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1. Introduction

The stationary dynamic discrete decision model surveyed in Rust (1994) has been a sub-
ject of much research in econometric theory and empirical studies. The primitives of
the model consist of the period payoff function, Markov transition law, and discount
factor. A well-known characteristic of a dynamic decision model is that it is not iden-
tified. For example, Manski (1993) pointed out in general that the discount factor and
payoff function cannot be jointly identified nonparametrically. Most positive identifica-
tion results in the literature until recently focus on identifying payoff parameters while
assuming other primitives to be known; for example, see Magnac and Thesmar (2002),
and also Pesendorfer and Schmidt-Dengler (2008) and Bajari, Chernozhukov, Hong, and
Nekipelov (2009). Meanwhile, empirical studies typically parameterize the payoff func-
tion, parameterize at least part of the distribution of the unobserved variables, and as-
sume the discount factor to be known.

In this paper, we are interested in identifying the discount factor jointly with the pay-
off function under the linear-in-parameter specification. This parametric model is the
most commonly used specification in practice. When there are finite states, the linear
specification can represent any nonparametric function. Most empirical studies assume
the value of the discount factor to be known without any formal justification in this set-
ting. To the best of our knowledge, we are not aware of any prior identification study in-
volving the discount factor in a general parametric model. We provide conditions under
which both the discount factor and payoff parameters can be identified, and propose an
easy to compute estimator for them. Other positive identification results on the discount
factor in the literature use a nonparametric approach. They use exclusion restrictions in
the form of variables affecting future utilities but not current utilities to identify the dis-
count factor; for example, see Dubé, Hitsch, and Jindal (2014), Wang (2014), Fang and
Wang (2015), and Ching and Osborne (2017). We do not rely on these assumptions.

A nonparametric payoff function without any restriction cannot be identified even
if the discount factor is known. The fundamental identification characteristic in a dis-
crete choice model can be traced to the static random utility model of McFadden (1974),
where utility is ordinal and its level cannot be identified. Some form of normalization
has to be made. Aguirregabiria and Suzuki (2014, AS hereafter) recently highlighted
the undesirable effects that an arbitrary normalization can have on unnormalized pa-
rameters and counterfactual studies, and emphasize the importance of identifiable
objects without any normalization; also see Kalouptsidi, Scott, and Souza-Rodrigues
(2016, 2017). An important question then is whether our identification result is robust
against misspecifying the normalization choice.

We verify that our identification of the discount factor is robust against any normal-
ization choice. On the other hand the payoff parameters are generally not individually
robust. But some of their meaningful combinations are. To this end, we also contribute
to the literature by providing a nonparametric framework to identify the payoff param-
eters that arise from changing in the actions of players between time periods. We call
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these switching costs.1 For example, in an entry/exit model, they are entry cost and scrap
value. Individually, the entry cost and scrap value cannot be separately identified but
their difference, namely the sunk entry cost, can be identified. We show that switching
costs can be written explicitly in terms of the observed choice probabilities, indepen-
dently of the discount factor as well as other (nonswitching costs) components of the
payoff function. AS has already shown the sunk entry costs in several IO models can
be identified in this fashion. We extend these results to sunk investment costs that can
arise from firm investing and divesting, as well as individual switching costs themselves
under other a priori restrictions.

A general discussion on the nonidentification of the dynamic model we consider can
be found in Rust (1994). Positive identification is possible when more structures are im-
posed on the primitives. Magnac and Thesmar (2002) have shown the problem of iden-
tifying the payoff parameters nonparametrically when all other primitives of the model
are assumed to be known can be reduced to a study of solutions to a linear system; also
see Pesendorfer and Schmidt-Dengler (2008) and Bajari et al. (2009). We are interested
in the payoff parameters as well as the discount factor. The discount factor enters the
decision problem recursively and thereby introduces nonlinearity in the model.

Magnac and Thesmar (2002, Section 4.2) suggested that exclusion or parametric re-
strictions can be used to identify the discount factor. For the former, their Proposition 4
illustrates in a simple two-period model the discount factor is in fact typically overiden-
tified. The identifying restriction they use is that: for some states, utilities in the first
period are the same but differ in the second period. This idea has been elaborated and
applied in different empirical contexts by Dubé, Hitsch, and Jindal (2014), Wang (2014),
Fang and Wang (2015), and Ching and Osborne (2017) among others. On the other hand,
while it may be plausible to assume identification is possible in a parametric model we
are not aware of any theoretical result that has verified this to be true. In particular, es-
tablishing parametric identification in a general nonlinear model is a nontrivial task;
see Komunjer (2012) for a recent illustration. We prove identification using an empirical
model that is linear in the payoff parameters conditioning on the discount factor. We
construct a one-dimensional criterion function to be used for identification. It exploits
the conditional linear structure to profile out the payoff parameters and reduce the non-
linear nature of the problem to just one dimension. The criterion function we construct
to establish identification has a sample counterpart that can be used for estimation.

In many IO applications, switching costs are often the essence of a dynamic deci-
sion problem and can even be the central object of the dynamic model itself (e.g., see
Slade (1998), and also the general discussions in Ackerberg et al. (2007) and Pesendorfer
(2013)). Our study on the switching costs takes a nonparametric approach. We iden-
tify combinations of the switching costs by exploiting empirically motivated exclusion
and testable independence assumptions. A key step involves eliminating common fu-
ture expected discounted payoffs that arise from different states. Our result does not
depend on the discount factor and some other components of the payoff function. The

1We use the term switching costs that shares the same spirit as generic adjustment costs and other iner-
tia. Examples of usages in various fields of economics and marketing include the cost to change in health
insurance plan, changing of credit and other utility providers, and retailer’s decisions on sales promotions.
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robust identification result of this nature has precedence in the literature but has not
been highlighted.2 For example, an inspection of Proposition 2 in Aguirregabiria and
Suzuki (2014) will reveal that the same implication of our Theorem 2 has already been
obtained for a binary action game of entry/exit.3 We provide closed-form expressions for
switching costs and their combinations in terms of only the observed choice probabili-
ties. They can therefore be trivially estimated. They also suggest overidentification tests
can be constructed by comparing against other estimates of switching costs obtained
under additional assumptions on the model primitives.

Throughout the paper, our identification results are obtained using an empirical
model under the assumption that the choice and transition probabilities are nonpara-
metrically identified. These same probabilities are used to compute expected payoffs in
a pseudo-decision problem for all values of the model parameters as opposed to the ac-
tual (or full-solution) model where equilibrium probabilities are used. The choice prob-
abilities implied by our empirical model can be used to construct pseudo-likelihood
functions as done in Aguirregabiria and Mira (2002) and Kasahara and Shimotsu (2008).
This empirical model is used because it is tractable. It forms the basis for any two-step
estimation procedures, following Hotz and Miller (1993), which are preferred on compu-
tational grounds over a full-solution approach such as the nested fixed-point algorithm
of Rust (1987). The estimator we propose in this paper will be based on the two-step ap-
proach of Sanches, Silva, and Srisuma (2016) with computational simplicity in mind. It
is worth noting that, although consistent, a simple two-step estimator like ours tend to
have larger finite sample bias and is less efficient than estimators that enforce the equi-
librium restriction of the model. Equilibrium constraints can be imposed during estima-
tion with additional computational cost, also without the need to solve out a dynamic
optimization problem (cf. Rust (1987)). For example, Aguirregabiria and Mira (2002) and
Egesdal, Lai, and Su (2015) have shown the fully efficient maximum likelihood estimator
can be obtained in this way.

When the data come from a single time series, or when they are pooled across
short panels of multiple homogeneous markets, the choice and transition probabili-
ties are nonparametrically identified under weak conditions. In practice, many datasets
are short panels, where it would be more reasonable to assume some form of unob-
served heterogeneity exists across markets. A flexible yet tractable way to model un-
observed heterogeneity in this literature is to use a finite mixture model. For exam-
ple, Aguirregabiria and Mira (2007) suggested economic agents’ payoffs have a time-
invariant unobserved market specific component that is unobserved to the econome-
trician, therefore, markets of different types have different equilibrium distributions on
the observables. Kasahara and Shimotsu (2009) and Arcidiacono and Miller (2011) have
given conditions so that the probabilities for each mixture type can be nonparamet-
rically identified under different frameworks, thereby extending the scope of applying

2In one instance, for a slightly different model with a mixed continuous-discrete decision variable, Hong
and Shum (2010) rely on a deterministic state transition rule to define a pairwise-difference estimator that
matches on (and thereby avoid computing) future expected discounted payoffs from different states.

3We thank an anonymous referee for pointing this out to us.
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two-step estimation methods to models with unobserved heterogeneity. All identifica-
tion results in our paper are valid in such setting as long as we can identify the type
specific probabilities to be able to set up the corresponding pseudo-decision problem.
Specifically, the degree of overidentification on the model primitives increases propor-
tionally to the number of mixture types.

The class of decision problems we consider is a special case of dynamic games de-
scribed in Aguirregabiria and Nevo (2013) and Bajari, Hong, and Nekipelov (2013). All
of our intuition and results are applicable to these games. The majority of this paper
focuses on the single agent model for notational simplicity and clarity of idea, and to
abstract ourselves away from game specific issues (such as multiple equilibria). For the
same reasoning given for models with unobserved heterogeneity, the portability of our
results to dynamic games is immediate as long as the choice and transition probabili-
ties can be consistently estimated nonparametrically. The numerical studies of our pro-
posed estimators are in fact performed in a dynamic game setting. The details on ex-
tending our single agent’s results to games can be found in the Appendix.

We perform a Monte Carlo study of our proposed estimators using the simulation
design in Pesendorfer and Schmidt-Dengler (2008). We then use the same dataset as
used in Ryan (2012) to estimate a dynamic game played between firms in the US Port-
land cement industry. In our version of the game, firms choose whether to enter the mar-
ket as well as decide on the capacity level of operation (five different levels). We assume
firms compete in a capacity constrained Cournot game, so the period variable profit can
be estimated directly from the data as done in Ryan. The dynamic parameters we esti-
mate are the discount factor, fixed operating cost, and 25 switching cost parameters. We
estimate the model twice. Once using the data from before 1990 and once after 1990.
The separation date coincides with implementation of the 1990 Clean Air Act Amend-
ments (1990 CAAA). Our estimates on switching costs generally appear sensible, having
correct signs and relative magnitudes. They show that firms entering the market with
a higher capacity level incur larger costs, and suggest that increasing capacity level is
generally costly while a reduction can return some revenue. We find that operating and
entry costs are generally higher after the 1990 CAAA, which supports Ryan’s key finding.
We are also able to estimate the discount factor to be within the commonly assumed
range with a reasonable precision.

The remainder of the paper is organized as follows. Section 2 introduces the theo-
retical model and the basic modeling assumptions. Section 3 gives a joint identification
result on the discount factor and the payoff parameters under the linear-in-parameter
specification. Section 4 studies nonparametric identification of the switching costs. Sec-
tion 5 illustrates the performance and use of our estimator with simulated and real data.
Section 6 concludes. The Appendix contains details for extending our identification re-
sults to dynamic games and further results on identifying the discount factor.

Notation. We use ρ(A), CS(A), A�, A−1, and A† to respectively denote the rank, col-
umn space, transpose, inverse, and Moore–Penrose inverse of matrix A. For any positive
integers p, q, we let Ip and 0p×q, respectively, denote the identity matrix of size p and a
p× q matrix of zeros.
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2. Basic modeling framework

We begin by describing an infinite time horizon dynamic discrete choice model as in
Rust (1987, 1994).4 Given our empirical examples and application below, we shall some-
times refer to our representative economic agent as a firm and her payoffs as profits.
Let t ∈ {1�2� � � � �∞} denote time. The random variables in our model are the action and
state variables, which we denote by at and st , respectively. at takes values from a finite
set of alternativesA= {0�1� � � � � J}. st contains two components, st ≡ (xt� εt) ∈X ×RJ+1

with X ⊆ R. xt is public information to both the firm and the econometrician, while
εt ≡ (εt(0)� � � � � εt(J)) ∈ RJ+1 is private information only observed by the firm. Future
states are uncertain. Today’s action and states affect outcomes for states in the future.
The evolution of the states is summarized by a Markov transition law P(st+1|st� at). The
firm’s period payoff function is u(at� st) ∈ R. Future period’s payoffs are discounted at
the rate β ∈ [0�1). At time t, the firm observes st and chooses an action optimally. Specif-
ically, we assume at = α(st) so that:

α(s)= arg max
a∈A

{
u(a� s)+βE[

V (st+1)|st = s� at = a
]}
� where

V (s)= max
a∈A

{
u(a� s)+βE[

V (st+1)|st = s� at = a
]}
�

(1)

Using the optimal decision rule, we can remove the max operator and write the value
function as

V (s)=E
[ ∞∑
t=0

βtu(at� st)
∣∣∣s0 = s

]
� (2)

The expectation operators in the displays above integrate out variables with respect to
the probability distribution induced by the equilibrium choice probabilities and Markov
transition law. As standard in the literature, we assume the following assumptions.

