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APPENDIX 1: PROOF OF THEOREM 1: GENERAL CASE SIZE

The setup of the problem and the structure of the proof for the general class size case
mimics the roommate case illustrated in Theorem 1. We continue to assume a homoge-
neous peer effect and consider the following limiting case:

1. We observe students for at most two time periods.

2. Within each class, there is at most one student who is observed for two periods. All
other students are observed for only one time period.

REMARK S.1. Clearly if the estimator is consistent for 7" = 2, it is also consistent for
T > 2. The second simplification is equivalent to allowing all but one of the individual
effects in a class to vary over time. For example, suppose class size was fixed at M + 1 and
there were (M + 1)V students observed for two periods, implying that (M + 1) individ-
ual effects would be estimated. We could, however, allow the individual effects to vary
over time for all but one student in each group, making sure to choose these students in
such a way that they are matched with someone in both periods whose individual effect
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does not vary over time.! (2M + 1)V individual effects would then be estimated. Having
M individuals whose effect varies over time is equivalent to estimating 2M individual
effects—it is the same as having two sets of M individuals who are each observed once.
If the estimator is consistent in this case, then it is also consistent under the restricted
case when all of the individual effects are time invariant (fixed effects).

Consider the set of students who are observed for two time periods. Each of these
students has M1, peers in period 1 and M, peers in period 2. Denote a student block as
one student observed for two periods plus his My, + M5, peers. There are then N blocks
of students, one block for each student observed twice. Denote the first student in each
block as the student who is observed twice, where a1, is the individual effect. For ease of
exposition, we also write a1, as a1, Or a12,. The time subscripts are irrelevant here since
time does not indicate a different individual. The individual effect for the ith classmate
in block » at time period ¢ is «;;,, where i > 2. For these individuals, the time subscript is
relevant for identifying each individual.

The optimization problem is then

| N y My,+1 2 y Mau+1 2
I}"{l’l)l/’l./\—/ Z|:(ylln — Qlp — M, Z ajln) + ()’12,1 — ®ln — M—Zn ]_Zz ajZn)

n=1 Jj=2
My, +1 y My, +1 2
+ Z Yiln = Qitn = 37— Z ®jln (SD
i=2 Min i

My, +1 My, +1 2
+ Z <yi2n — Qion — Y Z ajzn) }
i=2 Man i
Within each block, there are four terms: two residuals for the student observed twice,
and peer residuals in time periods 1 and 2.

Again, conditional on v, the estimates of individual effects in one block will not af-
fect the estimates of the individual effects in another block. Hence, we are able to focus
on individual blocks in isolation from one another when concentrating out the «’s as a
function of y.

Our proof in the general class size case then consists of the following five lemmas,
each of which is proven later in this supplement.

ITo see how these assignments work, consider a two period model where the groups in period 1 are
{4, B,C} and {D, E, F}, and the groups in period 2 are {4, B, F} and {D, E, C}. We could let the individual
effects for {B, C, E, F} vary over time. Each group in each time period will have one student observed twice
and one student observed once. The number of individual effects would then increase from 6 to 10. More
generally, with a common class size of M + 1, the most severe overlap that still allows variation in the peer
group is to have M individuals in each class remain together in both periods. In this case, we could allow
all individual effects to vary over time except for one of the individual effects of the M individuals in each
class that stay together in both periods. Things become more complicated when class size is not constant,
but allowing all individual effects to vary over time except for a set of individuals who never share a class
will grow linearly in /. Hence, while the asymptotic variance would be affected, identification, consistency,
and asymptotic normality are unaffected.
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LemMmA 1.G. The vector of unobserved student abilities, «, can be concentrated out of the
least squares problem and written strictly as a function of y and y.

Due to the complexity of these expressions, we only provide them in the subsequent
proof.

We then show the form of the minimization problem when the «’s are concentrated
out.

Lemwma 2.G. Concentrating the o's out of the original least squares problem results in an
optimization problem over vy that takes the form

2 Mpy+1 2
o (25 )
. =1 j=1
min
Y Z Mp+1 ’

2
Y > W,
t=1 j=1

where

Witn = (y — Map) (M1 + y(M1, — 1)),
Wion = —(y = M1,) (M2, + y(Ma, — 1)),
Witn =—v(y —Ma,) Vj>1,
Wisn=v(y —M1,) Vj>1.

Our nonlinear least squares problem has only one parameter, y. We are now in a
position to investigate the properties of our estimator of vy,. For ease of notation, define

2 M+l 2

<Z Z W}'t}’jt)

=1 j=1
2 Mi+1 ’
22 Wi

=1 j=1

q(w,y)=

where w = (y, M). We let W denote the subset of R2+2M o J? that represents the possible
values of w, where 7 is the number of possible class sizes, M—M+1.
Our key result is then Lemma 3.G, which establishes identification.

LemMA 3.G. We have
E[q(w, 70)] <E[CI(w7 7)]7 VYGFa77éYo

Theorem 12.2 of Wooldridge (2002) establishes that sufficient conditions for consis-
tency are identification and uniform convergence. Having already established identifi-
cation, Lemma 4 shows uniform convergence.



4 Arcidiacono, Foster, Goodpaster, and Kinsler Supplementary Material

LEMMA 4.G. We have

N
1 4
T 2 o = Flatw vl =0

Consistency then follows from Theorem 12.2 of Wooldridge: y z Yo-

Finally, we establish asymptotic normality of 7. Denote s(w, v,) and H (w, vy,) as the
first and second derivatives of g(w, y) evaluated at y,. Then Lemma 5 completes the
proof.

LEMMA 5.G. We have

VNG = 70) % N(0, 47 B, A7Y),
where

Ao =E[H(w, v,)]
and

B, =E[s(w, 7,)’] = Var[s(w, yo)].

Proor or LEMMA 1.G. Our objective is to show that the system of equations obtained by
differentiating equation (S1) with respect to « can be expressed as a series of equations
in terms of y, y, and M. Again, conditional on v, the estimates of individual effects in one
block will not affect the estimates of the individual effects in another block. Thus, we can
work with the system of first-order conditions within one block and then generalize the
results to the full system of equations.

The first-order condition for «y, is given by

Y My, +1
0= —2<Y11n o Z ajln)
1n =2

y My, +1
-2 -y — — o
<y12n 1n Mo, g ]Zn)

2y Mip+1 y Mip+1

M Z Yiln — Qiln — M. Z Ajln
1n i 1n i
M2n+1

2y Mz,,-‘rl( y
- Yizn = Qizn — 37— Z aj2n>,
M 3 Mo %
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while the first-order condition for «;, (applicable to all block n students observed once
in time period 1) is given by

2y , Mt
0=— - :
My, <y1tn Ap My, ; aj]n)

Mi,+1 Mi,+1
Z (yjln Xjln — 3, Z akln)
My,

" j=2,j#i k#]
Y My, +1
=2\ yitn — @itn — M Z Xjln |-
i

The first-order condition for «;,, is identical to the above formulation except that all the
time subscripts are changed from 1 to 2. Within each block n, we are left with a system
of (1 + My, + My,) equations and (1 + M1, + M>,) unknown abilities.

We can rearrange the above first-order conditions such that all the parameters to
be estimated (a’s and vy) are on the left and all the observed grades (y) are on the right.
Doing this for the first-order conditions derived for «1,, and «;1, yields the two equations

Mi+1

2
Y (M1, + May,) (Mtn_1)7
<2+ My, Mo, ) ”+Z<(Mm ) Z “””)

2 Miy+1
=Yiin + Y120 + Z( Z y;m)

and

2 2 My,+1
Y 2y My, — 1)y
1+—)a-1 -l—( + ay, + ajy
< Mln iln Mln Mlzn n j=22j:¢i Jin
My+1
()’11n+ Z y]1n>

J=2,j#i

=Yiln +

Again, the first-order condition for «;, can be written in a form identical to the above
equation, where all the time subscripts are changed from 1 to 2.

We can write the above system of equations in matrix form such that X, «,, =Y,
where a, is simply a ((1 + My, + My,) x 1) vector of the individual student abilities in
block n. Recall that because the student blocks are independent conditional on vy, we
can solve for «,, separately from «; for s # n. The form of X,;, @, and Y,, are given by

X A, B
TUA+Myy+Moy) x (1M, +Moy)) — C, D,|’

/
an((1+M1n+M2n)><l) = [aln, A21ns « o5 O(My,+1)1n> X22n5 - - -5 a(M2n+l)2n] ’
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Yn((l+M1”+M2,,)><l) =

where the components of X, are defined as

_ 2 Mu+1 -
Yiin + Yi2n + Zz:1(1\},,, Zj:t; Yjtn)

Y Y .
Y2in + M_lnylln + My, Zj=3 Yiln

YMyp+ D10 + 5 Yiin + 3= 22525 Vit

Y Y
yon + g Vion + 55 2505 Yion

L Y(Map 41020 + 55 V120 + 35 2125 Vion
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My, +1

My,

M2n+1

My,

2(My,+M
An:2+7( in + Mpy)
M]nMZn
[ 2y | (M, —1)y? 2y (M, —1y?
Bn - + ) RS + 2 >
Mln Mln Mln Mln
My,, terms
2y | (Mya—1)y? 2y | (M —1)y?
+ 3 ey + 3 ,
Moy M2n Moy M2n
M, terms
2y | (M, —1)y? 2y | (M, —1Dy?
Cn = + 2 I + 2 >
My, Mln My, Mln
My, terms

2y (Mp, —1)y?

