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APPENDIX B: ESTIMATION AND INFERENCE FOR THE CAR PARTS EMPIRICAL WORK

I first describe point estimation and then inference. I sample 10,000 inequalities for each
of 29 matching markets given by component categories. For the 30th component cate-
gory, I use the maximum number of inequalities, 8272, for that market. To create one
of the 10,000 inequalities for a market, I randomly sample two car parts from different
suppliers and include the resulting matching maximum score inequality where the two
car parts are exchanged between the suppliers.

For point estimation, I use the numerical optimization routine differential evolution
in Mathematica. For differential evolution, I use a population of 250 points and a max-
imum of 15,000 iterations. The numerical optimization is run 20 times with different
initial populations of 250 points. For the specification in Table 1, all 20 runs found the
same objective function value and the same point estimates, up to two significant dig-
its. Therefore, it might be reasonable to consider the model to be point identified in the
limit.

In the maximum score objective function, an inequality is satisfied if the left side plus
the constant +0.0000000001 exceeds the right side. This small perturbation to the sum of
profits on the left side ensures that inequalities such as 0 > 0 are counted as being satis-
fied consistently, rather than inconsistently because of some numerical-approximation
error resulting in, say, 2.0 x 1075 > 1.0 x 10715,

I use the inference procedure of Romano and Shaikh (2008), which is valid under
both set identification and point identification. Let ®( be the identified set for the pa-
rameter 6. The authors provide a subsampling procedure to construct a confidence re-
gion ¥ called, by those authors, a “confidence region for the identifiable parameters that
is uniformly consistent in level,” under the conditions of their Theorem 3.3. This defini-
tion of the properties of a confidence region is equation (3) of their paper. Under easier
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to verify conditions (namely that a limiting distribution exist for the objective function),
their procedure produces “confidence regions for identifiable parameters that are point-
wise consistent in level”—or their equation (2). Computationally, I implement equations
(12) and (10) in their paper.

I have 30 component categories. I treat these component categories as separate mar-
kets for the industry-specific reasons discussed in the main text. I perform asymptotics
in the number of suppliers in the market, as this is an explicitly two-sided market where
a supplier cannot also be an assembler, as in Example 2. Subsampling requires a choice
of subsample size. Unfortunately, the literature has not provided a data driven method
to pick this tuning parameter. I use 33% of the suppliers from each of the 30 component
categories. Given each subsampled set of suppliers, that subsample uses only matching
maximum score inequalities where both suppliers whose valuation functions are in the
inequality are in the subsample. I use 500 subsamples; in experiments, results are robust
when using more subsamples.

In the car parts empirical work, the maximum score or maximum rank correlation
objective function is, for D = 30 component categories,
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where G i is the set of included matching maximum score inequalities where i; and i,
exchange one car part each. Romano and Shaikh (2008) is written where one minimizes
a function and where the population objective function’s minimum value is 0. In maxi-
mum score, one maximizes the objective function value and the value of the population
objective function can only be estimated using the finite sample objective function. Fol-
lowing the suggestion at the beginning of their Section 3.2, I work with the objective

function —Q(0) — (— maxgy Q(0)).

I define the “sample size” for the entire procedure to be N = max,cp N. This choice
is arbitrary and does not impact the reported confidence regions. I implement the pro-
cedure of Romano and Shaikh (2008) using the rate of convergence for the objective
function of +/N, following the results of Sherman (1993) for the case of point identified
maximum rank correlation estimators.

The confidence regions reported in tables are projections onto the axes of the confi-
dence region % from Romano and Shaikh (2008). Computationally, the lower bound for
the confidence region for a scalar parameter 6, is found by minimizing the parameter 6,
subject to the constraint that the entire parameter vector 6 is in ¢. Likewise, the upper
bound for the confidence region 6, is found by maximizing the parameter 6, subject to
the entire parameter vector being in %

d
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APPENDIX C: ALTERNATIVE WEIGHTING SCHEMES FOR SPECIALIZATION MEASURES

This appendix discusses versions of the estimates in Table 1 where the included HHI-
specialization measures use different weighting schemes, many involving data on car
sales for car models in Europe and the United States. These alternative weighting
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schemes result in worse statistical fit than the estimates in Table 1, in the sense that
fewer inequalities are satisfied. For this reason, I report the estimates in this appendix
instead of the main text.

