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1. Proofs of proposition and corollaries

This section provides proofs of Proposition 1 and two corollaries in the main text. We
first record in the following lemma the determinant of the Jacobian of transformation
from the structural-form parameterization to the reduced-form parameterization.1 This
lemma was proved in Chan and Jeliazkov (2009), and we include it here for convenience.
The proof uses the differential forms approach that is equivalent to calculating the Jaco-
bian (see, e.g., Theorem 2.1.1 in Muirhead (1982)).

Lemma 1. Suppose W is a n × n positive definite matrix and W = T′T̃T, where T is a
lower triangular matrix with ones on the main diagonal and T̃ is a diagonal matrix with
positive diagonal elements. Denote the lower diagonal elements of T by tij , 1 ≤ j < i ≤ n,
and the diagonal elements of T̃ by tii, i = 1, � � � , n,. Let (dW) denote the differential form
(dW) ≡ ∧i≥j dwij and similarly define (dT) ≡ ∧i≥j dtij . Then we have

(dW) =
n∏

i=1

ti−1
ii (dT).

In other words, the determinant of the Jacobian of the transformation from T′T̃T to W is∏n
i=1 t

−i+1
ii .

Proof of the lemma. By the definition W = T′T̃T, we have⎛⎜⎜⎜⎜⎜⎝
w11 w21 � � � wn1

w21 w22 � � �
...

...
...

. . .
...

wn1 wn2 � � � wnn

⎞⎟⎟⎟⎟⎟⎠ =
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1 t21 � � � tn1

0 1 � � � tn2
...

...
. . .

...
0 0 � � � 1
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t11 0 � � � 0
0 t22 � � � 0
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...
. . .

...
0 0 � � � tnn
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1 0 � � � 0
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. . .
...

tn1 tn2 � � � 1
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Hence, we can express each wij in terms of {tij }:

wii = tii +
n∑

j=i+1

t2
jitjj , i = 1, � � � , n, (1)

wij = tijtii +
n∑

k=i+1

tkitkjtkk, 1 ≤ j < i ≤ n. (2)

Next, we take differentials of these two equations so that we can write the differential
form (dW) in terms of (dT). Since we are going to take the exterior product of these dif-
ferentials and the exterior products of repeated differentials are zero, there is no need to
keep track of differentials in tij that have previously occurred. Therefore, we take differ-
entials of (1) and (2) and ignore those that have previously occurred:

dwnn = dtnn

dwn,n−1 = dtnndtn,n−1 + · · ·
...

dwn1 = tnndtn1 + · · ·
dwn−1,n−1 = dtn−1,n−1 + · · ·

...

dw11 = dt11 + · · ·

Finally, taking exterior products gives

∧
i≥j

dwij = tn−1
nn tn−2

n−1,n−1 · · · t22 ∧
i≥j

dtij

as claimed.

Proof of Proposition 1. Assume the same notation as in Lemma 1. To prove Propo-
sition 1, we consider the case where

tii ∼ G
(
ν0 + i− n

2
,
s2
i

2

)
, i = 1, � � � , n, (3)

(tij | tii ) ∼ N
(

0,
t−1
ii

s2
j

)
, 1 ≤ j < i ≤ n, i = 2, � � � , n. (4)

More specifically, we will show that the density of W = T′T̃T is the same as that of the
Wishart distribution W(ν, S−1 ), where S = diag(s2

1, � � � , s2
n ). Then, if we let tii = 1/σ2

i and

Ai,j = tij , we have �̃
−1 = A′�−1A ∼ W(ν0, S−1 ).
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To prove the proposition, we first compute the determinant of W and the trace
tr(SW). Since the determinant of T is 1, we have

|W| = |̃T| =
n∏

i=1

tii.