2 /
n 2y L (Mo, — 1)y ]
2 2 2 2
Moy M2n Moy M2n
M,, terms
2 2 —
y 2y, (M —Dy?
U+ ar M, T 0 0
2y (My—Dy? e
Y, 1+, 0 0
D, =
2 b
Y 2y M=)y
0 0 1+ 11, i T
C1ya2 2
0 0 1513//1 + (ler\ll221)’y 1+ My2/x

where D, is an ((My,, + My,) x (M1, + M>,)) symmetric matrix. The forms of 4,, B,, Cp,
and D, are driven by the coefficients on the «’s in the rearranged system of first-order

conditions.
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The solution to the system of equations for «;, is now given by the simple expres-
sion

a, =X1Y,.

The difficulty in calculating the solution arises in finding the inverse of X,,. Using the
formula derived by Banachiewicz (1937), the inverse of X,, can be calculated blockwise
according to

(§2)

X—l _ I: (An - BnDVTlCn)71 _(An - BnD;lcn)ianD;l ]
n =

_D;ICn(An - BnD;ICn)71 D;I + D;lcn(An - BllD,ZlCn)ianDgl

Since (A, — B,,D,len)_1 is just a scalar, the only difficult component of this formula
is D;;!. However, notice that D, is block diagonal, where each block is a symmetric
M, x M}, matrix composed of only two components. Thus, to get the form of D;l,
we just need to invert one of these M, x M, matrices.

At this point, it is useful to introduce some further notation to keep the matrix alge-
bra for calculating X! palatable. Define

- 2My, M, + 72(M1n + M>y,)

" MlnMZn ’
b 2YMuy+ V(M = 1)

1n = 2 b

Mln

b 27M2n+'y2(M2n_1)

2n = 2 >

M2n
My, + 72
=,
n

c My, + 72

2n = T a2, >

M2n
b = MO — Y@ )M+ (L9 Mi)
1n = M4 4
1n
M) (P —y Qo )Moy + (L4 9P M3)
2n — M4’ .
2n

Using these terms, we can rewrite the components of X,, in the manner

Ap=a,

Bn = [b1n7 cre bli’h b2n7 cr b2n]7
My, terms M,,, terms

Cl’l = [b1n7 MR b1n7 b2n, MR b2/1]’7

My, terms M,,, terms
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_Cln bln 0 0 7]

b]n Cln 0 0
Pr=l0 o ¢ bon

0 0 b2n Con

Supplementary Material

Again, the key challenge in finding X! is finding D;,!. Since D, ! is block diagonal,
this boils down to finding the inverse of a symmetric (M, x M},) matrix that consists of
two components, by, and ¢;,. Depending on the size of M, this may in itself be difficult.
However, we can recursively apply the same blockwise formula to this My, x M, matrix
until we finally get to the point where we only have to invert a 2 x 2 matrix. Following
this procedure, we can show that D! takes the simple form

— C]n+bln(M]n_2) _b]n O 0 —_
1n 1n
7bln Cln+b1n(M1n72) 0 0
dln 1n
D-1_ : : : :
n 0 0 Contbon(Mp,—2) —bo
day day,
0 0 7b2n 62n+b2n(M2n72)
d2n dZn

We now have all the components required to calculate X, ! using equation (S2). Ac-
cording to equation (S2), X; (1, 1) is given by (A, — B,D;'C,)~!. To calculate this ex-
pression, we proceed step by step, starting with the first term in B, D}, !

bin(cin + bin(My, —2)) — b3 (M1, — 1)

B.D;'(1,1) = 7
n

_ b]n(cln - b]n)
dln '

Given the simple structure of B, and the symmetric nature of D}, !, it is obvious that the
first M, terms of B,D; ! will be identical to the expression derived above. In addition,
the final M,, terms will take the same form as the above expression; however, all the
time subscripts will change from 1 to 2. As a result,

BnD_l _ bln(Cln - bln) e bln(cln - bln) ,
" dln dln
ban(con — bay) ban(con — b2n)i|
don don '

Calculating B, D, 1, is rather simple, since it is just a scalar:

M1,b3 (c1p — bin) N Mub3 (con — bay)

B,D;'C, =
n " dln dZn
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Finally,

XA, 1) —a— (Mlnb%n(cln —b1n) N Mo,b3, (con — b2n)>.
dln d2n
Because this terms appears in all of the other components of X!, for expositional ease
we define 4, =X;1(1, 1).
According to equation (S2), X;l(l, 2) is given by —/],,B,,D;l. We calculated the ex-
pression for B,D; ! in the previous step; thus

X 1(1,2) = _/]n[bm(cz,l— bin) . bln(q;l_ bln)’
n n

bon(cn — b2y) bon(con — bZn)]
d2n ’ ’ d2n

The expression for x;l(z, 1), —zzlnD,len, will be the transpose of the above equal-
ity, since D,! is symmetric and B! = C,. Again for expositional ease, define B, =

- w and By, = — W. Using this definition, we can write
n n

X;l(l’ 2) = [Bln’ (R Bln’ BZI’H LR an]

The final component of X! is also the most complicated. The expression for
X-1(2,2) in equation (S2) is D;! + A4,D;'C,B,D;". Again we proceed in steps. Pre-
multiplying B, D, ! by C, yields an (M1, + Ma,) x (M1, + M,,)) matrix that takes the
form

-1
CuBuD;
2 2
r bln(cln_bln) bln(cl’l_bl’l) b1nbon(con=boy) b1ybon(con=bon) )T
) dln ) dln dZn dZn
bln(cl”_bl”) bln(cln_bl”) b1nbon(con—bon) b1nbon(con—bon)
dln dln d2n dZn

b1nbon(c1y—b1n)

b1nbon(c1y—b1n)

b3, (c2u—b2y)

b3, (can—b2y)

1n 1n dZn dZn
b1nbon(Cc1n—b1n) b1nbon(Cc1n—b1n) b%n(CanbZn) b%n(CZn*bzn)
1n 1n

don

don

Notice that within any quadrant of the matrix, all the terms are identical. Finally we need
to premultiply C, B, D;,;! by D;;!. This yields a symmetric (M1, + Ma,) x (M1, + M2,))
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that takes the following form

r b%,,(cln*bln)2 b%n(clnfbln)z
L L, A
bln(cln_bln) bln(cln_bln)

di, di,

b1nb2n(C1n—b14) (C2n—b2s) b1nbon(c1n=b1n)(con—bon)

di,day, dipdan
b1nbon(c1n=b1n)(con—=boy) b1nbon(c1n=b1y)(con—=boy)
d]ndZn dlnd2n

binbon(c1n=b1n)(2n=b2n)  binbon(cin—b1n)(con—b2y) .

1nd2n dlndZn
blann(cln_bln)(CZri _b2n) blnb2n (Cln_bln)(CZn_bZn)
dipday dindon
b%n(CZH'*bZn)z b%n(CZn.ben )2
N N
bzn(CZn_bZn) bzn(CZn_bZn)
s, a3,

The final step is to subtract 4,D;,'C,B,D;' from D;!. The result is a symmetric
(M1 + Myy,) x (M1, + M>,)) matrix that takes the form

_C:'1n l:)1n E” }_?n T
Dln Cln Eﬂ En
pl'-A,p-'‘c,B,D'=| - : S :
n n=n ~nEREn E, E, --- Cy Dy |
En En DZn C'Zn

where

A d]n(cln+(M1n_1)b1n)+/~1nb%n(cln_b1n)2

1n = 2 >
dln
=~ dan(c2n + (Moy — 1)b2y) + /Nlnb%n(CZn - b2n)2
2n = d2 5
2n
~ A’Zlnb%n(cln _bln)z_blndln
1n = 2 s
dln
=~ /Nlnb%n(CZn - bZn)2 — bondon
D2n = 5

2
d2n
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E o= ;lnblann(cln —b1n)(con — boy)
" dlndZn ‘

Recall that ay, by, c,, and d, were defined earlier and are functions solely of vy, My,
and M»,,.