Assumption M.

(i) (Additive Separability) For all a, x, ε:

u(a�x�ε)= π(a�x)+ ε(a)�
(ii) (Conditional Independence) The transition distribution of the states has the fol-

lowing factorization for all x′, ε′, x, ε, a:

P
(
x′� ε′|x�ε�a) =Q(

ε′)G(
x′|x�a)�

where Q is the cumulative distribution function of εt and G denotes the transition law
of xt+1 conditioning on xt , at . Furthermore, εt has finite first moments, and a positive,
continuous, and bounded density on RJ+1.

(iii) (Finite Observed State)X = {1� � � � �K}.

4The notation for an infinite time stationary model is much simpler relative to a finite time horizon one.
Our identification strategy is valid for finite time horizon models, and with or without absorbing states.
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The primitives of the model under this setting consist of (π�β�Q�G). Throughout
the paper, we shall assume (G�Q) to be known. G can be identified from the data when
(at�xt�xt+1) are observed. Consistent estimation of the joint distribution of (at�xt�xt+1)

holds under weak conditions with a single time series, as well as repeated observations
from short panels when there is no other unobserved heterogeneity. Q is typically as-
sumed known in most empirical applications. Conditions for the identification of Q
exist when xt is a continuous variable using a large support type argument; for exam-
ple, see Aguirregabiria and Suzuki (2014, Proposition 1), Buchholz, Shum, and Xu (2016,
Lemma 4), and Chen (2014, Theorem 4). Our results do not depend on any continuity
assumption to achieve identification as we take xt to be a discrete random variable.

Our subsequent analysis use the fact that we can identify the choice probability from
data as the starting point, which in turn is informative about (π�β). More specifically, for
any a > 0, let Δv(a�x)≡ v(a�x)− v(0�x), where v(a�x) denotes the choice-specific value
function that serves as the mean utility in a discrete choice modeling:

v(a�x)= π(a�x)+βE[
V (st+1)|xt = x�at = a

]
�

Pr[at = a|xt = x] = Pr
[
Δv(a�x)−Δv(a′�x

)
> εt

(
a′) − εt(a) for all a′ �= a]� (3)

By inverting the choice probabilities (Hotz and Miller (1993)), we can recover Δv(a�x)
for all a > 0, x.

3. Identifying the discount factor with linear-in-parameter payoffs

In this section, we assume the payoff function takes on a linear-in-parameter specifi-
cation. Section 3.1 defines the identification concept for the discount factor and pay-
off parameters. Section 3.2 provides some representation lemmas that will be useful for
defining a criterion function to study identification. Section 3.3 gives the identification
result.

3.1 Definition of parametric identification

We will assume Assumption M and the following assumption throughout this section.

Assumption P (Linear-in-Parameter). For all a, x:

π(a�x;θ)= π0(a�x)+ θ�π1(a�x)�

where π0 is a known real value function, π1 is a known p-dimensional vector value func-
tion and θ belongs to Rp.

Assumption P can be interpreted as nonparametric. For example, it can represent
an unrestricted nonparametric function of π by assigning a parameter for each possi-
ble pair of a and x. However, such function is too rich and cannot be identified. We will
maintain the parametric appearance for π as we will not be exploiting any nonparamet-
ric restriction in our identification study of the discount factor.
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The role of π0 is to represent the payoff components that are identifiable without the
knowledge of the discount factor or other model primitives. In practice, π0 and possibly
parts of π1 may have to be estimated (e.g., see Section 5.2). For the purpose of identifica-
tion, they can be treated as known. The primitives in this setting are (β�θ). They belong
to B ×Θ where B = [0�1) andΘ= Rp. We are interested in the data generating discount
factor and payoff parameters, which we denote by β0 and θ0, respectively.

We begin by defining the parametric choice-specific value function (cf. equation (3)):

v(a�x;β�θ)≡
∞∑
t=0

βtE
[
π(at�xt;θ)+ εt(at)|a0 = a�x0 = x]� (4)

Then we denote the differences in these value functions when action a is chosen rela-
tive to action 0 by Δv(a�x;β�θ) ≡ v(a�x;β�θ)− v(0�x;β�θ). It is important to empha-
size that the stochastic process {at�xt� εt}∞t=0 that defines the right-hand side of equa-
tion (4) follows an optimal controlled process consistent with (β0� θ0), whose distribu-
tion is identified by the observed probabilities from the data. Therefore, Δv(a�x;β�θ)
is identified for all (a�x) ∈ A × X and (β�θ) ∈ B × Θ. Furthermore, Δv(a�x;β0� θ0)

is also identified by Hotz–Miller’s inversion. We shall use the mapping (β�θ) 	−→
{Δv(a�x;β�θ)}(a�x)∈A×X as a basis of our identification study.

More formally, we take each pair (β�θ) to be a structure of our empirical model and
its implied choice-specific values, denoted by Vβ�θ ≡ {Δv(a�x;β�θ)}(a�x)∈A×X , to be its
corresponding reduced form. We then define identification using the notion of observa-
tional equivalence in terms of the differences in expected payoffs.

Definition I1 (Observational Equivalence). Any distinct (β�θ) and (β′� θ′) in B×Θ are
observationally equivalent if and only if Vβ�θ = Vβ′�θ′ .

Definition I2 (Point Identification). An element in B×Θ, say (β�θ), is point identified
if and only if (β′� θ′) and (β�θ) are not observationally equivalent for all (β′� θ′) �= (β�θ)
in B ×Θ.

For our identification study, we define our statistical model to be the collection of all
reduced forms, namely: {Vβ�θ}(β�θ)∈B×Θ. All statements made on identification in Sec-
tion 3 are in the context of this statistical model unless explicitly stated otherwise. Al-
ternatively, we can also define a statistical model based on probability distributions as
in the traditional econometrics studies on identification. Specifically, the model implied
choice probabilities for each (β�θ) are

Pβ�θ ≡ {
Pr

[
Δv(a�x;β�θ)−Δv(a′�x;β�θ)> ε(a′) − ε(a) for all a′ �= a]}

(a�x)∈A×X�

It is known there is a one-to-one relation between {Vβ�θ}(β�θ)∈B×Θ and {Pβ�θ}(β�θ)∈B×Θ;
see Matzkin (1991), Hotz and Miller (1993), and Norets and Takahashi (2013). There-
fore, identification for our decision problem can be equivalently established with either
{Vβ�θ}(β�θ)∈B×Θ or {Pβ�θ}(β�θ)∈B×Θ. Note that one can interpret elements in Pβ�θ as the
implied choice probabilities for an economic agent who solves a pseudo-decision prob-
lem where the expected payoff for taking each action is given by equation (4).
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3.2 Some representation lemmas

Under Assumptions M and P, it shall be useful to separate out the contributions of the
expected discounted payoffs in (4) as follows:

v(a�x;β�θ) = π0(a�x)+β
∞∑
t=0

βtE
[
π0(at�xt)|a0 = a�x0 = x]

+β
∞∑
t=0

βtE
[
εt(at)|a0 = a�x0 = x]

+ θ�
(
π1(a�x)+β

∞∑
t=0

βtE
[
π1(at�xt)|a0 = a�x0 = x])�

Subsequently, by defining Δπl(a�x)≡ πl(a�x)−πl(0�x) for l= 0�1, we have:

Δv(a�x;β�θ) = Δπ0(a�x)+β
∞∑
t=0

βt
(
E

[
π0(at�xt)|a0 = a�x0 = x]

−E[
π0(at�xt)|a0 = 0�x0 = x])

+β
∞∑
t=0

βt
(
E

[
εt(at)|a0 = a�x0 = x] −E[

εt(at)|a0 = 0�x0 = x])

+ θ�
(
Δπ1(a�x)+β

∞∑
t=0

βt
(
E

[
π1(at�xt)|a0 = a�x0 = x]

−E[
π1(at�xt)|a0 = 0�x0 = x]))�

The decomposition of Δv helps us distinguish how β and/or θ affect different parts of
the per-period payoffs. Lemma 1 summarizes this in a matrix form.

Lemma 1. Under Assumptions M and P, for all a > 0, Δv(a�x;β�θ) can be collected in the
following vector form for all (β�θ) ∈ B ×Θ:

Δva(β�θ)= ΔRa0 +βΔHa(IK −βL)−1R0

+βΔHa(IK −βL)−1ε

+ (
ΔRa1 +βΔHa(IK −βL)−1R1

)
θ�

(5)

where the elements in the above display are collected and explained in Tables A and B.

Proof. This is a special case of Lemma R in Sanches, Silva, and Srisuma (2016). �

All vectors and matrices in Tables A and B are either known or estimable from the
choice and transitional probabilities. The tables will serve as a useful reference for con-
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Table A. The matrices consist of (differences in) expected payoffs and probabilities. The latter
represent conditional expectations for any function ψ of xt+1.

Matrix Dimension Representing

ΔRa1 K ×p Δπ1(a� ·)
R1 K ×p π1(a� ·)
L K ×K E[ψ(xt+1)|xt = ·]
Ha K ×K E[ψ(xt+1)|xt = ·� at = a]
ΔHa K ×K E[ψ(xt+1)|xt = ·� at = a] −E[ψ(xt+1)|xt = ·� at = 0]

Table B. The K × 1 vectors represent (differences in) expected payoffs.

Vector Representing

ε E[εt(at)|xt = ·]
ΔRa0 Δπ0(a� ·)
R0 E[π0(at �xt)|xt = ·]
ΔHa(IK −βL)−1R0

∑∞
t=0β

t(E[π0(at �xt)|a0 = a�x0 = x] −E[π0(at �xt)|a0 = 0�x0 = x])
ΔHa(IK −βL)−1R1

∑∞
t=0β

t(E[π1(at �xt)|a0 = a�x0 = x] −E[π1(at �xt)|a0 = 0�x0 = x])
ΔHa(IK −βL)−1ε

∑∞
t=0β

t(E[εt(at)|a0 = a�x0 = x] −E[εt(at)|a0 = 0�x0 = x])

structing the necessary components we use for defining the criterion function in Sec-
tion 3.3.

Given that we can identify Δva(β0� θ0) for all a > 0, to identify (β0� θ0), it is sufficient
to show that for all (β�θ) �= (β0� θ0), Δva(β�θ) �= Δva(β0� θ0) for some a. Our next lemma
provides a characterization as to how changing β and θ can affect Δva.

Lemma 2. Under Assumptions M and P, for any a > 0 and (β�θ)� (β′� θ′) ∈ B ×Θ:

Δva(β�θ)−Δva
(
β�θ′) = (

ΔRa1 +βΔHa(IK −βL)−1R1
)(
θ− θ′)� (6)

Δva
(
β′� θ′) −Δva

(
β�θ′) = (

β−β′)ΔHa
(
IK −β′L

)−1
(IK −βL)−1(R0 + R1θ

′ + ε
)
� (7)

And (β�θ) is identifiable if and only if there is no other (β′� θ′) such that for all a > 0:

Δva
(
β′� θ′) −Δva

(
β�θ′) = Δva(β�θ)−Δva

(
β�θ′)�

Proof. It follows from some algebra based on equation (5). �

Lemma 2 illustrates the nature of the identification problem we have at hand. We
highlight the following particulars:

(i) If the discount rate is assumed to be known, from (6), a sufficient condition for
Δva(β0� θ) �= Δva(β0� θ

′) when θ �= θ′ is that ΔRa1 + βΔHa(IK − βL)−1R1 has full column
rank for some a > 0. Also see Theorem 3 in Srisuma (2015).

(ii) If the payoff function is assumed to be known, from (7), a sufficient condition for
Δva(β′� θ0) �= Δva(β�θ0) when β �= β′ is that (R0 + R1θ

′ + ε) �= 0 and ΔHa is invertible
some a > 0.



Quantitative Economics 9 (2018) Joint analysis of the discount factor 1163

(iii) Suppose p is large relative to K. Then for any a > 0 such that ΔRa1 + βΔHa(IK −
βL)−1R1 has rank K, and for any θ′�β �= β′ that Δva(β′� θ′) �= Δva(β�θ′), by equating (6)
and (7), we can always find θ such that Δva(β′� θ′)= Δva(β�θ).

Point (i) shows that sufficient conditions for identification of the payoff parameters
when the discount rate is assumed known can be easily stated and verified. More gener-
ally, the sufficient condition for the identification of the payoff parameter can be stated
in terms of the full column rank of the matrix that stacks together ΔRa1 + βΔHa(IK −
βL)−1R1 over a. In the case we are able to identify the payoff function outside of the dy-
namic model, (ii) shows that the discount factor can also be identified and provide one
type of sufficient conditions that can be readily checked. Point (iii) shares the intuition
along the line of Manski (1993) that when the parameterization on the payoff function
is too rich, (β�θ)may not identifiable in B ×Θ.