Next, using (1), we have

tr(SW) =
n∑

i=1

wiis
2
i

=
n∑

i=1

tiis
2
i +

n∑
i=1

n∑
j=i+1

t2
jitjjs

2
i

=
n∑

i=1

tiis
2
i +

n∑
j=2

j−1∑
i=1

t2
jitjjs

2
i

=
n∑

i=1

tiis
2
i +

n∑
i=2

i−1∑
j=1

t2
ijtiis

2
j ,

where we change the order of the double summations in the third equality and inter-
change the dummy indices i and j in the last equality.

Now, it follows from the distributional assumptions in (3) and (4) that the kernel of
the joint density of T and T̃ is

n∏
i=1

t
ν0+i−n

2 −1
ii e− s2

i
2 tii ×

n∏
i=2

t
i−1

2
ii e− 1

2
∑i−1

j=1 t
2
ij tiis

2
j

=
(

n∏
i=1

t
ν0−n−1

2 +(i−1)
ii

)
e− 1

2 (
∑n

i=1 tiis
2
i +

∑n
i=2

∑i−1
j=1 t

2
ij tiis

2
j ).

Next, we derive the kernel of the density of W. By the lemma, the determinant of the
Jacobian is

∏n
i=1 t

−i+1
ii . Substituting tr(W) and |W| into the above expression and multi-

plying the determinant of the Jacobian, we obtain the kernel of the density of W:

|W| ν0−n−1
2 e− 1

2 tr(SW),

which is the kernel of the Wishart density W(ν0, S−1 ).

Proof of Corollary 1. Here, we use the same notation as in Proposition 1. Assume
W ∼ W(ν, S−1 ), and let W = T′T̃T, where T and T̃ are given in Lemma 1. If we can show
that tii and (tij | tii ) follow the same normal-gamma distributions given in (3) and (4),
respectively, then we are done. Since the transformation between W and T′T̃T is one-
to-one, the proof essentially just “reverses” the equalities given in Proposition 1. More
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specifically, in the proof of Proposition 1 we showed that |W| = ∏n
i=1 tii and

tr(SW) =
n∑

i=1

tiis
2
i +

n∑
i=2

i−1∑
j=1

t2
ijtiis

2
j .

Also, by Lemma 1, the determinant of the Jacobian of transformation is
∏n

i=1 t
i−1
ii . Hence,

the kernel of the joint distribution of tii, i = 1, � � � , n, and tij , 1 ≤ j < i ≤ n, i = 2, � � � , n is
given by

|W| ν0−n−1
2 e− 1

2 tr(SW) ×
n∏

i=1

ti−1
ii

=
(

n∏
i=1

t
ν0−n−1

2 +(i−1)
ii

)
e− 1

2 (
∑n

i=1 tiis
2
i +

∑n
i=2

∑i−1
j=1 t

2
ij tiis

2
j )

=
n∏

i=1

t
ν0+i−n

2 −1
ii e− s2

i
2 tii ×

n∏
i=2

t
i−1

2
ii e− 1

2
∑i−1

j=1 t
2
ij tiis

2
j .

It follows that tii, i = 1, � � � , n, are independent gamma random variables given in (3).
Moreover, conditional on tii, tij , 1 ≤ j < i, are independent normal variables given in (4).

Proof of Corollary 3. Suppose �̃ ∼ IW(ν0, R), where R is a symmetric positive def-
inite matrix. Factor R−1 = L′S−1L, where L is lower triangular with ones on the main

diagonal and S is diagonal. Since �̃
−1 ∼ W(ν0, R−1 ), by the properties of the Wishart

distribution, we have (L′ )−1�̃
−1

L−1 ∼ W(ν0, S−1 ). Now, applying Corollary 1, we obtain

(L′ )−1�̃
−1

L−1 = A′�−1A, where A is lower triangular with ones on the main diagonal and
� is diagonal. The diagonal elements of � and the lower triangular elements of A follow
the normal-inverse-gamma distributions:

σ2
i ∼ IG

(
ν0 + i− n

2
,
s2
i

2

)
, i = 1, � � � , n,

(
Ai,j | σ2

i

) ∼ N
(

0,
σ2
i

s2
j

)
, 1 ≤ j < i ≤ n, i = 2, � � � , n.

