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Jeremy T. Fox
University of Michigan and NBER

Kyoo il Kim
University of Minnesota

Stephen P. Ryan
MIT and NBER

Patrick Bajari
University of Minnesota and NBER

We propose a simple mixtures estimator for recovering the joint distribution of
parameter heterogeneity in economic models, such as the random coefficients
logit. The estimator is based on linear regression subject to linear inequality con-
straints, and is robust, easy to program, and computationally attractive compared
to alternative estimators for random coefficient models. For complex structural
models, one does not need to nest a solution to the economic model during op-
timization. We present a Monte Carlo study and an empirical application to dy-
namic programming discrete choice with a serially correlated unobserved state
variable.
Keywords. Random coefficients, mixtures, demand, logit, mixed logit, dynamic
programming, teacher labor supply.
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1. Introduction

In economics, it is common to observe that otherwise identical agents behave differ-
ently when faced with identical choice environments, due to such factors as hetero-
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geneity in preferences. A classic example is that consumers may have heterogeneous
preferences over a set of product characteristics in an industry with differentiated prod-
ucts. A growing econometric literature has addressed heterogeneity by providing esti-
mators that allow the coefficients of the economic model to vary across agents. In this
paper, we describe a general method for estimating such random coefficient models
that is easy to compute. Our estimator exploits a reparametrization of the underlying
model so that the parameters enter linearly. This is in contrast to previous approaches
in the literature, such as the expectation-maximization (EM) algorithm, Markov chain
Monte Carlo (MCMC), simulated maximum likelihood, simulated method of moments,
and minimum distance, which are highly nonlinear. Linearity simplifies the computa-
tion of the parameters. Our approach also avoids nested solutions to economic models
in optimization, which gives a strong computational advantage for complex structural
models, as we will discuss.

To motivate our approach, consider the following simple example. Suppose that the
econometrician is interested in estimating a binary logit model with a scalar random
coefficient. Let y = 1 if the first option is chosen and let y = 0 otherwise. Suppose that
this model has a single independent variable, x. Furthermore, suppose that the random
coefficient is known to have support on the [0�1] interval. Fix a large but finite grid of R
equally spaced points. Suppose that the grid points take on the values 1

R�
2
R� � � � �

R−1
R �1.

The parameters of our model are θr , the frequencies of each random coefficient r
R . It

then follows that the empirical probability that the dependent variable y is 1 conditional
on x can be approximated by the linear combination

Pr(y = 1 | x)≈
R∑
r=1

θr
exp

(
r

R
· x

)

1 + exp
(
r

R
· x

) �

The key insight of our approach is that the dependent variable in our model, Pr(y = 1 |
x), is linearly related to the model parameters θr , irrespective of the nonlinear model
used to compute the probability under a given type r. Instead of optimizing over that
nonlinear model, we compute the probability under each type as if it were the true pa-
rameter, and then find the proper mixture of those models that best approximates the
actual data. We demonstrate that the θr parameters can be consistently estimated us-
ing inequality constrained least squares. This estimator has a single global optimum,
and widely available specialized minimization approaches are guaranteed to converge
to that point. This contrasts with alternative approaches to estimating random coef-
ficient models, where the objective functions can have multiple local optima and the
econometrician is not guaranteed to find the global solution.

Many alternative estimators require computationally expensive nonlinear optimiza-
tion, and as a result researchers frequently use tightly specified distributions of hetero-
geneity in applied work because of computational constraints. For example, applied re-
searchers frequently assume that the random coefficients are mutually independent and
normal. Our approach allows us to estimate the joint distribution of random coefficients
without having to impose a parsimonious family of distributions.



Quantitative Economics 2 (2011) Distribution of random coefficients 383

We show how to extend this simple intuition to a more general framework. Model-
ing the random coefficients using equally spaced grid points does not lead to a smooth
estimated density. We suggest alternative methods for discretizing the model that give
smooth densities, while still maintaining the linear relationship between the dependent
variable and the model parameters. Also, we extend our approach to accommodate the
case where the support of the basis functions is not known, and the econometrician
must search over the location and the scale of the parameter space. Further, we intro-
duce a cross-validation method for picking the grid points.

Importantly, we discuss how our approach can be extended to more complex, struc-
tural economic choice models. As an example, we show how to estimate a distribution
of random coefficients in a dynamic programming, discrete choice model such as Rust
(1987). The computational issues in traditional simulation estimators applied to static
models are more severe for dynamic models when the dynamic programming problem
must be solved for each realization of the random coefficients in each call of the ob-
jective function by the optimization routine. If there are S simulation draws in a tradi-
tional simulation estimator and the optimization routine requires L evaluations of the
objective function to achieve convergence, the dynamic programming problem must
be solved S ·L times in the traditional approach. In our estimator, the dynamic program
must be solved only R times, when R is the number of support points for the random
coefficients. In our dynamic programming empirical application to teacher labor supply
in India, we demonstrate that our approach can dramatically reduce the computational
burden of these models.

Our estimator is a general mixtures estimator. A frequent application of mixtures es-
timators in the literature has been demand estimation. In the paper, we discuss some
strengths and weaknesses of our approach relative to some other approaches proposed
in the demand estimation literature. First, if the researcher has aggregate data on mar-
ket shares with price endogeneity, the approach of Berry, Levinsohn, and Pakes (1995)
will impose fewer assumptions on the supply side of the model. Our approach can ac-
commodate aggregate data, even if market shares are measured with error, which Berry
et al. do not allow. However, we need to specify a reduced-form pricing function anal-
ogous to the pricing functions in Kim and Petrin (2010) and especially Fox and Gandhi
(2010) in order to account for price endogeneity (or adapt the arguments in Berry and
Haile (2010b) and Fox and Gandhi (2011b)). It is not possible to prove the existence of
the particular pricing function that we use from general supply-side assumptions. Sec-
ond, in small samples, Bayesian methods such as Rossi, Allenby, and McCulloch (2005)
and Burda, Harding, and Hausman (2008) that use prior information will likely have bet-
ter finite-sample performance, at the computational expense of having to evaluate the
objective function many times. Our methods are intended for applications where the
researcher has access to large sample sizes.

The most common frequentist, mixtures estimator is nonparametric maximum like-
lihood or (NPMLE) (Laird (1978), Böhning (1982), Lindsay (1983), Heckman and Singer
(1984)). Often the EM algorithm is used for computation (Dempster, Laird, and Rubin
(1977)), but this approach is not guaranteed to find the global maximum. The litera-
ture worries about the strong dependence of the output of the EM algorithm on initial
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starting values as well as the difficulty in diagnosing convergence (Seidel, Mosler, and
Alker (2000), Verbeek, Vlassis, and Kröse (2003), Biernacki, Celeux, and Govaert (2003),
Karlis and Xekalaki (2003)).1 Further, the EM algorithm has a slow rate of convergence
even when it does converge to a global solution (Pilla and Lindsay (2001)). Li and Bar-
ron (2000) introduced another alternative, but again our approach is computationally
simpler. Our estimator is also computationally simpler than the minimum distance es-
timator of Beran and Millar (1994), which in our experience often has an objective func-
tion with an intractably large number of local minima. The discrete-grid idea (called the
histogram approach) is found outside of economics in Kamakura (1991), who used a
discrete grid to estimate an ideal-point model; he did not discuss any of our extensions.
Of course, mixtures themselves have a long history in economics, such as Quandt and
Ramsey (1978).

The outline of our paper is as follows. In Section 2, we describe our model and base-
line estimator. We focus on the motivating example of the multinomial logit with in-
dividual data. Section 3 discusses picking the grid of points and introduces our cross-
validation approach. Section 4 provides various extensions to the baseline estimator.
Section 5 provides examples of discrete choice with aggregate data, dynamic program-
ming discrete choice, mixed continuous and discrete choice (selection), and discrete
choice models with endogenous regressors. We include a large number of examples so
as to motivate our estimator for applied readers. In Section 6, we discuss how to con-
duct inference. In Section 7, we conduct a Monte Carlo experiment to investigate the
finite-sample performance of our estimator. In Section 8, we apply our estimator to a
dynamic programming, discrete choice empirical problem studied in Duflo, Hanna, and
Ryan (forthcoming). The dynamic programming problem has a serially correlated, un-
observed state variable.

2. The baseline estimator

2.1 General notation

We first introduce general notation. The econometrician observes a real-valued vector
of covariates x. The dependent variable in our model is denoted y and indicates an un-
derlying random variable y∗ that takes values in the range of y∗, Y ∗. Note that y∗ is not
a latent variable. In our examples, we focus primarily on the case where the range of y∗
is a finite number of integer values as is customary in discrete choice models. However,
much of our analysis extends to the case where y∗ is real-valued.

LetA denote a (measurable) set in the range of y∗, Y ∗. We let PA(x) denote the prob-
ability that y∗ ∈A when the decision problem has characteristics x. Let β denote a ran-
dom coefficient that we assume is distributed independently of x. In our framework, this
is a finite-dimensional, real-valued vector. We let gA(x�β) be the probability ofA condi-
tional on the random coefficientsβ and characteristics x. The function gA is specified as

1Another drawback of NPMLE that is specific to mixtures of normal distributions, a common approxi-
mating choice, is that the likelihood is unbounded and hence maximizing the likelihood does not produce
a consistent estimator. There is a consistent root but it is not the global maximum of the likelihood function
(McLachlan and Peel (2000)).
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a modeling primitive. In our simple example in the Introduction, gA corresponds to the
logit choice probability for a given coefficient β. The cumulative distribution function
(CDF) of the random coefficients is denoted as F(β). We restrict our discussion of con-
sistency and asymptotic inference to models with a finite number R of support points
βr . The weight on the support point βr is θr ≥ 0, where

∑R
r=1 θr = 1. Given these defini-

tions, it follows that

PA(x)=
R∑
r=1

θrgA(x�β
r)� (1)

On the right hand side of the above equation, gA(x�β) gives the probability of A con-
ditional on x and β. We average over the distribution of β using the CDF F(β) =∑R
r=1 θ

r1[βr ≤ β], where 1[βr ≤ β] = 1 when βr ≤ β, to arrive at PA(x), the population
probability of the eventA conditional on x.