Substituting into equation (S2) with the terms just calculated, we get the general
form

B :411 B;ln gln T B~2n B.‘Zn ]
l}ln gln D~ln Ejz En
Bin D1 Cin Ey n
x| ¢ : :
éZn E:‘ Ejn €2n D:Zn
By, E n o Doy Cyp

Using X;l and the formula for Y,, we can solve for the «,’s as functions of v, y, and

M. As an example, the solution for @, can be obtained by multiplying Y, by the first row
of X 1:

. 2 y Mn+1
aip = Apn (Mln + yion + Z(M > szn))
tn .
j=2

t=1
2 ~ My+1 y My +1
+ Z(Btn Z <Yitn + E}ﬁtn Z YJtn>)
=1 i=2 n M =2, j#i

We can rearrange this formula such that we group all the common y terms together.
Doing so yields the solution for a4, in terms of A4,, By,, and By,

Ay = (12111 + yéln))ﬁln + (/Zln + ')’BZn)YIZn
Mn+1
Y = Y(My — 1)+ M,
i Z<<A M, - Z Yitn

Finding the solution for any « in block n other than «;,, follows the same basic pro-
cedure. Simply multiply Y,, by the appropriate row from X;;!. As an example, below is

the formula for a;;,. To arrive at this formula simply multiply Y,, by the second row
of X, 1.

_ 2 y Mn+1
A21n =B1n<y11n+y12n+Z<M Z )ﬁm))
tn .
j=2

t=1

My, 1
+C + v + v E .
1n(y21n Mln}’nn My, = y]]n)
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My,+1 v My, +1
+D1n< > (Yiln-l- W}ﬁln —— y]ln))
n

i=3 ] =2, j#i
My, +1 y My, +1
+ En( Z (inn + M—y12n Z YJZn))
- 2n
i=2 ] =2,j#i
Again, we can rearrange the above equality, grouping on the y’s:

My, — 1)y ~ ~
. ) Yiin + (Bin + Eny)Yi2n
n

~ ~ "y ~
i, = (Bln + Clan + Dy, M’
n

=y = ~ (M, — 1)y
+ <BlnM— + Cin +D1nhz7>y21n
1n

Mln
My,+1
r Y > Y <~ My, + My, —2)
Bi,,—+Ci,—+D
+< lnM1n+ lnM1n+ 1n M ) Z Yiln
My, +1
M2n+(M2n_1)
<BlnM2n +En M, Z Yi2n-

The formula for «;1,, for i > 2 takes the same form as above, except that (i) y»1, becomes
yi1n and (ii) the first summation on the second line is over all j # i. The formula for «;;,
for i > 1 also takes the same general form, except that all of the subscripts denoting
period 1 need to be changed to denote period 2, and vice versa. All the terms in the
formulas for a1, and «;;;, consist solely of y, y, and M. O

Proor orF LEMMA 2.G. Lemma 1.G provides a solution for « strictly as a function of y,
v, and M. We can substitute this solution back into the original optimization problem
to derive the result in Lemma 2.G.

Consider minimizing the sum of squared residuals within a particular block . There
are 2 + My, + M, residuals within each block: two for the student observed twice and
one each for the peers in both time periods. We begin by simplifying the residual for the
first observation of the student observed twice, which is given by the expression

7 M1n+1
€11n = Y1ln — ®n — W Z Qjin-
noo._

Substituting for a1, and «;1, in ey, with the results from Lemma 1.G and collecting
terms on the y’s results in

2 2
y 5 Y oA My =Dy o
€11n :)’11n(1_An_2'yBln_ My, Cin — }Zwln D1y,

— Vi2n (len + VBIn + VBZn + 72En)
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Mi,+1
B Z . ) +v2+M1n+v<M1n—1>B
- Yiln My, n My, 1n

7(M1n+')’(M1n_1)) = ')’('Y+M1n(M1n+'YM1n 1))D" )
2 Cin+ 2 1n
M M

13

M, +1 2
Y Y i My +yMon —1)
— i A, + Bl + Bz
( gz Vi I1> <M2n " MZn ! MZn "

M My, —1)) ~
+ 7( owm+ 7( 2n ))Eﬂ>
M2n

The form of ey, is identical to the above equality except all of the time subscripts on
the y’s, M’s, and inverse components are swapped. In other words, 1’s become 2’s and
2’s become 1’s. Similarly, substituting for « in e;1, and collecting terms yields

My +v2(My, — 1) & M? +y (M, — 1)
M2 - M?
n

~ ’y2 ~
€21n = Y21n (1 — Apn—= — 2By,
Mln

_D"‘ 27M1n(M1n_1)+7 (Mln_l)(Mln_2)>

M2
~ Y ~ M1n+(M1n_1)7+72 = 7M1n+(M1n_1)7
— A + B +C
ylln( "M In My, 1n M2
< (M, —Dy(My, + My, — 1)y)
+ Dy, M2
-y = My + My, -y =y
— A B B
}’12n( "M + D1n My, + 2nM1n
+E7M1n+(M1n_1)'}’2)
Mln

in 2 2
= yMy, +y (M —1)
+2B
(155 ) g s

1n
- 2yM My, —-2) ~ (M My, —2)% + My, — 1
+ Gy Y 1n+'}’2( 1n )+D1( in+yvMiy ;) + M, )7)
M3, M;
My, +1
ZXJ:F Yy 4 B YMy, + v (M, — 1)
j2n MlnMZn b MlnMZn

+ B YMoy + ¥* (M, — 1) VP Mln +yMy, — 1) My, + y(M>, — 1))
" MlnMZn Mln MZn

The residual e;, for i > 2 looks identical to the above equality except the leading y term
is y;1, rather than y,,, and the summation term in the fourth line is over all j # i. The
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M, residuals for the individuals observed once in the second period look identical to
the above equality except that all of the time subscripts are swapped—1’s become 2’s
and 2’s become 1’'s—for all the y’s, M’s, and inverse components.

To write the least squares problem strictly as a function of y, we can simply substitute
the above expressions directly into the least squares problem. However, before doing so,
it is helpful to simplify the expressions for the residuals by substituting in for the inverse
components, A, Bin, Bon, éln, @2,” D1y, Doy, and E,,. At this point, the algebra required
to show how these equations simplify is extremely cumbersome. Appendix 2 shows the
full derivation for the case where M, = M>,. Here we jump directly to the simplified
versions of the individual residuals?:

erin = ((Y(M1n — 1)+ My,) (y — May) [ ((y — M) (M1 + y(M; — 1))2 +v* M)

+(y = M) ((Ma + y(M; — 1))2 +v*Ms)))
X ((Y(Mln — 1)+ Mi,)(y = Map)yiin

— (v = My (y(Mp, — 1) + M) yion

My, +1 My, +1
—y(y — May) Z len+7(7_M1n) Z Yj2n>,
= =2

e1on = ((Y(Man — 1) + Moy) (y — My,) [ ((y — M) (M1 + y(M; — 1))2 +y2 M)

+(y = MD2((My + y(My — 1))’ + y*My)))
X (—(Y(Mln = 1)+ M1,)(y = Ma)yiin

+ (y = M1) (y(May — 1) + M2y) yion

M]rz+1 My, +1
+y(y — May) Z Yiln —y(y —Mipn) Z Yj2n>,
= =2

exin = (y(y = Man) /((y — Mz)z((M1 +y(M7 — 1))2 + 72M1)

+ (y = MD2((My + y(My — 1))’ + y*M,)))
X (-(Y(Mln = 1)+ M) (y = Ma)yiin

+(y— Mln)(')/(MZn -1+ MZn)y12n

]\4ln+1 M2n+1
+y(y — M2y) Z Yiln —y(y — M) Z yj2n>a
= =2

2The algebra required to simplify these expressions is available upon request.
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exn = (y(y = M)/ ((y — MZ)Z((Ml +y(M; — 1))2 + 72M1)

+ (y = M2 (My + y(M;, — 1)) + ¥2M3)))
X ((V(Mln = 1)+ M) (y = Maw)yiin

—(y— M]n)(')’(MZn -1 +M2n)y12n

M1n+1 M2n+1
—y(y — Mzy,) Z Yj1n+')’('}’_M1n) Z Yj2n>-
= =2

The simplified versions of e;;,, and e, for i > 2 exactly match the above expressions for
en1n and epy,, respectively.