Letting C = AL, we can write �̃
−1 = C′�−1C. Since both A and L are lower triangular with

ones on the main diagonal, so is C. It remains to show that ci, the free elements of the ith
row of C, follows the normal distribution in (9). Since C′ = L′A′, we can write ci in terms
of A and L as

ci = li + L′
1:i−1ai,

where li and ai are respectively the free elements of the ith row of L and A, and L1:i−1

is the (i − 1) × (i − 1) matrix that consists of the first (i − 1) rows and columns of L.
Since ci is an affine transformation of the normal vector ai, conditional on σ2

i , ci is
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normally distributed with mean vector li and covariance matrix σ2
i L′

1:i−1S−1
1:i−1L1:i−1,

where S1:i−1 is the submatrix consisting of the first (i − 1) rows and columns of S =
diag(s2

1, � � � , s2
n ).

2. Derivation of the implied structural-form hyperparameters

In this section, we derive the implied prior hyperparameters of the structural-form VAR
coefficients from the hyperparameters of the reduced-form VAR coefficients. Let (Bk )ij
and (B̃k )ij denote the (i, j)-th element of the structural-form coefficient matrix Bk and
the reduced-form coefficient matrix B̃k, respectively, for i, j = 1, � � � , n, k= 1, � � � , p. Fur-
ther, let mβ̃,i and σ2

i Vβ̃,i denote the prior mean vector and covariance matrix of the

reduced-form parameters β̃i = (b̃i, (B̃1 )i1, � � � , (B̃1 )in, � � � , (B̃p )i1, � � � , (B̃p )in )′. The hy-
perparameters mβ̃,i and Vβ̃,i can be elicited in a standard way, for example, following
the Minnesota prior in Doan, Litterman, and Sims (1984) and Litterman (1986). We fur-
ther assume that Vβ̃,i is diagonal as is usually done in the literature. The goal is to derive
the structural-form hyperparameters mβ,i and Vβ,i given mβ̃,i and Vβ̃,i.

To that end, recall that the structural-form and reduced-form coefficients are related
via

(Bk )ij = (B̃k )ij +
i−1∑
l=1

Ai,l(B̃k )lj .

Using the law of iterated expectations and the assumption that the prior means of αi =
(Ai,1, � � � , Ai,i−1 )′ are zero (see Proposition 1), we obtain

E(Bk )ij = E
[
E

(
(Bk )ij | B̃k

)] = E(B̃k )ij .

Hence, we have mβ,i = mβ̃,i.
Next, we elicit the prior covariance matrix Vβ,i, which is in general a full matrix. Here,

for simplicity we ignore the correlations between the structural-form coefficients and set
Vβ,i to be diagonal. One could work out all the covariances following a similar derivation
presented below. Now, we derive the variance of a generic element (Bk )ij . Let f (j, k) =
(k − 1)n + j + 1 be an integer-value function keeping track of the indices. Further, let
(Vβ̃,i )f (j,k) and (mβ̃,i )f (j,k) denote the f (j, k)-th diagonal element of Vβ̃,i and the f (j, k)-
th element of mβ̃,i, respectively. Then we have

Var
(
(Bk )ij

) = E
[
Var

(
(Bk )ij | A

)] + Var
[
E

(
(Bk )ij | A

)]
= E

[
Var

(
(B̃k )ij

) +
i−1∑
l=1

A2
i,l Var

(
(B̃k )lj

)] + Var

[
E(B̃k )ij +

i−1∑
l=1

Ai,lE(B̃k )lj

]