In our framework, the object the econometrician wishes to estimate is the tuple
(θ1� � � � � θR), the weights on the support points. For this paper, we assume the support
points are known (or known up to location and scale parameters in Section 4.3) and
focus on the computational advantages of our approach.

2.2 The multinomial logit model

As we discussed in the Introduction, one motivating example for our paper is the logit
with random coefficients. We begin by discussing this example in detail. In Section 5, we
show how our approach extends to other random coefficient models, including dynamic
programming discrete choice and demand models where the dependent variable is rep-
resented by a vector of discrete and continuous variables. The estimation method that
we propose can, in principle, be applied to any model that can be written in the form
(1). Indeed, in discrete choice with large samples, we can completely do away with the
logit errors and allow the distribution of the choice- and consumer-specific shocks to be
estimated, which is a special case of the identification results on multinomial choice in
Fox and Gandhi (2010). Our examples start with the logit structure only for expositional
clarity, in part because the logit is commonly used in empirical work.

In the logit model, agents i= 1� � � � �N can choose between j = 1� � � � � J mutually ex-
clusive alternatives and one outside good (good 0). The exogenous variables for choice j
are in the K × 1 vector xi�j . In the example of demand estimation, xi�j might include the
nonprice product characteristics, the price of good j, and the demographics of agent i.
We let xi = (x′

i�1� � � � � x
′
i�J) denote the stacked vector of the J xi�j ’s, the observable charac-

teristics.
In the model, there are r = 1� � � � �R types of agents. The unobservable preference

parameters of type r are equal to theK×1 vectorβr . We discuss how to choose the types
βr below. For the moment, assume that the βr are fixed and exogenously specified. As
in our example in the Introduction, it might be helpful to think of the βr being defined
using a fixed grid on a compact set. The random variable β is distributed independently
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of x. The probability of type r in the population is θr . Let θ = (θ1� � � � � θR)′ denote the
corresponding vector. The θmust lie on the unit simplex, or

R∑
r=1

θr = 1� (2)

θr ≥ 0� (3)

If agent i is of type r, her utility for choosing good j is equal to

ui�j = x′
i�jβ

r + εi�j�
There is an outside good with utility ui�0 = εi�0. Assume that εi�j is distributed as Type I
extreme value and is independent of xi and βr . Agents in the model are assumed to be
utility maximizers. The observable dependent variable yi�j is generated as

yi�j =
{

1� if ui�j > ui�j′ for all j′ �= j,
0� otherwise.

Let yi be the vector (yi�1� � � � � yi�J). The probability of type r picking choice j at xi is (using
A= {j} in the general notation above)

gj(xi�β
r)=

exp(x′
i�jβ

r)

1 +
J∑
j′=1

exp(x′
i�j′β

r)

�

It then follows that the conditional probability of observing that agent i selects choice j
is

Pr(yi�j = 1 | xi)=
R∑
r=1

θrgj(xi�β
r)=

R∑
r=1

θr
exp(x′

i�jβ
r)

1 +
J∑
j′=1

exp(x′
i�j′β

r)

� (4)

2.3 Linear regression

We study the estimation problem of recovering θ given the researcher has i = 1� � � � �N
observations on (xi� yi). A simple method for estimating the parameters θ is by ordinary
least squares. To construct the estimator, begin by adding yi�j to both sides of (4) and
moving Pr(yi�j = 1 | xi) to the right side of this equation, which gives

yi�j =
(

R∑
r=1

θrgj(xi�β
r)

)
+ (
yi�j − Pr(yi�j = 1 | xi)

)
�

Define theR×1 vector zi�j = (zi�j�1� � � � � zi�j�R)′ with individual elements zi�j�r = gj(xi�βr).
Recall that βr is fixed and is not a parameter to be estimated. As a result, given xi, the
term zi�j�r is a fixed regressor. Next, by the definition of a choice probability,

E
[
yi�j − Pr(yi�j = 1 | xi) | xi

] = 0� (5)
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This implies that the following ordinary least-squares problem produces a consistent
estimator of the θr :

θ̂= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(yi�j − z′
i�jθ)

2�

LetY denote theNJ×1 vector formed by stacking the yi�j and letZ be theNJ×Rmatrix
formed by stacking the zi�j . Then our estimator is θ̂= (Z′Z)−1Z′Y .

Equation (5) implies that the standard mean independence condition is satisfied for
least squares. The least-squares estimator has a unique solution as long asZ has rankR.
The estimator is consistent under standard assumptions for least squares.

2.4 Inequality constrained linear least squares

A limitation of the ordinary least-squares estimator is that θ̂ need not satisfy (2) and
(3). In practice, one might wish to constrain θ̂ to be a well defined probability measure.
This would be useful in making sure that our model predicts probabilities that always
lie between 0 and 1. Also, this may be important if the economist wishes to interpret
the distribution of β as a structural parameter. Our baseline estimator estimates θ using
inequality constrained least squares,

θ̂= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(yi�j − z′
i�jθ)

2

(6)
subject to (2) and (3)�

This minimization problem is a quadratic programming problem subject to linear in-
equality constraints. The minimization problem is convex and routines like MATLAB’s
lsqlin guarantee finding a global optimum. One can construct the estimated cumulative
distribution function for the random coefficients as

F̂N(β)=
R∑
r=1

θ̂r1[βr ≤ β]�

where 1[βr ≤ β] = 1 when βr ≤ β. Thus, we have a structural estimator for a distribu-
tion of random parameters in addition to a method for approximating choice probabil-
ities. We call the inequality-constrained least-squares estimator our baseline estimator
to distinguish it from several extensions below. This baseline estimator is consistent un-
der standard regularity conditions (see, e.g., Newey and McFadden (1994) and Andrews
(2002)).2

2Linear inequality constraints restrict only the parameter space of θ. Whether the estimator θ̂ is on a
boundary or is in the interior of the parameter space does not create any complications for establishing
consistency (Andrews (2002)). Standard sufficient conditions for the consistency of extremum estimators
that include our estimators are available in the literature.
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3. Picking the grid of basis points

The approach just presented is computationally simple: we can always find a global op-
timum and we avoid many evaluations of complex structural models, as we discuss in
Section 5.1. The main disadvantage of the baseline approach is that the estimates may
be sensitive to the choice of the grid of points BR = (β1� � � � �βR). A natural first question
to ask about the baseline estimator is how to pick the number of grid pointsR as a func-
tion of the sample. While our consistency arguments in this paper apply to a fixed R, in
practice we still need to choose R. Conditional on picking R, how should one pick the
exact grid of points BR? This section addresses these questions. First we present advice
based on our experiences using the estimator in Monte Carlo experiments. Second, we
adopt a data-driven cross-validation approach. In addition, Section 4.3 introduces an
alternative to cross-validation: a location and scale model for when the support of the
random coefficients is not known. We focus on the baseline estimator here.

3.1 Advice from Monte Carlos

We have run many Monte Carlo studies in the process of developing our estimator. In
Monte Carlo experiments in Section 7, we set R = Cdim(xj) with dim(xj) = 2 for some
constants C. Although we find that typically more of the R weights are estimated to be
nonzero when the true F looks, roughly speaking, to be more complicated, our Monte
Carlo experiments show that a relatively smallR can give a good approximation to F(β),
whenN is large.

A drawback of the baseline estimator is that the researcher has to have some sense
of the support of the random coefficients. In the logit, the econometrician may use a
preliminary estimate of a logit model with fixed coefficients to determine a region of
support for the random coefficients. For example, the econometrician may center the
grid for the βr at the initial logit estimates and take some multiple of their confidence
intervals as the support or he or she can let the support for estimation grow as the sam-
ple size grows.

A second, related approach to picking a support is that the econometrician may ex-
periment with alternative sets of grid points to see how the choice of grid points in-
fluences estimation results. A limitation of this approach is that it introduces a pretest
bias and the standard errors in Section 6 will need to be adjusted. For example, a pro-
cedure where a researcher uses a diffuse grid with a wide support and then reestimates
the model after increasing the detail of the grid where mass appears to be located, is,
in its full statistical structure, a two-step estimator. Rigorous standard errors should ac-
count for both of the estimation steps. This approach is, however, acceptable when a re-
searcher focuses on the approximation of the random coefficients distribution but not
its inference.

Given a choice of support, we experimented with Halton and Weyl sequences; they
tend to improve Monte Carlo performance over evenly spaced grids. We report in Sec-
tion 7 that random grids did not work as well as evenly spaced grids in our investigations.



Quantitative Economics 2 (2011) Distribution of random coefficients 389

3.2 Cross-validation

Cross-validation is a technique often employed in econometrics when overfitting may
be an issue. The idea is to minimize the mean squared error of the final estimator by
comparing the out-of-sample fit of parameter estimates using candidate grid choices
on training data sets to holdout samples. The mean squared error accounts for both bias
(not being able to capture the true distribution F0 because it is not in the approximat-
ing space) and variance (statistical sampling error from a finite sample N of data). Our
estimator, like most others, has a bias/variance trade-off: choosing a higher R makes
the grid BR more flexible and so lowers the bias, but there are more parameters to es-
timate and variance increases. Cross-validation seeks to balance bias and variance in a
particular data set. We introduce the method here, but in the interests of conciseness
do not develop the statistical properties formally. Unfortunately, there are no theoretical
results available for using cross-validation for estimators of distributions, other than a
few exceptions using kernels (Hansen (2004)).

Let B̃ be a hypothetical choice of a grid of points. This notation includes the number
of points, the support of the points, and the method for picking the points within the
support. Given a grid B̃, the mean squared error (MSE) of the fit to choice probabilities
and market shares for a problem with J discrete outcomes is

MSEN(B̃)≡E
[

J∑
j=1

{
Pj(x�F0)− Pj(x� F̂NB̃ )

}2
]
� (7)

where F̂NB̃ is the estimator of the distribution function with N data points and the grid

choice B̃. This criterion focuses on fitting choice probabilities.3

We need to approximate the MSE in (7) so as to implement cross-validation.
We adopt a variant of cross-validation called leave one partition out or I-fold cross-
validation. We first partition the data into I subsetsNι, so thatNι ∩Nι′ = ∅ for ι �= ι′ and⋃I
ι=1Nι = {1�2� � � � �N}. To evaluate the performance of a grid B̃, we estimate the distri-

bution of random coefficients using each of the I samples where one of the partitions is
left out; in other words, we use each of the samples {1�2� � � � �N}\Nι as training samples
and use the correspondingNι as holdout samples. Let F̂−ι�N

B̃ be the estimate leaving out
the ιth sampleNι; there are I such estimates.