Close inspection of the residual equations indicates that they are all closely related.
In fact, the residuals can be derived from one another according to

Y
eily = —e ,
A My (M, — 1)
y— M,
eion = _eiln‘y—ing’ (S3)

1oy = —e1y (7_M1n><M2n+'Y(M2n_l))
g 8 Y — My, M, +yM1, — 1)

. . . . . 2 2
Using these relationships, the sum of the squared residuals in block , e7;, + €7,, +

ZMln""l 2 +ZM2}’L+1 2

= €in €,y Can be written

_ 2 = M) (Mot y(M, = 1)) VM1
Hn Ty — Mp,)? (My, + y(My, — 1))2 ‘i (M1, + y(My, — 1))2 ‘i
72M2n(7_M1n) o2
(y — M2p)2(My, + y(My, — 1))2 117

= et [((y = Ma)* (M1, + y(My, — 1))2 +v*My,)
+ (y = M1)* (Mo + y(May, — 1))2 + v M)
/(v = M2 2 (M + y(M1, = 1))
Finally, substituting for e;1,, we arrive at the least squares problem. O
Proor oF LEMMa 3.G. Recall that g(w, ) is given by

2 M+1 2
(Z Z th}’jt)

=1 j=1

2 M+l
2.2 Wi
=1 j=1

q(w, y) =

>
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where the W'’s are defined in the outline of Lemma 2.G. Substituting in for y;, with the
data generating process yields

2 M+1 M,+1 2
(Z Z Wit |:ajt0 Z Qkto +3jt:|)

t=1 j=1 U gj

q(w,y) = > M
.2 Wi

=1 j=1

Collecting the «j,, terms yields

2 M+l Mitl 2
(z 3 ( 203 W)+W)
=1 j=1 M; ke

2 M+1 ’

2.2 Wi

=1 j=1

(§4)

q(w,y) =

Note that the coefficient on «4, is given by the weight at ¢t = 1 plus the weight at t = 2:
2 M+1
;(VVu+ X/[—Ot ]; Wkt)
=(y— M) (M1 +y(My —1) = yoy) — (y = M) (Ma + y(My — 1) — 7,7).

Because of the symmetry, after multiplying out, any terms involving MM, will drop out
as will any terms where neither M, nor M, enter. The expression then reduces to

2 . %M,+1W
;( 1t+ﬁt ;; kt)
= (M — My)y + (M1 — My)y* — (M — My)yoy + (My — M)y
= (M1 = M2)(¥* = vo7)
= (M1 — M2)(y — Yo)Y-

Now consider the coefficient on «j, for j > 1, which can be split into three compo-
nents: the own weight, the weight from observation 1, and the weight from classmates
besides 1,

o y y(M; — 1)
W,1+ ZWkl_(’)’ M)(—y+|1+y= 2 |vo— | T5— %)
M, M
k#j
which reduces to
M1+1

W]1+ Z Wit = (y = M2)(vo — 7).
k#j
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We then know that the coefficient on W}, for j > 1is given by
y M>+1
Wi+ 55 > Wia=(y—M)(y = o).
2 kA
Substituting for these expressions in (S4) yields

Mi+1
q(w,y) = [((Ml — M2)(y — ¥o)yaio + (v — M2)(yo — y)( > a,~10>

j=2

My+1 2 M+1 2
+(7—M1)(7—70)< > a,-zo> +Y > W,-,s,~t> }
j=2 =1 j=1
2 M;+1
/=T wi)

t=1 j=1
We next take expectations conditional on M and M5:

E[q(w, y)|My, M5]

M]-‘rl
=E{ <|:<(M1 — M3)(y = Yo)yaro + (v — M2)(vo — 7)( > aj10>

=2

Mr+1 2 Mi+1 2
+(y—Mp)(y— Vo)( Z aj20> +Z Z th£jt> }

j=2 =1 j=1

0

t=1 j=1

Expanding the square and noting that E(aj,,exy) = 0 for all j, k, ¢, ¢’ by Theorem 1(ii)
and E(sgj;erp) =0forall j # k or t # ¢’ by Theorem 1(i) yields

E[q(w, y)|My, M;]

M1+1
=E{ ([((M — M>2)(y — Yo)yaro + (v — M2)(yo — v)( Z ajlo)

j=2

Mr+1 2 2 Mi+1
+('}’_M1)('Y_')’0)( Z aj20>> + (Z Z Wﬁﬁ't)]
j=2 =1 j=1
2 M+l
£ ]

=1 j=1
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which can be rewritten as
M

1
E[q(w, y)IMy, Ms] = (y — ')’0)2E|:<(M1 — M)y, — (y —Mz)( Z ajlo)
1

1+

j=2

Mp+1 2 2 M+

+(7—M1)< > ajzo)) ‘MI,M2:|/|:Z Wﬁ}
j=2 t=1 j=1

8 ][5 0]

=1 j=1 =1 j=1

Note that Theorem 1(v) implies that the conditioning in the expectation over the
squared errors is not needed. Furthermore, E (8,2-,) =F (si ,) for all j, k by Theorem 1(v).

We can then express the expectation over the squared errors solely as a function of the
first observation’s squared error:

Mi+1
E[q(w, y)IM{, Mz] = (y — Vo)zE[<(M1 — Mp)yaio — (y —Mz)( Z ajlo)
j=2

Mo+1

o) s[5 5
[EE ][££ ]

=1 j=1 t=1 j=1

Note that the weights in the numerator of the second expectation are the same weights
as in the denominator. Theorem 1(v) implies that these weights are orthogonal to the
squared first and second period errors. Furthermore, E(s%l) = E(s%z). Taking the un-
conditional expectation then yields

Mi+1
E[qw, y)]=(y— yo>2E[<<M1 — Ma)yai, — (y - Mz)( > a,-lo)

j=2

M2+1 2 M[+1
+(y— Ml)(Zaﬂo))/ :|

=1 j=1
+E(82).

The first term in the above expression is strictly greater than 0 for all y # vy, and the
second term does not depend upon vy. As a result, E[q(w, v,)] < E[q(w, y)]forall ye I
when vy # v,. O
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Proor orF LEMMA 4.G. Uniform convergence requires that

N
1 )4
T 2 90 Hlatw ] 20

Theorem 12.1 in Wooldridge states four conditions that the data and ¢ must satisfy so
that the above condition holds.
1. The parameter space I" is compact. This condition is satisfied by Theorem 1(vi).

2. Foreachy €T, q(-,y) is Borel measurable on V. The function q(-, y) is measurable
with respect to product o-algebra of B(R**2M) x 27, where 27 is the power set over the
possible class sizes.

3. For each w € W, q(w, -) is continuous on I'. Our concentrated objective function is
continuous in v.

4. Forall y e I', |q(w, y)| < b(w), where b is a nonnegative function on W such that
E[b(w)] < oco. Recall that g(w, vy) is given by:

Mi+1 My+1 2
(z Wogp+ 3 W,-zyﬂ)
j:l j:l

q(w,y) = Mi+1 My+1
2 2
2 Wit W

j=1 j=1

Expanding the square and noting that Wﬁ yft + szt

(the triangle inequality), we have

Yiy = 2Wi Wi yioyke forall j k, 1, ¢

Mi+1 My+1 )

2+ M, +M2)< Y Wivi+ Y Wivh
j=1 j=1

w <
q(w,y) < M T ,

YoWi+ Y Wi
j=1

j=1

where the leading term arises from replacing all the cross-products using the triangle
inequality.
Note that each of the terms in the denominator is positive, implying that

Mi+1 My+1
q(w,y) < 2+ M, +M2>< Yovht Y y,%) = b(w),
j=1 j=1

where we have shown that b(w) > g(w, y) for all w.
We now show that E[b(w)] < co. Note that E[b(w)] is given by

2 Mi+1
E[b(w)] = E|:(2+M1 + M>) Z Z yjzt:|.

=1 j=1
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Note also that by the law of iterated expectations, E[b(w)] = E(E[b(w)|M1, M3]). We first
show that the inner expectation is bounded for all M and M,, and then show that this
guarantees that the outer expectation is finite. With the data generating process substi-
tuting for y into the inner expectation yields

E[b(w)|My, M;]
2 M+1 M,+1 2
=2+ M +M2)E|:Z Z <ajto Z Ao + 8ﬂ> ‘M],M2:|
=1 j=1 U okj

Repeatedly using the triangle inequality after expanding the square implies
E[b(w)|M1, M,]

2 M+l 2 M +1
5(2+M1+M2)E{Z Z(Mt+2)(a]2~m e D At e )‘Ml,Mz}

t=1 j=1 U k)
Collecting aj;, terms and recognizing that y2/M, < y2 implies that
E[b(w)|M,, M,]

2 M+1
§(2+M1+M2)E[1+70 >N M+, + & \M1,MZ}
t=1 j=1

We can take the expectation operator through, which yields

E[b(w)| M1, Ma]

2 M+1

<(2+M1+M2) 1+'YO Z Z(Mt+2)[ ( jto'Ml’M2)+E( )]’
t=1 j=1

where the conditioning is not necessary for the second expectation by Theorem 1(v).
Theorem 1(iii), (iv), and (vi) ensures that E(a? it oIM1, Mp), E (sjz.[), and v, are all finite.
Thus, E[b(w)| M1, M,] < oo for all M1, M,. Nownote that E[b(w)] = E(E[b(w)|M7, M3]) <
maxy, m, E[b(w)|My, M3] < oo, where the last inequality arises from Theorem 1(). O

Proor oF LEMMA 5.G. To establish asymptotic normality, we now show that the six con-
ditions of Theorem 12.3 in Wooldridge (2002) are satisfied.

