary Material in Appendix B (Grigolon (2021)).

The experiments have three objectives: (i) to assess the flexibility of the Ordered
Nested Logit in approximating the correct substitution patterns under various models;
(ii) to evaluate the consequences of product misallocation to nests; (iii) to provide guid-
ance on the design of the nesting structure, in particular on the number of nests (N),
neighboring nests (M), and the role of weights. A summary of the results follows.

(i) Substitution patterns When comparing the segment-level elasticities between the
correctly specified Ordered Nested Logit and the Nested Logit model in Table B.2, we
clearly see that the Nested Logit model delivers symmetric substitution patterns outside
a segment: asymmetries are ruled out by construction. When comparing the substitu-
tion patterns delivered by the correctly specified Random Coefficients Logit versus the
misspecified Ordered Logit in Table B.5, the Ordered Nested Logit approximates well
the asymmetric substitution pattern generated by the Random Coefficients Logit model
even if the model is misspecified, with a slight overestimation of substitution toward the
most immediate neighbor and underestimation toward the distant ones.

(ii) Product misallocation Both the Nested Logit and the Ordered Nested Logit models
require partitioning the products into nests: in Table B.3, I show that the Ordered Nested
Logit model is less sensitive to misclassification of products into nests with respect to the
Nested Logit. The bias in the own- and cross-price elasticities resulting from a misspec-
ified Ordered Nested Logit is always smaller than the one resulting from a misspecified
Nested Logit model.

(iii) Design of the nesting structure I provide guidance on the nesting structure, with a
focus on (i) the choice of the number of nests (N); (ii) the choice of the number of neigh-
boring nests (M); (iii) the nesting weights. The results can be summarized as follows:

8As the Ordered Nested Logit is a special case of the Generalized Nested Logit or the Cross-Nested Logit
model proposed by Bierlaire (2006), one can also follow the proof offered in Bierlaire (2006) to verify the
properties of the generating function G.
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(i) If the researcher specifies nests too narrowly, both the nesting parameter σ and
the neighboring nesting parameter ρ present an upward bias, so much so that
the neighboring nesting parameter may be even greater than nesting parameters
(ρ > σ), which is inconsistent with random utility maximization.

(ii) By introducing the parameter M governing which nests are correlated, the Or-
dered Nested Logit model gives another dimension of choice to the researcher. If
only the immediately proximate neighbor matters (M = 1), while the researcher
allows for M = 2, the nesting parameter σ presents a downward bias, and the
neighboring nest parameter ρ an upward bias. This may result in ρ > σ . The
pattern is reversed if the correct DGP suggests more flexibility in terms of num-
ber of neighbors (M = 2), while the researcher uses M = 1: the estimated nest-
ing parameter presents an upward bias and the neighboring nesting parameter a
downward bias. In general, a researcher may want to pursue as much flexibility
as possible (M > 1), but doing so may determine situations where the neighbor-
ing nesting parameter is greater than nesting parameters (ρ > σ), which is, again,
inconsistent with random utility maximization;

(iii) Direct estimation of the weight coefficients requires the use of additional instru-
ments and the estimates tend to be rather imprecise. I also assess the role of the
weight choice by estimating a model in which fixed weights are intentionally mis-
specified (not estimated). I find that the demand parameters are hardly impacted
by the misspecification; the substitution patterns are close to the true ones. In
conclusion, possible misspecifications in weights do not seem to affect the pa-
rameter estimates of interest and the resulting substitution patterns.

3. Empirical study

3.1 Data

I now turn to the application of the Ordered Nested Logit to the automobile market. For
the empirical study, I combine different data sets. The main one is a data set on the au-
tomobile market provided by a marketing research firm, JATO: it includes essentially all
transactions of passenger cars sold between 1998 and 2011 in the three largest European
car markets: France, Germany, and Italy. The data is highly disaggregated, and I aggre-
gate it at the level of the car model (nameplate), for example, Volkswagen Golf. For each
car model/country/year, I have information on sales, prices, and various characteristics
such as vehicle size (curb weight, width, and height), engine attributes (horsepower and
displacement), fuel consumption (liter/100 km or e/100 km), emissions, the brands’
specific perceived country of origin, and for models introduced or eliminated within
a given year, the number of months with positive sales.9 The data set is augmented with
macroeconomic variables including the number of households for each country, fuel

9I define a model as a combination of brand/model/body type. An “engine variant” is a combination of
fuel engine type (gasoline or diesel), displacement, and horsepower; see Grigolon, Reynaert, and Verboven
(2018) for details. For example, a “Volkswagen Golf hatchback” is a model, whereas the engine variant is:
“gasoline, 1390cc, 59 kW”. The base model is: (i) the gasoline engine type, unless the car is sold only in the
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prices, and GDP. Low-sold car models, which are more susceptible to recording or mea-
surement errors, as well as non-passenger cars, such as pickups and large vans, are re-
moved. I also exclude minivans, sports cars, and sport utility vehicles because they do
not naturally fit in a univocal ordering of the segments, for example, sports cars are on
average more powerful but not more expensive than luxury cars. The resulting data set
consists of 5788 model/country/year observations or, on average, about 138 models per
country/year.10

Prices are list prices including value added taxes and registration taxes, which dif-
fer across countries and engines: such information comes from the European Automo-
bile Manufacturers Association. Prices are also corrected to account for active scrapping
schemes and feebate programs according to the eligibility criteria for each vehicle: in-
formation on those programs comes from IHS Global Insight (an automotive consul-
tant) and the European Automobile Manufacturers Association. Finally, the data set is
augmented with information on the location of the main production plant for each car
model (from PWC Autofacts), and three input prices by country of production: unit la-
bor costs, steel prices, and a producer price index. Table 2 presents summary statistics
for sales, price, and vehicle characteristics used in demand estimation.