For i ∈Nι, the estimate F̂−ι�N
B̃ not using the observations in Nι, and the assumption

that the observations are independent and identically distributed (i.i.d.),

E

[
J∑
j=1

{
Pj(xi�F0)− Pj(xi� F̂−ι�N

B̃ )
}2

]

=
J∑
j=1

E
[{Pj(xi�F0)− yi�j}2 + 2yi�j(Pj(xi�F0)− yi�j)

3In practice, we can also apply a cross-validation approach based on the distance between F0 and F̂N .
We do not present this version for conciseness. In our Monte Carlo in Section 7, we assess estimation error
in part by the root mean integrated squared error of F̂N .
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− 2(Pj(xi�F0)− yi�j)Pj(xi� F̂−ι�N
B̃ )

]
(8)

+
J∑
j=1

E
[{
yi�j − Pj(xi� F̂−ι�N

B̃ )
}2]

=
J∑
j=1

E
[{Pj(xi�F0)− yi�j}2 + 2yi�j(Pj(xi�F0)− yi�j)

]

+
J∑
j=1

E
[{
yi�j − Pj(xi� F̂−ι�N

B̃ )
}2]

where we haveE[2(Pj(xi�F0)−yi�j)Pj(xi� F̂−ι�N
B̃ )] = 0 by the law of iterated expectations,

because Pj(xi� F̂
−ι�N

B̃ ) does not depend on yi�j� i ∈ Nι, and because E[Pj(xi�F0) − yi�j |
xi] = 0 by the definition of a choice probability. Also note that the first term in (8) does
not depend on B̃ and that we can consistently estimate the second term in (8) using the
sample mean of the observations in the holdout sample. Therefore, the optimal choice
of grid B̃ from cross-validation is

B̂N = arg min
B̃

1
N

I∑
ι=1

∑
i∈Nι

J∑
j=1

{
yi�j − Pj(xi� F̂−ι�N

B̃ )
}2
� (9)

because any B̂N that minimizes the above criterion also approximately minimizes the
MSE in (7).

For a given candidate grid B̃, the computational cost of our cross-validation proce-
dure is that the estimator must be computed I times, one for each partition. In empiri-
cal work using cross-validation, researchers often pick a small I, such as I = 10. Cross-
validation using our estimator is more computationally attractive than cross-validation
using the other estimators in the Introduction simply because the run time of our esti-
mator is low and because particular routines are guaranteed to find the global minimum
to the problem (6). Many estimators have bias/variance trade-offs, but cross-validation
is only practical in methods where the estimator is fast and reliable.

In practice, a grid B̃ is a high dimensional object. It may make more sense to opti-
mize (9) over only the number of support points R and the boundaries of the support.
Some other scheme, such as Weyl or Halton sequences, can be used to pick points once
the number of points and the support have been chosen. Also, instead of performing a
formal optimization over grids, it may make computational sense to select only finite L
candidates B̃1� � � � � B̃L and pick the one that gives the lowest value for the criterion in (9).

4. Extensions to the estimator

In this section, we introduce four extensions of our baseline estimator that may be of
some practical use to applied researchers.
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4.1 Generalized least squares

We discuss confidence regions for our baseline estimator in Section 6. Our estimator will
be more efficient if we use generalized least squares and model both the heteroskedas-
ticity in the linear probability model and the correlation across multiple regression ob-
servations corresponding to the same statistical observation. Consider the logit example
where Pr(yi�j = 1 | xi) = ∑R

r=1 θ
rgj(xi�β

r). Using the formulation in Section 2.3, there
are J regression observations for each statistical observation i, one for each choice.
Based on the properties of the multinomial distribution, the conditional variance of yi�j
is ψji = Pr(yi�j = 1 | xi) · (1 − Pr(yi�j = 1 | xi)) and the covariance between yi�j and yi�k,

k �= j, is ψj�ki = −Pr(yi�j = 1 | xi) · Pr(yi�k = 1 | xi). Given this, the optimal generalized
least-squares weighting matrix is the inverse of the block diagonal matrix

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1
1 ψ1�2

1 · · · ψ1�J
1 0 0 0 · · · 0

ψ
1�2
1 ψ2

1 · · · ψ
2�J
1 0 0 0 · · · 0

���
���

� � �
��� 0 0 0 · · · 0

ψ
1�J
1 ψ

2�J
1 · · · ψJ1 0 0 0 · · · 0

0 0 0 0
� � � 0 0 · · · 0

0 0 0 0 0 ψ1
N ψ1�2

N · · · ψ1�J
N

0 0 0 0 0 ψ1�2
N ψ2

N · · · ψ2�J
N

���
���

���
���

���
���

���
� � �

���

0 0 0 0 0 ψ1�J
N ψ2�J

N · · · ψJN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

In feasible generalized least squares, one first estimates the θr ’s using the baseline esti-
mator and then uses the first-stage estimates to estimate Pr(yi�j = 1 | xi), which itself is
used to estimate Ψ . The generalized least-squares estimator uses the stacked matrices
from Section 2.3 to minimize

(Y −Zθ)′Ψ−1(Y −Zθ)

subject to the constraints (2) and (3).

4.2 Smooth basis densities

A limitation of the baseline estimator is that the CDF of the random parameters will
be a step function. In applied work, it is often attractive to have a smooth distribution
of random parameters. In this subsection, we describe one approach to estimating a
density instead of a CDF. Instead of modeling the distribution of the random parameters
as a mixture of point masses, we model the density as a mixture of normal densities.

Let a basis r be a normal distribution with mean the K × 1 vector μr and standard
deviation the K × 1 vector σr . Let N(βk | μrk�σrk) denote the normal density of the kth
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random parameter. Under normal basis functions, the joint density for a given r is just
the product of the marginals or

N(β | μr�σr)=
K∏
k=1

N(βk | μrk�σrk)�

Let θr denote the probability weight given to the rth basis, N(β | μr�σr). As in the base-
line estimator, it is desirable to constrain θ to lie in the unit simplex, that is, (2) and (3).

For a given r, make S simulation draws fromN(β | μr�σr). Let a particular draw s be
denoted as βr�s. We can then simulate Pr(yi�j = 1 | xi) as

Pr(yi�j = 1 | xi) ≈
R∑
r=1

θr

(
1
S

S∑
s=1

gj(xi�β
r�s)

)

=
R∑
r=1

θr

(
1
S

S∑
s=1

exp(x′
i�jβ

r�s)

1 +
J∑
j′=1

exp(x′
i�j′β

r�s)

)
�

We use the ≈ to emphasize the simulation approximation to the integrals. We can then
estimate θ using the inequality constrained least-squares problem

θ̂= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

(
yi�j −

R∑
r=1

θr

(
1
S

S∑
s=1

gj(xi�β
r�s)

))2

subject to (2) and (3)�

This is once again inequality constrained linear least squares, a globally convex opti-
mization problem with an easily computed unique solution. The resulting density esti-
mate is f̂ (β)= ∑R

r=1 θ̂
rN(β | μr�σr). If the true distribution has a smooth density func-

tion, using an estimator that imposes that the density estimate is smooth may provide
better statistical performance than an estimator that imposes no restrictions on the true
distribution function.4

4.3 Choice of support and location scale model

In many applications, the econometrician may not have good prior knowledge about
the support region where most of the random coefficients βr lie. This is particularly true
in models where the covariates are high dimensional. We discussed cross-validation as
a data-driven response to this problem earlier.

Another approach is to introduce location and scale parameters. To illustrate the
idea, let the unscaled basis vectors {βr}Rr=1 lie in the set [0�1]K , that is, the K-fold Carte-
sian product of the unit interval. We include a set of location and scale parameters ak

4The consistency of this estimator has not been established, but it works well in Monte Carlo studies
reported in an earlier draft.



Quantitative Economics 2 (2011) Distribution of random coefficients 393

and bk, k= 1� � � � �K, and define the rth random coefficient for the kth characteristic as
ak + bkβrk.

In numerical optimization, we now search over R + 2K parameters corresponding
to θ, and a= (a1� � � � � aK)

′ and b= (b1� � � � � bK)
′. The choice probabilities predictions for

type r are

gj(xi� a+ bβr)=
exp

(
K∑
k=1

xk�i�j(ak + bkβrk)
)

1 + ∑J
j′=1 exp

(
K∑
k=1

xk�i�j′(ak + bkβrk)
) �

where bβr is assumed to represent element-by-element multiplication. Our estimator
for the weights solves the nonlinear least-squares problem

min
a�b�θ

1
NJ

N∑
i=1

J∑
j=1

(
yi�j −

R∑
r=1

θrgj(xi� a+ bβr)
)2

(10)
subject to (2) and (3)�

The appropriate MATLAB routine is lsqnonlin and there is no theorem that states that
this nonlinear least-squares routine converges to a global minimum. Note that the
model has 2K nonlinear parameters and the remaining R parameters still enter linearly.
Also, a and b do not enter the constraints, which are still linear. Using exact, rather than
numerical derivatives improves the speed and convergence of the estimator. The deriva-
tives to our objective function can be expressed in closed form up to any order, at least
for the logit example. One can also use a two-step profiling approach. In the first step,
given trial values of a and b, obtain the profiled estimates of θ(a�b) as the θ̂(a�b) that
solves (10) for values of a and b. Then in the second step, obtain the estimates of a and
b that minimize the objective function in (10) after replacing θ with θ̂(a�b).

In numerical experimentation with the logit example, we have found the conver-
gence of the estimator to be robust. However, finding the global optimum of the location
and scale model likely becomes more challenging as the complexity of the underlying
economic model increases. This contrasts with the estimator using a fixed grid, where
the computational complexity of optimization is not related to the complexity of the
underlying economic model.