From Lemma 2, it is also apparent that we should be able to identify (β0� θ0) jointly
when the change in the vector of expected payoffs from altering the discount factor
moves in a different direction to the change caused by altering the payoff parameters.

3.3 Sum of squares criterion function

The study of identification involving the discount factor is complicated due to the fact
that Vβ�θ is nonlinear in (β�θ). However, for a givenβ, we can see from (5) thatVβ�θ is lin-
ear in θ. We use profiling to exploit the conditional linearity to simplify the identification
problem for a nonlinear model with p+ 1 parameters to a one-dimensional problem.

Let ma(β�θ)≡ Δva(β0� θ0)−Δva(β�θ). Then we can write, using (5):

ma(β�θ) = aa(β)− Ba(β)θ�

aa(β) ≡ Δva(β0� θ0)−ΔRa0 −βΔHa(IK −βL)−1(R0 + ε)�

Ba(β) ≡ ΔRa1 +βΔHa(IK −βL)−1R1�

It is clear that ma(β�θ) is linear in θ for any given β. We can stack together the system
of equations above across a. In doing so, we obtain the following vector value function,
m : B ×Θ→RKJ :

m(β�θ)= a(β)− B(β)θ� (8)

where a(β) is aKJ × 1 vector and B(β) is aKJ ×pmatrix.
Let M(β�θ)≡ ‖m(β�θ)‖, that is, M(β�θ) is the Euclidean norm of m(β�θ). Then by

construction,

M(β�θ)= 0 if (β�θ)= (β0� θ0)�

and any other (β�θ) such that M(β�θ) = 0 is observationally equivalent to (β0� θ0) by
the property of the norm. Therefore, M has the necessary property to serve as a criterion
for identification.

Next, we profile out θ in order to reduce the dimensionality on M by exploiting its
least squares structure. For each β, run a regression of a(β) on B(β), we can define:

θ∗(β)≡ (
B(β)�B(β)

)†B(β)�a(β)� (9)
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So that θ∗(β) is a least squares solution to minθ∈ΘM(β�θ). Then we define:

M∗(β)≡ M
(
β�θ∗(β)

)
� (10)

By construction, it also holds that

M∗(β)= 0 if β= β0�

In this way, we have reduced the parameter space in the identification problem to a one-
dimensional one. Furthermore, the domain of the parameter space is on a small interval:
[0�1). The reasoning is analogous to profiling in an estimation routine. Particularly, we
can ignore any θ that does not lie in arg minθ∈ΘM(β�θ) since necessarily,

M(β�θ) >M
(
β�θ∗(β)

) ≥ 0�

Therefore, (β0� θ0) is identified when M∗(β) has a unique minimum and minθ∈ΘM(β0�

θ) has a unique solution.

Theorem 1. Under Assumptions M and P, (β0� θ0) is identifiable in {Vβ�θ}(β�θ)∈B×Θ if

M∗(β)= 0 if and only if β= β0�

and B(β0) has full column rank.

Proof. Suppose (β0� θ0) is identifiable. If there is β′ �= β0 such that M∗(β′) = 0,
then Δva(β0� θ0) = Δva(β′� θ∗(β′)) for all a by the property of the norm. Since Θ is a
closed set, by the projection theorem, θ∗(β′) exists and is the unique element in Θ.
This leads to a contradiction since (β0� θ0) and (β′� θ∗(β′)) are observationally equiv-
alent. Next, suppose that B(β0) does not have full column rank. Let θ′ be another ele-
ment in arg minθ∈ΘM(β0� θ) that differs from θ0. Since M(β0� θ) ≥ 0 for all θ ∈ Θ and
M(β0� θ0)= 0, M(β0� θ

′)= 0. Thus (β0� θ0) and (β0� θ
′) are observationally equivalent,

also a contradiction. �

Comments on Theorem 1.

(i) High Level Assumptions. Conditions in Theorem 1 are high level as we do not re-
late them to the underlying primitives of the model. However, they are statements made
on objects that are observed or can be consistently estimated nonparametrically. In the
Appendix, we give more detailed conditions for M∗ to have a unique minimum; see
Theorem 4.

(ii) Feasible Check and Estimation. Since we have reduced the identification problem
to a single-parameter that can reside only in a narrow range, there is no need to refer to
complicated results for the identification of a general nonlinear model. We can use the
sample parts of components in Tables A and B to consistently estimate M∗(β) for all β.
So one can plot the sample counterpart of M∗ over B for an exhaustive analysis of the
problem. Once the minimum of M∗ is found, the corresponding rank matrix can then be
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checked. This suggests one natural way to estimate the discount factor, namely by grid
search. In practice, we can detect an identification problem if the sample counterpart
of M∗ contains a flat region at the minimum, or when the sample counterpart of B(β0)

does not have full column rank.

(iii) Identification in the empirical model. It is clear that positive identification of
(β0� θ0) in our empirical model is sufficient for identifying (β0� θ0) in the full-solution
model. Therefore, our identification results in this paper can be used to establish iden-
tification in the full-solution model. However, we the implication may not be necessary,
and we do not make any other claim on the identification of the full-solution model. The
identification study in the full-solution model is much more complicated since it is less
tractable analytically; for a further discussion, we refer the reader to Srisuma (2015).

By inspecting the proof of Theorem 1, it is clear there are some separation between
the identifiability of β0 and θ0. In particular, we have defined θ∗(β) using a generalized
inverse of the matrix B(β)�B(β). Therefore, β0 can be identified even if θ0 is not.

The full column rank condition on B(β0), however, is not an innocuous assumption
when we view Assumption P as a representation of a nonparametric function. In prac-
tice, this is often delivered by exclusion assumptions or more generally by normalization
of payoff parameters. In the next section, we will focus on payoff parameters that we call
switching costs. We will revisit the question of identifiability of the discount factor under
different normalization choice in Section 4.3.

4. Nonparametric identification of switching costs

In this section, we consider payoff functions under nonparametric restrictions that al-
low us to obtain closed-form expressions for the switching costs parameters. In Sec-
tion 4.1, we define a switching cost function and explain the assumptions required for
our identification result. Section 4.2 gives the identification result. Section 4.3 relates the
identification of the discount factor under Assumption P to models with switching costs.

4.1 Switching costs

The payoff function cannot be nonparametrically identified without any restrictions.
Economic theory can help guide how to impose structures on the payoff function.
A main consideration in making a dynamic discrete decision is how a change in one’s
action from the previous period immediately affect today’s payoffs. Actions from the
past are therefore often important components of the state variables. We will consider
restrictions focusing on switching costs.

In order to highlight the role of switching costs, we distinguish past actions from
other state variables. At time t, we denote actions from the previous period bywt , so that
wt ≡ at−1. We denote the switching cost from changing action from w to a by SCw→a.
Subsequently, in this section we shall maintain an updated version of Assumption M
where xt is replaced with (wt�xt) everywhere. In addition, we impose the following as-
sumptions.
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Assumption N.

(i) (Decomposition of Profits): For all a, w, x:

π(a�w�x)= μ(a�x)+φ(a−w�w�x)�
such that φ(0�w�x)= 0.

(ii) (Conditional Independence): The distribution of xt+1 conditional on at and xt is
independent of wt .

The decomposition of π in N(i) may appear peculiar at first, but it is typical in many
empirical IO applications. We will give an interpretation of its components within the
context of an IO application. The defining feature of μ is that it excludes past actions. μ
can represent the firm’s operational profit in the current period, such as variable profits
and operational costs, which does not depend on actions from the past. φ is the switch-
ing cost function that takes nonzero values only when a change of action occurs. Note
that, by construction, we have

φ(a−w�w�x)= SCw→a(x) · 1[w �= a]� (11)

where 1[·] denotes the indicator function.
Assumption N(ii) imposes that knowing actions from the past does not help predict

future state variables when the present action and other observable state variables are
known. Note that N(ii) is not implied by M(ii). In many applications, {xt} is simply as-
sumed to be a strictly exogenous first order Markov process. Specifically, this implies
xt+1 is independent of at conditional on xt in addition to N(ii). In any case, unlike M(ii),
N(ii) is a restriction made on the observables so it can be tested directly from the data.
Later on we shall show how xt can be modified to contain past actions so N(ii) can be
weakened to allow for dependence of other state variables with past actions.

Even under Assumption N(i) identification issue persists (e.g., see the discussion in
Aguirregabiria and Suzuki (2014)). SCw→a cannot be identified for all w �= a without any
further restrictions. Some of their differences, however, can be identified. For example,
identification is possible if we normalize some baseline switching costs to be known. We
will look at different restrictions that can be used to identify individual or combination
of the switching costs. Before giving the formal result, we provide an intuition as to why
Assumption N is helpful for identifying the switching costs. It will also illustrate the key
steps of our identification strategy.

Exclusion and independence restrictions Consider a two-period entry/exit decision
problem. Let A = {0�1}, where 0 denotes exit and 1 denotes entry. Then SC0→1 and
SC1→0, respectively, have interpretations of entry cost and scrap value. In this case, we
can write

φ(a−w�w�x)= SC0→1(x) · a(1 −w)+ SC1→0(x) · (1 − a)w� (12)

The choice-specific value function (cf. (3)) in this model is

ν(a�w�x)= π(a�w�x)+βE[
π(at+1�wt+1�xt+1)|at = a�wt =w�xt = x

]
�
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Let Δν(w�x)≡ ν(1�w�x)− ν(0�w�x). At time t, a firm will enter if and only if Δν(w�x) >
εt(0)− εt(1). We can identify Δν from the observed choice probabilities.

The role of our assumptions is to isolate today’s switching costs from the remain-
ing components in the choice-specific value function. Specifically, we apply N(i) to de-
compose the profit function in the current period and use N(ii) to simplify the expected
future profits. We can then rewrite the equation above as

ν(a�w�x) = λ(a�x)+φ(a−w�w�x)� where

λ(a�x) = μ(a�x)+βE[
π(at+1� a�xt+1)|at = a�xt = x

]
�

Crucially note that the conditional expectation on future profits in λ no longer depends
on wt under N(ii) due to the law of iterated expectation. We treat λ as a nuisance pa-
rameter. It is a nonparametric object that depends on all primitives in the model. Let
Δλ(x)≡ λ(1�x)− λ(0�x). Using equation (12), we have

Δν(w�x)= Δλ(x)+ SC0→1(x) · (1 −w)− SC1→0(x) ·w� (13)

It is now clear we can identify a combination of the switching costs by differencing out
Δλ in the equation above:

Δν(1�x)−Δν(0�x)= −SC0→1(x)− SC1→0(x)� (14)

In an entry/exit game, the quantity −SC0→1 − SC1→0 represents the sunk entry cost
that a firm cannot recover back once it decides to leave the market after entering. Equa-
tion (14) shows the sunk entry cost can be identified independently of β and μ. On the
other hand, it is well known that entry cost and scrap value cannot be nonparametrically
identified separately in this particular model. In an empirical work, an unidentified ob-
ject gets normalized. It is clear from equation (14) that either the entry cost or scrap
value can be identified if one of them is assumed to be known. For example, a common
assumption is to normalize the scrap value to be zero, the entry cost can be estimated
conditionally on this value along with the other parameters.

The identification strategy above can be generalized substantially. Results for a more
general single agent decision model under M and N can be obtained with little modifi-
cation. But extending our single agent’s results to dynamic games is more complex. It
requires additional notation and a more general notion of a difference, characterized by
a projection matrix, is used. We defer the details for dynamic games to the Appendix.

4.2 Closed-form identification

We start by providing an expression for the differences in choice-specific valuations
that generalizes equation (13). For any a > 0, let Δv(a�w�x) ≡ v(a�w�x) − v(0�w�x),
Δλ(a�x) ≡ λ(a�x)− λ(0�x), and Δφ(a�w�x) ≡ φ(a− w�w�x)− φ(−w�w�x). Lemma 3
generalizes equation (13).

Lemma 3. Under Assumptions M and N, we have for all i� a > 0 and w, x:

Δv(a�w�x)= Δλ(a�x)+Δφ(a�w�x)� (15)
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where

Δλ(a�x) ≡ μ(a�x)−μ(0�x)+β(
m̃(a�x)− m̃(0�x))�

m̃(a�x) ≡ E
[
m(a�xt+1)|at = a�xt = x

]
�

m(w�x) ≡ E
[
V (st)|wt =w�xt = x

]
�

Proof. Using the law of iterated expectation, the value function as defined in equation
(2) satisfies: E[V (st+1)|at�wt�xt] = E[m(wt+1�xt+1)|at�wt�xt] under M(ii). E[m(wt+1�

xt+1)|at�wt�xt] can be simplified further to E[m̃(at�xt)|at�xt] after another application
of the law of iterated expectation and imposing N(ii). The remainder of the proof then
follows from the definitions of the terms defined within the main text. �

The components of Δv consist of Δλ and Δφ. We treat Δλ as a nuisance parameter.
Δφ contains the switching costs of interest, for any a, w, x:

Δφ(a�w�x)= SCw→a(x) · 1[w �= a] − SCw→0(x) · 1[w �= 0]� (16)

As seen previously, we can identify the differences in Δφ by eliminating Δλ. This can be
done by looking at the differences of Δv(a�w�x) across different w while holding (a�x)
fixed.