Starting from JATO’s classification, I attribute each model to a marketing segment.
I define five segments: subcompact, compact, standard, intermediate, and luxury.11 Cars
belonging to the same segment share similar characteristics in terms of price, horse-
power, fuel consumption, and size. Segmentation is used by car makers to position their
vehicle in the market place; they often advertise their vehicle as the cheapest or best

Table 2. Summary statistics.

Mean Std. Dev.

Sales (units) 13,821 24,312
Price/Income 0�84 0�50
Power (in kW) 82�19 35�72
Fuel efficiency (e/100 km) 7�27 1�46
Size (m2) 7�46 1�14
Foreign (0–1) 0�78 0�42
Months present (1–12) 9�66 2�61

Note: The table reports means and standard deviations of the main variables. The total number of observations (mod-
els/markets) is 5788, where markets refer to the 3 countries and 14 years.

diesel version; (ii) the most sold engine variant in the lowest quartile of displacement/horsepower combi-
nations. I use the characteristics corresponding to the selected base model. Results are robust to different
choices of base model.

10The model could be extended to incorporate multidimensionality in ordering. One could parametrize
the potential correlation among products along two (or more) dimensions of ordering by taking the
weighted sum of two Ordered Nested Logit generating function G(·) as follows:

G
(
eδ

) = αd1Gd1 + αd2Gd2�

where d1 and d2 denote dimension1 and dimension 2 of the ordering.
11For example, a Volkswagen Golf belongs to the compact segment. The smaller Polo belongs one seg-

ment below the Golf (subcompact), while the bigger Passat is located one segment above (intermediate).
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Table 3. Summary statistics by segment.

Subcomp. Compact Interm. Standard Luxury

Price/Income Mean 0�45 0�68 0�86 1�13 1�80
Std. Dev. (0�10) (0�12) (0�13) (0�22) (0�67)

Power (kW) Mean 50�37 73�84 88�52 104�91 145�47
Std. Dev. (10�83) (14�16) (12�96) (19�48) (42�44)

Fuel consumption (li/100 km) Mean 5�90 6�98 7�69 8�21 9�65
Std. Dev. (0�71) (0�72) (0�63) (0�88) (1�34)

Size (m2) Mean 6�10 7�46 8�23 8�06 9�00
Std. Dev. (0�71) (0�43) (0�41) (0�34) (0�38)

Number of obs. 1802 1409 1131 716 730

Correct classifications into segments (percent)
Subcompact – 92�37 97�28 98�89 100�00
Compact – 74�59 89�80 96�27
Intermediate – 81�20 90�74
Standard – 84�72
Luxury –

Note: The top panel of the table reports means of the main variables per segment in the top panel. The bottom panel of
the table reports the percentage of correctly classified car models, based on binary logit of a segment dummy per pair on four
continuous characteristics (i.e., power, fuel efficiency, width, and height). Subcomp. = subcompact, Interm. = intermediate.

performing in its class. Leading automotive magazines, such as Auto Motor und Sport,
award a “best car” prize for each segment. Comparison web sites and consumer reports
also feature the classification into segments as a prominent search tool. But the bound-
aries between segments are blurred by the presence of cars with some characteristics,
including price, image, and extra accessories, which would position those cars in an up-
per segment. Audi A1 or BMW Mini are examples of “luxury subcompacts” designed to
compete across segments. Table 3 and Figure 1 provide a descriptive illustration of seg-
mentation in the car market. The top panel of the table presents the mean and standard
deviation of price, horsepower, fuel consumption, and size by segment. Figure 1 repre-
sents also the median, the minimum, and maximum values, and the values of the lower
and upper quartiles of those characteristics. The table and the figure illustrate that the
mean and median values of all characteristics increase from subcompact to luxury (with
the exception of size from the intermediate to standard segment). At the same time, the
large variability displayed by those characteristics within a segment suggest that some
overlap across segments is plausible and depends on the proximity of the ordering. The
bottom panel of Table 3 shows how well characteristics predict to which segment each
car model belongs. Classifications are reasonably accurate (always above 80% with one
exception), but the prediction power is not perfect and confirms the need to quantify
the presence of neighboring segment effects.

3.2 Specification

To estimate the demand for cars in France, Germany, and Italy, I modify the Ordered
Nested Logit specified above. In each period (year) and country t, Lt potential con-
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Figure 1. Characteristics by segment.

sumers choose one alternative, either the outside good j = 0 or one of the J cars. Fol-
lowing Berry (1994) and the subsequent literature, price is treated separately because
it is an endogenous characteristic. The outside good includes the option “do not buy a
product,” j = 0 for which consumer i’s indirect utility is ui0 = εi0. For cars j = 1� � � � � J,
the utility specification is

Uijt = xjtβ− αipjt + ξjt + εijt ≡ δjt − αipjt + εijt �

where xjt is a 1 ×K vector of characteristics including price, horsepower, fuel consump-
tion, size measures (width and height), and a dummy variable for the country of origin.
For the potential market size (Lt ), I follow the literature and use the total number of
households in each year and market.

In estimation, the coefficient of price, αi, is specified in two ways: (i) αi = α/y, where
y is equal to income per capita; (ii) αi = α/yi, a specification in which I exploit infor-
mation on income distribution. Both specifications imply that households with higher
income are less sensitive to price.12

12Specifically, I take advantage of the easily available information on the percentage of the total income
attributable to each decile of population. I couple this information with aggregate income by country (y)
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The error term εij is the individual realization of the random variable ε: as discussed
above, its distribution determines the substitution patterns. I assume that the 5+1 nests
(segments) are ordered as follows: S0, the outside good; S1, subcompact; S2, compact; S3,
standard; S4, intermediate; and S5, luxury. The ordering corresponds to an increasing
value of observable and unobservable characteristics such as price, size, comfort, and
performance. The outside good nest is the nest with the “inferior quality” good. 13

The distribution of the error term εij thus follows the assumptions of the Ordered
Nested Logit as defined in equation (2). To obtain as much flexibility as possible, I as-
sume that M = 2, so that each segment S has two contiguous segments as neighbors, or,
in other words, each segment belongs to 3 different sets of segments B. In sum, I have
6 + 2 sets containing up to 3 contiguous nests (and all the alternatives in those nest):