= Var
(
(B̃k )ij

) +
i−1∑
l=1

Var(Ai,l ) Var
(
(B̃k )lj

) +
i−1∑
l=1

Var(Ai,l )
(
E(B̃k )lj

)2

= σ2
i (Vβ̃,i )f (j,k) +

i−1∑
l=1

σ2
i

s2
l

[
σ2
l (Vβ̃,l )f (j,k) + (mβ̃,l )

2
f (j,k)

]
.
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Note that this variance involves the error variances of other equations, namely, σ2
1 , � � � ,

σ2
i−1. To avoid this issue, we replace σ2

l by its prior mean s2
l . Using this simplification, we

obtain

Var
(
(Bk )ij

) ≈ σ2
i

[
(Vβ̃,i )f (j,k) +

i−1∑
l=1

(
(Vβ̃,l )f (j,k) + s−2

l (mβ̃,l )
2
f (j,k)

)]
.

Given this approximation, we set the diagonal element in Vβ,i associated with (Bk )ij to
be (Vβ̃,i )f (j,k) + ∑i−1

l=1((Vβ̃,l )f (j,k) + s−2
l (mβ̃,l )

2
f (j,k) ).

3. Comparison with independent normal and inverse-Wishart prior

This section reports impulse responses of the 6-variable VAR described in Section 4 in
the main text under the independent normal and inverse-Wishart priors. More specifi-
cally, we consider a standard Minnesota prior on the VAR coefficients with hyperparam-
eters κ̃1 = κ̃2 = 1 and an inverse-Wishart prior on the reduced-form error covariance
matrix �̃ ∼ IW(ν0, S). Given the posterior draws of the structural-form parameters, we
transform them to the corresponding reduced-form parameters. We then use the algo-
rithm described in Rubio-Ramirez, Waggoner, and Zha (2010) to incorporate the sign
restrictions to construct impulse responses.

Figure 1 reports the impulse responses to an one-standard-deviation financial
shock. These results are almost identical to those obtained under the asymmetric con-
jugate prior with the same hyperparameters κ̃1 = κ̃2 = 1 reported in the main text.

Figure 1. Impulse responses from a 6-variable VAR with the independent normal and in-
verse-Wishart priors to a one-standard-deviation financial shock. The shaded region represents
the 16th and 84th percentiles.



Supplementary Material Asymmetric conjugate priors 7

References

Chan, Joshua C. C. and Ivan Jeliazkov (2009), “MCMC estimation of restricted covariance
matrix.” Journal of Computational and Graphical Statistics, 18, 457–480. [1]

Doan, Thomas, Robert Litterman, and Christopher Sims (1984), “Forecasting and con-
ditional projection using realistic prior distributions.” Econometric reviews, 3 (1), 1–100.
[5]

Litterman, Robert B. (1986), “Forecasting with Bayesian vector autoregressions — five
years of experience.” Journal of Business and Economic Statistics, 4, 25–38. [5]

Muirhead, Robb J. (1982), Aspects of Multivariate Statistical Theory. Wiley. [1]

Rubio-Ramirez, Juan F., Daniel F. Waggoner, and Tao Zha (2010), “Structural vector au-
toregressions: Theory of identification and algorithms for inference.” The Review of Eco-
nomic Studies, 77 (2), 665–696. [6]

Zha, Tao (1999), “Block recursion and structural vector autoregressions.” Journal of
Econometrics, 90 (2), 291–316. [1]

Co-editor Tao Zha handled this manuscript.

Manuscript received 3 July, 2019; final version accepted 30 October, 2021; available online 3 De-
cember, 2021.

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/CJ09b&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/DLS84&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/litterman86&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/RWZ10&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/zha99&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/CJ09b&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/DLS84&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/litterman86&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/RWZ10&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:5/RWZ10&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/zha99&rfe_id=urn:sici%2F1759-7323%282022%2913%3A3%2B%3C1%3ASTACPF%3E2.0.CO%3B2-0

	Proofs of proposition and corollaries
	Derivation of the implied structural-form hyperparameters
	Comparison with independent normal and inverse-Wishart prior
	References

