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This paper establishes nonparametric identification of individual treatment ef-
fects in a nonseparable model with a binary endogenous regressor. The outcome
variable may be continuous, discrete, or a mixture of both, while the instrumental
variable can take binary values. First, we study the case where the model includes
a selection equation for the binary endogenous regressor. We establish point iden-
tification of the individual treatment effects and the structural function when the
latter is continuous and strictly monotone in the latent variable. The key to our
results is the identification of a so-called counterfactual mapping that links each
outcome of the dependent variable with its counterfactual. Second, we extend our
identification argument when there is no selection equation. Last, we generalize
our identification results to the case where the outcome variable has a probability
mass in its distribution such as when the outcome variable is censored or binary.
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1. Introduction and related literature

The primary aim of this paper is to establish nonparametric identification of individual
treatment effects (ITE) in a nonseparable model with a binary endogenous regressor.

Quang Vuong: qvuong@nyu.edu
Haiqing Xu: h.xu@austin.utexas.edu
A previous version of this paper was circulated under the title “Identification of nonseparable models with
a binary endogenous regressor.” We thank the editor as well as three referees for their comments, which
have greatly improved the paper. We also thank Jason Abrevaya, Federico Bugni, Karim Chalak, Xiaohong
Chen, Victor Chernozhukov, Andrew Chesher, Denis Chetverikov, Xavier D’Haultfoeuille, Stephen Donald,
Junlong Feng, Jinyong Hahn, Shakeeb Khan, Brendan Kline, Qi Li, Robert Lieli, Matthew Masten, Isabelle
Perrigne, Geert Ridder, Xiaoxia Shi, Robin Sickles, Maxwell Stinchcombe, Elie Tamer, Edward Vytlacil, Kaixi
Wang, and Nese Yildiz as well as seminar participants at Duke, Rice, NYU, UCLA, Princeton, Rochester,
Emory, Pittsburgh, 2013 Bilkent University Annual Summer Workshop, 23rd Annual Meeting of the Mid-
west Econometrics Group, 2014 Cowles Summer Conference, 2014 CEMMAP Conference, the 6th French
Econometrics Conference, and the 5th Shanghai Econometrics Workshop. The first author gratefully ac-
knowledges financial support from the National Science Foundation through Grant SES 1148149, while the
second author thanks UT Austin for a 2013 Summer Research Fellowship.

Copyright © 2017 The Authors. Quantitative Economics. The Econometric Society. Licensed under the
Creative Commons Attribution-NonCommercial License 4.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE579

http://www.qeconomics.org/
mailto:qvuong@nyu.edu
mailto:h.xu@austin.utexas.edu
http://creativecommons.org/licenses/by-nc/4.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE579


590 Vuong and Xu Quantitative Economics 8 (2017)

We focus on the case where the instrumental variable has limited variations, namely
when it takes only binary values. As a byproduct, we also identify the structural function
linking the outcome variable to the binary endogenous regressor, other covariates, and
the unobserved term. Key to our results is the strict/weak monotonicity in the outcome
equation with respect to the unobserved term, which allows us to extrapolate informa-
tion from the complier group to the whole population. Our secondary objective is to
investigate the identification power provided by the selection equation. In particular,
we derive an easily verifiable high level condition that is sufficient for identification and
show that the monotonicity of the selection equation implies such a condition.

In program evaluations, nonseparable structures admit heterogeneous treatment ef-
fects that “vary across individuals that, measured by covariates, are identical” (Chesher
(2003)), and therefore allow the researcher to study the distribution of policy effects,
rather than the mean effects only. For instance, if one considers the return to education,
individuals who have the same demographics might benefit differently from school-
ing due to some unobserved job-related ability. As is argued in, for example, Heckman,
Smith, and Clements (1997), the conventional assumption of identical treatment effects
across individuals (with the same value of covariates) is convenient but implausible. In
the literature, however, it is emphasized that measuring the distribution of heteroge-
neous individual treatment effects is difficult. In this paper, we develop a counterfactual
mapping approach that identifies heterogeneous individual effects as well as their dis-
tribution among the population. In particular, our approach does not require estimation
of the structural function.

The idea behind our identification strategy differs from the literature. It is based on
identifying a counterfactual mapping that relates each individual outcome to its coun-
terfactual under the monotonicity of the outcome equation. This then identifies the ITE
and the structural function. Following Imbens and Rubin (1997), an exogenous change
in the instrumental variable provides information on the distribution of (potential) out-
comes at each value of the binary endogenous variable for a subpopulation called the
complier group. From these two conditional distributions, we can identify construc-
tively the counterfactual mapping by relating the quantiles of one distribution to the
other for the whole population. The idea of matching two quantile functions to exploit
limited variations of instrumental variables was introduced by Athey and Imbens (2006)
in the context of policy intervention analysis with repeated cross-sectional data in non-
linear difference-in-difference models. It was also used by Guerre, Perrigne, and Vuong
(2009) in the empirical auction literature with an endogenous number of bidders, and
exploited by D’Haultfœuille and Février (2015) and Torgovitsky (2015) in a triangular
model with continuous endogenous regressors.

Monotonicity between economic variables are prevalent in theoretical models. See,
for example, Milgrom and Shannon (1994), Athey (2001), and Reny (2011). In econo-
metric modeling, monotonicity is widely used in nonseparable models with continuous
endogenous regressors. See, for example, Chesher (2003) and Matzkin (2008). For the
binary endogenous variable case, Chernozhukov and Hansen (2005, 2013) and Chen,
Chernozhukov, Lee, and Newey (2014) establish identification of the structural function
without requiring a selection equation. Furthermore, Chesher (2005) establishes partial
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identification of the structural function at some conditional quantile of the error term
under local independence conditions on the instrumental variable. Subsequently, Jun,
Pinkse, and Xu (2011) tighten Chesher (2005)’s bounds by strengthening Chesher’s local
conditions to the full independence of the instrumental variable.

Without monotonicity in either the outcome equation or the selection equation,
Manski (1990) derives sharp bounds for the average treatment effect (ATE) with and
without instrumental variables. Using a binary instrumental variable and monotonicity
in the selection equation, Imbens and Angrist (1994) establish point identification of the
local average treatment effect (LATE). In a similar setting, Heckman and Vytlacil (1999)
develop the marginal treatment effect (MTE) and establish its identification by using lo-
cal variations in instrumental variables. In this paper, we show that monotonicity in the
outcome equation provides identification power to extrapolate information from local
treatment effects to population treatment effects. Furthermore, we relax strict mono-
tonicity to weak monotonicity in the outcome equation, thereby generalizing Vytlacil
and Yildiz (2007) to the fully nonseparable setting for an outcome variable with mass
points in its distribution.

In our setting with strict monotonicity in the outcome equation, we allow the in-
strumental variable to take only binary values, a case where identification at infinity
obviously fails (see, e.g., Chamberlain (1986), Heckman (1990)). With weak monotonic-
ity, our rank condition requires more variations in the instrumental variable, though a
finite support is still allowed. Our method is also related to the instrumental variable ap-
proach developed in Chernozhukov and Hansen (2005, 2013) and generalized by Chen
et al. (2014). The instrumental variable approach does not require a selection equation.
Identification then relies on a full rank condition of an equation system. In contrast, we
exploit the identification power from the monotonicity of some identified functions to
deliver a weaker sufficient condition for identification. In addition, our identification is
constructive.