B0 = {S0}�
B1 = {S0� S1}�
B2 = {S0� S1� S2}�
B3 = {S1� S2� S3}�
B4 = {S2� S3� S4}�
B5 = {S3� S4� S5}�
B6 = {S4� S5}�
B7 = {S5}�

The nesting parameter σn differs across the 5 nests. While the model theoretically
has 8 neighboring nest parameters ρr (one for each set of nests Br = 0� � � � �7), I impose
the following structure to avoid the proliferation of parameters and issues in identifi-
cation. As the decision to choose the outside option is fundamentally different from
the decision to choose one of the alternatives in the choice set, I estimate one neigh-
boring nest parameter for the sets containing the outside option (B0�B1�B2), and one
neighboring nest parameter for the sets containing the inside good (B3�B4�B5�B6�B7).
This implies the estimation of 7 random coefficients: 5 nesting parameters σ and 2 pa-
rameters determining the degree of proximity between groups of nests, ρ0 = ρ1 = ρ2
and ρ3 = ρ4 = ρ5 = ρ6 = ρ7. Finally, for simplicity all nests are assigned the same weight
1/(M + 1) = 1/3.

to obtain the average consumer income for the 10 segments of the population. I can then compute the
purchase probability by population segment and sum up those probabilities to obtain the market share
for each car in each country and year. I specify the consumers’ distaste for higher prices as αi = α

yi
where

α is the estimated parameter. As noted by Berry, Levinsohn, and Pakes (1999) and Brenkers and Verboven
(2006), this functional form can be derived as a first-order Taylor series approximation to the Cobb–Douglas
utility function used in Berry, Levinsohn, and Pakes (1995) as long as price is small relative to capitalized
income.

13The industry and the European Commission have at times used more detailed classifications, for
example, by distinguishing the subcompact segment between city/mini cars and small cars (segment A
and B). When using more detailed classifications, I found that the model was not supported in the data
(ρr > σn). The result is consistent with the Monte Carlo analysis when nests are narrowly defined.
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3.3 The estimation procedure

The estimation procedure for the Ordered Nested Logit model follows the methodolog-
ical lines of Berry (1994), Berry, Levinsohn, and Pakes (1995), and the subsequent litera-
ture. I exploit the panel features of the data set to specify the product-related error term
as follows: ξjt = ξj + ξt +�ξjt , where ξj is a fixed-effect for each car model, ξt is a full set
of country/year fixed effects, and a set of dummy variables for the number of months
each model was available in a country within a given year (for models introduced or
dropped within a year). �ξjt is the remaining product-related error term.

The estimation procedure is standard in the literature. First, I numerically solve for
the error term �ξjt as a function of the vector of parameters. Second, I interact �ξjt with
a set of instruments to form a generalized method of moments (GMM) estimator.

Consider the solution of �ξjt first. In the Nested Logit model, �ξjt has an analytic
solution. In the Ordered Nested Logit model, �ξjt is the numerical solution of the sys-
tem s = s(δ�α�σn�ρr). I use a modified version of Berry, Levinsohn, and Pakes’s (1995)
contraction mapping: δk+1 = δk + [1 − max(σ̂n� ρ̂r)] · [ln(st)− ln(st(δkt ))]. If one does not
weigh the second term by [1 − max(σ̂s� ρ̂r)], the procedure may not lead to convergence;
see Appendix A in Grigolon and Verboven (2014).

Let �̂ξ be the sample analogue of the vector �ξ, and Z the matrix of instruments.
The GMM estimator is defined as

min
α�σn�ρr

�̂ξ′(ZΩZ′)�̂ξ�
where Ω is the weighting matrix. I follow a two-step procedure: First, I use the weighting
matrix Ω = (Z′Z)−1. Then I reestimate the model with the optimal weighting matrix. To
minimize the GMM objective function with respect to the parameters α, σn, ρr , I first
concentrate out the linear parameters β. Also, I do not directly estimate more than 200
car model fixed effects ξj , but instead use a within transformation of the data (Baltagi
(1995)). Standard errors are computed using the standard GMM formulas for asymp-
totic standard errors. Following Dubé, Fox, and Su (2012), I use a tight tolerance level
to invert the shares using the contraction mapping (1e − 12), check convergence for 10
starting values at each step, and check that the first-order conditions are satisfied at con-
vergence.

3.4 Identification

The GMM estimator requires an instrumental variable vector Z with a rank of at least
K+ 8 (K is the dimension of the β vector; the price parameter α; the five nesting param-
eters σn and the two parameters characterizing correlation between neighboring nests
ρr ). The interpretation of �ξjt as unobserved product quality disqualifies price pjt as
an instrument since it could imply a positive correlation with �ξjt . There are two main
reasons for such correlation. First, if an unobservable characteristic, for example, com-
fort, rises with price, consumers will avoid expensive cars less than they would without
that characteristic. Second, if adding comfort is costly for the manufacturer, the price
of the car is expected to reflect this cost. A similar argument holds for the correlation
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between the shares within a segment or within neighboring segments and �ξjt : param-
eters σn and ρr are special kinds of random coefficients (Cardell (1997)). Berry and Haile
(2014) clarify that, even abstracting from price endogeneity, identification of random
coefficients requires instrumentation for the endogenous market shares; this calls for
instrumentation of the share terms.

Following Berry, Levinsohn, and Pakes (1995), I assume that the observed product
characteristics xjt are uncorrelated with the unobserved product characteristics �ξjt ,
so product characteristics xjt are included in the matrix of instruments. Note that this
assumption is weaker than the often adopted assumption that xjt is uncorrelated with
ξjt .