Theorem 2. Under Assumptions M and N, we have for all a > 0 and x, w, w′:

Δφ(a�w�x)−Δφ(
a�w′�x

) = Δv(a�w�x)−Δv(a�w′�x
)
� (17)

Theorem 2 follows immediately from Lemma 3. Equation (17) tells us that we can al-
ways identify some combinations of the switching costs nonparametrically. Importantly,
the identified objects do not depend on β or μ.

Comments on Theorem 2.

(i) Certain differences in Δφ in equation (17) are economically meaningful. We have
already introduced the sunk entry cost in the entry/exit model as an example. The no-
tion of sunk costs naturally generalizes to other irreversible investment costs with a vary-
ing degree of commitment. More specifically consider an investment or capacity game
where it costs a firm to choose at > at−1 and, conversely, a firm can divest to recover
some of these costs by choosing at < at−1. In this case, −SCa′→a − SCa→a′

with a > a′
represents a sunk investment cost for a firm that increases its investment level from
a′ to a then divests back to a′. Using equations (16) and (17), Corollaries 1 and 2 give
closed-form expressions for identifying the sunk investment costs.

Corollary 1. For all a > 0, x:

−SC0→a(x)− SCa→0(x)= Δv(a�a�x)−Δv(a�0�x)�
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Corollary 2. For all a�a′ > 0, x:

−SCa′→a(x)− SCa→a′
(x)= Δv(a�a�x)+Δv(a′� a′�x

) −Δv(a�a′�x
) −Δv(a′� a�x

)
�

(ii) We would prefer to identify the switching costs individually. However, without
further information, they are not identified nonparametrically for this type of models;
for example, see Aguirregabiria and Suzuki (2014) for a thorough discussion. But iden-
tification can be achieved if we are willing to impose some constraints on the switching
costs. One example is by assuming symmetry of switching costs between any two ac-
tions, which would be reasonable in applications with logistical or physical adjustment
costs such as the traditional menu costs (e.g., see Slade (1998)). Corollary 3 shows that
individual switching costs under symmetry are identified. Its proof follows immediately
from Corollaries 1 and 2.

Corollary 3. For all a, a′, x, suppose that SCa′→a(x)= SCa→a′
(x), then for any a�a′ > 0:

SC0→a(x) = −(
Δv(a�a�x)−Δv(a�0�x)

)
/2�

SCa→a′
(x) = −(

Δv(a�a�x)+Δv(a′� a′�x
) −Δv(a�a′�x

) −Δv(a′� a�x
))
/2�

(iii) It is frequent in many applications that some components of the switching costs
are taken to be known. Typically, this is done by way of a normalization assumption.
The most commonly used normalization assumes that taking action 0 yields zero pay-
off. For example, for an entry or investment game with entry, such assumption means
a firm has no recovery value of assets upon leaving the market. In other cases, some in-
stitutional or other external knowledge outside of the dynamic model are used. For ex-
ample, Kalouptsidi (2014) uses data on resale value of second hand ships to identify the
scrap values and entry costs directly. In another example, in a study of promotion pric-
ing decisions, Myśliwski, Sanches, Silva, and Srisuma (2017) rely on anecdotal evidence
to assume a cost is incurred to producers when a sale promotion is on while there is no
costs for switching back to the regular price. In these cases, we can identify individual
switching costs directly as Corollary 4 shows.

Corollary 4. For all a′, suppose SCa′→0(x)=φ0(w�x) then for any a, a′, x:

SCa′→a(x)= Δv(a�a′�x
) −Δv(a�a�x)+φ0

(
a′�x

) −φ0(a�x)� (18)

It is important to highlight that assigning incorrect values to φ0 generally leads to incor-
rect values of SCw→a. On the other hand, it is easy to verify that certain combinations of
switching costs, including those in Corollaries 1 and 2, are robust against any choice of
φ0.

(iv) Generally Corollaries 1 and 2 can be informative on the validity of a particular
normalization choice since they have been derived without any normalization. For ex-
ample, let us go back to the discussion on investment game at the end of our first com-
ment where there is a divestment opportunity. In this context, it would be natural to
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assume that −SCa′→a − SCa→a′ = c0 for some positive c0 when a > a′. Then, given both
−SCa′→a and SCa→a′

are positive, it must be the case that −SCa′→a is bounded below
by c0.

(v) WhenA= {0�1} our Theorem 1 implies the sunk entry cost can be identified with-
out any normalization. Proposition 2 in Aguirregabiria and Suzuki (2014) has established
the same result using a different argument.

The results of Theorem 2 and Corollaries 1 to 4 are constructive. We can replace the
unknownΔv using the empirical choice probabilities. The sample analog estimators can
be computed without any optimization. Given the empirical literature is concerned with
the computational cost our closed-form identification result can substantially reduce
the number of parameters to be estimated in a model. Such estimators will be consistent
and asymptotically normal as long as the initial choice probabilities have these proper-
ties.

4.3 Identification and normalization

We have emphasized that normalizations of switching costs are necessary in many situ-
ations. The validity of the identification of payoff parameters is not robust against incor-
rect normalization choice. We now ask: to what extent the identification of the discount
factor depends on the specific normalization choice on the payoff parameters?

In the empirical literature, the discount factor is customarily assumed to be known
while the focus on identification falls on which payoff parameters can (or cannot) be
identified. A particular normalization choice is made, for example, by assigning a value
to an unknown parameter as previously explained. Such normalization assumption is
always made independent to the choice of the discount factor. The identification prob-
lem on the payoff parameters considered in practice therefore mathematically translates
to the matrix B(β) in equation (8) being rank deficient for all β. In particular, it is also
implicitly assumed that the linear dependence relation between the column vectors of
B(β) are the same for all β.

Recall that B(β) is a KJ × p matrix. For the remainder of this subsection, we shall
assume ρ(B(β))= r < p for all β, such that:

B(β)= [
B1(β) : B2(β)

]
�

where B1(β) is a matrix consisting of the first r columns of B(β) with CS(B1(β)) =
CS(B(β)), and B2(β) is a matrix containing the last (p− r) columns of B(β). It will now
be convenient to reintroduce here M(β�θ) = ‖a(β) − B(β)θ‖ from Section 3.3, along
with equations (9) and (10), respectively:

θ∗(β) ≡ (
B(β)�B(β)

)†B(β)�a(β)�

M∗(β) ≡ M
(
β�θ∗(β)

)
�

When we present our Theorem 1, we stated that “(β0� θ0) is identified when M∗(β) has
a unique minimum and minθ∈ΘM(β0� θ) has a unique solution.” The issue associated
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with normalizing payoff parameters only concerns the latter, as we know M(β0� θ) has
a unique minimum at θ0 if and only if B(β) has full column rank. Since B(β) is rank
deficient, M(β0� θ) has a linear subspace of minimizers. Normalization is a way to select
an element from this subspace. This is a separate issue to whether M∗(β) has a unique
minimum or not. One way to clearly illustrate this is the following.

Since CS(B2(β))⊂ CS(B1(β)), there exists an r × (p− r)matrix Γ such that B2(β)=
B1(β)Γ .5 Making a normalization on the payoff parameters corresponds to fixing a value
of θ2. For any (β�θ2), we can define θ∗

1(β�θ2) to be the minimizer of ‖a(β)− B1(β)θ1 −
B1(β)Γ θ2‖, so that

θ∗
1(β�θ2)= (

B1(β)
�B1(β)

)−1B1(β)
�a(β)− Γ θ2�

We can then profile out θ1, and define:

M∗(β�θ2)≡ ∥∥a(β)− B1(β)θ
∗
1(β�θ2)− B1(β)Γ (β)θ2

∥∥�
Substituting θ∗

1(β�θ2) into the right-hand side of the display above, we get

M∗(β�θ2)≡ ∥∥a(β)− B1(β)
(
B1(β)

�B1(β)
)−1B1(β)

�a(β)
∥∥�

We see that M∗(β�θ2) is simply the norm of the residual one gets from an orthogonal
projection of a(β) onto CS(B1(β)). Importantly, M∗(β�θ2) does not depend on θ2. From
the projection theory in linear algebra, M∗(β) and M∗(β�θ2) are necessarily equal. This
residual will also be identical if we project a(β) on the linear span of any other r lin-
ear combinations of the columns in B(β) as long as it equals CS(B(β)). Therefore, our
argument holds without any loss of generality on how we select B1(β). In practice, a re-
searcher has to perform this selection when she decides upon her normalization choice.
Subsequently, the discount factor can be identified regardless of how we normalize the
payoff parameters. We state this result as a proposition.

Proposition 1. If the discount factor can be identified, it can be identified for all nor-
malization choices on the payoff parameters.

Our discussion here also leads to another empirical fact that may not be obvious a
priori. Suppose a researcher specifies a payoff function in practice that satisfies both P
and N. Then there are two different ways to estimate the switching costs based on our
parametric and nonparametric identification approaches. We have shown in Section 4
that some combinations of the switching costs can be identified without any normal-
ization using the nonparametric approach. We are interested to know whether the para-
metric approach taken in Section 3, which relies on a possibly incorrect normalization
choice, can consistently estimate these combinations.

The answer is positive. Consider any combination of the switching costs, which can
be written explicitly in terms of the differences in choice-specific valuations (e.g., sunk

5For instance, this is a consequence of Theorem 6.2.4 in Mirsky (1955).
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costs, and more generally Corollaries 1 and 2). A vector of such combinations can be rep-
resented by Σa0 for some matrix Σ. Then for any θ̃ such that (β0� θ̃) is observationally
equivalent to (β0� θ0) we also have Σa0 = ΣB(β0)θ0 = ΣB(β0)θ̃, that is, the combina-
tions of switching costs described by ΣB(β0) identify the same objects.

5. Numerical illustration

We now illustrate the use of our identification strategies and implement the suggested
estimators in the previous sections. Section 5.1 gives results from a Monte Carlo study
taken from Pesendorfer and Schmidt-Dengler (2008). Section 5.2 estimates a discrete
investment game using the data from Ryan (2012).

5.1 Monte Carlo study

The simulation design is the two-firm dynamic entry game taken from Section 7 in
Pesendorfer and Schmidt-Dengler (2008). In period t, each firm i has two possible
choices, ait ∈ {0�1}; with ait = 1 denoting entry. The only observed state variables are
previous period’s actions, wt = (a1t−1� a2t−1). Using their notation, firm 1′s period pay-
offs are described as follows:

π1(a1t � a2t � xt;θ)= a1t (μ1 +μ2a2t )+ a1t (1 − a1t−1)F + (1 − a1t )a1t−1W� (19)

where μ1, μ2, F , andW are respectively the monopoly profit, duopoly profit, entry cost,
and scrap value. The latter two components are switching costs. Each firm also receives
additive private shocks that are i.i.d. N (0�1). The game is symmetric and Firm’s 2 payoffs
are defined analogously. The data generating parameters are set as: (μ10�μ20�F0�W0)=
(1�2�−1�2�−0�2�0�1) and β0 = 0�9. Pesendorfer and Schmidt-Dengler (2008) show there
are three distinct equilibria for this game.

It is easy to verify the model satisfies both Assumptions MN and MP in the Appendix,
which are the dynamic game’s generalization of Assumptions N and P. Therefore, we can
estimate the model in at least two different ways. We consider the following two estima-
tion methods. Method A profiles out all the payoff parameters using the OLS expression
and use grid search to estimate the discount factor. Method B first estimates the entry
cost in closed-form independently before profiling out the other payoff parameters and
use grid search to estimate the discount factor. We will also be interested to see how
sensitive our estimates are with respect to the normalization choice.