1. The parameter y, must be in the interior of I'. This condition is satisfied by Theo-
rem 1(vi).
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2. Each element of H(w, y) is bounded in absolute value by a function b(w), where
E[b(w)] < oo. Recall that g(w, y) can be written as

Mi+1 My+1 2
(Z Wiy + ) an)
j=1 j=1

M]-‘rl M2+1

2 Wit 2 W
j=1

q(w,y) =

1
thWkt/)’jt)’kt’

2 2 M+
t=1tr=1 j=

1M+

1 k=l

2 M+1

2. Wi
=1 j=1

Denoting Wj/t as the first partial derivative with respect to vy, we have

Wi =[(142y - Mp)(M; — 1) +1],

W, =—-[A+2y—-M)(M;—1)+1],

W-/ =-2y+M, forallj>1,
12 =2y—M; forallj>1.

Denoting W]’t’ as the second partial derivative of W, with respect to y, we have

Wi =2(M; - 1),

Wiy =—-2(M; - 1),
]1_ —2 forallj>1,
]2_2 forall j > 1.

We can then write the score as

2 Mt+1Mt/+1

ZZZ Z Z Wkt’)’jt)’kt/

=1r=1 j=1 k=1
M+1

s(w, y) =

t=1 j=1

2 M;+1My+1 2 M+1
(ZZ Z I/V}tht’YJtth’> (22 > Wj;th>

t=11=1 j=1 k=1 =1 j=1
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and the Hessian as

2 M+1My+1

233 Z W;iWiee + Wi W) YjeYir

t=1¢r=1 j=1 k=1

2
2
t=1

H(w,y) =

M+1
j=1

M+1Mpy+1 2 M+1
(2535 w253 wn
= =1 j=

1=1r=1 j=1
( 2 M,+1 )2
=1 j=1

2 M+1M,+1 2 M;+1
(zz S Wi (zz 3 <W,~4W,~;+W,fzw,-»)
t=1t=1 j=1 k=1 t=1 j=1
2 M+1 2
2
(Z W)
t=1 j=1

2 2 Mi+1My+1 2 Mi+1 2
(ZZ Z Z WitWir ]O’kﬂ) <2Z Z Wj/tht>
=1r=1 j=1 =1 =1
2 Mi+1 3 :
(Z Wﬁ)
=1 j=1

We need to derive a bounding function such that b(w) > |H(w, y)| for all y € I'. Note
that

|H(w, )|

2 MA1My+1

ZZZ Do D Wi War + Wi W) yjyke

t=1t=1 j=1 k=1

= 2 M+1
2
> 2 Wi
=1 j=1
2 2 Mi+1Mg+1 2 M+1
/
4(22 ,szwyﬂyzcﬂ> (22 > %Wﬂ)
t=1r=1 j=1 k=1 t=1 j=1

+

2 M+1 2
2
(Z W)

t=1 j=1
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2 2 M4+1My+1 5
‘(ZZ Z Z I/V]fWkl’YJz)’kﬂ> (22
j=1 k=1
4

M+1

(W} W+ W, %)) ‘
t=1r=1 =1 j=1

t=1¢=1

2 Mt+1Mt/+1 2 Mt+1 2
(E53S o) (253 wim)
j=1 =
+ .

2 Mi+1 3
2
(Z W)
t=1 j=1

Repeatedly applying the triangle inequality and collecting terms yields:

2 Mi+1

2(2+M1+M2)<ZZ (Wi)?+ W, )2+Wﬁ)yﬁ)

=1 ]:

|H(w, )| < A

22V
t=1 j=1

M+

2
42+ M, +M2)<Z (W}

t=1 j=1

-

—_
§
v

tl]l
+

23

=
+
R

2 Mi+1
2+ M+ My) <Z W]tyﬂ)

~
R
\4
,_\

2 2 M+l 2
(24 My + M>) (Z > Wi y],) (2 > Wﬁ)
+ .

Denote the weight given to y]?t in the above expression as

22+ My + M)W + (W))* + Wi
jt 2 M+1

2.2 Wi

t=1 k=1

*
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2 M+l
(22 > Wk’th,)
t=1 k=1
2 M+1
(2%
t=1 k=1

2
Wi (2
=

k=

42+ My + M)W+ W)

24+ M+ M,)

M+1

> W, + W,;;Wk,)>’
k=1
+

1 2
2
Wkt)

2 M+l 2
2+ M, +M2)(thth/)’jt)<22 Z Wlétht)
t=1 k=1

+ E
2 M+l
2
=1 k=1
implying that
2 M+l
[Hw, <) Y Wi
t=1 j=1

Note that W7 isa function only of the class sizes and vy, and for any class sizes and v, it is
finite. Since the expression on the left-hand side of the above equation is increasing in

Wj’;, define

* *
B maxWﬂ,

which exists and is finite due to all elements of I" being finite. Our bounding function is
then

2 M+1

bw)=3" > B}

t=1 j=1
We then need to establish that E[b(w)] < co. We first show that E[b(w)|M;, M3] < 00
2 M+1

E[bw)|My, My] =" > BLE(y;,|M1, My)
t=1 j=1

2 M+l Mt 2
:Z B E|:(ajt0 M Z akt0+8]t> ‘M17M2i|

k#j
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Repeatedly using the triangle inequality after expanding the square implies:

2 Mi+1

2 M;+1
E[b(w)|M,My] <> > " B (M,+2)E|:( Gy + M2 D gt e )‘MDMZ}.

=1 j=1 b k+#j
Collecting aj;, terms and recognizing that y2/M, < v2 implies that

2 Mi+1

E[bw)IMy, My] < (14 v5) Y > Bii(Mi +2)E[(a, + £7,)IM1, M)
t=1 j=1

Theorem 1 (vi), (iii), (iv), and (vi) ensure that B*, E (a}z.t oIM1, M), E (‘912'1)* and v, are all fi-
nite, implying that E[b(w)|M1, M;] < co. Now note that E[b(w)] = E(E[b(w)|M1, M3]) <
maxy, M, E[b(w)|M1, M>] < oo, where the last inequality arises from the fact that M and
M, are finite.

3. The function s(w, -) is continuously differentiable on the interior of I" for all w € W.
Since H (w, ) is continuous in v, s(w, -) is continuously differentiable.

4. The equality A, = E[H(w, v,)] is positive definite. With only one parameter, this
implies that the Hessian is strictly greater than zero when evaluated at the true vy. To
test this condition, we evaluate the expected Hessian at y,. We first note that we can in-
terchange the expectations and the partial derivatives: E[H (w, y)] = FPElq(w, y)]/dy>.
From Lemma 3.G, we know that

Mi+1
E[qw, »)] = (v - sz[((Ml — Ma)yaio — (y - Mz)( > a,-10>

j=2

My+1 2 M,+]
+(y— Ml)(Zaﬂo))/ j|

t=1 j=1

—I—E(82>.

Note that y affects three terms: (y — v,)?, the term inside the expectation, and the de-
nominator. However, because we are going to evaluate the expected Hessian at vy,, we
only need the second derivative of the first term, (y — v, )?. All of the other partial deriva-
tives are multiplied by either (y — v,)? or (y — v,), both of which are zero when y = v,.
The second derivative of (y — v,)? with respect to vy is positive. This second derivative
is then multiplied by the expectation of a squared object in the numerator and divided
by the sum of squared objects in the denominator. Thus, the expectation of the Hessian
evaluated at vy, is strictly positive.

5. We have E[s(w,y,)] = 0. Note that E[s(w, y)] = JE[q(w, y)]/dy. Differentiating
with respect to vy leaves terms that are multiplied by (yy — ) or by (yy — v)?, implying
that if we evaluate the derivative at y = vy, then the expected score is zero.
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6. Each element of s(w,vy,) has finite second moment. We first take the expected
squared score conditional on M and M, which is given by

E[s(w, v)* 1M1, M)

o2 M+1M,+1
23 > Wi Weryieykr
_E t=1r=1 j=1 k=1
2 M+l
2. 2. Wi
L =1 j=1
M[+1M[/+1 2 Mi+1 7?2
(ZZ Z VVthkt’thth’) <2Z Z I/V}'/tu/}t)
t=1r=1 j=1 k=1 =1 j=1
— My, M.
2 M+l 2 ‘ b2
(=2 )
=1 j=1
Applying the triangle inequality and collecting terms yields
E[s(w, y)*|M1, M,]
B 2 M+1
224+ M+ M) Y Y (W) + Whyl,
<E t=1 j=1
- 2 Mi+1
2. 2. Wi
i =1 j=1
2 Mi+1 2 Mi+1 12
(<z+Ml Y Y W,%y,%) (zz 3 Ww)
=1 j=1 =1 j=1
— M, M
2 M+l 2 ‘ b2
(X w)
=1 j=1 i
Repeatedly applying the triangle inequality, we can write
E[s(w, y)*|M1, M,]
r 2 Mi+1 7?2
22+ M+ M) Y Y (W) + Wiy,
<E|2 G My, M,

2 Mi+1

2.2 Wi

=1 j=1
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2 Mi+1

2
Q+M+M)Y Y M,) (22
t=1

t=1 j=1

M+1

2. W

J=1

-2

")

M;+1 2
> Wﬁ)

J=1

>

2 Mi+1

(Z > owpy?