The paper is organized as follows. In Section 2, we introduce our benchmark model
and present our main identification results. Section 3 extends our identification argu-
ment to the case where there is no selection equation. Section 4 generalizes our method
to the case where the distribution of the outcome variable has some mass points. Sec-
tion 5 concludes. Appendix A collects the proofs of our main results. Proofs of auxil-
iary lemmas are presented in Appendix B, available in a supplementary file on the jour-
nal website, http://qeconomics.org/supp/579/supplement.pdf. In Appendix B, we also
study partial identification when a support condition fails, and we characterize the re-
strictions imposed on data by the model with or without the selection equation.

2. Benchmark model and main results

In this section, we present the benchmark model with its assumptions. We provide some
examples for illustration and we state our main identification results regarding individ-
ual treatment effects and the structural function.

http://qeconomics.org/supp/579/supplement.pdf
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2.1 Triangular model

We consider the nonseparable triangular system with a binary endogenous variable,

Y = h(D�X�ε)� (1)

D= 1
[
m(X�Z)−η≥ 0

]
� (2)

whereY is the outcome variable,D ∈ {0�1} is the binary endogenous variable,X ∈RdX is
a vector of observed covariates, and Z ∈ {z1� z2} is a binary instrumental variable for the
binary endogenous variableD.1 The error terms ε andη are scalar valued disturbances.2

The functions h and m are unknown structural relationships. We define the individual
treatment effect (ITE) as

ITE ≡ h(1�X�ε)− h(0�X�ε)�
See, for example, Rubin (1974) and Heckman, Smith, and Clements (1997).

Following standard convention, we refer to (1) and (2) as the outcome equation and
the selection equation, respectively.3 For the identification of ITE in our benchmark
model, we make the following assumptions.

Assumption A. Equation (1) holds where (i) h is continuous and strictly increasing in ε,
(ii) Z is conditionally independent of ε given X , that is, Z⊥ε|X , and (iii) the conditional
cumulative distribution function (c.d.f.) Fε|X(·|x) is continuous on R.

Assumption B. Equation (2) holds where (i) Z is conditionally independent of η given
(X�ε), that is,Z⊥η|(X�ε), and (ii) the conditional c.d.f. Fη|X�ε(·|x�e) is continuous on R.

In Assumption A(i), the continuity and strict monotonicity of h follow, for example,
Matzkin (1999, 2003), Chesher (2003), and Chernozhukov and Hansen (2005). In Sec-
tion 4, we relax this assumption by allowing h to be flat inside the support of ε. The es-
sential restriction in Assumption A(i) is the so-called rank preservation/invariance con-
dition; see, for example, Heckman, Smith, and Clements (1997) and Chernozhukov and
Hansen (2005), among others. Specifically, for any given τ ∈ (0�1), it requires that the
relative rank/quantile of h(1�x� τ) in the distribution of Y1x ≡ h(1�x�ε) be the same as
that of h(0�x� τ) in the distribution of Y0x ≡ h(0�x�ε). If the error term is additive, as is
often assumed, that is,Y = h∗(D�X)+ε for some real valued function h∗, then Assump-
tion A(i) holds. Assumption A(ii) is standard. Assumptions A(ii) and B(i) are equivalent

1An early use of this triangular model is the seminal paper by Heckman (1979) on sample selection in
a parametric setting. Considering a binary valued instrument highlights the identification power of the
instrumental variable. For the importance of having binary instruments in the treatment effect literature,
see, for example, Imbens and Wooldridge (2009).

2Note that η being scalar is not essential and can be relaxed by the monotonicity assumption in Imbens
and Angrist (1994). In the nonseparable model context, multidimensional ε was considered by Hoderlein
and Mammen (2007) and Kasy (2014).

3Note that (2) covers the general setting where D = g(X�Z�η) under standard assumptions. Specifi-
cally, suppose that g is nonincreasing and left-continuous in η. For each (x� z), let m(x�z) = inf{η ∈ R :
g(x�z�η)= 0}. It follows that g(x�z�η)= 1{m(x�z)−η≥ 0} for all (x� z). See Vytlacil (2002).



Quantitative Economics 8 (2017) Nonseparable models with binary endogeneity 593

to the conditional independence of Z and (ε�η) givenX , that is, Z⊥(ε�η)|X , which is a
standard requirement for the instrumental variable Z.4 Assumptions A(iii) and B(ii) are
weaker than the standard assumption that conditional on X , (ε�η) are absolutely con-
tinuous with respect to Lebesgue measure. Assumptions A(i) and A(iii) together rule out
mass points in the distribution of Y .

Let p(x�z)≡ P(D = 1|X = x�Z = z) denote the propensity score for z ∈ {z1� z2} and
x ∈ SX .5 Following Imbens and Angrist (1994), we define the complier group under
Assumption B as Cx ≡ {X = x�m(x�z1) < η ≤ m(x�z2)}.6 Under Assumptions A(ii) and
B(i), similar to Imbens and Rubin (1997), the conditional distribution of Ydx ≡ h(d�x�ε)
given the complier group is identified on its support from the data, that is,

FYdx|Cx(t)= P(Y ≤ t;D= d|X = x�Z = z2)− P(Y ≤ t;D= d|X = x�Z = z1)

P(D= d|X = x�Z = z2)− P(D= d|X = x�Z = z1)
(3)

for d = 0�1 and all t ∈ R. Let SYdx|Cx be the support of Ydx given Cx. To identify ITE, we
make two additional assumptions.

Assumption C (Rank Condition). For every x ∈ SX , p(x�z1) �= p(x�z2).

Assumption D (Support Condition). For every x ∈ SX and d = 0�1, SYdx|Cx = SYdx|X=x.

Assumption C is a minimal rank condition as it requires the propensity score p(x�z)
to vary with z. In general, we have SYdx|Cx ⊆ SYdx|X=x (see the proof of Lemma 1). Thus
Assumption D requires that the complier group Cx ≡ {X = x�m(x�z1) < η≤m(x�z2)} be
sufficiently large so that these two supports are equal. Note that given the monotonicity
of h in Assumption A, the support condition in Assumption D is equivalent to Sε|Cx =
Sε|X=x. Such a condition is minimal as it is indispensable for the identification of ITE
(and ATE as well) in the whole population, even if the error term εwas directly observed
in the data. Because the complier group depends on the values z1 and z2, we say that
Z is effective if Assumption D is satisfied. We discuss it further in Appendix B.3. It is,
however, worth noting that a sufficient condition for Assumption D is that conditional
on X , (ε�η) has a rectangular support as is often assumed for the triangular model (1)
and (2).7

2.2 Examples

To illustrate Assumptions A–D, we provide two examples of nonseparable structures.
These examples are discussed further in Section 2.4.