In many applied problems, the number of characteristicsK may be large and it may
not be practical to estimate aK-dimensional distribution of random coefficients. There-
fore, it may be desirable to only let a subset of the most important characteristics have
random coefficients. Allowing for homogeneous parameters is possible by a trivial mod-
ification of the nonlinear least-squares formulation in (10).

4.4 Imposing independence across random coefficients

Often a researcher wants to impose independence across two sets of random coeffi-
cients to increase statistical precision. Estimating a K-dimensional joint distribution
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function requires more data than estimating K one-dimensional marginal distribu-
tion functions. As suggested by Ram Rao in a private conversation, one can decom-
pose β = (β1�β2) and estimate a set of weights θr

1�1, r1 = 1� � � � �R1, on β1 and θr
2�2,

r2 = 1� � � � �R2, on β2. Hence, the predicted choice probability

Pr(yi�j = 1 | xi)=
R1∑
r1=1

R2∑
r2=1

θr
1�1θr

2�2gj
(
xi�

(
βr

1
�βr

2))

enters the minimization problem (6). As with the location and scale model, the param-
eters θr

1�1 and θr
2�2 now enter the model nonlinearly and nonlinear least squares will

have to be used.

5. Additional examples of applications

Our estimator can, in principle, be applied to any setting where the model can be writ-
ten in the form (1). Below we discuss some additional examples that fit our framework
that may be of interest to applied researchers. The baseline estimator (including cross-
validation) can be applied to these examples.

5.1 Dynamic programming models

Our approach can be applied to dynamic discrete choice models as in Rust (1987, 1994).
We generalize the framework he considered by allowing for a distribution of random
coefficients. Suppose that the flow utility of agent i in period t from choosing action j is

ui�j�t = x′
i�j�tβi + εi�j�t �

The error term εi�j�t is a preference shock for agent i’s utility to choice j at time period t.
For simplicity, the error term is i.i.d. Type I extreme value across agents, choices, and
time periods. Agent i’s decision problem is dynamic because there is a link between the
current and the future values of xi�t = (x′

i�1�t � � � � � x
′
i�J�t) through current decisions. Let

π(xi�t+1 | xi�t� ji�t) denote the transition probability for the state variable xi�t as a func-
tion of the action of the agent, ji�t . Here the transition rule does not involve random
coefficients and we assume that it can be estimated in a first stage. If the transition rule
were to include random coefficients, we could estimate the entire model in a one-step
procedure, a slight generalization of the approach below. We would estimate a joint dis-
tribution of the random coefficients in the transition rule and in the choice model. We
could estimate a distribution of random coefficients in the transition rule in a first stage
if we are willing to assume that the random coefficients in the transition rule and choice
model are independent.

The goal is to estimate F(β), the distribution of the random coefficients. Again we
pick R basis vectors βr . For each of the R basis vectors, we can solve the corresponding
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single-agent dynamic programming problem for the state xi�t value functions V r(xi�t).
Once all value functions V r(xi�t) are known, the choice probabilities gj(xi�βr) for all
combinations of choices j and states xi�t can be calculated as

gj(xi�t �β
r)=

exp(x′
i�j�tβ

r + δE[V r(xi�t+1) | xi�t� j])
J∑
j′=1

exp(x′
i�j′�tβ

r + δE[V r(xi�t+1) | xi�t� j′])
�

where the scalar δ ∈ [0�1) is a discount factor fixed by the researcher before estimation,
as is usually done in empirical practice. Solving for the value function V r(xi�t) involves
solving the Bellman equations as a system of equations, one for each discrete state xi�t :

V r(xi�t)= log

(
J∑
j=1

exp
(
x′
i�j�tβ

r + δE[V r(xi�t+1) | xi�t� j]
))
� (11)

Solving this system of nonlinear equations can be done with a contraction mapping or
other scheme for solving dynamic programs.

We use panel data onN panels of length T each. It is often the case that the informa-
tion on a panel can provide more information on heterogeneity than T repeated cross
sections. We can explicitly incorporate this use of panel data into our estimator. Let w
index a sequence of choices for each time period t = 1� � � � �T called w1� � � � �wT . For ex-
ample, a choice sequence w could be w1 = 5, w2 = 2, w3 = 3� � � � � If there are J choices
per period, there are W = JT sequences that could occur. Let yi�w be equal to 1 if agent
i takes action sequence w over the T periods. The minimization problem when panel
data are used for extra information on heterogeneity is

θ̂= arg min
θ

1
NW

N∑
i=1

W∑
w=1

(
yi�w −

R∑
r=1

θr

(
T∏
t=1

gwt (xi�t �β
r)

))2

(12)
subject to (2) and (3)�

With panel data, the estimator matches sequences of choices. Here
∏T
t=1 gwt (xi�t �β

r) is
the product of the dynamic logit choice probabilities, which are calculated using the as-
sumption that the choice-specific errors εi�j�t are independent across t. As in the static
logit example, we could use normal density functions as basis functions to smooth the
estimates of the distribution of random coefficients. However, it is not computation-
ally desirable to use the location and scale model, because modifying these parameters
would require us to re-solve the model.5

Indeed, a major computational advantage of our approach is that we need to solve
the Bellman equations (11) only once for each of theR types. By comparison, most other
methods for general, potentially nonlinear mixtures require the researcher to evaluate
the gj(xi�t �βr) function as part of optimizing some statistical objective function. If the

5Like other estimators for dynamic programming models, there may be an initial conditions problem
that may attenuate with increasing panel length (Heckman (1981)).
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function gj(xi�t �β) must be evaluated S times in a standard simulation estimator for
each evaluation of the objective function in the simulation estimator, the dynamic pro-
gram will have to be computed S ·L times, when L is the number of times the objective
function is called by the optimization routine. By contract, our method requires only
R solutions to dynamic programs. We view the usefulness of our estimator for reduc-
ing the computational burden of estimating complex structural models to be one of our
estimator’s key selling points.

The idea of presolving a complex economic model for only R types before optimiza-
tion commences is also found in Ackerberg (2009). Ackerberg cannot estimate his model
using linear regression, although an advantage is the ease of allowing homogeneous pa-
rameters that enter into a linear index that also has an additive, heterogeneous error, as
in x′γ+ vi, where γ is not a heterogeneous parameter but the additive error vi is. This is
because only the value of the sum x′γ + vi is necessary to solve the dynamic program,
and that sum is a heterogeneous value because of the error vi. In our method we impose
independence between regressors and errors, so if we add homogeneous parameters to
our model, we have to resolve the dynamic programming problem every time the op-
timization routine changes the guess of the homogeneous parameters. We lose part of
our method’s computational simplicity with homogeneous parameters.

5.2 Joint discrete and continuous demand

We can also estimate a model with a joint discrete and continuous choice using our
methods. Fox and Gandhi (2011a) introduced identification results for this type of
model. Inspired by the classic application of Dubin and McFadden (1984), suppose that
a consumer purchases a particular type of air conditioner according to the logit model.
Conditional on purchase, we observe the electricity consumption of the air conditioner,
a measure of usage. Fox and Gandhi studied identification using heterogeneous func-
tions rather than a heterogeneous vector of parameters β. Heterogeneous functions
constitute a greater generality than is often used in estimation. We proceed with a simple
example that is mostly a special case of the identification analysis in Fox and Gandhi. Let
the notation for the discrete choice be the same as before. The electricity usage equation
of consumer i of type r for air conditioner j is

ari�j =w′
i�jγ

r
j +ηrj�

where wi�j is a vector of observable characteristics that affect electricity demand. There
can be overlap between the elements of xi�j and wi�j . The parameter γrj is a poten-
tially choice-specific random coefficient vector for type r in the outcome equation. The
scalar ηrj is a choice-specific error term. Let wi = (w′

i�1� � � � �w
′
i�J), γ = (γ1� � � � � γJ), and

η= (η1� � � � �ηJ).
Because the dependent variable includes a continuous element, we need to exploit

the general model in (1) and work with a set A = [alj� al+1
j ) for the real-valued depen-

dent variable. In a finite sample, the researcher must discretize the continuous outcome
variable aj by choosingL bins: [a0

j � a
1
j ), [a1

j � a
2
j ), through [aL−1

j � aLj ). A higherL increases
the computational burden and the closeness of the approximation to the continuous
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outcome model. Potentially, discretization could affect identification and in that case L
should be increased with the sample sizeN .

Let yli�j = 1 when consumer i purchases air conditioner j and consumes electricity

between the lower and upper bounds alj and al+1
j . Then

Pr(yli�j = 1 | xi�wi;βr�γr�ηr) = gj�l(xi�wi�β
r�γr�ηr)

=
exp(x′

i�jβ
r)

1 +
J∑
j′=1

exp(x′
i�j′β

r)

1[alj ≤w′
i�jγ

r
j +ηri�j < al+1

j ]�

The unknown object of interest is the joint distribution F(β�γ�η) of the multinomial
choice random coefficients β, the electricity usage random coefficients γ, and the ad-
ditive errors in utility usage η. In this case one can choose a grid of taste parameters
(βr�γr�ηr)Rr=1. A statistical observation is (ji� ai�j� xi�wi), which can be transformed into
((yli�j)1≤j≤J�0≤l<L�xi�wi) by a change of variables. Data on ai�k for k �= ji are not needed
for this transformation. The estimate of θ minimizes the objective function

θ̂= arg min
θ

1
NJ

N∑
i=1

J∑
j=1

L∑
l=1

(
yli�j −

R∑
r=1

θrgj�l(xi�wi�β
r�γr�ηr)

)2

(13)
subject to (2) and (3)�

Estimating θ provides an estimator of F(β�γ�η),

F̂(β�γ�η)=
R∑
r=1

θ̂r1[βr ≤ β�γr ≤ γ�ηr ≤ η]� (14)