24
+ Wz)yﬂ>

+E |82+ M+ My)?

‘MbMZ

<E|8Q2+ M+ M)}

+E |82+ M+ M)}

|M1,M2

‘Ml,Mz

‘Ml,Mz

Note that the expectation is taken with respect to the y’s conditional on the M’s and .
. . 4 . .
Denote the aggregate weight given to yj; in the above expression as

82+ M+ My (W))?

252
+W2)

2 Mi+1

5

t=1 k=1

82+ My + My)*W, (

+

2 Mi+1
t=1 1

Z Wktht>

Dps

t=1 k=1

2 Mi+1

W

k=
4
t)

b
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where we know that W]’; is finite, as the denominator is greater than zero, M and M, are
finite, and v is finite. Substituting in with W]"; in the inequality yields

2 M+1

E[s(w, y)? My, My] <Y Y WEE(y 1My, My).
t=1 j=1

Substituting in for y;, and repeatedly applying the triangle inequality yields

E[s(w, v)* 1M1, M)

2 M+1 r M,+1 4
= Z Z WiE (ajto Z akt0+8jt) ’MI,M{|
t=1 j=1 L k;ﬁ]
2 Mitl i 2 Mi+1
<3S wie an 2 (s (3) o) e
=1 j=1 L
2 M+1 B 4 M+1
<> ) WiE (Mz+2)3( ,m+< ) > al, + e )’MI,M2:|
t=1 j=1 L t k#]

Collecting terms, we have

2 Mi+1

4
Els(w, 2 IMy, Ma] <3 S W [(Mt+2>3(1+1\7;[) (@ho M1, M) + E(s) |

t=1 j=1

where W;;, v0, and M, are all finite, and since the fourth moments of « and &’s are finite
by Theorem 1(iii) and (iv), the expression is finite for all v € I" and for all M,. Further-
more, E[s(w, ¥0)?] < maxa, a, Els(w, v0)? M1, M3] < co. O

APPENDIX 2: PROOF OF LEMMA 2.G: My, = My, = M,

The algebra required to derive the simplified residual expressions for the general class
size case is terribly cumbersome. For a sense of how the algebra works, we instead show
how to derive the residual equations for a slightly simpler problem, the case where
My = Moy = Mp.

We take as a starting point here the results of Lemma 1.G when My, = My, = M,,.
While we do not derive the result here, following the steps in Lemma 1.G would yield

_ i’ ’)A/( 1)+M 2 M,+1
atp = (Ap+ ¥By) (Yi1n + yi2n) + <Anﬁ +Bn—> Z Z Yijtns
n =1 j=2
.. A (My—1)% .
azln—<Bn+ ann + D, n]‘/[n 7)y11n+(Bn+En'Y)y12n
S F s (M=)
+ (Bann + Cn “I‘Dn n]\/[n iln
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A My+1
~ Y ~ Mn + (Mn - 2)7
+ (Bnm + Gy ﬁ +Dn— j ;ﬁ)ﬁm

N M,+1
5 Y g My+ My -1y
+ <BnE “I‘En— Z Yi2n,

where

G Yo yQ M+ (4 )My
! 2042y =Mp)?

Y2 = y(2+y)M,
201+ v)2(y — My)?’

Co= (v -2Y’Q+ My +v*(8+y(12+5y)) M2
—dy(1+ )’ Q+ M +2(1+ v)*M})
J A+ 72y = M) (Y? — y2+ Y)My + (1 +y)>M?2)),

_ Y =27 Q4 M+ v 6+ y(8 4 3y))M; — 2y(1 + )’ 2+ VM,
21+ 9)2(y = Mp)2(y2 — y2 + )My + (1 + v)2M2) ’
- Y2 (y(My — 1) +2M,,)?
T2+ )2y = Ma)2(YE — yQ2 + y)My + (1 + y)2M2)’

n=

29

(S5)

(56)

§7)

(58)

(89)

The form of «;,,, is identical to the above formulation for «;1,, except that the time indices
are swapped on all the terms. Notice that here we have written the inverse components
directly as functions of y and M,,. The extra notation utilized in the general M case is
not necessary here, since we are not going to show how to derive X;'! directly. However,
it is immediately clear that finding a simplified version for the residual equations will be

easier in this case, since there are simply fewer terms to deal with.

With the equations for the abilities in hand, we can begin substituting into the resid-

ual equations. Consider the residual for individual 1 in block # at time period 1:

y My,+1
€11n = Y1ln — ®%n — M. Z Ajln-
n -
=2

Substituting in the solutions for a1, and «;1,, and combining like terms yields

2 2
e Y M-
€11n = Ylin (1 - Ap—2yB, — CnE - DnTnn

— Y12n (len + Z'Yén + 'YzEn)
Mp+1
B i Nai2 1B Y&y +Mp—1)+ M,
- Yiln nMn n M,

(510)

"y, an<1+y>—72+ < Y(y+My(My, + M,y —2y —1))
" M2 M2
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My+1
- ( Z ijn)
j=2

Sy = y(yEMy =)+ M, = yMuy(14y) —y?
A,— + B E .
X< nMn+ n Mn + Ly Mn

Using the formulas for A, By, Cy, Dy, and E,, we show that the coefficients on the y's
simplify quite nicely. First we illustrate how A4,,, B, Cn, D,,, and E,, are functionally re-
lated.

PROPERTY 1. The components of X, are interrelated according to

5 5 M2 5 B MZ

Ap=By, + ——" Co=D,+—"
S Yoy 7 Y Sy TR %
- ~ v, - ~ V,

Dnan‘i‘?n, En:Bn_Tn,

where

_ YMZ(—y +2M, + yYM,)
(v = M) (y2 — yQ2 +y)Mp + (1 +v)2M2)’

Vi

PrROOF. Solving for A, as a function of B, is rather straightforward, as they have the
same denominator:

G B Yo YCH Mt A4y MR — (V= y 2+ )My
o 2(147)2(y — My)?

__ M
2(y — Mp)?
To relate C,, to B, we first show how C,, is related to D,, and then how D,, is related
to By:
Con=(v" =2V’ Q+ )My + ¥* (8 + y(12 + 5y)) M}
—4y(1+ )22+ yM3 +2(1+ )M}
JRA+7 (y = M)*(v* = 2+ y)Mu + (1 +y)*My)),

= Y =2YQ+ M+ Y 6+ y(843y)M2 = 2y(1 4+ v)* 2+ y)M;
2004+ 7)2(y = M)*(¥? = Y2+ Y)My + (1 +7)2M?) '

n=

Both terms share the same denominator and, in fact, share the same first two terms in
the numerator. Subtracting D, from C, and simplifying yields

f oo Mi
(')’_Mn)z

n n
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Next we want to find the difference between D,, and B,,. This difference is more com-
plicated than the first two, since they do not share the same denominator. However, we
can easily get a common denominator, since the denominator for B, is simply missing
one term that is present in the denominator of D,,. Thus we can write the difference as

B, B, — Y4 = 2932+ y)My + Y26 + ¥(8 + 3y)) M2 — 2y(1 + y)2 2 + y)M}
214+ )2(y = Mp)*(¥> = y2 + »)My + (1 + v)2M})

(P =y M+ A+ )P MH (Y = y2 + y) M)
201+ )2y = M) (¥ = Y2+ )My + A+ y)2M7)

Combining terms and simplifying yields

_ yM2(y —2M, — yM,)
Dy —Bn = 202 2072
20y = Mp)*(v> —y2+ )My + (1 4+ y)My)

The last piece is to relate E, to B,. Just as with D, we need to find a common de-
nominator.

Ep—By=(¥(y(My — 1) +2M,))" = (¥* = y2 + y)M,,
+ 1+ )M (v — y2 +y)M,))

[2(L+ )2 (y = Mp)* (¥ = y2+ )My + (1 + y)*M?)

_ YM2(—y +2Myy + yM,)
20y — Mp)2(y2 — y2+ )My + (1 + y)2M?2)

Va
=—5 O

Using Property 1, we now show that the coefficients on the observed grades in equa-
tion (S10) have other appealing properties. Then we use these properties to simplify
equation (S10), in an effort to arrive at a simplified version of the least squares prob-
lem as a function of v.