Example 1 (Additive Error With Generalized Heterogeneity). A running example of
the triangular model (1) and (2) is the return to education (see, e.g., Heckman (1979),

4This assumption is stronger than the local independence restriction imposed by Chesher (2005).
5Hereafter, for a generic random variable W with distribution Fw , we denote its support by SW , defined

as the closure of the open set {w : FW (w) is strictly increasing in a neighborhood of w}.
6Without loss of generality (w.l.o.g.), we implicitly assumem(x�z1) <m(x�z2).
7This follows because Sε|X=x�m(x�z1)<η≤m(x�z2) = Sε|X=x�η=ηo = Sε|X=x for any ηo ∈ Sη|X=x.
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Chesher (2005)). Let Y , D, and (X�Z) be earnings, schooling, and demographics, re-
spectively, where the schooling dummy D indicates whether or not an individual has
graduated from high school. Moreover, let ε be job-related ability and letη be education-
related talent. Intuitively, these two latent variables are correlated to each other, which
accounts for the endogeneity problem. The difference between demographics X and
Z is that Z affects the education level of an individual, but not earnings. For instance,
Z could indicate whether an individual was born in the first quarter of a calendar year
following Angrist and Krueger (1991). Let (1) be

Y = h∗(D�X)+ σ(D�X)× ε≡ h(D�X�ε)

for some real valued function h∗ and positive function σ . In particular, the “heterogene-
ity” σ depends on the endogenous binary variableD.

Assumption A(i) holds in this specification, which extends Heckman (1979). To be
a valid instrument in the triangular model (1) and (2), Z needs to satisfy the exogene-
ity condition Z⊥(ε�η)|X , which is Assumptions A(ii) and B(i), as well as the relevance
condition, which is Assumption C. Angrist and Krueger (1991) take the quarter-of-birth
dummies as exogenous in their triangular model determining weekly wage and educa-
tion level. They also provide some evidence that quarter of birth does affect education
level, thereby suggesting that P(D = 1|X = x�Z = z1) �= P(D = 1|X = x�Z = z2) so that
Assumption C is satisfied by the first-quarter-of-birth dummyZ. Last, Assumption D re-
lates to the effectiveness of the instrumental variable. It says that the potential earnings
Ydx of individuals in the complier group with characteristics x have the same range of
values as the potential earnings Ydx of individuals in the population with characteris-
tics x. Since Cx = {X = x�Z = z1�D= 0�η≤m(x�z2)} ∪ {X = x�Z = z2�D= 1�m(x�z1) <

η}, the complier group is composed of those individuals with characteristics x who are
either (i) born in the first quarter and drop out of high school but who would have com-
pleted high school if born in any other quarters, or (ii) born in any other quarter and
complete high school but who would have dropped out of high school if born in the
first quarter. There does not seem to be a reason why such individuals have different
potential earnings with or without high school graduation than the rest of the popu-
lation so that Assumption D holds. In any case, Assumption D is testable as discussed
after Lemma 1. Moreover, if one believes that (ε�η) has a full support conditional on
X , namely R2 as in the original Heckman (1979) specification, then Assumption D is
automatically satisfied.

Example 2 (First-Price Auction With Risk Aversion). Another example arises in a first
price auction with risk averse bidders. Consider each bidder’s equilibrium bid in the
private value paradigm: In a symmetric equilibrium,

Bi = h(D�X�εi) ∀i= 1� � � � � I�

where Bi is bidder i’s equilibrium bid, D indicates the level of competition (e.g., D =
1{I = Ih}, where I ∈ {Ih� I�}), X are characteristics of the auctioned object such as its
appraisal value, and εi is bidder i’s private value. See, for example, Guerre, Perrigne, and
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Vuong (2000, 2009). From an empirical point of view, one expects that private values
depend on the level of competition, as higher valued objects may attract more bidders.
To account for endogenous participation, the level of competitionD is modeled as

D= 1
{
η≤m(X�Z)}�

where Z affects entry but not bidders’ valuations so that Z⊥(εi�η)|X . For instance, Z
could be the reserved price, as shown in Bajari and Hortacsu (2003). Furthermore, it is
assumed that (εi�η) has a rectangular support conditional on (X�Z).

This example is especially relevant as strict monotonicity and nonseparability in the
scalar private value ε (in Assumption A) arise from auction theory. Clearly, Assump-
tions B–D are also satisfied.

2.3 Main identification results

The key to our identification strategy is to match Y0x ≡ h(0�x�ε) with Y1x ≡ h(1�x�ε)
through a mapping φx, that is, Y1x =φx(Y0x). We call φx a counterfactual mapping be-
cause we can find the counterfactual outcome Y1x from Y0x using φx and vice versa.
Note that φx is uniquely defined under Assumption A(i) by φx(y)≡ h(1�x�h−1(0�x� y))
for each y ∈ SY0x|X=x, where h−1(0�x� ·) is the inverse function of h(0�x� ·). Moreover,
the counterfactual mappingφx is continuous and strictly increasing from SY0x|X=x onto
SY1x|X=x. Thus, the ITE satisfies

ITE =D× (
Y −φ−1

X (Y)
) + (1 −D)× (

φX(Y)−Y )
� (4)

where φ−1
x (·) denotes the inverse of φx(·). In particular, we recover ITE for every indi-

vidual in the population as soon as φx(·) is identified for all x ∈ SX .
For a generic random variable W , let QW be the quantile function of W , that is,

QW (τ) = inf{w ∈ R : P(W ≤ w) ≥ τ} for any τ ∈ [0�1]. Let S◦
Y0x|X=x be the interior of

SY0x|X=x.

Lemma 1. Suppose that Assumptions A–D hold and, w.l.o.g., letp(x�z1) < p(x�z2). Then
we have SYdx|X=x = SY |D=d�X=x for d = 0�1 and the counterfactual mappingφx(·) is iden-
tified on SY0x|X=x by the continuous extension of

φx(y)=QY1x|Cx
(
FY0x|Cx(y)

) ∀y ∈ S◦
Y0x|X=x� (5)

whereQY1x|Cx(·) and FY0x|Cx(·) are given by (3).

Lemma 1 establishes the identification of the counterfactual mapping φx on
S◦
Y0x|X=x as well as its support SY0x|X=x in a constructive way. It relies on matching the

quantiles of Y0x and Y1x in the complier group. Moreover, since SYdx|X=x = SY |D=d�X=x,
then Assumption D can be written as SYdx|Cx = SY |D=d�X=x for d = 0�1. Because FYdx|Cx
is identified by (3), it follows that Assumption D is testable.

The next theorem follows immediately from Lemma 1 and (4).
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Theorem 1. Suppose that Assumptions A–D hold. Then, with probability 1, the ITE of
every individual in the population can be recovered by Lemma 1 and (4).

Given that we recover ITE, the distribution of ITE is identified. Hence, some impor-
tant features of the distribution are also identified, such as

ATE = E
{
D

[
Y −φ−1

X (Y)
] + (1 −D)[φX(Y)−Y ]}

�

ATT = E
[
Y −φ−1

X (Y)|D= 1
]
�

where ATE and ATT are the average treatment effect (ATE) and the average treatment
effect on the treated (ATT), respectively. See, for example, Heckman and Vytlacil (2007)
and Imbens and Wooldridge (2009).8 It is also worth noting that identification of the
counterfactual mappingφx and all such treatment effects does not require the exogene-
ity ofX in either (1) or (2).