I include three sets of moment conditions. The first set focuses on the identification
of the price coefficient. Armstrong (2016) suggested the use of cost-shifters, especially
when the number of products is large, to identify price effects. I use input prices de-
rived from the country of production of each car: a steel price index interacted with car
weight (as a proxy for material costs), unit labor costs in the country of production, and
a dummy for whether the country of production and destination are the same.14

The second set of instruments, often used in the literature, includes interactions of
the exogenous characteristics. In particular, I use (i) counts and sum of the characteris-
tics of other products of competing firms by segment; (ii) counts and sum of the char-
acteristics of other products of the same firm by segment; (iii) counts and sum of the
characteristics of other products of competing firms by a set of segments Br ; (iv) counts
and sum of the characteristics of other products of the same firm by a set of segments
Br . These instruments originate from supply side considerations, where I assume that
firms set prices according to a Bertrand–Nash game. When the number of products in
one segment, or in the neighboring segments increases, demand should become more
elastic and this should affect prices and shares. Similarly, if one firm produces a large
share of the products in one segment or in neighboring segments, sales and prices for
each product of that particular firm should be higher.

Following Gandhi and Houde (2019), the third set of instruments is the difference
in car attributes to capture the relative position of each product in the characteristic
space. Those instruments approximate the optimal instrumental variables I used with
simulated data without requiring initial estimates.15 In particular, I construct the sum
of square of characteristic differences within each segment and within each set of seg-
ments, Br�

16

14In the data, car models are produced in 23 different countries. As a test for weak instruments, I run
a simple logit model using these three instruments for price, while accounting for heteroskedastic errors.
The F-test is 35.1, above 10, the rule-of-thumb proposed by Staiger and Stock (1997). The effective F-statistic
(Olea and Pflueger (2013)) equals 31.6, which is above 18.97 for 5% maximal bias relative to OLS.

15With simulated data, I did not need to use any approximation because I constructed the optimal in-
struments from the parameters and the functional form assumptions of the true data generating process.

16A flexible Random Coefficients Logit would also obtain obtain realistic substitution patterns. In the
Online Supplmentary Material in Appendix B, Specification 2, I use a Random Coefficients Logit specifi-
cation with a flexible matrix of parameters governing the heterogeneity in preferences, which allows con-
sumer valuations to be correlated across characteristics. Gandhi and Houde (2019) provide an insightful
discussion on the identification of correlated random coefficients. They use interactions between continu-
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4. Results

4.1 Demand estimates

Table 4 shows the parameter estimates for four specifications. The first one (Nested Logit
I) is the one-level Nested Logit model, which imposes ρr = 0. The second specification
(Ordered Nested Logit I) is an Ordered Nested Logit with M = 2; both σs and ρr are es-
timated and the coefficient of price, αi, is specified as α/y, where y is equal to income
per capita of each country. The third specification (Nested Logit II) is a Random Coef-
ficients Nested Logit, which again imposes ρr = 0 but allows for heterogeneity in price
sensitivities, so that αi = α/yi. Finally, the fourth specification (Ordered Nested Logit II)
is an Ordered Nested Logit identical to the second specification, in which we have both
σs and ρr , with the addition of heterogeneity in price sensitivities: αi = α/yi.

Table 4. Parameter estimates for alternative demand models.

Nested Logit I Ordered NL I Nested Logit II Ordered NL II
(1) (2) (3) (4)

Estimate St.Err. Estimate St.Err. Estimate St.Err. Estimate St.Err.

Mean valuations for the characteristics in xjt(β)

Price/Income −1�43 0�17 −1�31 0�13 −1�11 0�28 −1�02 0�20
Power (kW/100) 0�80 0�12 0�68 0�09 0�43 0�11 0�31 0�08
Fuel consumpt. (e/10,00km) −0�72 0�10 −0�44 0�08 −0�84 0�10 −0�53 0�07
Width (cm/100) 0�52 0�18 0�45 0�14 0�60 0�18 0�54 0�14
Height (cm/100) 1�13 0�16 0�93 0�12 1�20 0�17 1�00 0�12
Foreign (0/1) −0�44 0�02 −0�30 0�02 −0�48 0�02 −0�34 0�02

Nesting parameters (σn)
Subcompact 0�95 0�02 0�96 0�02 0�91 0�02 0�92 0�02
Compact 0�77 0�02 0�82 0�01 0�77 0�02 0�82 0�01
Intermediate 0�80 0�02 0�83 0�02 0�79 0�02 0�83 0�02
Standard 0�78 0�03 0�85 0�02 0�77 0�03 0�86 0�02
Luxury 0�35 0�07 0�68 0�05 0�33 0�07 0�68 0�05

Neighboring Nesting Parameters (ρr )
ρ0 = ρ1 = ρ2 – 0�13 0�11 – 0�20 0�12
ρ3 = ρ4 = ρ5 = ρ6 = ρ7 – 0�68 0�08 – 0�68 0�08

Model FE Yes Yes Yes Yes
Year·Country FE Yes Yes Yes Yes
Income distr. No No Yes Yes

Own Elasticity −6�931 −8�300 −4�181 −4�944

Note: The table shows the parameter estimates and standard errors for the three demand models: (i) the Nested Logit
model, which assumes homogenous income distribution (αi = α/y) and set the neighboring segmentation parameter at zero
(ρ = 0); (ii) the Ordered Nested Logit I with homogenous income distribution (αi = α/y) and two neighboring nest parameters,
one for the sets containing the outside option (B0�B1�B2), and one for the sets containing the inside good (B3�B4�B5�B6�B7);
(iii) the Nested Logit with heterogeneous income distribution (αi = α/yi); (iv) the Ordered Nested Logit with heterogeneous in-
come distribution (αi = α/yi) and two neighboring nest parameters, one for the sets containing the outside option (B0�B1�B2),
and one for the sets containing the inside good (B3�B4�B5�B6�B7). The total number of observations (models/markets) is 5788,
where markets refer to the 3 countries and 14 years. NL = Nested Logit.

