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Appendix B: Details about the implementation of the nonparametric

estimation in Section 6

We propose an empirical strategy that consists of the following steps:

Step 1. Invoking Kotlarski’s (1967) theorem, we separately recover the marginal distri-
butions of XC , XU , and XS from the observed joint distribution of (WU�WS).

Step 2. We draw random samples of {XCi�XUi�XSi} from the marginal distributions
of XC , XU , and XS recovered in Step 1.

Step 3. We obtain samples of {WUi�WSi} from the random samples of {XCi�XUi�XSi}
generated in Step 2 and then recover a sample of Yi conditional on {WUi�WSi} using mul-
tiple imputation methods.29

Step 4. We run regressions of Y on XC , XU , and XS using the pseudo-sample
{Yi�XCi�XUi�XSi} simulated above to estimate γC , γU , and γS , and to perform variance
decomposition.

We now provide more details about each of the steps, beginning with recovering the
marginal distributions of XC , XU , and XS . Let

Ψ(t1� t2)= E exp(it1WU + it2WS) (B1)

29See Rubin (1987) for an extensive description of this methodology.
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denote the characteristics function for the observed joint random vector (WU�WS) and
let

Ψ1(t1� t2) ≡ ∂Ψ(t1� t2)

∂t1
(B2)

= E[iWU exp(it1WU + it2WS)]
denote the derivative of Ψ(·� ·) with respect to its first argument. Then the Kotlarski the-
orem shows that the characteristic functions for random variables XC , XU , and XC are,
respectively, given by

ΨXC
(t) = exp
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0
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)
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Finally the characteristic functions of these three random variables uniquely determines
the probability density function via an inversion formula. Let fXC

, fXU , and fXS
, respec-

tively, denote the marginal probability density function for random variables XC , XU ,
and XS . Following the inversion formula described in Horowitz (1998, p. 104), we have

fXK(xK)= 1
2π

∫ +∞

−∞
exp(−itxK)ΨXK(t)dt for K ∈ {C�U�S}�

We are now in a position to describe the somewhat standard estimation procedure
needed to carry out Step 1.30 The key is to estimate Ψ(·� ·) and Ψ1(·� ·) by their sample
analogs: given a sample {W j

U�W
j
S }nj=1,
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j
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The characteristic functions ΨXK(t) for K ∈ {C�U�S} can in turn be estimated by replac-
ing Ψ(·� ·) and Ψ1(·� ·) with their estimates above. Applying Kotlarski’s decomposition to
{WU�WS} allows to generate data on {XCi�XUi�XSi} and, therefore, {WUi�WSi} (Steps 2
and 3) by simply drawing from the marginal distributions.

The next step, Step 4, is to obtain a sample of grades (i.e., Yi) conditional on WUi

and WSi by multiple imputation. Here we follow Rubin (1987). The basic steps of Rubin
multiple imputation are as follows:

30See Krasnokutskaya (2011) for similar estimation procedure. Horowitz (1998, Chapter 4) described
some useful suggestions for issues related to smoothing.
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(i) Calculate V = (W ′W )−1, β̂= V W ′Y , and Ŷ =W ′β̂, where W = {WU�WS}.

(ii) Draw a random g from χ2 distribution with degree of freedom nobs − r.

(iii) Calculate σ2∗ = (Y − Ŷ )′(Y − Ŷ )/g.

(iv) Draw an r-dimensional Normal random vector D ∼N(0� Ir), where Ir is the iden-
tity matrix of dimension r.

(v) Calculate β̂∗ = β̂+σV 1/2D, where V 1/2 is the triangular square root of V obtained
by the Cholesky decomposition.

(vi) Calculate predicted values Ŷi =W ′
i β̂∗.

(vii) For each missing value, find the respondent whose Ŷ is closest to Ŷi and take Y

of this respondent as the imputed value (predictive mean matching).31

We then regress the generated outcomes on the generated regressors.
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31To test for robustness of the results, we also implemented a nonparametric approach to recover Yi.
Basically, we draw a sample of Zi conditional on {WUi�WSi} from the observed conditional distribution
G(Y |WU�WS), which was obtained using the Epanechnikov kernel (K(u) = 3

4 (1 − u2)1(|u|≤1)). The smooth-
ing parameter was selected by following a refined plug-in method, which tries to find the bandwidth that
minimizes the mean integrated square error. Results obtained using this strategy did not differ significantly
from those using the multiple imputation technique.
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