As a byproduct of Lemma 1, we can also identify the structural function h(d�x� ·) for
d = 0�1 and x ∈ SX . We need to make an additional assumption, namely, the exogeneity
ofX and a distributional assumption on ε.

Assumption E. We have that (i) ε is independent ofX , that is, ε⊥X ,and (ii) ε∼U[0�1].

Assumption E(i) is the exogeneity ofX in (1), which is indispensable for the identifi-
cation of the structural function h. On the other hand, exogeneity of X in the selection
equation (2) is not required.9 In Assumption E(ii), the uniform distribution of ε on [0�1]
is a normalization that is standard in nonseparable models. See, for example, Chesher
(2003).10

We now provide a lemma that shows that identification of φx(·) is necessary and
sufficient for identifying h(d�x� ·) under Assumptions A and E.

Lemma 2. Suppose that Assumptions A and E hold. Then, for any x ∈ SX , h(0�x� ·) and
h(1�x� ·) are identified on [0�1] if and only if φx(·) is identified on SY0x .

Lemma 2 reduces the identification of h(1�x� ·) and h(0�x� ·) into the identification
of one function, namely, the counterfactual mapping φx(·). To see the if part, note that
conditional onX = x,

Y1x ≡ h(1�x�ε)= YD+φx(Y)(1 −D)�
Y0x ≡ h(0�x�ε)=φ−1

x (Y)D+Y(1 −D)�
(6)

8The quantile treatment effect (QTE) considered by Chernozhukov and Hansen (2005) can also be iden-
tified given that we can recover YdX using φX .

9If one was interested in identifying m in (2), then η⊥X would be useful as such exogeneity combined
with η⊥Z|X , which follows from Assumptions A(ii) and B(i), would give η⊥(X�Z).

10Matzkin (2003) proposes an alternative normalization on the structural function h, instead of normal-
izing the distribution of ε.
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Thus, the identification of φx(·) provides the marginal distributions of Y0x and Y1x

by Assumption E(i), which further identify h(0�x� ·) and h(1�x� ·) by Assumption E(ii).
Specifically, for d = 0�1 we have h(d�x�e)=QYdx(e) for every e ∈ (0�1).

By Lemmas 2 and 1, the identification of h follows immediately. Let p(x)≡ P(D= 1|
X = x).

Theorem 2. Suppose that Assumptions A–E hold. For every x ∈ SX and for d = 0�1,
h(d�x� ·) is identified on [0�1]. Specifically, h(d�x�0)= Ydx, which is the lower bound of
SY |D=d�X=x, while h(d�x�τ) is the τth quantile of the (unconditional) distribution FYdx of
Ydx, where

FY1x(t)= [
1 −p(x)] × P

(
Y ≤φ−1

x (t)|D= 0�X = x)

+p(x)× P(Y ≤ t|D= 1�X = x)�
FY0x(t)= [

1 −p(x)] × P(Y ≤ t|D= 0�X = x)
+p(x)× P

(
Y ≤φx(t)|D= 1�X = x)

for τ ∈ (0�1].

Theorem 2 shows that h(1�x� τ) is the τ-quantile of FY1x(·), which is a weighted av-
erage of FY |D=0�X=x(φ−1

x (·)) and FY |D=1�X=x(·) with respective weights 1 − p(x) and
p(x). Similarly, h(0�x� τ) is the τ-quantile of FY0x(·), which is a weighted average of
FY |D=0�X=x(·) and FY |D=1�X=x(φx(·)) with respective weights 1 −p(x) and p(x).

Figure 1 illustrates our identification strategy behind Theorems 1 and 2 when there
are no covariates X . It displays the conditional distributions of Y0 ≡ h(0� ε) and Y1 ≡
h(1� ε) given the complier group C, respectively, in the top graph, and the conditional
distributions of Y given D= 0 and D= 1, respectively, in the bottom graph. These four
distributions are identified from the data. Identification of h(0� e) for an arbitrary value
e ∈ [0�1] is equivalent to identifying e= h−1(0� y0) for arbitrary y0 ∈ SY0 = SY |D=0 = SY0|C .
Point A gives FY |D=0(y0) while point B gives FY0|C(y0). Point C gives y1 = φ(y0) while
point D gives FY |D=1(y1). Thus, e obtains by a weighted average of FY |D=0(y0) and
FY |D=1(y1), that is, e= P(D= 0)× FY |D=0(y0)+ P(D= 1)× FY |D=1(y1), where P(D= 0)
and P(D = 1) come from the data. Hence, e is identified. Point F is the corresponding
weighted average of A and E and gives FY0(y0). Similarly, point G gives FY1(y1). When y0

varies, points F and G trace out the population distributions of Y0 and Y1, respectively.
A special case of our results arises when one imposes additive separability of ε in

h, that is, h(D�X�ε)= h∗(D�X)+ ε. It follows that the counterfactual mapping takes a
specific functional form. Namely, φx(y)= h∗(1�x)− h∗(0�x)+ y.11 In this case, there is
no unobserved heterogeneity in individual treatment effects as h(1�x�ε)− h(0�x�ε) =
h∗(1�x) − h∗(0�x), which does not depend on ε. Hence, conditional on X , individual

11Because of the identification of φx, the additive separability of ε implies testable model restrictions.
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Figure 1. Identification illustration.

treatment effects are the same as LATE and ATE, that is,

h∗(1�x)− h∗(0�x) = E
[
h(1�x�ε)− h(0�x�ε)|Cx

]

= E(Y |X = x�Z = z2)−E(Y |X = x�Z = z1)

p(x�z2)−p(x�z1)
�

See Imbens and Angrist (1994). In this case, Assumption D is not needed for extrapolat-
ing information from the complier group to the whole population. When Assumption D
fails in the general triangular model (1) and (2), we provide some results on partial iden-
tification of the counterfactual mapping φx(·) and the structural function h(d�x� ·) in
Appendix B.3.

2.4 Examples

To illustrate Lemma 1, and Theorems 1 and 2, we consider again the two examples of
Section 2.2.

Example 1 (Continued). Given Assumptions A–D, Theorem 1 establishes the identifica-
tion of the ITE, that is, the potential gain from completing high school, for every individ-
ual in the population by observing each individual’s current earning Y , schooling status
D, and demographics X . Specifically to apply (4), we need to know the counterfactual
mapping φx and its inverse φ−1

x . For instance, from Lemma 1 we can use a sample ana-
log of (3) to estimate nonparametrically the distribution FYdx|Cx of potential outcomes in
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the complier group for d = 0�1.12 Note that this requires neither exogeneity of X in the
triangular model (1) and (2), nor a normalization of ε such as E(ε)= 0.