ous characteristics pairs to identify the correlation in taste heterogeneity and illustrate the strength of their
identification strategy in a controlled setting.
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Allowing heterogeneity in price sensitivity is useful for two reasons. First, if a re-
searcher believes that coefficients on both market segmentation and some continuously
measured characteristics are random, a “mixed” Ordered Nested Logit model can rep-
resent well such situation. Including a random coefficient on price is useful to illustrate
the flexibility of the model. Second, modeling heterogeneity in price sensitivities is im-
portant because of the focus on price elasticities, especially when considering demand
for large budget share products, such as cars. The Ordered Nested Logit model is well
suited to capture heterogeneity attributable to market segmentation, and does so more
flexibly than the Nested Logit while retaining tractability. At the same time, price sensi-
tivity is a particularly relevant aspect of heterogeneity that may not be completely cap-
tured by market segmentation alone. Adding a random coefficient to the Ordered Nested
Logit is a tractable solution to flexibly account for heterogeneity in both dimensions. As
the random coefficient on price is based on the income distribution, it also accounts
for differences in prices and market shares attributable to differences in the distribution
of income across countries. Of course, this comes at the cost of losing the closed-form
solution for market shares, but can be reasonable to capture the features of the market
under study.

In all four models, the price parameter (αi) and the parameters of the characteristics
(β) have the expected sign and are all significantly different from zero. Most parameter
estimates have also roughly the same magnitude. In the Nested Logit model I (Column
1), the nesting parameters are all precisely estimated; their magnitude is consistent with
random utility maximization (0 ≤ σn < 1) and (nonmonotonically) decreases from sub-
compact to luxury: Consumer preferences are more homogeneous for subcompact cars
(σ1 = 0�95) with respect to luxury cars (σ5 = 0�35). This is consistent with earlier find-
ings by Goldberg and Verboven (2001) and Brenkers and Verboven (2006). Higher values
of σn also imply stronger within group substitution relative to substitution to the outside
option.

In the second specification, the Ordered Nested Logit I (Column 2), parameters σn

are again precisely estimated and nonmonotonically decreasing. The first neighboring
nesting parameter, capturing correlation between proximate nests when the outside
nest option is included, is low in magnitude and imprecisely estimated (ρ = 0�13); the
second neighboring nesting parameter is precisely estimated and indicates that corre-
lation between neighboring segments is strongly supported by the data: ρ = 0�68 with a
standard error of 0�08. The null hypothesis of ρr = 0 assumed by the Nested Logit is re-
jected against the alternative hypothesis of a more general Ordered Nested Logit model;
in other words, the Nested Logit I is rejected against the more general Ordered Nested
Logit I.

The third and fourth specifications are identical to the first and the second, with the
addition of heterogeneity in price sensitivity. Again, the estimates of σn are significantly
different from zero in both models. For the Ordered Nested Logit II, the null hypothesis
of ρr = 0 assumed by the Nested Logit II is again rejected. In sum, both heterogene-
ity in price and in market segmentation are important as demonstrated by the Ordered
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Nested Logit II: when adding the dimension of price heterogeneity, correlation between
neighboring segments remains relevant.17

The Ordered Nested Logit I and the Nested Logit II are nonnested models. I use the
test proposed by Rivers and Vuong (2002) for selection among misspecified nonnested
models, where the selection criteria is based on the value of the GMM objective function.
In particular, I use values of the first-step objective function, employing the same esti-
mator of the weighting matrix, based on the same set of instruments. The test statistic is
T = (Q1−Q2)

σ̂ , where Qi is the value of the GMM function of model i, and σ̂ the estimated
value of the standard deviation of the difference between Q′

is.18 The test shows that the
Ordered Nested Logit I is asymptotically “better” (less misspecified) with respect to the
Nested Logit II. I interpret the result as evidence that correlation between neighboring
segments matters more in this data with respect to the another dimension of hetero-
geneity, price sensitivity.

Finally, all models imply similar own-price elasticities; demand is always elastic,
which is consistent with oligopolistic profit maximization.

4.2 Substitution patterns: Segment-level price elasticities

The implications of rejecting the Nested Logit in favor of the Ordered Nested Logit model
are most clearly illustrated by the implied substitution patterns at segment level. Table 5
presents own- and cross-price elasticities constructed by simulating the effect on de-
mand of a joint 1% price increase of all cars in a given segment.

The own-price elasticities across the four models are similar in terms of magnitude
and tend to be higher for the most expensive classes. The monotonic relationship be-
tween own-price elasticity and price is the result of the assumption that price enters
utility linearly and is clearly mitigated by modeling heterogeneity in consumer prefer-
ences for segments (σn and ρr ) and especially income: see Nested Logit II and Ordered
Nested Logit II.

The cross-price elasticities are the most interesting results. By construction, the one-
level Nested Logit model implies a fully symmetric substitution pattern, namely iden-
tical cross-price elasticities in each row. Thus, a 1% price increase to all subcompact
cars raises demand in the compact and luxury segments by the same amount, 0�01%. By
contrast, the Ordered Nested Logit model delivers more plausible substitution patterns.

17I formally test (i) the Nested Logit I against the Ordered Nested Logit I, and (ii) the Nested Logit II
against the Ordered Nested Logit II by using the likelihood ratio test adapted to the GMM context, where
the likelihood ratio statistic is defined as the difference between the value of the objective function of the
restricted model and the value of the objective function of the unrestricted model (Hayashi (2000)). Un-
der the null hypothesis, the statistic is asymptotically χ2 distributed with degrees of freedom equal to the
number of restrictions. Each restricted model is rejected against the more general model.

18The variance of the difference is estimated using bootstrap simulations, with resampling of the in-
dependent markets t. The null hypothesis is that the two nonnested models are asymptotically equiva-
lent. The first alternative hypothesis (H1) is that model 1 is asymptotically “better” (less misspecified) than
model 2; the second alternative hypothesis (H2) is that model 2 is asymptotically better than model 1. The
value of T is compared to the critical values of a standard normal; with α denoting the size of the test and
tα/2 the value of the inverse standard normal distribution evaluated at 1 − α/2. If T < −tα/2, H0 is rejected
in favor of H1; if T > tα/2, H0 is rejected in favor of H2. Otherwise, H0 is not rejected.
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Table 5. Segment-level price elasticities in Germany for alternative demand models.