ProOPERTY 2. Equation (S10) describes the prediction error for the first outcome of the
individual observed twice in block n. In Equation (S10), the coefficient on yy1, is equal to
the coefficient on yy,, and the coefficient on Z;‘i "2“ Yj1n is equal in magnitude but of the

opposite sign to the coefficient on Z]Ai ”2+1 Yjon-

Proor. The coefficient on yyy, is given by

- -y L M, -1
1—An—2an—CnA74——DnM.
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Substituting in for A,, C,, D,, and E, as a function of B, using Property 1 and simplify-
ing yields

- -y L M-

1—A,,—2an—an74—n—Dn7(T””)
_ 2P =DM My Ve y = Ma? 5
2(y— M,)? ey

The coefficient on yy,, is given by
Izln + 2')’Bn + 'YZEn-

Again making the appropriate substitutions allowed by Property 1, we can rewrite this
expression as

~ - - M2 VY (y—-M,
An+2')’Bn+')’2En: n ny“(y n)

2
Yy~ M) +B,(1+ )%
- n

Finally, taking the difference between the coefficients on y;;,, and y;;,, we find

2 2
1 ; > - = - yE(M,—1)
A, +2yB, + y*E, — (1 — A, —2yB, — C”J\VT,Z _ DnVTnn)
=2B,(1+v)?
n M2 —Vuy?(y — Myp)? — 29 +2y(y = 2)My, — M2 4+ Vyy* (y — M,,)?
2('}’ _Mn)z
= =2y +2y(y — )M,
=2B,(1 2
n( +')’) + 2(’)/—Mn)2
_ Y —vCH+ My =27 +2y(y =DM,
(v —My)? 2(y — My)2
=0,

where the second to last line results from substituting in our formula for B, given in
equation (S6).
Now we show that the coefficient on Zjﬁi”zﬂ Yjin is equal in magnitude but to the

opposite sign to the coefficient on Z?i";l yj2n- The coefficient on Z;‘i”;l Yj1n 18 given by

-y Yy My =D+ M, = yMu(1+y) — P
A,— + B C
nMn + n Mn + n M,%
+Dn 7(7+Mn(Mn +12‘/[n7 - 2'}’ - 1))
Mn

and the coefficient on Z;.w:”z“ Yjon 18 given by

. M, —1)+M, -~ yMy,( — 2
+Bn7(7+n )+ n+E7n(+7) v

- Y
A L
"M, M, " M,
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If we add these two coefficients together, we arrive at the expression
Y =YY+ My =D+ M, - yMu(1+y) — P
2A,— +2B C
"M, T M, o M2

- M,(M,, + M,y —2vy—1 - yM,(1 — 2
+Dn7(~/+ n( n+2nv 04 ))+Env W(1+7y) v
M? M,

Now we substitute for 4,, C,, D,,, and E,, as functions of B,, from Property 1. After some
manipulation, we can write the above expression in the form
4yM,, + 2y*M,, — 2y?

2(y - Mn)z

2B, (1+7)* +
Notice that this expression contains no V}, terms, as they cancel out when substituting

in for C,, D,,, and E,,. The last step is to substitute in for B, from equation (S6).

Y2 —yQ2+yIMy  4yMy +2y*M, — 2v?
('Y_Mn)z 2(7_Mn)2

All of the terms in the above expression cancel out, proving that the sums of the coeffi-
My,+1

cientson ) = Yjln and Zﬁ”;’l yjon are equal in magnitude and of the opposite sign. (]
Now we return to equation (S10), which describes the prediction error for the first
observation of the student observed twice in block n. Using Properties 1 and 2, we show
how to simplify this expression and, in turn, describe how the prediction errors for all of
the other outcomes in block n can be similarly simplified. This yields a simplified version
of the original least squares problem strictly as a function of y, M,,, and y.
Property 2 indicates that

2 2
~ = =Y = v (M, —-1) - > =
1_An_z'an_CnE_DnyT,;:An+2an+72En
and
-y 2 YYEMy =D +M, - yMuy(1+7y) —y?
A,— +B C
nMn+ n M, + Ch M%
= y(y+ MM, +M,y—2y-1))
+D
s N M,—1)+M, - yM,(1 —v?
=—<Anl+Bn7(7+ n—D+ " g n(l+7y) 7/).

We now proceed to solve for each of these coefficients strictly as a function of vy. First,
we solve for the coefficient on y;y;,.

By substituting for A, and E,, from Property 1, we can write the coefficient on y;,, in
the manner

M2 —Vyy*(y — My)?
2(')’ - Mn)2

Ap+2yBy + v E, = + B,(14 )2
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To solve for this as a function of y, we need to substitute in for B, and V. Substituting in
for B, from equation (S6) and V,, from Property 1 yields
(v(y = @+ VM) + M) (v = y2+ v)M,,
+ (14 7)2M7) — y¥*Mi(y* = 2yMy, — v*M,))
/@2y = M) (¥ = ¥+ Y)My + (1 +7)°M})).
We can rearrange this expression in the manner
(v = 2yMyu + Mp)(v* = yQ2 + Y)Myu + (1 + v)*M;)
20y = M2 (v = yQ2+ Y)Mu+ (1 +y)?M})

VMY = yQ 4 Mu+ (L + 92 M] + ¥ My = 2yM;; — ¥*M7)
20y = Mp)2(v> — yQ2+ y)My + (1 + y)2M?)

b

where we split the expression simply for ease of presentation. The numerator in the sec-
ond line simplifies greatly, such that the entire expression simplifies to

(V= 2yMy + M) (¥ = y2 + Y)My + (1 +7)°My)
— Y Mu(¥* = 2yMy + M) [ (2(y = Ma)* (¥* = y2 4 Y)My + (1 +7)°My)).
The numerator then factors to produce

(y — Mp)>(My, + y(M,, — 1))?
20y = Mp)2(y2 — yQ2+ y)Mu + (1 +y)2M2)’

Finally, we cancel out the common terms in the numerator and denominator to yield

(My + y(M), — 1))?

Ay 1298, +A2E, = .
Y Y e S Y =y @+ V)M + (1 + )2 M2)

This gives us the coefficients on y;1, and y;», in the expression for e, as a function of y.
Now we proceed to solve for the coefficient on Zjﬂi";rl Yj2n as a function of y.

Using Property 1, we can write the coefficient on Z?ﬁ;l Yj2n in the manner
. , My—1)+M, = yM,(1 -2
AnL+an(~/+ n—D+ nL g Y nd+y) -y
My M, My

YMy  ValyMa(1+y) — 9%
Z(V_Mn)z 2M, '

=B, (1+7)*+

Substituting for B, from equation (S6) and rearranging yields

Y = YMy = ¥*My  Va(yMa(1+7) =)
2(y — Mn)2 2Mpy '
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Substituting for V}, from Property 1 and finding a common denominator yields
(¥ = yMy — VM) (v> = Y2+ )My + (1 4+ 7)°M;)
— yMy(y = 2My — yMy) (YMa(1+7) = 7))
/20y = M (¥ = 2+ )My + (1 +y)°My)).
After some manipulation, the numerator of the above expression simplifies to yield

—(y = Mp)>(yM,(1 +7) — ¥%)
20y = Mp)2(y2 — yQ2+ y)My + (1 +v)2M2)’

Canceling out the common terms in the numerator and denominator yields

—(yM,(14+7v) — )
2092 = yQ2 4+ yV)My + (1 +y)2M2)’

Finally, we can substitute our simplified versions of the coefficients on yi1,, Y124,
Zin”ZH Yj2n, and ijvg;l yj2n back into the equation for eqy,, described in equation (510).

B (M, + y(M,, — 1))?
T 2(2 = yQR4 )My + 1+ y)2MP)

€11n (Y11n — Y120)

M,+1
Y(My, +y(M, — 1)) iy

SR =y @ M+ (L P 2 O

This simplifies further to produce

_ (Mn+')’(Mn_1))
292 — y2+ )My + (1 + y)2M32)

€11n

My,+1
X ((Mn +y(M, — 1))(y11n —Yion) +y Z (YjZn - len)>-
j=2

We now have the component of the least squares problem that corresponds to the resid-
ual for student 1 in block » as a function of y with the a’s concentrated out. Next, we
need to find similar expressions for ej,, and ej,.

Finding a version of ey, as function of vy is simple, since it takes a form that is essen-
tially identical to ejy,:

y M
€12n = Y12n — Q®ln — M. Z Qjon,
n
=2

which, after substituting for « using the results from Lemma 1, yields

2 2
o A PM— D)
€12n = Y12n (1 —Ap —2yB, — CnE - DnTnn

— Vin (/]n + Z'YBn + ')’2En)
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Ml - 5, y(y+ M, —1)+M,
ZYJZn + M,
L ¢ yMu(1+y) — ¥* \ b, Yy + Mp(My + Mpy =2y — 1))
" M2 M2
Mol sy (y A My~ 1)+ My = YMa(1+y) — 72
(Zy,1n>(A—+Bn77 n ny g, YMa(Lty 7>.
M, M,

This equation is identical to the equation for e11,, except that all the time subscripts are
changed. However, we know from Property 2 that the coefficients on y;1, and yj,, are
equal in this expression, and that coefficients on Z ”2+1 yjon and ij”;“l Yj2n are equal
but of opposite sign. Thus, ez, = —e11.