This distribution completely determines the model.
This joint continuous and discrete demand model is an example of a selection

model. In this example, the continuous outcome ai�j is selected because the researcher
only observes the electricity usage for air conditioner j for those individuals who pur-
chase air conditioner j, that is, ji = j. Regressing ai�j on wi�j for those individuals who
choose j will not consistently estimate E[γj] if γj is not statistically independent of β.
Those agents who choose air conditioner j, ji = j, have certain β preferences, and the
correlation of the preferences for air conditioners β with the usage random coefficients
γ and η and the correlation of the characteristics of air conditioners relevant for pur-
chase x with the characteristics of air conditioners relevant for usage w induce corre-
lation between wi�j and both ηi and γi in the sample of those who pick a particular air
conditioner j. Jointly modeling both the choice of air conditioner and the electricity us-
age removes this selection problem. Note that we allow random coefficients in both the
selection (multinomial choice) and outcome (usage) parts of the model. Commonly, se-
lection models focus on allowing random coefficients in only the outcome equation.
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5.3 Omitted variable bias from endogenous regressors

In some cases, the regressors may be correlated with omitted factors. The most com-
mon case in demand estimation is when price is correlated with omitted factors. Here,
we outline an approach to correcting omitted variable bias in models with random co-
efficients. It is not a special case of the control function and inversion approaches em-
phasized in the prior literature on demand estimation because the unobservables cor-
related with price need not be scalars (like omitted product characteristics) and we do
not identify the values of the unobservables.6

For expositional simplicity and generality, we let price and the corresponding instru-
ments vary at the individual level, but price, the demand errors correlated with price,
and the instruments for price could vary at the market level instead. If the endogenous
regressors vary at the market level, the standard assumption is that the market-level un-
observables are statistically independent of the individual-level unobservables. In esti-
mation, we could impose independence between the market-level and the individual-
level errors following the approach in Section 4.4, where in that section’s notation β1

refers to individual-level random coefficients and β2 is the realization of the demand
errors correlated with price.

Consider the multinomial choice model where the random coefficients βi�j can now
vary with product identity j to allow for unobserved product characteristics, such as the
term ξj�t from the literature following Berry, Levinsohn, and Pakes (1995). For example,
there can be an intercept term βi�j�K reflecting how product quality affects demand. We
let βi = (βi�1� � � � �βi�J) be the stacked vector of random coefficients, including random
intercepts, for all J choices. In our approach, all elements of βi, not just the intercept,
may be correlated with prices. Fox and Gandhi (2010) addressed the correlation of xi�j
with βi�j using instrumental variables and an auxiliary equation, in which the values
of the endogenous regressors are given as a function of exogenous regressors and in-
struments. Fox and Gandhi discussed identification using random functions; here we
specialize to random coefficients for more practical estimation. Fox and Gandhi (2011b)
showed identification results where a more complex pricing equation is derived from
the equilibrium to a Bertrand–Nash pricing game, as in the model of Berry, Levinsohn,
and Pakes.

If price pi�j is an endogenous regressor and wi�j are the instruments for price, then
the auxiliary equation for type r is

pri�j =w′
i�jγ

r
j +ηrj�

where γrj is a vector of random coefficients showing how price is affected by instruments
and ηrj is an additive error in price. The difference between the previous selection case

6In the control function approach, some generalized residual from a first-stage estimation is inserted
into the second stage to control for the (typically scalar) omitted factor. This is discussed in Kim and Petrin
(2010). The other approach is, during optimization over the structural parameters, to uniquely invert the
omitted factor from data on market shares (or choice probabilities) and an assumption that there is a con-
tinuum of consumers in each market, so that the market shares or choice probabilities lack sampling and
measurement error. The latter inversion approach is introduced in Berry, Levinsohn, and Pakes (1995) and
developed in terms of identification in Berry and Haile (2010a, 2010b).
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and the case of omitted variable bias here is that price pi�j is observed for all J choices
for each agent. There is no selection problem and this model is not a special case of the
previous one. Instead, there is a traditional omitted variables problem where price pi�j
enters the logit demand model as a component of xi�j and the random variablepi�j is not
independent of βi�j , the vector of random coefficients for choice j in the logit model.

Estimation works with the reduced form of the model. Let xi�j�1 = pi�j , or the en-
dogenous regressor price is the first characteristic in the vector of product characteris-
tics xi�j . Let β1�j reflect the random coefficient on price in the discrete choice utility for
product j. Let β̃i�j be the K − 1 other, nonprice random coefficients, including possi-
bly a random intercept representing unobserved product characteristics, and let x̃i�j be
the K − 1 other, nonprice product characteristics for product j. As price takes on real
values, we bin each of the j prices pi�j intoL intervals [alj� al+1

j ), as we did for the contin-
uous outcome in the selection model. With this discretization, the transformed binary
outcome yl1�����lJi�j is

y
l1�����lJ
i�j =

{
1� j picked and pi�j′ ∈ [alj′j′ � a

lj′+1
j′ ) ∀j′ = 1� � � � � J�

0� otherwise.

The outcome yl1�����lJi�j is indexed both by the product picked j and the value of all J prices.

The probability that yl1�����lJi�j = 1 and the consumer has random coefficients of type r is

Pr(yl1�����lJi�j = 1 | xi�wi;βr�γr�ηr)
= gj�l1�����lJ (xi�wi�βr�γr�ηr) (15)

=
exp(x̃′

i�jβ̃
r
j +βr1�j(w′

i�jγ
r
j +ηrj))

1 +
J∑
j′=1

exp(x̃′
i�j′β̃

r
j +βr1�j(w′

i�j′γ
r
j′ +ηrj′))

J∏
j′=1

1[alj′ ≤w′
i�j′γ

r
j′ +ηrj′ < al+1

j′ ]�

The probability is equal to the logit probability of choice j given the prices predicted by
the random coefficients in the pricing equation times the event that all predicted prices
for type r are in the correct interval.

The key idea that allows us to correct for omitted variable bias is that we work with
the reduced form of the model: we replace the actual J prices in the data pi�j with the J
predicted pricesw′

i�jγ
r
j +ηrj from the auxiliary pricing equation. The actual data pi�j that

are allowed to be statistically dependent with βi do not appear in (15). Only data on x̃i�j ,
the exogenous regressors, and wi�j , the instruments that enter the pricing equation, are
used. We assume that (x̃i�wi), where x̃i = (x̃′

i�1� � � � � x̃
′
i�J) andwi = (w′

i�1� � � � �w
′
i�J), is inde-

pendent of (βi�γi�ηi), the heterogeneity realizations. Estimation proceeds analogously
to the selection case (13), except gj�l1�����lJ (xi�wi�β

r�γr�ηr) replaces gj�l(xi�wi�βr�γr�ηr)
in (13). As in the selection example, the omitted variables example has as its object of in-
terest F(β�γ�η). The estimator of F(β�γ�η) is (14), with the estimates θ̂ coming from
the omitted variable bias and not the selection model. Note that this framework allows
random coefficients both in the pricing and in discrete choice decisions, and those ran-
dom coefficients have an unrestricted joint distribution F(β�γ�η).
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5.4 Aggregate data and measurement error in shares

Our estimator can still be used if the researcher has access to data on market shares
sj�t , rather than individual-level choice data yi�j . Index markets by t = 1� � � � �T . In this
framework, we assume that the utility of person i when the type of i is r is

uri�j = x′
j�tβ

r + εi�j�
In this model, the utility of individuals is a function of product- and market-varying at-
tributes xj�t . In applied work, characteristics vary across markets in the sample. If a mar-
ket has a continuum of consumers, our modeling framework implies that the market
share of product j should satisfy

sj�t =
R∑
r=1

θrgj(xt�β
r)=

R∑
r=1

θr
exp(x′

j�tβ
r)

1 +
J∑
j′=1

exp(x′
j′�tβ

r)

�

where we let xt = (x′
1�t � � � � � x

′
J�t) denote the stacked vector of all the xj�t . Suppose that

the economist only observes a noisy measure ŝj�t of the true share. This is common in
applied work. For example, there may be a finite number of consumers in a market. Let
the actual share be denoted as ŝj�t . Simple algebra implies that

ŝj�t =
(

R∑
r=1

θrgj(xt�β
r)

)
+ (ŝj�t − sj�t)�

Under standard assumptions, E[ŝj�t − sj�t | xt] = 0. That is, the difference between the
measured shares and the true shares is independent of the product characteristics xt .
This would be the case if the difference between ŝj�t and sj�t is accounted for by random
sampling. Then we can estimate θ using the regression

θ̂= arg min
θ

1
JT

T∑
t=1

J∑
j=1

(
ŝj�t −

R∑
r=1

θrgj(xt�β
r)

)2

subject to (2) and (3)�

One advantage of our approach is that it can accommodate measurement error in the
market shares. We note that the method of Berry, Levinsohn, and Pakes (1995) assumes
that sj�t is observed without error by the economist. Indeed, Berry, Linton, and Pakes
(2004) showed that small amounts of sampling error in shares can result in large biases
in parameter estimates in the framework of Berry, Levinsohn, and Pakes.

6. Estimating confidence regions with finite types

We now discuss computing standard errors under the assumption that the set ofR types
used in estimation is the true set of R types that generates the data, allowing for irrele-
vant types (types of zero mass where θr = 0). In other words, the grid of R points BR is a
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superset of the true grid that takes on positive support. Under this assumption, one can
use the common ordinary least-squares (OLS) heteroskedasticity-consistent standard
errors for the unknown weights θ1� � � � � θR. The traditional OLS confidence intervals are
computed using the unconstrained point estimates in Section 2.3 instead of the point
estimates with constraints from Section 2.4. However, the confidence regions so con-
structed give correct coverage (more than 95%) for the estimates both with and without
the constraints (Andrews and Guggenberger (2010a, footnote 7)). We use the common
standard error formulas in our empirical example below.

We need to use heteroskedasticity-consistent standard errors (SE) because the errors
in a linear probability model such as (6) are heteroskedastic. We also should cluster the
standard errors at the level of the “regression observations” j = 1� � � � � J for each statisti-
cal observation i= 1� � � � �N . Recall that for each i, there are J “regression observations”
in (6) because each inside good j has a separate term in the least-squares objective func-
tion. After constructing the OLS confidence intervals for θ̂r , remove infeasible values by
reporting, for a 95% two-sided confidence interval,

[0�1] ∩ [
θ̂r − 1�96 · SE(θ̂r)� θ̂r + 1�96 · SE(θ̂r)

]
�

where SE(θ̂r) is the standard error adjusted for heteroskedasticity and clustered across
the J regression observations for each statistical observation i.