For each equilibrium, we perform 10,000 simulations with sample sizes N = 100�
1000�10,000. Since the entry cost and scrap value cannot be jointly identified, we esti-
mate the model under different normalized values for W . We report the bias and stan-
dard deviation (in italics) for (β̂� μ̂1� μ̂2� F̂) and the sunk entry cost (ŜUNK ). We use
the bold font to highlight the statistics that correspond to the correctly assumed choice
of W . We estimate the sunk entry cost for Methods A and B by first estimating the entry
cost and combine it with the assumed scrap value. In addition, we also estimate the sunk
entry cost without normalizing the scrap value according to Example 1 in the Appendix
(also see Corollary 1). We label the columns of statistics for the sunk entry estimator
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Table 1. Data generated from equilibrium 1 in Pesendorfer and Schmidt-Dengler (2008)

Method A Method B N-N

N W 0 0�1 0�2 0 0�1 0�2 –

100 β̂ −0�0809 −0�0806 −0�0799 −0�0752 −0�0768 −0�0738 –
0�2697 0�2691 0�2686 0�2619 0�2640 0�2596

μ̂1 −0�0418 −0�0253 −0�0071 −0�0631 −0�0450 −0�0291 –
0�2974 0�3050 0�3150 0�3693 0�3774 0�3858

μ̂2 0�0627 0�0815 0�0988 0�0963 0�1141 0�1313 –
0�2970 0�2991 0�3029 0�4779 0�4801 0�4831

F̂ 0�0446 −0�0554 −0�1552 −0�0019 −0�1017 −0�2021 –
0�2836 0�2835 0�2839 0�5692 0�5699 0�5702

ŜUNK 0�0554 0�0554 0�0552 0�1019 0�1017 0�1021 0�0477
0�2836 0�2835 0�2839 0�5692 0�5699 0�5702 0�5935

1000 β̂ −0�0356 −0�0372 −0�0380 −0�0328 −0�0339 −0�0343 –
0�1741 0�1790 0�1801 0�1677 0�1695 0�1715

μ̂1 −0�0051 0�0090 0�0229 −0�0028 0�0110 0�0244 –
0�1032 0�1129 0�1251 0�1066 0�1152 0�1265

μ̂2 −0�0046 0�0091 0�0231 −0�0084 0�0050 0�0185 –
0�0934 0�0946 0�0992 0�1190 0�1204 0�1246

F̂ 0�0958 −0�0042 −0�1042 0�1000 0�0000 −0�1000 –
0�0901 0�0901 0�0902 0�1480 0�1480 0�1480

ŜUNK 0�0042 0�0042 0�0042 0�0001 0�0001 0�0001 −0�0132
0�0901 0�0901 0�0902 0�1480 0�1480 0�1480 0�1573

10,000 β̂ −0�0005 −0�0003 −0�0005 −0�0005 −0�0007 −0�0005 –
0�0204 0�0158 0�0204 0�0204 0�0238 0�0205

μ̂1 −0�0104 −0�0004 0�0097 −0�0101 0�0000 0�0100 –
0�0298 0�0299 0�0309 0�0302 0�0310 0�0312

μ̂2 −0�0093 0�0007 0�0108 −0�0098 0�0003 0�0103 –
0�0297 0�0298 0�0300 0�0355 0�0356 0�0358

F̂ 0�0992 −0�0008 −0�1008 0�0998 −0�0002 −0�1002 –
0�0282 0�0282 0�0282 0�0437 0�0437 0�0437

ŜUNK 0�0008 0�0008 0�0008 0�0002 0�0002 0�0002 −0�0011
0�0282 0�0282 0�0282 0�0437 0�0437 0�0437 0�0454

with no normalization by N-N. Tables 1–3 provides results that correspond to the data
generated according to the three equilibria as enumerated in Pesendorfer and Schmidt-
Dengler (2008), respectively.

The findings are in line with the theory part of the paper. First, it shows the dis-
count factor can be consistently estimated. The consistency property is robust against
the normalization choice of the scrap value. The sunk entry cost can also be consistently
estimated independently of the scrap value used. When the model is correctly specified
in the sense, we correctly assume W =W0 all estimators are consistent, while misspeci-
fying the scrap value cause biases to all estimators of the individual payoff parameters.
The estimation results from Methods A and B, as well as N-N for the sunk entry, are qual-
itatively the same across all equilibria. The performances between estimation methods
seem to depend on the equilibrium and sample size. Method A performs better in Equi-
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Table 2. Data generated from equilibrium 2 in Pesendorfer and Schmidt-Dengler (2008)

Method A Method B N-N

N W 0 0�1 0�2 0 0�1 0�2 –

100 β̂ −0�0675 −0�0691 −0�0704 −0�0667 −0�0660 −0�0684 –
0�2501 0�2523 0�2542 0�2493 0�2477 0�2513

μ̂1 −0�2087 −0�1899 −0�1726 −0�1185 −0�1027 −0�0835 –
0�3978 0�4135 0�4286 0�4495 0�4572 0�4718

μ̂2 0�3264 0�3447 0�3623 0�1847 0�2025 0�2196 –
0�5430 0�5454 0�5500 0�6563 0�6605 0�6641

F̂ −0�0630 −0�1632 −0�2632 0�0942 −0�0058 −0�1058 –
0�4166 0�4161 0�4159 0�5515 0�5515 0�5515

ŜUNK 0�1630 0�1632 0�1632 0�0058 0�0058 0�0058 −0�0455
0�4166 0�4161 0�4159 0�5515 0�5515 0�5515 0�5991

1000 β̂ −0�0296 −0�0302 −0�0314 −0�0318 −0�0306 −0�0304 –
0�1584 0�1600 0�1625 0�1637 0�1603 0�1594

μ̂1 −0�0275 −0�0139 0�0003 −0�0096 0�0028 0�0158 –
0�1631 0�1739 0�1872 0�1596 0�1691 0�1807

μ̂2 0�0494 0�0626 0�0763 0�0267 0�0394 0�0523 –
0�2108 0�2159 0�2234 0�2047 0�2097 0�2162

F̂ 0�0767 −0�0233 −0�1233 0�1006 0�0006 −0�0994 –
0�1526 0�1526 0�1526 0�1495 0�1495 0�1495

ŜUNK 0�0233 0�0233 0�0233 −0�0006 −0�0006 −0�0006 −0�0052
0�1526 0�1526 0�1526 0�1495 0�1495 0�1495 0�1638

10,000 β̂ −0�0001 −0�0002 −0�0004 −0�0002 −0�0004 −0�0002 –
0�0093 0�0127 0�0183 0�0130 0�0183 0�0128

μ̂1 −0�0147 −0�0046 0�0056 −0�0127 −0�0025 0�0073 –
0�0399 0�0405 0�0425 0�0381 0�0398 0�0387

μ̂2 −0�0036 0�0064 0�0166 −0�0063 0�0039 0�0138 –
0�0639 0�0642 0�0649 0�0608 0�0613 0�0610

F̂ 0�0968 −0�0032 −0�1032 0�0995 −0�0005 −0�1005 –
0�0487 0�0487 0�0487 0�0464 0�0464 0�0464

ŜUNK 0�0032 0�0032 0�0032 0�0005 0�0005 0�0005 −0�0002
0�0487 0�0487 0�0487 0�0464 0�0464 0�0464 0�0508

librium 1, and generally in smaller samples. We may be able to attribute the difference
in smaller samples performance to the fact that Method A fully exploits the correctly
specified parametric form of the payoff function while the others use nonparametric es-
timators. At larger sample sizes, there appear to be no dominating estimation methods
for Equilibria 2 and 3.

5.2 Empirical illustration

We next estimate a simplified version of an entry-investment game based on the model
studied in Ryan (2012); using the same dataset as him. In what follows, we provide a
brief description of the data, and highlight the main differences between our empirical
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Table 3. Data generated from equilibrium 3 in Pesendorfer and Schmidt-Dengler (2008)

Method A Method B N-N

N W 0 0�1 0�2 0 0�1 0�2 –

100 β̂ −0�0649 −0�0641 −0�0658 −0�0695 −0�0649 −0�0663 –
0�2459 0�2427 0�2472 0�2526 0�2450 0�2471

μ̂1 −0�2070 −0�1907 −0�1725 −0�1116 −0�0986 −0�0807 –
0�3991 0�4108 0�4261 0�4724 0�4804 0�4920

μ̂2 0�3263 0�3420 0�3588 0�1801 0�1961 0�2130 –
0�5460 0�5484 0�5551 0�7092 0�7109 0�7158

F̂ −0�0677 −0�1676 −0�2672 0�0897 −0�0103 −0�1103 –
0�4224 0�4227 0�4230 0�5987 0�5988 0�5988

ŜUNK 0�1677 0�1676 0�1672 0�0103 0�0103 0�0103 −0�0370
0�4224 0�4227 0�4230 0�5987 0�5988 0�5988 0�6455

1000 β̂ −0�0320 −0�0322 −0�0333 −0�0326 −0�0324 −0�0319 –
0�1634 0�1643 0�1666 0�1647 0�1648 0�1638

μ̂1 −0�0237 −0�0104 0�0041 −0�0060 0�0071 0�0199 –
0�1677 0�1796 0�1932 0�1678 0�1790 0�1900

μ̂2 0�0500 0�0633 0�0771 0�0251 0�0383 0�0511 –
0�2130 0�2188 0�2264 0�2174 0�2235 0�2305

F̂ 0�0766 −0�0234 −0�1234 0�1014 0�0014 −0�0986 –
0�1549 0�1550 0�1550 0�1604 0�1604 0�1604

ŜUNK 0�0234 0�0234 0�0234 −0�0014 −0�0014 −0�0014 −0�0061
0�1549 0�1550 0�1550 0�1604 0�1604 0�1604 0�1785

10,000 β̂ −0�0003 −0�0003 −0�0003 −0�0001 −0�0004 −0�0002 –
0�0159 0�0158 0�0156 0�0093 0�0163 0�0128

μ̂1 −0�0146 −0�0046 0�0054 −0�0128 −0�0026 0�0073 –
0�0410 0�0414 0�0420 0�0399 0�0415 0�0410

μ̂2 −0�0033 0�0067 0�0167 −0�0062 0�0039 0�0138 –
0�0648 0�0649 0�0650 0�0646 0�0650 0�0650

F̂ 0�0965 −0�0035 −0�1035 0�0992 −0�0008 −0�1008 –
0�0496 0�0496 0�0496 0�0497 0�0497 0�0497

ŜUNK 0�0035 0�0035 0�0035 0�0008 0�0008 0�0008 0�0002
0�0496 0�0496 0�0496 0�0497 0�0497 0�0497 0�0553

model and that of Ryan (2012). Then we present and discuss our estimates of the model
primitives.

Data We download Ryan’s data from the Econometrica webpage.6 There are two sets of
data. One contains aggregate prices and quantities for all the US regional markets from
the US Geological Survey’s Mineral Yearbook. The other contains the capacities of plants
and plant-level information that Ryan has collected for the Portland cement industry
in the United States from 1980 to 1998. Data on plants includes the name of the firm
that owns the plant, the location of the plant, the number of kilns in the plant, and kiln
characteristics. Following Ryan, we assume that the plant capacity equals the sum of the

6https://www.econometricsociety.org/content/supplement-costs-environmental-regulation-
concentrated-industry-0.

https://www.econometricsociety.org/content/supplement-costs-environmental-regulation-concentrated-industry-0
https://www.econometricsociety.org/content/supplement-costs-environmental-regulation-concentrated-industry-0
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capacity of all kilns in the plant and that different plants are owned by different firms. We
observe that plants’ names and ownerships change frequently. This can be due to either
mergers and acquisitions or to simple changes in the company name. We do not treat
these changes as entry/exit movements. We check each observation in the sample using
the kiln information (fuel type, process type, year of installation, and plant location)
installed in the plant. If a plant changes its name but keeps the same kiln characteristics,
we assume that the name change is not associated to any entry/exit movement. This way
of preparing the data enables us to match most of the summary statistics of plant-level
data in Table 2 of Ryan. Any discrepancies most likely can be attributed to the way we
treat the change in plants’ names, which may differ to Ryan in a very small number of
cases.

Dynamic game Ryan models a dynamic game played between firms that own cement
plants in order to measure the welfare costs of the 1990 Clean Air Act Amendments (1990
CAAA) on the US Portland cement industry. The decision for each firm is first whether to
enter (or remain in) the market or exit, and if it is active in the market then how much to
invest or divest. Firm’s investment decisions is governed by its capacity level. The firm’s
profit is determined by variable payoffs from the competition in the product market
with other firms, as well as switching costs from the entry and investment/divestment
decisions. There are two action variables in Ryan’s model. One is a binary choice used to
model entry. The other is a continuous variable used to model the level of investment.
Past actions are the only observed endogenous state variables in the game. The aggre-
gate data that are used to construct variable profits, through a static Cournot game with
capacity constraints between firms, are treated as exogenous.

We consider a discrete game that extends the single agent model in the paper as de-
scribed in the Appendix. The main departure from Ryan (2012) is that we combine the
entry decision along with the capacity level into a single discrete variable. We set the
action space to be an ordinal set {0�1�2�3�4�5}, where 0 represents exit/inactive, and
the positive integers are ordered to denote entry/active with different capacity levels.
The payoff for each firm has two additive separable components. One depends on the
observables while the other is an unobserved shock. The observable component can
be broken down into variable profits, operating cost, and switching costs. We assume
the variable profit is determined by the players competing in a capacity constrained
Cournot game. The operating cost is a fixed profit that incurs whenever ait > 0. The
switching costs capture the essence of firms’ entry and investment decisions. Lastly,
each firm receives unobserved profit shocks for each action with a standard i.i.d. type-1
extreme value distribution.