Outside Subcompact Compact Intermediate Standard Luxury

Nested Logit I
Subcompact 0�010 −0�593 0�010 0�010 0�010 0�010
Compact 0�015 0�015 −0�872 0�015 0�015 0�015
Intermediate 0�006 0�006 0�006 −1�204 0�006 0�006
Standard 0�009 0�009 0�009 0�009 −1�417 0�009
Luxury 0�011 0�011 0�011 0�011 0�011 −2�092

Ordered Nested Logit I
Subcompact 0�010 −0�829 0�224 0�093 0�009 0�009
Compact 0�014 0�336 −1�309 0�394 0�164 0�014
Intermediate 0�006 0�059 0�164 −2�514 0�474 0�195
Standard 0�008 0�008 0�095 0�657 −2�607 0�653
Luxury 0�010 0�010 0�010 0�323 0�776 −3�166

Nested Logit II
Subcompact 0�009 −0�506 0�008 0�008 0�008 0�008
Compact 0�012 0�012 −0�709 0�012 0�012 0�012
Intermediate 0�005 0�005 0�005 −0�923 0�005 0�005
Standard 0�007 0�007 0�007 0�007 −1�042 0�007
Luxury 0�007 0�008 0�008 0�009 0�009 −1�386

Ordered Nested Logit II
Subcompact 0�009 −0�716 0�182 0�065 0�007 0�007
Compact 0�012 0�272 −1�043 0�274 0�112 0�011
Intermediate 0�005 0�040 0�114 −1�848 0�357 0�119
Standard 0�006 0�006 0�064 0�487 −1�858 0�402
Luxury 0�006 0�007 0�007 0�193 0�467 −1�974

Note: The table reports the segment-level own- and cross-price elasticities (when the price of all products in the same
segment is increased by 1%). The elasticities are based on the parameter estimates in Table 4. They refer to Germany in 2011.

A 1% price increase in the subcompact segment has a stronger effect on demand of the

two proximate segments: compact (+0�22%) and intermediate (+0�09%) compared to

luxury (+0�01%). These numbers are comparable to the ones reported by Grigolon and

Verboven (2014) in the analysis of the segment-level price elasticities for the Random

Coefficients Logit model. The Ordered Nested Logit model I is flexible, but still parsi-

monious in the number of parameters, so that only the two immediately proximate seg-

ments (on the left and on the right) are the neighboring ones. Outside the neighboring

segments, the Ordered Nested Logit model still retains the modeling assumptions of the

Nested Logit model. Thus, substitution patterns are symmetric outside the neighboring

segments.

In the third and fourth models, the property of symmetry outside proximate seg-

ments does not hold as both models also incorporate a random coefficient on price.

However, cross-price elasticities are still quite symmetric in the Nested Logit II. In the

Ordered Nested Logit II, the cross-price elasticities are asymmetric, albeit such asym-

metry is slightly less pronounced with respect to the Ordered Nested Logit I.
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5. Counterfactuals

Entry of premium subcompact Since the early 2000s, luxury brands have entered the
lower segments of the car market, such as subcompacts and compacts. The vehicles
launched by those brands feature distinctive characteristics with respect to the incum-
bents: for their power, accessories, image, and, of course, price they resemble a ve-
hicle from a higher segment. This trend has diluted the traditional borders between
segments in the automobile market. I consider in particular three premium subcom-
pacts: Audi A1, BMW Mini (both the hatchback and wagon versions), and the Fiat 500
Abarth, an upgraded version of the Fiat 500. Table C.11 in the Online Supplementary
Material in Appendix C (Grigolon (2021)) presents summary statistics of the character-
istics of those three vehicles compared to the average subcompact and compact car.
Their price and horsepower are significantly higher, while there is no statistically sig-
nificant difference in fuel consumption and size with respect to the average subcom-
pact car. In contrast, with respect to the average compact car, only size is significantly
lower.

I simulate a counterfactual scenario without those three premium subcompacts.
Table 6 summarizes the implied diversion ratios by segment. Those ratios measure
the fraction of sales diverted to other products, in the same segment or other seg-
ments, when the premium subcompacts are removed. In the simulation, I account
for the response of other car makers by solving the differentiated product model for
the change in equilibrium prices induced by the removal of the products. The Nested
Logit model suggests that, absent the choice of premium subcompacts, 95% of sales
would be diverted to other subcompact cars, while sales of upper segments would
practically not be affected. The Ordered Nested Logit I, which allows for the possibil-
ity of asymmetric correlation between neighboring nests, still predicts that most sub-
stitution (93%) happens within the subcompact segment, but now 2% of sales would
be diverted to compact cars. In both cases, the diversion ratio to the outside good is
around 5%.

The Nested Logit II (with heterogeneity in price sensitivity) yields a slightly higher
increase in sales of compact cars with respect to the Nested Logit (0�24 versus 0�10). In

Table 6. Diversion ratios after the removal of premium subcompact cars.

Diversion ratios (%) Nested Logit I Ordered Nested Logit I Nested Logit II Ordered Nested Logit II

Outside 5�17 4�63 11�34 11�60
Subcompact 94�60 93�13 88�14 82�85
Compact 0�10 1�94 0�24 4�70
Intermediate 0�03 0�25 0�08 0�64
Standard 0�04 0�03 0�10 0�11
Luxury 0�06 0�03 0�09 0�09

Note: The table reports the diversion ratios (in percent) by segment after removing three premium subcompact car models:
Audi A1, BMW Mini (both the hatchback and wagon versions) and the Fiat 500. Diversion ratios: share of fraction of sales
diverted to other products in the same segment or other segments. The simulations are based on the parameter estimates in
Table 4. They refer to Germany in 2011.
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contrast, the Ordered Nested Logit II, which incorporates heterogeneity in price sensi-
tivity as well, predicts that 4�7% of sales are diverted to the compact segment, and 11�6%
to the outside good. Both the Nested Logit II and the Ordered Nested Logit II predict
similar patterns of substitution toward the outside good.