On the other hand, to identify the structural functions h∗(·� ·) and σ(·� ·) on their re-
spective supports, Theorem 2 requires Assumption E, namely (i) exogeneity of X in (1)
and (ii) a normalization of the distribution of ε. Under such assumptions, the general
structural function h(d�x� ·) is obtained as the quantile of the distribution of Ydx. Again,
we can use a sample analog of the expression given in Theorem 2 to estimate the latter.
Regarding (i), Angrist and Krueger (1991) take several demographics as exogenous in
their weekly wage equation. Regarding (ii), the normalization of the distribution of ε is
tailored to the identification of the general structural function h in (1). In the present ex-
ample we can exploit the special form of h, namely h(D�X�ε)≡ h∗(D�X)+σ(D�X)×ε,
to obtain a weaker normalization than Assumption E(ii). For instance, assuming E(ε)=
0 and Var(ε)= 1 suffices since h∗(d�x) and σ(d�x) are identified as the mean and stan-
dard deviation of Ydx whose marginal distribution is identified on its full support SYdx
as a consequence of Lemma 1 and Assumption E(i).

Though we have not required exogeneity of X in the selection equation (2), such
an exogeneity (or a weaker form of it) is useful for identifying the function m, which
determines whether an individual completes high school.

Example 2 (Continued). Given Assumptions A–D, Lemma 1 identifies the counterfac-
tual mapping φx for every x ∈ SX . Consequently, for every individual with observed bid
B, competition level D, and auction characteristics X , we can identify his/her counter-
factual bid Bc , that is, what this individual would bid under the alternative competition
level 1 −D, from

Bc =D×φ−1
X (B)+ (1 −D)×φX(B)�

This is useful to conduct some counterfactuals. As in the previous example, we can use
Lemma 1 to estimate nonparametrically φx and its inverse φ−1

x from sample analogs
of (3) of the distributions FYdx|Cx for d = 0�1. Alternatively, we can use the extremum
estimator developed in Feng, Vuong, and Xu (2016). In contrast to Guerre, Perrigne, and
Vuong (2000, 2009), such a counterfactual bid does not require estimation of the inverse
bidding strategy h−1(d�x� ·). It also does not require thatX be exogenous, while allowing
for competition level to be correlated with bidders’ private values.

3. Identification without selection equation

In this section, we drop the selection equation (2) with its Assumption B and provide
a general sufficient condition for the identification of the counterfactual mapping φx
as well as the structural function h. Such a condition is related to, but weaker than, the
rank condition for global identification developed in Chernozhukov and Hansen (2005,

12See also Feng, Vuong, and Xu (2016), who consider an alternative extremum estimator of ITE and its
density in the triangular model (1) and (2). In particular, they show that the counterfactual mapping as well
as the ITEs can be estimated uniformly at the

√
n rate when the covariatesX are discrete.
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Theorem 2). Throughout, we maintain Assumptions A, C, and E. In Appendix B.5, we
characterize the restrictions on the data imposed by the model with or without the se-
lection equation that can guide a researcher about which model to use.

Under Assumptions A and E, we have P[Y ≤ h(D�X�τ)|X = x�Z = z] = τ for all z ∈
SZ|X=x and τ ∈ (0�1), which is called the main testable implication by Chernozhukov
and Hansen (2005, Theorem 1). BecauseD is binary, we have

P
[
Y ≤ h(1�x� τ);D= 1|X = x�Z = z]

+ P
[
Y ≤ h(0�x� τ);D= 0|X = x�Z = z] = τ

(7)

for all z ∈ SZ|X=x. W.l.o.g., let p(x�z1) < p(x�z2). Thus, we obtain

P
[
Y ≤ h(1�x� τ);D= 1|X = x�Z = z1

] + P
[
Y ≤ h(0�x� τ);D= 0|X = x�Z = z1

]

= P
[
Y ≤ h(1�x� τ);D= 1|X = x�Z = z2

]

+ P
[
Y ≤ h(0�x� τ);D= 0|X = x�Z = z2

]
�

that is,


0
(
h(0�x� τ)�x� z1� z2

) = 
1
(
h(1�x� τ)�x� z1� z2

)
� (8)

where 
d(·�x� z1� z2) is defined for y ∈R as


0(y�x� z1� z2)

≡ P[Y ≤ y;D= 0|X = x�Z = z1] − P[Y ≤ y;D= 0|X = x�Z = z2]�

1(y�x� z1� z2)

≡ P[Y ≤ y;D= 1|X = x�Z = z2] − P[Y ≤ y;D= 1|X = x�Z = z1]�

Note that 
d is (up to sign) the numerator of the right-hand side of (3). By definition,

d(·�x� z1� z2) is identified on R for d = 0�1. Let y = h(0�x� τ) in (8). Thus, h(1�x� τ) =
φx(y). Since τ is arbitrary, then


0(y�x� z1� z2)= 
1
(
φx(y)�x� z1� z2

) ∀y ∈ SY0x|X=x� (9)

Our general identification result is based on (9) and exploits the strict monotonic-
ity of φx(·).13 As a motivation, recall that under Assumptions B and D, 
d(y�x� z1� z2) is
continuous and strictly increasing in y ∈ S◦

Ydx|X=x, thereby identifying the counterfactual

mapping φx(·) = 
−1
1 (
0(·�x� z1� z2)�x� z1� z2) on SY0x|X=x; see Lemma 1. This suggests

that identification of the counterfactual mappingφx can be achieved under weaker con-
ditions than Assumption B.

13In contrast, Chernozhukov and Hansen (2005) first write (7) for Z = z1 and Z = z2, and then find suffi-
cient conditions for the resulting system of two (nonlinear) equations to have a unique local/global solution
in the two unknowns h(1�x� τ) and h(0�x� τ).
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Definition 1 (Piecewise Monotone). Let g : R → R and S ⊆ R. We say that g is piece-
wise weakly (strictly) monotone on S if S can be partitioned into a (finite or infinite) se-
quence of non-overlapping intervals with increasing left endpoints such that g is weakly
(strictly) monotone in each interval.

The next lemma exploits the strict monotonicity of φx. Its proof is given in Ap-
pendix B.1.

Lemma 3. Fix x ∈ SX . W.l.o.g, let p(x�z1) < p(x�z2). Suppose (9) holds where φx(·) :
SY0x|X=x → SY1x|X=x is continuous and strictly increasing. Then
1(·�x� z1� z2) is piecewise
weakly (strictly) monotone on SY1x|X=x if and only if 
0(·�x� z1� z2) is piecewise weakly
(strictly) monotone on SY0x|X=x.

We now provide a necessary and sufficient condition for identification of φx when

d(·�x� z1� z2) is piecewise weakly monotone on SYdx|X=x for some d. See Appendix B.1
for its proof.

Lemma 4. In addition to the assumptions of Lemma 3, suppose that 
d(·�x� z1� z2) and
SYdx|X=x for d = 0�1 are known. Suppose also that 
d(·�x� z1� z2) is piecewise weakly
monotone on SYdx|X=x for some d. Then φx(·) is identified on SY0x|X=x if and only if

d(·�x� z1� z2) is piecewise strictly monotone on SYdx|X=x.

Lemma 4 is useful when identification is based on (9) only.
In view of Lemma 4, we make the following assumption.

Assumption F. We have that
d(·�x� z1� z2) is piecewise strictly monotone on SYdx|X=x
for some d.