Estimation The period expected payoff for each firm as a function of the observables
consists of variable profits, operating costs and switching costs. The variable profit is
derived from a capacity constrained Cournot game constructed from the same demand
and cost functions estimated as in Ryan’s paper. The operating and switching costs pa-
rameters enter the payoff function additively and are parameters to be estimated using
the dynamic model. These operating cost is nonzero whenever ait > 0. For the switching
costs, we normalize the payoff for choosing action 0 to be zero. There are a total of 25
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switching cost parameters to be estimated.7 The payoff function used in our empirical
model satisfies Assumptions MN and MP in the Appendix. So we estimate the model
using Methods A and B as described in Section 5.1. We also test if the two estimates of
the switching costs statistically differ. Instead of using nonparametric estimator, similar
to Ryan, we use a multinomial logit to estimate the choice and transition probabilities
in the first stage. More specifically, method A profiles out the 26 linear coefficients and
uses grid search to estimate the discount factor. Method B first estimates the 25 switch-
ing cost parameters in closed-form using the closed-form expression in Section 4, treat
them as known, before profiling and performing the grid search. We also estimate the
sunk entry and investment values based on the estimates from Methods A and B, as well
as nonparametrically without normalization (cf. Corollaries 1 and 2, and see the discus-
sion in the Appendix).

We estimate the standard errors, as well as computing the p-value of the Wald statis-
tics to test if the switching costs estimators from methods A and B differ by bootstrap-
ping. Our bootstrap sample is generated using the multinomial logit choice and tran-
sition probabilities for each player in each market in the same manner as a parametric
bootstrap; cf. Kasahara and Shimotsu (2008) and Pakes, Ostrovsky, and Berry (2007). We
use 500 bootstrap samples and report the standard errors in italics.

Results We estimate the model twice. Once using the data from before the implemen-
tation of the 1990 CAAA and another after. We allow the equilibria over the two time
periods to differ. But, for illustrational purposes, we assume the data are generated from
the same equilibrium in all markets within each time period and there is no other source
of unobserved heterogeneity.8

Tables 4 and 5 compile the results from estimating switching costs using the data
from the years 1980 to 1990 and 1991 to 1998, respectively. Tables 6 and 7 give the es-
timates for the discount factor and fixed operating cost using the data from the cor-
responding periods. Table 8 compares the estimates of the sunk entry costs and sunk
investment costs.

The signs and relative magnitudes of individually estimated switching costs almost
uniformly make sensible economic sense. For example, by reading down the columns
in Tables 4 and 5, we see that entering at higher capacity level generally implies higher
cost (negative payoff), and increasing the capacity level should be costly while divest-
ment can return revenue for firms. This is quite an impressive finding in particular for

7Ryan (2012) models the switching costs differently. The fixed operating cost is normalized to be zero.
Nonzero investment and divestment costs are drawn from two distinct independent normal distributions,
whose means and variances are estimated using the methodology described in Bajari, Benkard, and Levin
(2007).

8Recently Otsu, Pesendorfer, and Takahashi (2016) propose several tests to detect differences in the prob-
ability distribution of data across markets. If a test rejects then there is evidence data across markets should
not be pooled together, which can point to possible violation of single equilibrium assumption and/or
misspecification in terms of omitting other unobserved heterogeneity. They actually suggest Ryan’s data
in general should not be pooled together across markets. In particular, there is a strong evidence against
pooling data between 1980 and 1990, while the data from 1991 to 1998 did not get rejected by some of their
poolability tests.
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Table 4. Results from estimating switching costs using data from the years 1980 to 1990.

Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 −3�300 – 2�265 5�080 7�956 10�770
0�985 – 0�680 0�707 0�766 0�929

ait = 2 −10�502 −5�243 – 5�528 10�609 15�810
0�937 0�719 – 0�887 0�998 1�117

ait = 3 −23�266 −15�439 −7�624 – 7�996 16�050
1�405 1�010 0�683 – 0�923 1�237

ait = 4 −41�023 −30�620 −20�196 −9�808 – 11�648
2�003 1�850 1�430 1�094 – 1�442

ait = 5 −52�879 −50�648 −39�027 −25�756 −11�949 –
2�281 2�585 2�041 1�395 1�537 –

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 −2�776 – 2�540 5�333 8�014 11�696
0�269 – 0�333 0�567 0�967 1�113

ait = 2 −10�483 −5�197 – 5�243 10�466 15�893
0�689 0�365 – 0�368 0�718 1�110

ait = 3 −23�279 −15�427 −7�769 – 7�732 16�134
1�339 0�920 0�474 – 0�640 1�006

ait = 4 −41�422 −31�007 −20�797 −10�416 – 10�852
1�808 1�594 1�078 0�682 – 0�864

ait = 5 −54�378 −52�892 −41�874 −28�792 −16�091 –
1�911 2�232 1�844 1�659 1�835 –

Specification Test

Statistic 14�069
p-value 0�961

Method B, which shows that the observed probabilities alone can generate switching
costs estimates that capture well some key features of a complicated structural model.
The switching cost estimates from both Methods A and B are similar. The Wald statistics
do not find the two switching costs estimators to be statistically different.9 Therefore, we
do not reject the capacity constrained Cournot game specification based on comparing
the switching costs estimates. Comparing Tables 4 and 5 shows the entry and switching
costs increase after the implementation of 1990 CAAA. Higher entry costs is a key find-
ing in Ryan’s paper as new entrants face more stringent regulations than incumbents.
An increase in switching costs can be partly attributed to the new plants using newer

9Our test statistic takes a standard quadratic form of the difference between the switching costs estimates
from methods A and B. Its asymptotic distribution under the null hypothesis (of no difference) is a Chi-
squared random variable with 25 degree of freedoms.
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Table 5. Results from estimating switching costs using data from the years 1991 to 1998.

Method A

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 −6�962 – 4�449 9�881 15�125 20�264
1�530 – 1�514 1�501 1�689 1�634

ait = 2 −17�038 −8�291 – 9�872 18�531 26�722
1�723 1�364 – 1�714 1�860 1�527

ait = 3 −35�489 −23�412 −11�411 – 12�961 24�283
2�444 1�866 1�371 – 1�955 1�614

ait = 4 −51�544 −50�043 −33�220 −16�363 – 16�524
3�061 3�419 3�278 2�825 – 3�561

ait = 5 −64�018 −63�994 −61�481 −48�514 −24�374
4�514 4�524 4�502 3�683 2�056

Method B

ait−1 = 0 ait−1 = 1 ait−1 = 2 ait−1 = 3 ait−1 = 4 ait−1 = 5

ait = 1 −5�653 – 5�294 10�730 16�264 21�567
0�726 – 0�704 1�109 1�703 1�378

ait = 2 −17�746 −9�278 – 8�774 17�461 25�754
1�379 0�780 – 0�857 1�364 1�218

ait = 3 −36�098 −24�537 −11�950 – 11�862 23�489
2�282 1�767 1�128 – 1�221 1�401

ait = 4 −51�840 −50�425 −33�468 −16�760 – 16�753
2�202 2�649 2�397 1�904 – 2�025

ait = 5 −64�236 −64�355 −61�706 −48�272 −24�093
6�712 6�771 6�713 5�695 3�389

Specification Test

Statistic 13�196
p-value 0�975

Table 6. Results from estimating the dis-
count factor and fixed operating cost using
data from the years 1980 to 1990.

Method A

Discount factor Operating cost

0�956 −1�679
0�084 0�489

Method B

Discount factor Operating cost

0�999 −1�523
0�075 0�649
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Table 7. Results from estimating the dis-
count factor and fixed operating cost using
data from the years 1991 to 1998.

Method A

Discount factor Operating cost

0�938 −2�079
0�162 1�10

Method B

Discount factor Operating cost

0�946 −1�893
0�160 0�948

(or better maintained) equipment that require more certification and testing than pre-
viously.

We find the discount factor estimates to be around the range that are usually as-
sumed in empirical work (between 0.9 and 0.95) apart from the estimate using Method
B before the 1990 CAAA that appears close to the boundary.10 Although our estimates
suggest firms face a lower borrowing rate than in Ryan, we do not reject the hypothesis
that β= 0�9 as assumed in his paper. We also find a small increase in the fixed operating
costs after the implementation of 1990 CAAA.

Finally Table 8 reports sunk costs using different estimation methods. The estimates
from Methods A and B can be found by computing −SCa′→a − SCa→a′

using individual
switching costs in Tables 4 and 5. The N-N approach estimates the same object without
the assumption that the payoff is zero upon choosing action 0. The signs and magni-
tudes of the sunk cost estimates are plausible. We find the sunk investment costs be-
tween any two capacity levels increase as the gap between levels grow, while we find the
costs to be of similar magnitude when compared within the same capacity difference
bands. We also find the sunk costs to have increased after the implementation of 1990
CAAA.

6. Concluding remarks

We show the discount factor can be identified jointly with the payoff function under the
linear-in-parameter specification. The key property we exploit is the conditional linear-
ity of the choice-specific value functions for a given value of the discount factor. The dis-
count factor can in fact be identified even if the payoff parameters cannot be identified.
This has an important implication since many empirical problems have to normalize

10The infinite time expected discounted payoffs with respect to each action is unbounded with β = 1.
However, the differences between diverge very slowly when we approximate them with a Neumann sum,
and the objective function appears to be well-defined numerically even as β is very close to 1.
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Table 8. Results from estimating the sunk entry and investment costs.

Before After

ait ait−1 Method A Method B N-N Method A Method B N-N

1 0 3�30 2�78 2�78 6�96 5�65 5�66
0�36 0�27 0�27 1�53 0�73 0�70

2 0 10�50 10�48 10�48 17�04 17�75 17�74
0�94 0�69 0�69 1�72 1�38 1�49

3 0 23�27 23�28 23�28 35�49 36�10 36�10
1�41 1�34 1�34 2�44 2�28 2�18

4 0 41�02 41�42 41�42 51�54 51�84 51�83
2�00 1�81 1�80 3�06 2�20 1�61

5 0 52�88 54�38 54�25 64�02 64�24 64�22
2�28 1�91 2�00 4�51 6�71 6�34

2 1 2�98 2�66 2�44 3�84 3�98 3�30
1�22 2�54 0�25 0�31 0�61 0�36

3 2 2�10 2�53 2�56 1�54 3�18 3�22
1�18 2�30 0�26 0�30 0�73 0�33

4 3 1�81 2�68 2�58 3�40 4�90 4�81
1�52 4�33 0�28 0�42 2�45 0�50

5 4 0�30 5�24 2�87 7�85 7�34 7�30
2�50 4�75 0�33 1�74 4�58 2�14

3 1 10�36 10�09 10�01 13�53 13�81 13�05
1�22 2�12 0�75 0�79 1�24 0�98

4 2 9�59 10�33 10�29 14�69 16�01 16�07
1�54 3�31 0�77 0�81 2�13 1�25

5 3 9�71 12�66 10�91 24�23 24�78 24�21
1�45 4�83 0�91 1�37 6�09 5�22

4 1 22�66 22�99 22�76 34�92 34�16 34�02
1�78 3�29 1�37 1�45 1�93 1�42

5 2 23�22 25�98 24�05 34�76 35�95 34�79
1�83 4�64 1�79 1�59 6�89 6�34

5 1 39�88 41�20 40�21 43�73 42�79 41�67
2�40 4�68 2�60 2�08 6�82 6�40

parts of the payoff parameters. Our result shows the discount factor can be identified
independently of these normalization choices.

We also contribute to a recent interest in the robust identification of combinations
of switching costs without any normalization as studied in Aguirregabiria and Suzuki
(2014); also see Kalouptsidi, Scott, and Souza-Rodrigues (2016, 2017). We provide closed-
form identification results on switching costs that do not depend on the knowledge of
the discount factor and other parts of the payoff function. We show some costs, such as
sunk entry and investment costs, can be identified in this way. We show the same com-
binations of switching costs can be identified for linear models in two steps. In the first
step, some normalization is made in order to identify each switching cost individually.
Even when an incorrect normalization is used, thus the implied switching costs are in-
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correct individually, we show certain combinations of these costs can still be correctly
identified.

Our parametric and nonparametric identification approaches deliver quite differ-
ent flavors of results. But there are overlapping implications when the payoff function
satisfies both Assumptions N and P, as we then have two different ways to identify the
switching costs. However, there are notable distinctions where our nonparametric re-
sults remain valid but the analysis under Assumption P is no longer appropriate. First,
a researcher may want to use a nonlinear parametric specification on parts of the pay-
offs outside of the switching costs. One example of this is to impose positivity on the
variable profits. Our nonparametric identification results do not depend on the specifi-
cation of the variable profit function. Second, our nonparametric identification strategy
holds pointwise for each observed state. Therefore, it is immediately applicable for mod-
els with continuous states; for example, see Srisuma and Linton (2012).