Researchers are often not directly interested in confidence intervals for the weights
θ but rather for functions m(θ;X), where X denotes some arbitrary data. For exam-
ple, researchers may wish to construct confidence intervals for the distribution F̂(β)=
m(θ̂;X) = ∑R

r=1 θ̂
r1[βr ≤ β] evaluated at a particular value of β (X does not enter m

here). To construct standard errors form(θ̂;X), first construct the distribution of θ̂r −θr0
as above and then use the delta method. A 95% confidence interval is then[

min
θ
m(θ;X)�max

θ
m(θ;X)

]
∩ [
m(θ̂;X)− 1�96 · SE(m(θ̂;X))�m(θ̂;X)+ 1�96 · SE(m(θ̂;X))]�

Here the minimum and maximum are taking over the values of θ that satisfy (2) and
(3). This is a compact set, so the minimum and maximum are obtained if (for example)
m(θ;X) is continuous in θ. In many examples, it is possible to deduce the feasible upper
and lower bounds form(θ;X) without resorting to computation.

The common heteroskedasticity-consistent standard errors give more than 95% cov-
erage but, based on our Monte Carlo evidence, are often quite conservative in that the
coverage is much more than 95%.7 In empirical work, we often find that many of the
included R types have estimated weights of θ̂r = 0. Thus, in principle, we can construct
less conservative confidence intervals by recognizing that the parameters on the bound-
ary of the parameter space cannot have an asymptotically normal distribution.8 While

7We performed Monte Carlo studies using Tikhonov regularization/ridge regression (and Golub, Heath,
and Wahba’s (1979) generalized cross-validation method to pick the perturbation value) to compute stan-
dard errors. Tikhonov regularization reduced the size of the confidence regions some, but the coverage was
still much more than 95%.

8Statistical inference for linear regression subject to a set of inequality constraints was studied by Judge
and Takayama (1966), Liew (1976), Geweke (1986), and Wolak (1989).
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Andrews (1999, 2002) and Andrews and Guggenberger (2010b) studied related cases, the
reality is that this recent literature has not developed general-enough results that could
allow us to estimate confidence intervals for our problem in a way that gives asymptot-
ically correct coverage as defined by Andrews and Guggenberger. Indeed, Andrews and
Guggenberger studied only the case of a regression with one inequality constraint and
i.i.d. observations. Traditional OLS confidence intervals using fixed critical values and
based on point estimates imposing one constraint are recommended by those authors,
but there is no suggestion that traditional OLS methods with fixed critical values and
based on point estimates imposing the constraints give asymptotically correct coverage
if there are two or more inequality constraints, as in our estimator.

Resampling procedures are a possibility, but one that Andrews and Guggenberger
do not currently recommend when a true parameter may lie on a boundary. Andrews
(2000) showed that the standard bootstrap is inconsistent but that subsampling and
the m-out-of-n bootstrap are pointwise consistent. Andrews and Guggenberger (2010b)
showed that the latter two resampling procedures are not uniformly consistent and may
have poor finite-sample coverage. Andrews and Guggenberger (2009, 2010a) discussed
a hybrid method where the maximum of a traditional critical value for a t-statistic and
a subsampled critical value is used to construct confidence intervals for θ. The hybrid
subsampling method has correct asymptotic coverage under the definition of Andrews
and Guggenberger for the special case of one inequality constraint, but as Andrews and
Guggenberger (2010a) showed, so does one of its ingredients, the traditional fixed crit-
ical value method that Andrews and Guggenberger recommend. Subsampling by itself
does not have correct asymptotic coverage.9

In an appendix available on request, we show consistency and derive the sampling
distribution of the inequality-constrained nonlinear least-squares estimator of the loca-
tion and scale model. The distribution for nonlinear least squares also applies if some
parameters in the model are homogeneous. As the sampling distribution is derived, we
have verified the only regularity condition needed for the pointwise consistency of sub-
sampling (Politis, Romano, and Wolf (1999)).

7. Monte Carlo

We conduct a Monte Carlo experiment to study the finite-sample properties of our es-
timator. We use individual-level discrete choice data, where the true data generating
process is the random coefficients logit. In our Monte Carlo study, xj is a 2 × 1 vec-
tor. Each covariate is drawn independently from N (0�1�52). Each agent makes a single
choice from a menu of J = 10 products in each of our individual-specific choice sets,
with the option of making no purchase. We vary the number of individualsN from 2000
to 5000 to 10,000, and useM = 50 replications for each sample size.

We use discrete basis functions to approximate the underlying CDF, which in this
section in truth has continuous support. The number of basis points is R = t2, t =
3� � � � �9. The basis functions are uniformly distributed over the support [−3�5] × [−3�5],

9In an unreported Monte Carlo study, we also found that subsampling could undercover the true param-
eters: it has coverage less than 95%.
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which is sufficient to cover the support of the true distributions used below with cover-
age probabilities being close to 1. For each run, after we compute the estimate F̂(β), we
evaluate its squared difference from the true distribution function F0(β) at S = 10�000
points (βs’s below) uniformly spaced over [−6�6] × [−6�6]. We use root mean integrated
squared error (RMISE) to assess performance of our estimator. Our definition of RMISE
for an estimator F̂ is√√√√ 1

M

M∑
m=1

[
1
S

S∑
s=1

(
F̂m(βs)− F0(βs)

)2
]
�

where again we use M = 50 replications, each with a new fake data set. We also report
the integrated absolute error (IAE), which for a given replicationm is

1
S

S∑
s=1

∣∣F̂m(βs)− F0(βs)
∣∣�

This is a measure of the mean absolute value of the estimation error, taken across the
points of evaluation for a given replication. We compute the mean, minimum, and max-
imum IAE’s across theM replications.

We generate data using three alternative distributions F(β) for the random coeffi-
cients. Let the variance matrix Σ1 = [ 0�2

−0�1
−0�1
0�4

]
and likewise let Σ2 = [ 0�3

0�1
0�1
0�3

]
. In the first

design, the tastes for characteristics are generated from a mixture of two normals:

0�4 · N ([3�−1]�Σ1)+ 0�6 · N ([−1�1]�Σ2)�

In the second design, the true coefficients are generated by a mixture of four normals:

0�2 · N ([3�0]�Σ1)+ 0�4 · N ([0�3]�Σ1)

+ 0�3 · N ([1�−1]�Σ2)+ 0�1 · N ([−1�1]�Σ2)�

In the third design and final design, the true coefficients are generated by a mixture of
six normals:

0�1 · N ([3�0]�Σ1)+ 0�2 · N ([0�3]�Σ1)+ 0�2 · N ([1�−1]�Σ1)

+ 0�1 · N ([−1�1]�Σ2)+ 0�3 · N ([2�1]�Σ2)+ 0�1 · N ([1�2]�Σ2)�

We summarize our results in Table 1, where the true distribution has two or four
components, and in Table 2, where the true distribution has six components. The first
two columns report the sample size N and the number R of basis points used in the
estimation. The next column reports the RMISE of the estimated distribution functions.
The following three columns reports the mean, minimum, and maximum of the IAE.
The final three columns report the mean, minimum, and maximum of the number of
basis functions that have positive weight.
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Table 1. Monte Carlo results: Truth is two or four mixtures.

Integrated Absolute Error No. of Positive Weights

N R RMISE Mean Minimum Maximum Mean Minimum Maximum

Number of Mixtures: 2
2000 9 0�035 0�016 0�011 0�033 4�3 3 6
2000 16 0�037 0�019 0�01 0�035 5�6 4 8
2000 25 0�04 0�021 0�011 0�054 6�2 4 8
2000 36 0�045 0�023 0�011 0�07 6�7 4 10
2000 49 0�048 0�024 0�011 0�077 7 4 10
2000 64 0�053 0�025 0�012 0�087 7�4 4 11
2000 81 0�053 0�024 0�012 0�081 7�6 5 10
5000 9 0�034 0�013 0�0096 0�019 4�5 3 6
5000 16 0�035 0�015 0�01 0�022 5�5 3 9
5000 25 0�035 0�016 0�01 0�022 6�6 4 10
5000 36 0�035 0�016 0�011 0�027 7�3 4 12
5000 49 0�036 0�016 0�011 0�03 7�7 5 11
5000 64 0�037 0�016 0�011 0�034 8 5 12
5000 81 0�037 0�016 0�011 0�034 8�2 5 15

10,000 9 0�034 0�012 0�0097 0�017 4�6 3 8
10,000 16 0�034 0�013 0�0096 0�019 5�6 3 8
10,000 25 0�034 0�013 0�0096 0�022 6�9 3 11
10,000 36 0�035 0�014 0�0099 0�023 7�7 4 11
10,000 49 0�035 0�014 0�01 0�023 8�3 4 12
10,000 64 0�035 0�014 0�011 0�026 8�8 5 15
10,000 81 0�035 0�014 0�011 0�024 9 5 14

Number of Mixtures: 4
2000 9 0�14 0�091 0�09 0�095 6�1 4 8
2000 16 0�11 0�076 0�065 0�089 6�8 4 10
2000 25 0�081 0�05 0�029 0�074 7�7 5 11
2000 36 0�069 0�041 0�014 0�072 8�6 5 12
2000 49 0�09 0�054 0�024 0�081 9�1 6 14
2000 64 0�096 0�059 0�032 0�076 12 5 64
2000 81 0�1 0�061 0�038 0�081 11 6 17
5000 9 0�14 0�091 0�089 0�092 6�7 5 9
5000 16 0�11 0�074 0�067 0�081 6�7 5 10
5000 25 0�074 0�044 0�026 0�071 7�9 5 11
5000 36 0�056 0�033 0�015 0�067 9�5 6 12
5000 49 0�082 0�047 0�026 0�073 11 7 13
5000 64 0�09 0�054 0�036 0�072 11 7 17
5000 81 0�091 0�054 0�03 0�07 13 7 20

10,000 9 0�14 0�09 0�089 0�092 6�4 5 8
10,000 16 0�1 0�073 0�069 0�076 6�5 4 10
10,000 25 0�067 0�041 0�029 0�053 8�3 5 13
10,000 36 0�041 0�024 0�012 0�044 9�9 5 15
10,000 49 0�073 0�04 0�024 0�065 11 7 16
10,000 64 0�089 0�051 0�029 0�068 12 8 18
10,000 81 0�094 0�055 0�029 0�069 14 7 20
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Table 2. Monte Carlo results: Truth is six mixtures.