Assumption F is weak. In particular, if 
d(·�x� z1� z2) is continuously differentiable as
in Chernozhukov and Hansen (2005, Theorem 2-i), and their full rank condition holds,
then Assumption F holds.14 Moreover, by the proof of Theorem 3, Assumption F is equiv-
alent to the piecewise strict monotonicity of 
d(·�x� z1� z2) on SY |D=d�X=x, which is
testable.

By replacing Assumptions B and D with the weaker Assumption F, we now extend
Theorems 1 and 2. Note that the nonflatness of 
d(·�x� z1� z2) on SY |D=d�X=x for d = 0�1
plays a role similar to Assumption D.

Theorem 3. Suppose that Assumptions A, C, and F hold. Let x ∈ SX . W.l.o.g., let
p(x�z1) < p(x�z2). Then the support SYdx|X=x is identified by SY |D=d�X=x, and φx(·) is
identified on SY0x|X=x, thereby recovering the ITE of individuals with X = x. In addition,
suppose that Assumption E holds. Then h(d�x� ·) is identified on [0�1] for d = 0�1.

14More precisely, it can be shown that continuous differentiability and full rank on any closed rectangle
L contained in the support SY0x|X=x × SY1x|X=x imply that 
d(·�x� z1� z2) for d = 0�1 are piecewise strictly
monotone on the projection of L onto SYdx|X=x. Thus, Assumption F is satisfied. See Appendix B.1 for a
proof. Refinements can be developed by allowing for more flexible sets L.
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To achieve point identification without the selection equation we replace Assump-
tions B and D with Assumption F. There are some “natural” selection rules that violate
Assumption B but for which Assumption F still holds.15 For instance, Gautier and Hoder-
lein (2015) consider the selection mechanism

D= 1(β0 +β1Z ≥ 0)�

where covariates X are suppressed, β0, β1 are random coefficients, and (β0�β1� ε)

are independent of Z. Clearly, Assumption B is not satisfied. Suppose in addition that
(β0�β1� ε) conforms to a joint normal distribution. For d = 0�1, let rd be the correlation
coefficient between ε and β0 +β1 ×d. Then it can be shown that 
d(·� z1� z2) for d = 0�1
are piecewise strictly monotone if and only if r0 �= r1.

4. Identification under weak monotonicity

This section provides another extension of Lemma 1 and Theorem 2 by generalizing our
counterfactual mapping approach. Specifically, we relax the continuity and strict mono-
tonicity assumption of h in Assumption A so that our method applies to an outcome
variable with probability masses in its distribution. This is the case when the outcome
variable is censored or binary, a challenging situation according to Wooldridge (2015).
Specifically, we make the following assumption.

Assumption A′ . Equation (1) holds where (i) h is left-continuous and weakly increasing
in ε and (ii) Assumption A(ii) and (iii) holds.

The left-continuity of h is a normalization for the identification of the structural
function at its discontinuity points. Throughout we maintain the selection equation
with its Assumption B.

Because Assumption A′(i) relaxes Assumption A(i), we need to strengthen other as-
sumptions, namely, Assumptions C–E, to achieve point identification of h.

Assumption D′ . We have that S(ε�η)|X is a rectangle.

Assumption E′ . (i) We have that (ε�η) is independent of X , that is, (ε�η)⊥X ; (ii) As-
sumption E(ii) holds.

Assumption D′ simplifies the exposition. It is slightly stronger than the support con-
dition in Assumption D as noted there. Assumption E′(i) strengthens Assumption E(i) by
requiring η⊥X|ε. In particular, it also requires exogeneity ofX in the selection equation
(2). Combining Assumptions A′(ii), B(i), and E′(i), we have (ε�η)⊥(X�Z). A key insight
from Vytlacil and Yildiz (2007) is that Assumption E′(i) allows us to use variations in the
exogenous covariates X to identify h(d�x� ·) when the instrumental variable Z has suf-
ficient variations (more than binary).

15We thank a referee for this point as well as for the following example.
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Assumption C′ (Generalized Rank Condition). For any x ∈ SX , there exists x̃ ∈ SX such
that (i) the set Sp(X�Z)|X=x∩Sp(X�Z)|X=x̃ contains at least two different values, and (ii) for
any pair τ1� τ2 ∈ (0�1),

h(0� x̃� τ1)= h(0� x̃� τ2) =⇒ h(1�x� τ1)= h(1�x� τ2)�

Assumption C′ is the rank condition for the identification of h(1�x� ·). The rank con-
dition for the identification of h(0�x� ·) is similar. Condition (i) requires that there exist
z1� z2 ∈ SZ|X=x and z̃1� z̃2 ∈ SZ|X=x̃ such that p(x�z1) = p(x̃� z̃1) < p(x�z2) = p(x̃� z̃2).
Condition (ii) is testable since it is equivalent to the following condition:16 For any
τ1� τ2 ∈ (0�1),

QY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(τ1)=QY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(τ2)

=⇒ QY1x|m(x�z1)<η≤m(x�z2)(τ1)=QY1x|m(x�z1)<η≤m(x�z2)(τ2)�

SinceQYdx|m(x�z1)<η≤m(x�z2) =QYdx|X=x�m(x�z1)<η≤m(x�z2) is identified by the inverse of (3),
we can verify whether there is x̃ ∈ SX satisfying Assumption C′. When h(d�x� ·) is strictly
monotone in ε, Assumption C′ reduces to Assumption C by setting x̃= x.

Fix x and let x̃ satisfy Assumption C′. We define a generalized counterfactual map-
ping φx�x̃(·) as φx�x̃(y) = h(1�x�h−1(0� x̃� y)) for all y ∈ SY0x̃ .17 If x̃ = x, then φx�x̃(·)
reduces to the counterfactual mapping φx(·) of Section 2. Let (z1� z2) ∈ SZ|X=x and
(z̃1� z̃2) ∈ SZ|X=x̃ with p(x�z1) = p(x̃� z̃1) < p(x�z2) = p(x̃� z̃2). The next theorem gen-
eralizes Lemma 1 and Theorem 2.

Theorem 4. Suppose that Assumptions A′, B, D′, and E′ hold. Fix x ∈ SX . Suppose also
that Assumption C′ holds with x̃. Then φx�x̃(·) is identified by

φx�x̃(·)=QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(·)

)
(10)

for all y ∈ SoY |D=0�X=x̃. Moreover, for any τ ∈ (0�1), h(1�x� τ) is identified as the τth quan-
tile of the distribution

FY1x(·)= P(Y ≤ ·;D= 1|X = x�Z = z)+ P
[
φx�x̃(Y)≤ ·;D= 0|X = x̃�Z = z̃]�

where z ∈ SZ|X=x and z̃ ∈ SZ|X=x̃ satisfy p(x�z)= p(x̃� z̃).

To illustrate Theorem 4, we discuss the generalized rank condition (Assumption C′)
with two examples: The first example is a fully nonseparable censored regression model
while the second example is a weakly separable binary response model. The first ex-
ample seems to be new, though special cases have been studied previously under
some parametric and/or separability assumptions. The second example was studied by
Vytlacil and Yildiz (2007).