Finally, our main message is that one should generally attempt to identify and esti-
mate the discount factor in dynamic decision problems and games. Clearly, we do not
expect the linear specification to be necessary for identification. But analyzing models
with nonlinear parametric payoff functions will be substantially more difficult. Similarly,
outside of discrete choice models, for example, for games with supermodular payoff
functions (see Bajari, Benkard, and Levin (2007) and Srisuma (2013)), joint identifica-
tion and estimation of the discount factor and payoff parameters should also be possi-
ble. However, in this case even the practical implementation can be burdensome when
the payoff functions take a linear-in-parameter structure.

Appendix

The Appendix contains two parts: A.1 extends the results on identification of switching
costs to dynamic games. A.2 provides a sufficient condition for the identification of the
discount factor. Since the single agent decision problem is a special case of a game, we
also present the results in A.2 in the context of a game.

A.1 Identification of the switching costs in dynamic games

We shall keep our description of the basic elements of the game very brief. The nota-
tion we use directly extends what we describe in Sections 2 and 3. Consider a game
with I players, indexed by i ∈ I = {1� � � � � I}. The random variables in the game are the
actions: at ≡ (ait� a−it ) ∈ AI , A = {0�1� � � � � J}; past actions wt ≡ (wit�w−it) ∈ AI ; sit ≡
(wt�xt� εit) ∈AI ×X × RJ+1, where X = {1� � � � �K}, and εit ≡ (εit(0)� � � � � εit(J)) ∈ RJ+1;
and we let st ≡ (wt�xt� ε1t � � � � � εIt).

In an equilibrium ait = αi(sit) for all i, such that

αi(si)= max
ai∈A

{
E

[
ui(ait � a−it � si)|sit = si� ait = ai

]
+βE[

Vi(sit+1)|sit = si� ait = ai
]}
�

(20)
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where ui and Vi are player i’s payoff and value function respectively; in particular,

Vi(si)=
∞∑
t=0

βtE
[
ui(ait � a−it � sit)|si0 = si

]
�

Assumption MN updates Assumptions M and N for games.

Assumption MN.

(i) (Additive Separability) For all ai, a−i, w, x, εi:

ui(ai� a−i�w�x�εi)= πi(ai� a−i�w�x)+ εi(ai)�

(ii) (Conditional Independence I) The transition distribution of the states has the fol-
lowing factorization for all x′, ε′, x, ε, a:

P
(
x′� ε′|x�ε�w�a) =

I∏
i=1

Qi
(
ε′
i

)
G

(
x′|x�w�a)�

where Qi is the cumulative distribution function of εit and G denotes the transition law
of xt+1 conditioning on xt , at . Furthermore, εit has finite first moments, and a positive,
continuous, and bounded density on RJ+1.

(iii) (Finite Observed State)X = {1� � � � �K}.

(iv) (Decomposition of Profits): For all a, w, x:

πi(ai� a−i�w�x�ε)= μi(ai� a−i� x)+φi(ai −wi�w−i� x)�

such that φi(0�w−i� x)= 0.

(v) (Conditional Independence II): The distribution of xt+1 conditional on at and xt is
independent of wt .

Beside from explicitly separating out past actions from other observed state vari-
ables, MN(i) to MN(iii) are standard in the dynamic discrete choice game literature; for
example, see Aguirregabiria and Mira (2007), Bajari, Benkard, and Levin (2007), Pakes,
Ostrovsky, and Berry (2007), and Pesendorfer and Schmidt-Dengler (2008). MN(iv) ex-
tends N(i). It assumes that strategic interactions can affect payoffs in μi directly but not
φi, while past actions enterφi but not μi. The exclusion restrictions we impose are quite
natural for components of μi such as per-period variable profits and operation costs,
while switching costs that occur for each player are determined by her own actions. It
will be useful to sometimes represent the switching cost using a more intuitive notation
(cf. equation (11)):

φi(ai −wi�w−i� x)= SCwi→ai
i (w−i� x)�

MN(v) is a direct extension of N(ii).
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As with the single agent case, our identification study will be based on the choice-
specific value function:

vi(ai�w�x)=E[
πi(ai� a−it �wt�x)|wt =w�xt = x

] +βE[
Vi(st+1)|wt =w�xt = x�at = a

]
�

which can be recover from

Pr[ait = ai|wt =w�xt = x]
= Pr

[
Δvi(ai�w�x)−Δvi

(
a′
i�w�x

)
> εit

(
a′
i

) − εit(ai) for all a′
i �= ai

]
�

where Δvi(ai�w�x) ≡ vi(ai�w�x) − vi(0�w�x). Let also, Δλi(ai� a−i� x) ≡ λi(ai� a−i� x) −
λi(0� a−i� x) and Δφi(ai�w�x)≡φi(ai −wi�w−i� x)−φi(−wi�w−i� x). Lemma 4 is a gen-
eralization of Lemma 1.

Lemma 4. Under Assumption MN, we have for all i� ai > 0 and w, x:

Δvi(ai�w�x)=E[
Δλi(ai� a−it � x)|wt =w�xt = x

] +Δφi(ai�w�x)�
where

Δλi(ai� a−i� x) ≡ πi(ai� a−i� x)−πi(0� a−i� x)+β(
m̃i(ai� a−i� x)− m̃i(0� a−i� x)

)
�

m̃i(ai� a−i� x) ≡ E
[
mi(wt+1�xt+1)|ait = ai�a−it = a−i� xt = x

]
�

mi(w�x) ≡ E
[
Vi(sit)|wt =w�xt = x

]
�

Proof. It follows immediately from applying the law of iterated expectations (cf. the
proof of Lemma 1). �

Since we have finite actions and states, we can collect Δvi(ai�w�x) across w for each
(i� ai�x) into a vector of size (J + 1)I . Using a matrix form, we have

Δvi(ai� x)= Zi(x)Δλi(ai� x)+ Qi(ai� x)φi(ai� x)� (21)

where Δvi(ai� x) = (Δvi(ai�w�x))w∈AI , Δλi(ai� x) = (Δλi(ai� a−i� x))a−i∈AI−1 , Zi(x) rep-
resents the matrix of conditional probabilities for computing a conditional expecta-
tion of a−it given (wt = w�xt = x), Qi(ai� x)φi(ai� x) represents (Δφi(ai�w�x))a∈AI with
φi(ai� x)= (φi(ai −wi�w−i� x))wi∈A�w−i∈AI−1 and Qi(ai� x) is a matrix of indicators (con-
sisting of 0’s and 1’s) that pick up switching costs as appropriate.

Theorem 3 generalizes the closed-form identification of switching costs in Theo-
rem 1 for dynamic games.

Theorem 3. Assume that Assumption MN holds. Let D be an �1 × (J + 1)I matrix with
ρ(D)= �1 such that (J+1)I−1 < �1 ≤ (J+1)I . Denote DZi(x) by Z̃ and ρ(̃Z) by �2. Suppose
also DQi(ai� x)φi = Q̃φ̃ + φ0 for some �3-dimensional vectors φ̃ and φ0 that consist of
elements, possibly combinations, of φi such that �3 ≤ �1 − �2, and Q̃ is an �1 × �3 matrix
with ρ(Q̃)= �3. If ρ([̃Z : Q̃])= �2 + �3, then

φ̃= (
Q̃�P̃Q̃

)−1Q̃�P̃
(
DΔvi(ai� x)−φ0

)
� (22)

where P̃ = I�1 − Z̃(̃Z�Z̃)†Z̃�.
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Before presenting the proof to Theorem 3 some explanations on the notation will
be useful. The crucial interpretation of our result rests on the relation: DQi(ai� x)φi =
Q̃φ̃ + φ0. The goal of Theorem 3 is to identify components, or combinations, of
(φi(ai�w�x))w∈AI using choice-specific value functions in equation (21) for a given
(i� ai�x). We denote the object of interest by φ̃. We use φ0 to account for components
of switching costs that can be identified outside the dynamic model from the data or by
normalization. Therefore, (D� Q̃) are user-chosen matrices and are completely known.
For identification, we can also treat Z̃i as known since Zi(x) is a matrix of observed
choice probabilities.

Proof of Theorem 3. Note that �3 ≥ 1 since �2 ≤ min{�1�ρ(Zi(x))} and ρ(Zi(x))≤ (J +
1)I−1. Multiply equation (21) by D yields

DΔvi(ai� x)= Z̃Δλi(ai� x)+ Q̃φ̃+φ0�

By assumption, P̃Q̃ has full column rank. The result then follows from projecting
Δvi(ai� x) orthogonally onto the null space of Z̃ and solve out for φ̃i. �

One systematic approach to apply Theorem 3 in practice is to first write out the ma-
trix equation (21). Then choose D so that DQi(ai� x)φi contains the switching costs of
interest, and define Q̃φ̃ + φ0 appropriately. We now illustrate this identifying strategy
with a two-player binary choice game for different types of switching costs.

For notational compactness, we will suppress xt and assume that SCw→a
i (w−i) is the

same for all w−i. We use Δνi(wi�w−i)≡ vi(1�wi�w−i)− vi(0�wi�w−i), p−i(w)≡ Pr[a−it =
1|wt =w], and Δλi(a−i)≡ Δλi(1� a−i). Then equation (21) represents:⎡⎢⎢⎢⎣

Δvi(0�0)
Δvi(0�1)
Δvi(1�0)
Δvi(1�1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −p−i(0�0) p−i(0�0)
1 −p−i(0�1) p−i(0�1)
1 −p−i(1�0) p−i(1�0)
1 −p−i(1�1) p−i(1�1)

⎤⎥⎥⎥⎦
[
Δλi(0)
Δλi(1)

]

+

⎡⎢⎢⎢⎣
1 0
1 0
0 1
0 1

⎤⎥⎥⎥⎦
[

SC0→1
i

−SC1→0
i

]
�

(23)

In particular, we have

Qi(ai� x)φi =

⎡⎢⎢⎢⎣
1 0
1 0
0 1
0 1

⎤⎥⎥⎥⎦
[

SC0→1
i

−SC1→0
i

]
�

We consider three examples of potential objects of interest.

Example 1 (Sunk Entry Cost). Suppose we want to identify −SC0→1
i −SC1→0

i that repre-
sents the sunk entry cost in the context of an entry game. We can subtract Δvi(0�0) from
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the first equation in (23) off the remaining three equations. This yields⎡⎢⎣Δvi(0�1)
Δvi(1�0)
Δvi(1�1)

⎤⎥⎦ =
⎡⎢⎣p−i(0�0)−p−i(0�1) p−i(0�1)−p−i(0�0)
p−i(0�0)−p−i(1�0) p−i(1�0)−p−i(0�0)
p−i(0�0)−p−i(1�1) p−i(1�1)−p−i(0�0)

⎤⎥⎦[
Δλi(0)
Δλi(1)

]

+
⎡⎢⎣0

1
1

⎤⎥⎦[−SC0→1
i − SC1→0

i

]
�

In particular, in this case,

Z̃ =
⎡⎢⎣p−i(0�0)−p−i(0�1) p−i(0�1)−p−i(0�0)
p−i(0�0)−p−i(1�0) p−i(1�0)−p−i(0�0)
p−i(0�0)−p−i(1�1) p−i(1�1)−p−i(0�0)

⎤⎥⎦ �

D =
⎡⎢⎣−1 1 0 0

−1 0 1 0
−1 0 0 1

⎤⎥⎦ � Q̃ =
⎡⎢⎣0

1
1

⎤⎥⎦ � φ̃= −SC0→1
i − SC1→0

i � and φ0 = 0�

The sunk entry cost can then be identified by the expression in equation (22).