In terms of sales, car models primarily sold in Europe are matched to European sales
from Western Europe and car models primarily from North America are matched to sales
from the United States. Note that all weighting schemes affect the HHI-specialization
measures. I do not explore weighting the maximum score inequalities in the objective
function, although that could be pursued.

Let w. be a weight for a particular car part c. The example parent-group supplier
HHI measure in (13) becomes

sum Chrysler weights in ¥ ) 2 (sum Ford weights in ¥ ) 2

Xpg(j°, ¥) =
pc(J*> ¥) ( sum all weights in ¥

sum all weights in ¥

sum GM weights in ¥\ 2
sum all parts in ¥ ’

Analogous schemes are used for other supplier HHI-specialization measures and for
assembler specialization at the parent-group level. The example brand assembler HHI
measure in (14) becomes

sum weights sold by supplier i to Opel in @ 2
sum weights for Opel in @

Xbrand (jb, (I)) = wOpel Z (

ies(d,0pel)

_ sum weights sold by supplier i to Chevy in @\ >
ey Y ( g y supp vy >

ies(®,Chevy) sum weights for Chevy in @

where, for example,

sum weights for Chevy in GM
sum weights in GM '

wChevy =

Note that the brand weights like wcpevy are not recomputed for counterfactual trades @,
as indeed Chevrolet and other brands still produce the same car models with the same
need for car parts in the counterfactuals in matching maximum score inequalities.

Table 4 reports the estimates with weights. There are three specifications, each with
different weights. Note that the parameters multiply different explanatory variables
across the three specifications, so the parameters have slightly different interpretations.
However, the means and standard deviations of the weighted HHI measures are quali-
tatively similar to those reported in Table 1 for the baseline specification.

The first weighting scheme in Table 4 does not use sales data; it sets

1
We'= %ear parts for model in market d’

This scheme gives less weight to a car part on a car model with more parts in a compo-
nent category so as to equalize the contribution of car models to HHI calculations. The



TABLE 4. Specialization by Suppliers and Assemblers with Different Weighting Schemes

Weights— 1 Divided by #Parts Sales Sales Divided by # Parts
HHI Measure Point Estimate 95% CI Point Estimate 95% CI Point Estimate 95% CI
Suppliers

Parent Group +1 Supercon. +1 Supercon. +1 Supercon.

Continent 0.982 (0.405, 4.66) 0.733 (0.582,1.29) 0.717 (0.298, 3.12)

Brand 0.988 (—0.154,8.52) 0.967 (0.158,3.19) 0.894 (—0.52, 6.06)

Model 0.0806 (—8.79,2.52) —1.97 (—4.14,-1.31) —1.88 (—6.18, —0.374)
Assemblers

Parent Group 0.474 (—0.0902, 4.70) ~0 (—0.0318, 0.0654) —0.0448 (—0.36,0.0333)

Brand —0.380 (=3.77,1.79) ~0 (—0.0435, 0.556) 0.0462 (—0.212,1.2)

Model 202 (100, +00) 400 (400, +00) 400 (400, +00)

# Inequalities 298,272 298,272 298,272

% Satisfied 76.3% 74.4% 74.3%

Note: The parameter on parent group specialization is fixed at +1. Estimating it with a smaller number of inequalities always finds the point estimate of +1, instead of —1. The estimate
of a parameter that can take only two values is superconsistent, so I do not report a confidence interval. See Appendix B for details on estimation and inference.
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second weighting scheme uses the weights
w, = sales of car model,

The third weighting scheme combines the previous two, as in

_ sales of car model
©™ #car parts for model in market d "

Compared to Table 1, Table 4 shows less of a role for supplier model specialization
and much more of a role for assembler model HHI specialization. In all three of the
specifications, the lower bound for the confidence region for supplier HHI model speci-
fication is negative and large in magnitude relative to the +1 normalization for supplier
parent-group specialization. The point estimate is negative in two of the three specifica-
tions. In all three specifications, the upper bound of the confidence region for assembler
model specialization is unbounded. The point estimate for assembler model specializa-
tion is unbounded in two specifications and still quite large, at 202, for the other specifi-
cation.

Also compared to Table 1, there is now statistical uncertainty about the sign of sup-
plier brand specialization, although the point estimate is about the same as for parent-
group specialization, which is normalized to +1. Similarly to Table 1, 0 is still in the con-
fidence regions for assembler parent-group and brand specialization.

Overall, I emphasize Table 1 in the main text because of its higher statistical fit.
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