To get the final piece of the least squares problem with the «’s concentrated out, we
need to substitute for « in ¢;;,, where i > 1. To find a simplified formula for e;;,, consider
first substituting in for « in e;1,. Then the formula for e;;, from the basic least squares
problem can be written as

y My+1
€21n = Y21n = @210 = 3 - (am + Z aj1n>'
n .
j=3

Substituting in for « from Lemma 1.G and combining like terms yields

-y My + Y WMy — 1) . M2 YE(M,— 1)
eZln:y21n<1_An%_2Bn YTy & -C ntY a

; M} " M}
B, 2YMa(My — 1) + Y2 (My — 1)(M,, — 2))
- n
M}
-y Myt (My—Dy+v* o yMy+ (M, — 1)y?
- Ap,— + B C
ylln( nMn+ n M” +Cxu M%
~ (M —DyM,, + (M, — 1)y)
+D 07
- - M, + (M, —1)y+ 7>
— Y12n Anl+Bn n+ (Mn YTy
M, M,
M, M, — 1)y? 1D
~ yMy,+ (M, —1)y
E
LB, " )
M, +1 2
M, + v*(M, — 1)
(Z}ﬁln)( +ZBn7 nT%Y . n
M}’l

+C,

2yM, + ? (Mn—2>+ < (My+ y(My —2))% + (M, — 1)y?
M? M?
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My+1
- ( Z ijn)
j=2

2 2 2
~ - yM, + v (M, —1 - (M, + M, -1
X<1n')’ BnY n+ v (M, ) E( n+ (M, )Y) )

LA
M2 + M2 " M2

To simplify the above expression, we follow the same strategy employed to simplify ey,,.

PRrROPERTY 3. The coefficients on yi1, and yi», in the equation for ey, are equal in mag-
nitude but of opposite sign. The same relationship exists between the coefficients on

Zj‘i";l Yitn and Z?i”;l Yj2n- In addition, the coefficient on y>1, is identical to the coeffi-

cienton Zﬁ";l Viln-

Proor. The first step is to examine the coefficients on y1, and y,,. Our work is simple

here, since the coefficients on y;1, and y;, in the expression for e,1,, and the coefficients
My+1 My+1 . .

on ij”z Yj1n and ij”z yj2n in the expression for eqy, are exactly the same. Thus, we

know they are opposite in sign and of magnitude

(YM,(1+v) —y?)
2092 = y2+ )M, + (14 y)2M2)

by Property 2.
. M,+1 M, +1 .
Now we turn to the coefficients on y1,, > j:"; Yiin,and ) j:; Yjon- Using the results
from Property 1 relating A4,, C,, D,, and E, to B,, we can rewrite the coefficient on
ZM"H Yjin in the manner

j=3
2 2 2
. - M, M,—1) - 2yM M, -2
Anv_2+2an nt vy (Mp—1) foeti nty (Mp—2)
M} M; M},
= (My+y(My —2))? + (M, — 1)y?
+ D, 3
Ml’l
. Va(y2 =2yMu(1 +7) + M2(1 4+ y)2)  2yM,(2+ y) — 3y?
— By (1424 w(y yMp( Z) 2(L+v)9) yMp( 7)27
2Mn 2('}’_Mn)

Next, substituting in for A4, D,, and E, in the coefficient on Zj.‘i”zﬂ Yj2n and simpli-

fying yields

2 2 2
~ Y ~ yMy+y M, —-1) ~ (My,+ M, —1)y)
A”M_,frw” M? +En M?
- V,(v% = 2yM, (1 M2(1 2 2
— Byl 4y — n(y" = 2yM, (1 +vy) + M;(1+ 7)) 4

2M3 20y — My)?
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My+1

Adding together the simplified expressions for the coefficients on Zj:3

S Yo vields

yjln and

y? 2YyM, (24 y) — 3y?

2B,(1+ )% +
" 2(y — Mp)? 2(y — My)?

after the terms including V/;, cancel each other. Substituting in our expression for B, from
equation (S6) yields

Y —yQ+YMy  2yMy + v*M, — ?
(')’_Mn)z ('}’_jwn)2

All the terms in the above expression cancel out, indicating that

2 - yM 2(M,, — 1 - 2yM, 2(M, =2
An%JFZBnV n+ vy (My )+C yMy + v (M, —2)
n

M2 " M2
+ B, (M +y(My — 2);2 + (M, — 1)y?
Mn
2 2 2
- ~ yvM M, —1 . (M, M, —1
:_<An')’_2+2Bn')’ n+')’(2 n ) En( n+( r; )')’) )
Mn Mn Mn

or that the coefficients on Zj.wz”;l Yjin and Zin"z“ yjon are equal in magnitude but of op-

posite sign.

Finally, we can substitute in for A 1 C,, D,,, and E, as function of B, from Property 1
in the coefficient for y,q,. After some simplification, we can show that this coefficient
can be written as

Va(y* =2yMu(1+9) + M1 +9)%)  2yMa(2+7) = 39?
2M? 2(y — Mp)?

—B,(14 )% -

Comparing this to the coefficient on Z?i’g“ Yj1n as shown above indicates that these two
expressions are exactly the same, except that the signs are flipped on all the terms. Thus,
the coefficients for y,1,, and Z].Ai";rl Yj1n are equal in magnitude but of opposite sign. [

All that remains is to find the expression for these three coefficients as a function
of y. We can work with the easiest formula, since they are all identical. Recall that the

coefficient on Z?’i"jl Yj2n Can be written

Va(y? = 2yM, (14 y) + M2(1 +v)?) y?

B, (1 2 .
n(14+y) 2M,21 2(7—Mn)2

Substituting in for V, yields

Y(YMy +2My — y)(M2(1 +7)? + y? = 2yM,(1 + 7))
20y = Mp)2(y2 — yQ2 + y)Mp + (1 + v)2M2)

By(1+7v)* -

’)’2

+ —.
2(y - Mn)2
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Finding a common denominator and rearranging yields
Bn(l + ')’)2 + ('}’2((7 - Mn)2 +yYM,2M, — v+ '}’Mn))
—Y(YMy +2My =) ((y = M) + yMu(2My + yMy —27)))
/20y = M (¥ = 2+ )My + (1 +y)°My)).

Finally, substituting in for B,, finding a common denominator, and eliminating terms
yields

Y2((y — Mp)? 4+ yMuy(2M,, — v 4+ yMy)) — y*(yMy, + 2My, — )
20y = Mp)2(y2 — y2+ y)My + (1 + y)2M2) '

The above expression simplifies further to

y2

2092 —yQ2+ )My + (1 +y)2M2)’

Now we have expressions for all the terms in the equation for e;,,. We can substitute
back in and write the residual as a simple function of :

_ y(Mp+y(M, —1))
2(y2 = y2+ )My + (1 +7)2M?)

2 M,+1
’)/ n

+ A
B M (L ) 2 U

€21n V11n — Y12n)

Notice that in the residual for e,1,,, we can combine y,;, and Z;W:'%H Yjin, since they share

the exact same coefficient. This means that the form of ¢y, for all j > 1 will take the exact
form as the equation for e;1,. In addition, if we were to write down the equation for e5),,,
it would take the exact same form as the equation for e;y,, except the coefficients would
be swapped across the two time periods. As a result, e», = —e»1,. These relationships
will allow us to greatly simplify the least squares problem.

We can simplify the solution for e;;, by factoring out the common terms in the nu-
merator and denominator of each term. Doing so yields

B y
T 2(y2 =y y)My + (14 v)2M32)

€21n

My+1
X ((Mn +y(M, — 1))(y11n —Yion) +y Z (yj2n - yjln)>-
=

Finally, we have all the components of the least squares problem strictly as functions
of y, y, and M,,. Rewriting the least squares problem in terms of the residuals yields

N Mpy+1
m;nz(ean+e%z,,+ 3 <e,an+e%2n>).

n=1 j=2
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Using the facts that ej2, = —e114, €j1, = €21, for i > 3, and ez, = —e21,, we can simplify
the above expression to

N
m;n 2 Z(e%m + M"egln)‘

n=1

Now substituting in for the residuals using the results previously derived yields

N 2
. My +yM, —1))
myan;[

4(y2 = y2+ YIMy + (1 + 7)2M?2)?

My+1 2
X ((Mn+7(Mn - 1))(y11n —Y12n) + Z (ijn _yjln)>
=2
4 'szn
4(y2 —y(2 M 1 2M2)2
(vo=vQ+vIMp+ (1 +v)"Mj)

M,+1 2
X ((Mn +y(My = D) (Y110 — Yi2n) + ¥ Z (Yjon — len)> }

j=2

Notice that the terms inside the square brackets are exactly the same. We can rearrange
the above expression by combining like terms:

A (M4 (M — 1)+ M,
mm22 2 201202
v LA = YC M+ A+ )2 M)

My+1 2
X ((Mn +¥(My — 1)) (Y110 — Y120) + ¥ Z (Yjon — len)) ]

j=2

Simplifying the leading term leaves us with the least squares problem

_ i ((My +yMy —1))(Y11n — Yi2n) + 72;&!24_1())1'271 — yjin)?
min .
Y = 20y = yC+YMy + 1+ 7)2M7)

Notice that if you set My, = M,, = M,, in the general version of the least squares
problem, you arrive at the above formulation.
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