The effects of targeted environmental policies Asymmetric substitution patterns across
segments are particularly important when looking at asymmetric policies. An example
is a targeted scrapping scheme, which encourages consumers to scrap an old vehicle
and purchase a cleaner one. The data set comprises: (i) the 2009 German scrapping
scheme, which was not targeted (it provided an incentive to purchase a new car regard-
less of its fuel efficiency); (ii) the 2008–2011 French scrapping scheme, which was tar-
geted, and the feebate program (Bonus/Malus); (iii) various Italian scrapping schemes,
which are mostly targeted but not sizeable.19 The French scrapping scheme in com-
bination with the feebate program is the only notably asymmetric policy. In practice,
cleaner cars in the data set mostly received only a modest rebate (e200), while polluting
cars were mostly subject to a modest fee ranging from e200 to 750. Cars emitting more
than 160g of CO2 per kilometer would be subject to the sizeable fee of e2600, but only
a handful of cars in the data meet the requirement, so the asymmetry in the policy is
limited.20

What would be the effect of a bolder environmental policy? I simulate the impact of
a e5000 subsidy to cars emitting less than 140 g of CO2 per kilometer. The first column
of Table 7 illustrates the asymmetry of the policy as it mostly benefits subcompact and

Table 7. The effect of a subsidy to clean cars on market shares.

Eligible cars % % Change in Sales

Nested Logit I Ordered Nested
Logit I

Nested Logit II Ordered Nested
Logit II

Outside – −0�61 −0�60 −0�45 −0�46
Subcompact 93�02 24�28 30�00 18�36 23�37
Compact 39�39 8�57 4�82 6�21 3�01
Intermediate 8�33 5�40 4�43 3�75 2�84
Standard 0�00 −0�61 −4�21 −0�46 −2�97
Luxury 0�00 −0�65 −1�45 −0�47 −1�03

Note: The table reports the effect of e5000 subsidy to cars emitting less than 140g of CO2. The simulations are based on
the parameter estimates in Table 4. They refer to Germany in 2011.

19For more information, see Table A1 of Grigolon, Leheyda, and Verboven (2016) and Table 1 of
D’Haultfoeuille, Givord, and Boutin (2014).

20I tested the predictions of the four models to the French environmental policy. In particular, I compare
the market shares observed in 2007 (before the policy) and the simulated market shares of 2008 setting the
environmental policy to zero and the fuel prices at the level of 2007. Table C.12 in the Online Supplemen-
tary Material in Appendix C shows that the four models, though suffering from the limitations of a static
framework, predict counterfactual shares that are very close to the observed ones. The Ordered Nested
Logit models imply counterfactual shares similar to the ones produced by the Nested Logit models because
the asymmetry in the policy is actually rather limited.
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compact cars. The other columns simulate the effect of the subsidy. As in the previous
counterfactual, I account for the pricing responses of manufacturers. Under the Nested
Logit model, subcompact cars gain a significant amount of sales (+24%). Also for the
compact and intermediate segments sales increase, but by a smaller amount. Most im-
portantly, standard and luxury cars are unaffected by the policy. The Ordered Nested
Logit I model tells another story: sales of noneligible cars, especially in the standard
segment, are affected by the policy and decrease by 4�2%. The Ordered Nested Logit II
predicts a similar lower decrease (3%).

6. Conclusion

I present a new member of the GEV model family denominated Ordered Nested Logit
model. The Ordered Nested GEV model is appealing for three reasons. First, it provides
a modeling theory that is more consistent with the particular structure of choices in
some segmented markets, such as cars, than a simple Nested Logit model. It creates the
potential for neighboring segment effects, or, more precisely, asymmetric substitution
patterns across segments. Second, the model relaxes the hierarchical nesting structure
imposed by the Nested Logit model while avoiding th use of simulation as in the Random
Coefficients Logit model. Third, the Ordered Nested GEV model has the Nested Logit
and the Logit as special cases. It can thus serve as a test for the validity of the constraints
imposed by the Nested Logit and, a fortiori, the Logit model.

I apply the Ordered Nested Logit model to the car market, which is classified into
segments that are naturally ordered from subcompact to luxury. Results show that
neighboring segment effects are strongly supported in the data. I show that asymmetry
in substitution matters when simulating the introduction of vehicles combining features
from different segments, such as premium subcompacts, or when studying the conse-
quence of asymmetric policies, such as targeted subsidies.

The model I propose here can be a promising starting point to capture neighbor-
ing segment effects. Future research on other industries, such as retail brands, lodg-
ing, and restaurants, could benefit from this modeling strategy: Ordering a high num-
ber of alternatives can prove impossible, but ordering groups of these alternatives may
represent a sensible way to obtain flexible substitution patterns in a tractable set-
ting.

Appendix A

A.1 Proof GEV

Proposition 1. The following conditions are sufficient for equation (2) to define a GEV
generating function:

(i) M is a positive integer;

(ii) σn and ρr are constants satisfying 0 ≤ ρr ≤ σn < 1;

(iii) wm ≥ 0 and
∑

mwm > 0.
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Proof. The four properties of GEV generating functions are verified as follows. To sim-

plify the notation, let eδj = Yj .

1. G is nonnegative since Yj ∈ R+∀j, weights are nonnegative and at least one weight

is strictly positive (condition (iii))

2. G is homogeneous of degree 1, that is, G(λY0� � � � � λYJ)= λG(Y0� � � � �YJ),

G(λY0� � � � � λYJ) =
N+M∑
r=1

(∑
n∈Br

wr−n

(∑
j∈Sn

exp
(
λ

1
1−σn Y

1
1−σn
j

)) 1−σn
1−ρr

)1−ρr

=
N+M∑
r=1

(∑
n∈Br

wr−n

(
λ

1
1−σn

∑
j∈Sn

exp
(
Y

1
1−σn
j

)) 1−σn
1−ρr

)1−ρr

=
N+M∑
r=1

(∑
n∈Br

wr−nλ
1

1−ρr

(∑
j∈Sn

exp
(
Y

1
1−σn
j

)) 1−σn
1−ρr

)1−ρr

= λ

N+M∑
r=1

(∑
n∈Br

wr−n

(∑
j∈Sn

exp
(
Y

1
1−σn
j

)) 1−σn
1−ρr

)1−ρr

= λG(Y0� � � � �YJ)�

3. The limit property holds since weights are nonnegative and at least one is strictly

positive (condition (iii))

4. The property of the sign of the derivatives holds because 0 ≤ ρr ≤ σn < 1 (condition

(ii)).