Integrated Absolute Error No. of Positive Weights

N R RMISE Mean Minimum Maximum Mean Minimum Maximum

Number of Mixtures: 6
2000 9 0�2 0�15 0�14 0�16 6�1 5 7
2000 16 0�11 0�07 0�064 0�093 9�7 7 12
2000 25 0�12 0�087 0�064 0�099 10 7 23
2000 36 0�057 0�04 0�016 0�063 12 8 15
2000 49 0�092 0�065 0�054 0�079 13 9 17
2000 64 0�082 0�059 0�043 0�085 14 10 19
2000 81 0�072 0�052 0�029 0�083 15 11 23
5000 9 0�19 0�15 0�14 0�15 6�2 5 7
5000 16 0�11 0�069 0�065 0�088 10 7 12
5000 25 0�12 0�09 0�082 0�096 9�7 7 11
5000 36 0�045 0�03 0�018 0�053 13 8 16
5000 49 0�091 0�063 0�052 0�075 13 9 16
5000 64 0�075 0�053 0�04 0�074 15 11 19
5000 81 0�068 0�05 0�037 0�068 17 9 23

10,000 9 0�19 0�15 0�15 0�15 6�2 5 7
10,000 16 0�11 0�069 0�064 0�075 10 7 13
10,000 25 0�12 0�09 0�079 0�098 10 8 14
10,000 36 0�043 0�028 0�014 0�057 13 8 18
10,000 49 0�091 0�062 0�055 0�07 14 9 18
10,000 64 0�073 0�051 0�044 0�066 15 11 23
10,000 81 0�067 0�05 0�039 0�067 17 11 24

The results in Tables 1 and 2 suggest that our estimator of F(β) exhibits excellent
performance, even in relatively small samples. By and large, RMISE and IAE are rela-
tively low and decrease with N and R. Note that we are able to fit the underlying distri-
bution functions well with a fairly small number of basis functions. While performance
generally increases with the number of basis functions, it is worth noting that the fit can
decrease with increases in R, as the grids do not nest each other for marginal increases
inR. This is apparent in this sample forN = 2000, where smallerR’s have lower RMISE’s.
The mean number of nonzero basis functions ranges from 4 to 17, with more complex
true distributions requiring more nonzero basis points for approximation. This result is
consistent with the literature on mixtures, which demonstrates that complicated distri-
butions can be approximated with a surprisingly small number of mixture components.

We plot the estimated marginal distributions of both β1 and β2. Figure 1 includes
one plot for each of the three designs and each of the two random coefficients. For com-
parison, we also include a plot of a bivariate normal fitted to the same data sets using
maximum likelihood, along with the 5th and 95th quantiles of the estimated distribu-
tions at each point of evaluation. The general fits of our current estimator are excel-
lent; the discrete distribution tracks the CDF of the underlying model uniformly well.
The variability across replications is quite low at this sample size, and the true CDF lies
within the 90 percent confidence bands with the small exception of boundary values
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Figure 1. Marginal distribution of β1 and β2 withN = 10�000 and R= 81.

where the discrete CDF jumps. On balance, our estimator consistently recovers the true
marginal distributions of the two coefficients.

Figures 2 and 3 plot the true versus the estimated joint distribution (using one of
our replications) of the model with six mixtures. Here R = 81 and N = 10�000. A visual
inspection of the distributions shows that we are able to generate excellent fits to the
true distribution functions of preferences using our estimator. For comparison, Figure 4
is a plot of the estimation error. The sawtooth nature of the error plot is driven by the fact
that the discrete approximation to the CDF results in step functions, which then imply
that the errors have discontinuities at the basis points. Our estimator produces a good
approximation to the underlying distribution function even with limited data and when
the number of basis points is small.

In Table 3, we report the results for a bivariate normal distribution with a nonzero
correlation parameter run on the same data sets. The bivariate normal has a RMISE and
an IAE noticeably larger than our values. The fit does not improve with an increase in
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Figure 2. True distributions for six mixtures.

the number of observations. As can be seen in the graphs of the marginal densities in
Figure 1, the bivariate normal distribution simply cannot match the shape of the un-
derlying true CDF. Interestingly, it has a better fit on the true models with more mixture

Figure 3. Fitted distributions for six mixtures withN = 10�000 and R= 81.
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Figure 4. Error in fitted distribution for six mixtures withN = 10�000 and R= 81.

components, as the underlying CDF has more features and on average is closer in shape
to the bivariate normal. In all cases, however, our estimator dominates the performance
of the bivariate normal.

We also experimented with using a random grid to populate the basis points.10 The
random grid exhibited much poorer convergence properties than the uniform grid, pri-

Table 3. Monte Carlo results: Bivariate normal maximum likelihood.

Integrated Absolute Error

N RMISE Mean Minimum Maximum

Number of Mixtures: 2

2000 0.29 0�24 0�19 0.31
5000 0.3 0�25 0�2 0.31

10,000 0.3 0�25 0�2 0.3

Number of Mixtures: 4
2000 0.15 0�082 0�066 0.12
5000 0.15 0�078 0�07 0.088

10,000 0.16 0�074 0�07 0.086

Number of Mixtures: 6
2000 0.18 0�094 0�09 0.1
5000 0.18 0�094 0�088 0.1

10,000 0.19 0�095 0�089 0.11

10Results available from authors on request.
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marily due to the fact that there are no guarantees in small samples (with correspond-
ingly small numbers of basis points) that the grid will have good coverage over the rele-
vant areas of the parameter space. For this reason, we suggest the use of a uniform grid
when data and computational limits allow it.

8. Empirical application to dynamic programming

As an illustration of our estimator, we apply it to the dynamic labor supply setting from
Duflo, Hanna, and Ryan (forthcoming), hereafter referred to as DHR. They considered
the problem of incentivizing teachers to go to work and estimated a dynamic labor
supply model using the method of simulated moments. The model is a single agent,
dynamic programming problem with a serially correlated, unobserved state variable.
To accommodate unobserved heterogeneity across teachers, they estimated a two-type
mixture model. We apply the present estimator to this setting and show that our ap-
proach allows for a more flexible approximation of the underlying heterogeneity. Fur-
ther, our new estimator is quicker to run and easier to implement.

Teacher absenteeism is a major problem in India, as nearly a quarter of all teach-
ers are absent nationwide on any given day. The absenteeism rate is nearly 50 percent
among nonformal education centers, nongovernment-run schools designed to provide
education services to rural and poor communities. To address absenteeism, DHR ran
a randomized field experiment where teachers were given a combination of monitor-
ing and financial incentives to attend school. In a sample of 113 rural, single-teacher
schools, 57 randomly selected teachers were given a camera and told to take two pictures
of themselves with their students on days they attend work. On top of this monitoring
incentive, teachers in the treatment group also received a strong financial incentive: for
every day beyond 10 they worked in a month, they received a 50 rupee bonus on top
of their baseline salary of 500 rupees a month. The typical work month in the sample
was about 26 days, so teachers who went to school at every opportunity received greater
wages than the control group, who were paid a flat amount of 1000 rupees per month.
The program ran for 21 months and complete work histories were collected for all teach-
ers over this period.

DHR evaluated this program and found the combination of incentives was success-
ful in reducing absenteeism from 42 percent to 21 percent. To disentangle the confound-
ing effects of the monitoring and financial incentives, they exploited nonlinearities in
the financial incentive to estimate the labor supply function of the teachers.

A convenient aspect of the intervention is that the financial incentives reset each
month. Therefore, the model focused on the daily work decisions of teachers within a
month. Denote the number of days it is possible to work in each month asC. Let t denote
the current day and let the observed state variable d denote the number of days already
worked in the month. Each day a teacher faces a choice of going to school or staying
home. The payoff to going to school is zero. The payoff to staying home is equal to μi +
εi�t , where μi is specific to teacher i and εi�t is a shock to payoffs. The shock εi�t is serially
correlated.
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After the end of the month (C), the teachers receive the following payoffs, denom-
inated in rupees, which are a function of how many days d that teacher worked in the
month:

π(d)=
{

500 + (10 − d) · 50� if d ≥ 10,
500� otherwise.

Let r be the type of the teacher in our approximation. The choice decision facing each
teacher in the form of a value function for periods t < C is

V r(t� di� εi�t) = max
{
E

[
V r(t + 1� di + 1� εi�t+1) | εi�t

]
�

μr + εi�t +E
[
V r(t + 1� di� εi�t+1) | εi�t

]}
�

At time C, the value function simplifies to

V r(C�di� εi�C)= max
{
βπ(di + 1)�μr + εi�C +βπ(di)

}
� (16)

where β is the marginal utility of an additional rupee. There is no continuation value in
the right side of (16) as the stock of days worked resets to zero at the end of the month.
These value functions illustrate the trade-off teachers face early in each month between
accruing days worked, in the hope of receiving an extra payoff at the end of the month,
and obtaining instant gratification by skipping work.11

DHR proposed a simulated method of moments estimator that matches sequences
of days worked at the beginning of each month. They found parameters that generate
predicted probabilities for all the possible sequences of work histories in the first five
days of each month as close as possible to their empirical counterparts.12 This pro-
cedure resulted in 25 − 1 = 31 linearly independent moments to be matched in each
month. They estimated several specifications of the above model using this approach;
we focus on their preferred model, in which the shock to the outside option follows an
AR(1) process with correlation parameter ρ and the teacher-specific deterministic com-
ponent of the outside option μi is drawn from a bimodal normal distribution. Note that
this is a very computationally intensive problem, as the researcher must integrate out
over both the distribution of outside options μi and the serially correlated unobservable
εi�t to produce the probabilities of sequences of days worked. The model requires sev-
eral hundred thousand simulations to produce estimates of the probabilities of working
sequences with low variance for each type. Using a two-type mixture estimated using

11The day of the month t and stock of worked days d are naturally discrete state variables. For each
combination of t and d, the continuous state ε is discretized into 200 bins. For each simulated value of ε, the
closest bin value is taken to be the actual state for the purposes of dynamic programming. For numerical
integration in the calculation of expectations such as E[V r(t + 1� di + 1� εi�t+1) | εi�t ], the distribution of
εi�t+1 is used to calculate the probability εi�t+1 lies in each of the 200 bins, and those probabilities weight
V r(t + 1� di + 1� εi�t+1) in the approximation to the expectation.