16To see this, first note that Qh(d�x�ε)(τ1) = Qh(d�x�ε)(τ2) is equivalent to h(d�x�τ1) = h(d�x�τ2)

under Assumption E′(ii). Moreover, Qh(d�x�ε)|A(τ) = h(d�x�Qε|A(τ)) for any event A by the weak
monotonicity of h(d�x� ·). Therefore, Qh(d�x�ε)|m(x̃�z̃1)<η≤m(x̃�z̃2)(τ) = h(d�x�Qε|m(x̃�z̃1)<η≤m(x̃�z̃2)(τ)) =
Qh(d�x�ε)(Qε|m(x̃�z̃1)<η≤m(x̃�z̃2)(τ)).

17Due to the weak monotonicity of h in ε, we define h−1(0� x̃� y)= infτ{τ : h(0� x̃� τ)≥ y}.
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Example 3 (Fully Nonseparable Censored Regression Model). Consider the model

Y = h∗(D�X�ε)× 1
[
h∗(D�X�ε)≥ 0

]
�

D= 1
[
m(X�Z)≥ η]

�

where h∗ is continuous and strictly increasing in ε. The structural unknowns are the
triple (h∗�m�Fεη).

Fix x ∈ SX . For d = 0�1, let τdx solve h∗(d�x�τdx) = 0, where τdx ∈ (0�1). Thus, As-
sumption C′ is satisfied if there exists an x̃ ∈ SX such that τ0x̃ ≤ τ1x and p(x�z1) =
p(x̃� z̃1) < p(x�z2)= p(x̃� z̃2) for some z1� z2 ∈ SZ|X=x, z̃1� z̃2 ∈ SZ|X=x̃.

Example 4 (Vytlacil and Yildiz (2007)). Let Y and D denote a binary outcome variable
and a binary endogenous regressor, respectively. Consider

Y = 1
(
h∗(D�X)≥ ε)�

D= 1
(
m(X�Z)≥ η)

�

To identify h∗(1�x) for some value x, Assumption C′ requires that there exists x̃ ∈ SX
such that h∗(1�x) = h∗(0� x̃) and p(x�z1) = p(x̃� z̃1) < p(x�z2) = p(x̃� z̃2) for some
z1� z2 ∈ SZ|X=x and z̃1� z̃2 ∈ SZ|X=x̃. Thus, Assumption C′ represents the support con-
dition in Vytlacil and Yildiz (2007).18

Motivated by Shaikh and Vytlacil (2011), Assumption C′(ii) can be relaxed, leading
to partial identification. We can also drop the support condition Assumption D′ to con-
struct bounds under Assumption C′(i). Appendix B.4 studies such issues.

5. Conclusion

This paper establishes nonparametric identification of the counterfactual mapping, in-
dividual treatment effects, and structural function in a nonseparable model with a bi-
nary endogenous regressor. Our benchmark model assumes strict monotonicity in the
outcome equation and weak monotonicity in the selection equation. Our counterfactual
mapping then links each outcome with its counterfactual. We also consider two exten-
sions: One without the selection equation and the other with weak monotonicity in the
outcome equation.

Appendix A: Proofs

Proof of Lemma 1. Fix x ∈ SX and z1� z2 ∈ SZ|X=x with p(x�z1) < p(x�z2). First,
we show that SYdx|Cx ⊆ SY |D=d�X=x for d = 0�1. Because of Assumption A(i), this is
equivalent to Sε|Cx ⊆ Sε|D=d�X=x. Consider, say, d = 1. We have Sε|Cx = Sε|Cx�Z=z2 by
(ε�η)⊥Z|X . But {m(x�z1) < η ≤ m(x�z2)�Z = z2�X = x} ⊆ {η ≤ m(x�z2)�Z = z2�X =
x} = {D = 1�Z = z2�X = x} ⊆ {D = 1�X = x}, thereby implying Sε|Cx ⊆ Sε|D=1�X=x as
claimed. A similar reasoning applies to d = 0. Next, we have SYdx|Cx ⊆ SY |D=d�X=x =

18Note that Vytlacil and Yildiz (2007) requireX to be excluded from the selection equation.
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SYdx|D=d�X=x ⊆ SYdx|X=x, where the equality follows from (1) and the definition of Ydx.
By Assumption D we obtain SYdx|Cx = SY |D=d�X=x = SYdx|D=d�X=x = SYdx|X=x, which in-
cludes the desired result.

Because h is strictly monotone in ε, we have for any τ ∈ S◦
ε|Cx (the interior of Sε|Cx ),

Fε|Cx(τ)= FY0x|Cx
(
h(0�x� τ)

) = FY1x|Cx
(
h(1�x� τ)

)
�

Hence, h(d�x�τ) ∈ S◦
Ydx|Cx for d = 0�1 so that FYdx|Cx is continuous and strictly increasing

at h(d�x�τ). Thus

h(1�x� τ)=QY1x|Cx
(
FY0x|Cx

(
h(0�x� τ)

))
�

Let y = h(0�x� τ) ∈ S◦
Y0x|Cx = S◦

Y0x|X=x. Then τ = h−1(0�x� y) and the above equation be-
comes

φx(y)=QY1x|Cx
(
FY0x|Cx(y)

)
�

showing that φx is identified on S◦
Y0x|X=x. Then φx is identified on SY0x|X=x by its con-

tinuous extension. �

Proof of Lemma 2. The only if part is straightforward by the definition of φx(·). Thus
it suffices to show the if part. Suppose φx(·) is identified on SY0x . Fix x. By definition,
h(1�x� ·)=φx(h(0�x� ·)) on [0�1]. Then, conditional onX = x, we have h(1�x�ε)= YD+
φx(Y)(1−D) and h(0�x�ε)= Y(1−D)+φ−1

x (Y)D. Thus, under Assumption E(i) we can
identify Fh(d�x�ε) = Fh(d�x�ε)|X=x as follows: For all t ∈R,

Fh(1�x�ε)(t)= P
(
YD+φx(Y)(1 −D)≤ t|X = x)�

Fh(0�x�ε)(t)= P
(
Y(1 −D)+φ−1

x (Y)D≤ t|X = x)�

Furthermore, for all τ ∈ [0�1], Fh(d�x�ε)(h(d�x�τ))= Fε(τ)= τ by Assumption E(ii). Thus,
for all τ ∈ (0�1) we have h(d�x�τ) ∈ S◦

Ydx
and h(d�x�τ) = Qh(d�x�ε)(τ). That is, h(d�x� ·)

is identified on (0�1) and hence on [0�1] by continuity. In particular, h(d�x�0) = Ydx,
which is the lower bound of the support of SYdx|X=x = SY |D=d�X=x by Lemma 1, while
h(d�x�1)=Qh(d�x�ε)(1)= Ydx by left-continuity of the quantile function. �

Proof of Theorem 3. By Lemma 3 and Assumption F, 
d(·�x� z1� z2) for d = 0�1 are
strictly increasing on SYdx|X=x. We now prove SYdx|X=x = SY |X=x�D=d by contradiction.
Clearly, SY |X=x�D=d ⊆ SYdx|X=x. Suppose w.l.o.g. SY |X=x�D=0 � SY0x|X=x. Therefore, there
exists an interval Iεx in Sε|X=x such that P(ε ∈ Iεx;D = 0|X = x) = 0. In other words,
conditional on X = x, all individual with ε ∈ Iεx choose D = 1 almost surely. Thus,
SY1x|X=x�ε∈Iεx ⊆ SY |X=x�D=1, where the latter support is identified. For e1 < e2 ∈ Iεx, note
that