To show that cross-partials exhibit the required property, I begin by simplifying the

notation. Set αnr = (1 − σn)/(1 − ρr) and βr = 1 − ρr , and note that αnr�βr ∈ [0�1]. I can

then rewrite G as

G=
N+M∑
r=1

[
N∑
n=1

wr−n

(∑
j∈Sn

Y
1

1−σn
j

)αnr
]βr

�

Fix some k ∈ {1� � � � � J}, and let K = {i1� i2� � � � � ik} be a subset of {1� � � � � J} containing

k elements. I want to show that

∂kG

∂Yi1 · · ·∂Yik

is nonnegative for odd k and nonpositive for even k. This is equivalently to showing that:

∂kG̃

∂Ỹi1 · · ·∂Ỹik



Quantitative Economics 12 (2021) A flexible approach for segmentation 1299

is nonnegative for odd k and nonpositive for even k, where Ỹj ≡ Y
1

1−σn
j for every nest n

and product j ∈ Sn and

G̃≡
N+M∑
r=1

[
N∑
n=1

wr−n

(∑
j∈Sn

Ỹj

)αnr
]βr

�

I focus on the latter condition, and remove the tildes to ease notation.

For every r, let

Hr ≡
[

N∑
n=1

wr−n

(∑
j∈Sn

Yj

)αnr
]βr

�

and note that H = ∑
r H

r . Define

Hr
K ≡ ∂kHr

∂Yi1 · · ·∂Yik

�

It is enough to show that, for every r, Hr
K is nonnegative for odd k and nonpositive for

even k. In the following, I fix an r, and drop the r index to ease notation. The final object

of interest is therefore

H =
[

N∑
n=1

vn

(∑
j∈Sn

Yj

)αn
]β

≡ f
[
g(Y)

]
�

where vn = wn−r ; f (X) = (X)β; and g(Y) = ∑N
n=1 vn(

∑
j∈Sn Yj)

αn .

To find the kth derivative of the function composition, I apply the multivariate ver-

sion of the Faà di Bruno formula (Hardy (2006)), and derive the sign of each term in the

Faà di Bruno expression:

∂k

∂Yi1 · · ·∂Yik

H(Y) =
∑
π∈Π

f (|π|)(Y) ·
∏
B∈π

∂|B|g(Y)∏
j∈B

∂Yj

�

where π runs through the set Π of all partitions of the set {i1� � � � � ik}; B ∈ π means that

the variable B runs through the list of all the blocks of the partition π; |B| denotes the

size of the block B and |π| is the number of blocks in the partition π.

I now show that each term in the above sum has the desired sign. Fix some π ∈ Π.

I distinguish two cases.

Case 1. Suppose the partition π is such that there exists B0 ∈ π such that ∀n, B0 �

Sn(B). Then, clearly,
∏

B0∈π
∂|B0|g(Y)∏
j∈B0

∂Yj
= 0.



1300 Laura Grigolon Quantitative Economics 12 (2021)

Case 2. Suppose instead that the partition π is such that, for every B ∈ π, there exists
n(B) such that B ⊆ Sn(B). Then

f (|π|)(X) ·
∏
B∈π

∂|B|g(Y)∏
j∈B

∂Yj

= f (|π|)(X) ·
∏
B∈π

∂|B|vn(B)
( ∑
l∈Sn(B)

Yl

)αn(B)

∏
j∈B

∂Yj

=
|π|−1∏
i=0

(β− i)
(
f (X)

)(β−|π|) ·
∏
B∈π

|B|−1∏
i=0

(αn(B) − i)vn(B)

(∑
l∈Sn

Yl

)(αn(B)−|B|)
� (6)

The sign of equation (6) is either zero or

sgn
(
f (|π|)(X) ·

∏
B∈π

∂|B|g(Y)∏
j∈B

∂Yj

)
= (−1)|π|+1 · (−1)|π|+∑

B∈π |B|

= (−1)2|π|+1+∑
B∈π |B|

= (−1){1+|i1�i2�����ik|}

= (−1)1+k

Therefore

∂k

∂Yi1 � � � ∂Yik

G(Y)

{
≥ 0 if k is odd�

≤ 0 if k is even�

A.2 Decomposition into three logits

According to the GEV postulate, the choice probability of buying product j is

sj = eδj ·Gj

(
eδ0�����δJ

)
G

(
eδ0�����δJ

) �

where Gj = ∂G

∂e
δj

is the partial derivative of G with respect to eδj , as derived above.

As G is defined by equation (2), choice probabilities are therefore

sj =
eδj

n+M∑
r=n

(
eδj

) σn
1−σn ·wr−nZ

ρr−σn
1−ρr

n ·D−ρr
r

N+M∑
r=1

(Dr)
1−ρr

� (7)
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I asserted that the product of two conditional and one marginal probabilities in

equation (3) equals the joint probability in the above equation (7). I verify the assertion

as follows:
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where
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∑
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A.3 First- and second-order derivatives of the generating function G

First derivative For j ∈ Sn, the first cross-derivative Gj = ∂G
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is:
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where Zn and Br are defined as follows:
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Second derivative The second cross-derivative Gji = ∂Gj
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is given by
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2. for i� j /∈ Sn, and i� j ∈ Br , i �= j,
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3. for i� j /∈ Sn, and i� j /∈ Br , i �= j,
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