12Considering data on only the first five days in each month both simplifies the computational burden
and breaks much of the statistical dependence across the beginning of months (as the correlation of εi�t
across months is low). We treat data from different months as statistically distinct from the viewpoint of the
correlation in εi�t .
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the method of simulated moments, DHR estimated that in a given month 97.6 percent
of the teachers have outside options drawn from a normal distribution with a mean of
−0.428 and a variance of 0.007, and the remaining 2.4 percent of teachers have outside
options drawn from a normal distribution with mean 1.781 and variance 0.050. At the
estimated parameters of this model, workers who draw the first distribution generally
go to school every day, while workers who draw from second distribution are likely to
never attend school during a given month.

There are natural bounds on the level of the outside option, as low values of μi lead
to teachers always working and high values lead to teachers never working. The auto-
correlation parameter is bounded between −1 and +1. The β parameter is also sharply
bounded, as its effects on work behavior are similar to the outside option, outside a nar-
row range.

We apply the present paper’s estimator to this setting, allowing for a more flexible
distribution of heterogeneity in the outside option. We hold the marginal utility of in-
come and the autocorrelation parameter at their values estimated under the two-type
model in DHR: β= 0�013 and ρ= 0�449.13

We estimate the model with a discrete approximation to the distribution of hetero-
geneity in the outside option. We let the number of basis functions range betweenR= 5
and R = 40, with the types uniformly distributed across the economic bounds on the
outside option. At the lower extreme, μi = −2�5, the teachers almost always go to work,
and at the upper extreme,μi = 4�0, teachers almost never go to work. We solve the model
under each of those R draws for every month in the data set. In addition to the intra-
month time series variation in the moments, our model is identified from variation in
the number of days, the distribution of workdays (teachers receive one day off on the
weekends), and the number of holidays, which count as a day worked in the teacher’s
payoff function, across months. These exogenous sources of variation produce different
probabilities of working even under the same set of model primitives.

For each month in the data, we solve the dynamic program for all R types and
then compute the probabilities of all possible sequences of days worked in the first five
days of the month. We collate these probabilities together to produce a matrix with R
columns and 31 = 25 − 1 rows, where each row corresponds to the probability of observ-
ing a specific work history for that month. We then stack these matrices across months to
obtain a large matrix withR columns and 31∗21 = 651 rows corresponding to the 31 pos-
sible work histories and the 21 different months. We formed the corresponding vector of
empirical probabilities as the vector of dependent variables. We then estimated weights
for each of the R types using the inequality constrained least-squares estimator.14 This
estimator is similar to the specification in equation (12), except that we do not use panel

13In a previous draft of the paper, we also experimented with allowing for unobserved heterogeneity in
the other two parameters—the marginal utility of income (β) and the degree of persistence in the AR(1)
process (ρ), with unrestricted covariance across the parameters. We found that the β and ρ parameters
were always estimated tightly around their point estimates and, therefore, we focus on the distribution of
μi in what follows.

14We use a penalized (for the constraints) Newton method to minimize the least-squares objective func-
tion. We use the assumption that the true types are the types included to construct confidence intervals,
as in Section 6. Confidence intervals are constructed using the standard OLS formulas. An observation is
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Figure 5. Estimated distributions of heterogeneity for the benefits of staying home.

data to construct sequences of choices for the same teacher across months, only within
months.

The estimated distributions of types are shown in Figure 5. The vertical axis is the
weight of that type in the probability mass function that is an approximation to the
true distribution of types. The squares represent the point estimates; the sum of these
weights is always 1. The figures also show the 90% confidence intervals for the weight on
each type. The confidence intervals are smaller in the center of the distribution. Keep
in mind that these are univariate confidence regions for individual weights; the confi-
dence regions for functions of all of the weights, such as F̂(β) at a particular β, may be
relatively narrower. In these and subsequent figures, we present four approximations:
R = 5, 10, 20, and 40. The R = 40 estimates suggest a double-peaked distribution of a
utility of staying home in the range from −0.5 to 0.0. Three basis points in the range
−0.5–0.0 are given substantial weight. The right tail is thin: most weights are 0, but the

a teacher/month. Five days are used for each teacher/month observation. The number of observations is
1123 teacher/months. The correlation in εi�t across the first five days should be low, so we do not account
for autocorrelation across teacher/months for the same teacher.
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Figure 6. Predicted distribution of days worked in months where the first the five days are used
for estimation.

type μ= 2�83 has an estimated frequency of 3%. The middle of this support, −0.25, gives
a value of staying home of −0�25/β = −0�25/0�013 = −19 rupees a day. This means that
at εi�t = 0, a modal teacher will go to work for only a standard incentive like the threat of
being fired or simply an attitude of professionalism. However, there is a positive proba-
bility of teachers with positive values of staying home, μi. Our estimates do not exactly
match those in DHR, but they capture the same finding that most teachers are between
−0.5 and 0.0, with a small fraction of teachers who always prefer to skip work in the right
tail.

Figure 6 shows the fit of the discrete approximation models to the distribution of
days worked in the data. Keep in mind we only used the first five days of each month
in our estimation. The mean predicted distribution matches the observed distribution
relatively well. In the specifications with R > 5, our model tends to underpredict the
peak by one day and overpredict the proportion of days worked in the 15–20 range. We
note that these fit results are particularly encouraging, as the model does not use the
distribution of days worked directly in the estimation; as such, these results are a partial
out-of-sample test.
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Figure 7. Predicted distribution of days worked under the out-of-sample compensation
scheme.

A feature of the teacher data is that there is a completely independent second exper-
iment, which was conducted after the first intervention, in which the incentives facing
teachers were changed. Instead of working 10 days to get a marginal per-day bonus of
50 rupees, teachers in the second experiment had to work 12 days to get a marginal per-
day bonus of 70 rupees. Figure 7 shows the fits of the discrete approximation models in
the out-of-sample test. These data are a bit noisier than the original data set, due to a
smaller sample size, but the model also does a fairly good job of matching the distribu-
tion of days worked. Our approach tends to underpredict the proportion of zero days
worked and overpredict the number of days worked above 18.

It is worth emphasizing that the computational burden of the present estimator is
much lower than the alternative used in DHR. We ran several timing tests to evalu-
ate the performance of our estimator against alternatives used in DHR. We tabulated
the time it took our estimator to run from start to finish while varying the number of
points in the discrete support, R ∈ {5�10�20�40}, and the number of simulations used to
simulate the conditional moments (here probabilities of labor supply histories) in both
our estimator and the generalized method of moments (GMM) estimator used in DHR,
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Table 4. Run times in seconds of our estimator and the two-type GMM estimator used in DHR.a

Number of Simulations
in Conditional
Labor Supply History
Probabilities

Two-Type GMM Our Estimator
Starting Values Number of Basis Points R

DHR Optimum No Heterogeneity 5 10 20 40

S = 2000 282 640 11.5 35.4 44.1 64.8
S = 20�000 1010 2360 33 67 120 242
S = 200�000 87,800 110,000 280 555 978 1960

aThe objective functions for both estimators were minimized using the nonlinear solver KNITRO.

S ∈ {2000�20�000�200�000}. In the GMM estimator, we let the distribution of marginal
utility be drawn from a single normal distribution. We set the number of draws from that
distribution to be equal to 128 when computing the conditional moments. We started
the GMM alternative with two sets of starting values. The first starting value was set at
the parameter values from a model without heterogeneity on the coefficient of staying
home, where we set the variance of the distribution on the value of staying home to be
equal to 1. In the second experiment, we set the starting value to be the optimized value
in DHR. In the second case, the optimizer simply has to verify that the starting value is a
locally optimal solution and should reflect the lowest possible burden in computing the
solution to the model.

Table 4 reports the run times for the two-type GMM and our estimators. For S = 2000
and S = 20�000, our estimator with R= 40 is around four times faster than the GMM es-
timator started at the converged parameter vector from DHR. It is over 40 times faster
when S = 200�000. When the GMM estimator used in DHR is not started at the final vec-
tor, the R= 40 speed advantage of our estimator is between 10 and 55 times faster than
the alternative. An interesting feature to highlight is that adding complexity to our model
is essentially a linear operation; doubling the number of basis points roughly doubles
the execution time. Also, as all of our run time is spent evaluating probabilities for dif-
ferent consumer types β, our approach is easy to parallelize across multiple processors.

9. Conclusion

In this paper, we have proposed a new method for estimating general mixtures models.
In terms of computer programming and execution time, our linear regression estimator
is easier to work with than simulated likelihood or method of moments estimators. Con-
vergence of an optimization routine to the global optimum is guaranteed under linear
regression with linear inequality constraints, something that cannot be said for other
statistical objective functions. Also, our estimator is easier to program and to use than
alternatives such as the EM algorithm.

Our estimator is useful for estimating a wide variety of models. In a dynamic pro-
gramming setting, the estimator allows for a distribution of random coefficients while
simultaneously cutting the computational time even compared to the model without
random coefficients. Our approach has dramatic computational savings compared to
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other estimators for a dynamic programming model with random coefficients. The com-
putational savings arise because we must solve the dynamic program only once for each
basis vector.

We apply our estimator in an empirical example of estimating the distribution of
agent preferences in a dynamic programming model with an unobserved, serially cor-
related state variable. Our estimator uses less programming and execution time than an
alternative simulation estimator.
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