P
(
Y ≤ h(1�x� e2);D= 1|X = x�Z = z) − P

(
Y ≤ h(1�x� e1);D= 1|X = x�Z = z)

= P(ε ∈ (e1� e2]|X = x)� ∀z ∈ SZ|X=x�
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where we have used Assumption A(ii). Hence, for z1� z2 ∈ SZ|X=x withp(x�z1) < p(x�z2),
we have


1
(
h(1�x� e2)�x� z1� z2

) −
1
(
h(1�x� e1)�x� z1� z2

)

= P
(
Y ≤ h(1�x� e2);D= 1|X = x�Z = z2

)

− P
(
Y ≤ h(1�x� e1);D= 1|X = x�Z = z2

)

− P
(
Y ≤ h(1�x� e2);D= 1|X = x�Z = z1

)

+ P
(
Y ≤ h(1�x� e1);D= 1|X = x�Z = z1

) = 0�

which contradicts the piecewise strict monotonicity of 
1(·�x� z1� z2) on SY |X=x�D=1 ⊆
SY1x|X=x. Therefore, we have SY |X=x�D=0 = SY0x|X=x. Similarly, we obtain SY |X=x�D=1 =
SY1x|X=x. The identification ofφx(·) and h(d�x� ·) follows directly from Lemmas 4 and 2,
respectively. �

Proof of Theorem 4. Our proof is in two steps: First, we show that

h(1�x� τ)=QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

)) ∀τ ∈ [0�1]�

Second, we show that the distribution of h(1�x�ε) is identified, from which we identify
the function h(1�x� ·).

Fix x ∈ SX and x̃ ∈ SX satisfying Assumption C′. Let further z1� z2 ∈ SZ|X=x and
z̃1� z̃2 ∈ SZ|X=x̃ be such that p(x�z1) = p(x̃� z̃1) < p(x�z2) = p(x̃� z̃2). By definition, the
right-hand side of (10) is weakly increasing and left-continuous. For any τ ∈ [0�1], let
ψ(0� x̃� τ)= sup{e : h(0� x̃� e)= h(0� x̃� τ)}. Clearly, ψ(0� x̃� τ) ≥ τ by definition. Moreover,
Assumption A′ implies that

FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

) = Fε|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
ψ(0� x̃� τ)

)
�

Therefore,

QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

))

=QY1x|m(x�z1)<η≤m(x�z2)

(
Fε|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
ψ(0� x̃� τ)

))

=QY1x|m(x�z1)<η≤m(x�z2)

(
Fε|m(x�z1)<η≤m(x�z2)

(
ψ(0� x̃� τ)

))
�

The last step comes from the fact thatm(x�zj)=m(x̃� z̃j) for j = 1�2. Note that

P
[
Y1x ≤ h(

1�x�ψ(0� x̃� τ)
)|m(x�z1) < η≤m(x�z2)

]

≥ P
[
ε≤ψ(0� x̃� τ)|m(x�z1) < η≤m(x�z2)

] = Fε|m(x�z1)<η≤m(x�z2)
(
ψ(0� x̃� τ)

)
�

which implies

QY1x|m(x�z1)<η≤m(x�z2)

(
Fε|m(x�z1)<η≤m(x�z2)

(
ψ(0� x̃� τ)

)) ≤ h(
1�x�ψ(0� x̃� τ)

)
�
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Moreover, for any y < h(1�x�ψ(0� x̃� τ)),

P
[
Y1x ≤ y|m(x�z1) < η≤m(x�z2)

]

= P
[
Y1x ≤ h(

1�x�ψ(0� x̃� τ)
)|m(x�z1) < η≤m(x�z2)

]

− P
[
y < Y1x ≤ h(

1�x�ψ(0� x̃� τ)
)|m(x�z1) < η≤m(x�z2)

]

<Fε|m(x�z1)<η≤m(x�z2)
(
ψ(0� x̃� τ)

)
�

where the last inequality follows from

P
[
y < h(1�x�ε)≤ h(

1�x�ψ(0� x̃� τ)
)|m(x�z1) < η≤m(x�z2)

]
> 0

for any y < h(1�x�ψ(0� x̃� τ)) by Assumptions A′ and D′. Thus, we have

QY1x|m(x�z1)<η≤m(x�z2)

(
Fε|m(x�z1)<η≤m(x�z2)

(
ψ(0� x̃� τ)

)) = h(
1�x�ψ(0� x̃� τ)

)
�

which gives us

QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)

(
h(0� x̃� τ)

)) = h(
1�x�ψ(0� x̃� τ)

)
�

By definition of ψ(0� x̃� τ) and Assumption C′(ii), there is h(1�x�ψ(0� x̃� τ)) = h(1�x� τ)
for all τ ∈ [0�1]. Hence, by letting y = h(0� x̃� τ) ∈ SY0x̃|X=x, the above equation implies
that

QY1x|m(x�z1)<η≤m(x�z2)

(
FY0x̃|m(x̃�z̃1)<η≤m(x̃�z̃2)(y)

) = h(
1�x�h−1(0� x̃� y)

) ≡φx�x̃(y)�
Note that SY0x̃|X=x̃ = SY |D=0�X=x̃ under Assumption D′ since (ε�η)⊥(X�Z) under As-
sumptions A′(ii), B(i), and E′(i).

For the second step, note that φx�x̃(h(0� x̃� ·)) = h(1�x� ·) under Assumptions A′(i)
and C′(ii). Therefore, for any y ∈R,

FY1x(y) ≡ P
[
h(1�x�ε)≤ y]

= P
[
h(1�x�ε)≤ y;m(x�z1)≥ η] + P

[
h(1�x�ε)≤ y;m(x̃� z̃1) < η

]

= P(Y ≤ y;D= 1|X = x�Z = z1)+ P
[
φx�x̃(Y)≤ y;D= 0|X = x̃�Z = z̃1

]
�

Now we show the identification of h(1�x� ·) from FY1x . Because of the weak monotonicity
of h in ε and Assumption E′(ii), we have

τ = P(ε≤ τ)≤ P
[
Y1x ≤ h(1�x� τ)]�

It follows thatQY1x(τ)≤ h(1�x� τ). Moreover, fix arbitrary y < h(1�x� τ). Then

P(Y1x ≤ y)= P(Y1x ≤ y;ε≤ τ)= P(ε≤ τ)− P(ε≤ τ;Y1x > y) < τ�

where the first equality is because Y1x ≡ h(1�x�ε)≤ y implies ε≤ τ, while the inequality
comes from the fact that P(ε≤ τ;Y1x > y) > 0 under Assumptions A′(i) and E′(ii). Thus,
QY1x(τ) > y for all y < h(1�x� τ). Hence,QY1x(τ)= h(1�x� τ). �
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