Example 2 (Menu Cost Under Symmetry). Suppose we want to identify SC0→1
i under

the assumption that SC0→1
i = SC1→0

i . Then equation (23) becomes⎡⎢⎢⎢⎣
Δvi(0�0)
Δvi(0�1)
Δvi(1�0)
Δvi(1�1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −p−i(0�0) p−i(0�0)
1 −p−i(0�1) p−i(0�1)
1 −p−i(1�0) p−i(1�0)
1 −p−i(1�1) p−i(1�1)

⎤⎥⎥⎥⎦
[
Δλi(0)
Δλi(1)

]
+

⎡⎢⎢⎢⎣
1
1

−1
−1

⎤⎥⎥⎥⎦[
SC0→1

i

]
�

In this case,

Z̃ =

⎡⎢⎢⎢⎣
1 −p−i(0�0) p−i(0�0)
1 −p−i(0�1) p−i(0�1)
1 −p−i(1�0) p−i(1�0)
1 −p−i(1�1) p−i(1�1)

⎤⎥⎥⎥⎦ � D = I4�

Q̃ =

⎡⎢⎢⎢⎣
1
1

−1
−1

⎤⎥⎥⎥⎦ � φ̃= SC0→1
i � and φ0 = 0�

Example 3 (Switching Costs With Normalizations). Suppose we want to identify SC0→1
i

under the assumption that SC0→1
i = c0. For example, we may be interested in identify-
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ing the entry cost under the assumption that the scrap value is c0. Then equation (23)
becomes⎡⎢⎢⎢⎣

Δvi(0�0)
Δvi(0�1)
Δvi(1�0)
Δvi(1�1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −p−i(0�0) p−i(0�0)
1 −p−i(0�1) p−i(0�1)
1 −p−i(1�0) p−i(1�0)
1 −p−i(1�1) p−i(1�1)

⎤⎥⎥⎥⎦
[
Δλi(0)
Δλi(1)

]
+

⎡⎢⎢⎢⎣
1
1
0
0

⎤⎥⎥⎥⎦[
SC0→1

i

] +

⎡⎢⎢⎢⎣
0
0

−c0

−c0

⎤⎥⎥⎥⎦ �
In this case,

Z̃ =

⎡⎢⎢⎢⎣
1 −p−i(0�0) p−i(0�0)
1 −p−i(0�1) p−i(0�1)
1 −p−i(1�0) p−i(1�0)
1 −p−i(1�1) p−i(1�1)

⎤⎥⎥⎥⎦ � D = I4�

Q̃ =

⎡⎢⎢⎢⎣
1
1
0
0

⎤⎥⎥⎥⎦ � φ̃= SC0→1
i � and φ0 =

⎡⎢⎢⎢⎣
0
0

−c0

−c0

⎤⎥⎥⎥⎦ �

In order to obtain the sunk costs when the number of actions is larger than two, one
has to combine identifiable objects across actions; for example, see Corollary 2. Identi-
fication of objects for each action can be obtained as the examples above have shown.
We use Theorem 3 to estimate the games such as those in our simulation study and the
empirical model of capacity game in Section 5 of our paper.

A.2 A sufficient condition for identification of the discount factor

In this part of the Appendix, we give a more analytical approach that ensures identifica-
tion of the discount factor and payoff parameters in a dynamic game context. We first
introduce some additional notation.

For any x = (x1� � � � � xp)
� ∈ Rp and y = (y1� � � � � yp+1)

� ∈ Rp+1, let ‖x‖α1 =
maxi=1�����p |xi| and ‖y‖α2 = maxi=1�����p |yi| + |yp+1|. Then for a class of p+ 1 by p real ma-
trices, we denote the matrix norms induced by (‖ · ‖α1�‖ · ‖α2) by ‖ · ‖α1�α2 . We comment
that these are not standard induced matrix norms; however, they have simple explicit
bounds. In particular, it is easy to verify that, for any matrix (p+ 1)×p, C = (cij),

‖C‖α1�α2 ≤ max
i=1�����p

p∑
j=1

|cij| +
p∑
j=1

|cp+1�j|�

We also need the parameter space to be compact. Let Θ ≡ {θ ∈ Θ : maxi=1�����p |θi| ≤ k}
and B ≡ [0� b] for some positive k and b ∈ (0�1).

Next, we generalize the setup of Section 4 to dynamic games. The following is a
straightforward extension of Assumptions M and P.
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Assumption MP.

(i) (Additive Separability) For all ai, a−i, x, εi:

ui(ai� a−i� x�εi;θ)= πi(ai� a−i� x;θ)+ εi(ai)�
(ii) (Conditional Independence I) The transition distribution of the states has the fol-

lowing factorization for all x′, ε′, x, ε, a:

P
(
x′� ε′|x�ε�w�a) =

I∏
i=1

Qi
(
ε′
i

)
G

(
x′|x�w�a)�

where Qi is the cumulative distribution function of εit and G denotes the transition law
of xt+1 conditioning on xt , at . Furthermore, εit has finite first moments, and a positive,
continuous, and bounded density on RJ+1.

(iii) (Finite Observed State) X = {1� � � � �K}.
(iv) (Linear-in-Parameters): For all ai, a−i, x, εi:

πi(ai� a−i� x;θ)= πi0(ai� a−i� x)+ θ�πi1(ai� a−i� x)�

whereπi0 is a known real value function,πi1 is a knownp-dimensional vector value func-
tion and θ belongs to Rp.

Our analysis will be based on the parameterized choice-specific value function:

vi(ai�x;β�θ) = E
[
πi(ai� a−it � x;θ)|xt = x

] +βE[
Vi(st+1;β�θ)|xt = x�ait = ai

]
� where

Vi(si;β�θ) =
∞∑
t=0

βtE
[
ui(ait � a−it � sit;θ)|si0 = si

]
�

Let Δvi(ai�x;β�θ)≡ vi(ai�x;β�θ)− vi(0�x;β�θ). We can use Δvi from all players to de-
fine an empirical model and the corresponding notion of identification, and observa-
tionally equivalence, as in Section 4. We will omit this discussion to avoid repetition.

Our starting point will be the following lemma that generalizes Lemma 2.

Lemma 5. Under Assumption MP, we have for all i� ai > 0, Δvaii (β�θ) ≡ (Δvi(ai�x;
β�θ))x∈X can collected in the following vector form for all (β�θ) ∈ B ×Θ:

Δvaii (β�θ)= ΔRaii0 +βΔHai
i (IK −βL)−1Ri0

+ (
ΔRaii1 +βΔHai

i (IK −βL)−1Ri1
)
θ

+βΔHai
i (IK −βL)−1εi�

(24)

where the elements in the above display are collected and explained in Tables C and D.

Our strategy to show identification is to rewrite Lemma 5 in order to set up a map-
ping that has the data generating parameters its fixed point. One desired relation is the
following.
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Table C. The matrices consist of (differences in) expected payoffs and probabilities. The latter
represent conditional expectations for any function ψ of xt+1.

Matrix Dimension Representing

ΔRaii1 K ×p E[πi1(ai� a−it � xt)−πi1(0� a−it � xt)|xt = ·]
R1 K ×p E[πi1(at �xt)|xt = ·]
L K ×K E[ψ(xt+1)|xt = ·]
Hai
i K ×K E[ψ(xt+1)|xt = ·� ait = ai]

ΔHai
i K ×K E[ψ(xt+1)|xt = ·� ait = ai] −E[ψ(xt+1)|xt = ·� ait = 0]

Table D. The K × 1 vectors represent (differences in) expected payoffs.

Vector Representing

εi E[εit (ait )|xt = ·]
ΔRaii0 E[πi0(ai� a−it � xt)−πi0(0� a−it � xt)|xt = ·]
Ri0 E[πi0(at �xt)|xt = ·]
(IK −βiL)−1RΠ ij

∑∞
t=0β

tE[πij(at�xt)|x0 = ·]
ΔHai

i (IK −βiL)−1RΠ ij
∑∞
t=0β

t(E[πij(at �xt)|ai0 = ai�x0 = ·] −E[πij(at �xt)|ai0 = 0�x0 = ·])
ΔHai

i (IK −βiL)−1εi
∑∞
t=0β

t(E[εt(at)|ai0 = ai�x0 = ·] −E[εt(at)|ai0 = 0�x0 = ·])

Lemma 6. Under Assumption MP, (β�θ) is observationally equivalent to (β0� θ0) if and
only if (β�θ) satisfies

caii − Dai
i (β)θ− Ei(β)= Faii

(
θ

β

)
(25)

for all i� ai > 0, where

caii = Δvaii (β0� θ0)−ΔRaii0�

Dai
i (β) = βΔHai

i (IK −βL)−1Ri1�

Ei(β) = β2ΔHai
i L(IK −βL)−1(Ri0 + εi)�

Faii = [
ΔRaii1 : ΔHai

i (Ri0 + εi)
]
�

Proof. Equation (25) is obtained by re-arranging equation (24), after applying the iden-
tity that (IK −βL)−1 = IK +βL(IK −βL)−1 and replace Δvaii (β�θ) by Δvaii (β0� θ0). There-
fore, by construction, (β�θ) satisfies (24) if and only if it is observationally equivalent to
(β0� θ0). �

The following result provides one condition that is sufficient for the identification of
(β0� θ0).

Theorem 4. Assume thatK ≥ p+ 1 and Assumption MP holds. Suppose there exists i, ai
such that: (i) the rank of Faii is p+ 1; (ii) there exists a p+ 1 byK matrix A0 such that A0Faii
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is nonsingular; and (iii) max{g1�g2}< 1, where

g1 = max
β∈B

∥∥(
A0Faii

)−1A0ΔHai
i β(IK −βL)−1R1i

∥∥
α1�α2

�

g2 = max
β�β′∈B�θ∈Θ

∥∥(
A0Faii

)−1A0ΔHai
i

(
(IK −βL)−1(IK −β′L

)−1R1iθ

+ L(IK −βL)−1((β+β′)IK −ββ′L
)(

IK −β′L
)−1
(R0i + εi)

)∥∥
α1�α2

�

Then (β0� θ0) is identifiable.

Proof. First, define Qaii : [0�1] ×Θk →Rp+1 as follows:

Qaii (β�θ)= (
A0Faii

)−1A0caii − (
A0Faii

)−1A0Dai
i (β)θ− (

A0Faii
)−1A0Ei(β)�

By construction, from (25), it is easy to see that (β0� θ0) is a fixed-point of Q. Take any
(β�θ)� (β′� θ′) ∈ B ×Θ, then

Qaii (β�θ)−Qaii
(
β′� θ′) = −(

A0Faii
)−1A0

(
Dai
i (β)θ− Dai

i

(
β′)θ′ + Ei(β)− Ei

(
β′))�

where

Dai
i (β)θ− Dai

i

(
β′)θ′ = ΔHai

i

(
β(IK −βL)−1Ri1θ−β′(IK −β′L

)−1Ri1θ
′)

= ΔHai
i

((
β−β′)(IK −βL)−1(IK −β′L

)−1Ri1θ

+β′(IK −β′L
)−1Ri1

(
θ− θ′))�

and

Ei(β)− Ei
(
β′) = ΔHai

i L
(
β2(IK −βL)−1 −β′2(IK −β′L

)−1)
(Ri0 + εi)

= ΔHai
i L

((
β−β′)(IK −βL)−1((β+β′)IK −ββ′L

)(
IK −β′L

)−1)
(Ri0 + εi)�

which can be shown by making use of the following identities:

β(IK −βL)−1 −β′(IK −β′L
)−1

= (
β−β′)(IK −βL)−1(IK −β′L

)−1
�

β2(IK −βL)−1 −β′2(IK −β′L
)−1

= (
β−β′)(IK −βL)−1((β+β′)IK −ββ′L

)(
IK −β′L

)−1
�

It then follows that∣∣Qaii (β�θ)−Qaii
(
β′� θ′)∣∣ ≤ g1

∥∥θ− θ′∥∥
α1

+ g2
∣∣β−β′∣∣

≤ max{g1�g2}
∥∥∥∥∥
(
θ

β

)
−

(
θ′
β′

)∥∥∥∥∥
α2

�
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That is, Qaii is a contraction, hence it has a unique fixed point. Now suppose (β0� θ0) is
not identifiable. Then there exists some (β�θ) �= (β0� θ0) that is observationally equiva-
lent to (β0� θ0). By an implication of Lemma 6, (β�θ) must also be a fixed point of Qaii ,
which is a contradiction. Thus (β0� θ0) is identifiable. �

Comments on Theorem 4.

(i) Compact Domain. B cannot include 1 as the expected discounted returns would
then be unbounded. Compactness is useful for showing existence of a fixed point. There
is also a trade-off in the choice of b and k in the definitions of B and Θ� respectively.
For example, smaller b and k means smaller max{g1�g2} but this is a restriction on the
parameter space.

(ii) Choice of A0. The need to select A0 can be eliminated altogether by removing
some rows in (25) so that we have exactly p + 1 equations. In fact, it is not necessary
to take equations that only correspond to the states from a particular player i and ai.
Since the parametric structure in (25) is the same for all states, we can select any p+ 1
equations from any i and ai and compute the corresponding matrix norms for g1 and
g2. This gives us different combinations of equations we can use, and we only need the
analog of max{g1�g2} to be less than 1 for one of them to ensure (β0� θ0) is identifiable.

(iii) Rank Deficiency. We have emphasized in Section 4 that sometimes not all compo-
nents of the payoff functions can be identified and normalizations are necessary. For ex-
ample, in the entry/exit game generally the entry cost and scrap value cannot be jointly
identified. Then one may consider normalizing, say, the scrap value in order to esti-
mate all the other parameters in the model. Furthermore, we discussed in Section 4.3
that the discount factor can be identified even if an incorrect normalization is used.
Relatedly, we can also relax condition (i) in Theorem 4 in this direction and allow Faii
to be rank deficient. In particular, recall from (25) that Faii = [ΔRaii1 : ΔHai

i (Ri0 + εi)], we
can allow ΔRaii1 to be rank deficient. In such case, there exists a full rank matrix W such

that ΔRaii1W = [ΔR̃aii1 : 0] where ΔR̃aii1 has full column rank. Then Faii
( θ
β

)
in (25) becomes

[ΔR̃aii1 : 0 : ΔHai
i (Ri0 +εi)]

( W−1θ
β

)
. Therefore, by inspection, the proof of Theorem 4 can be

readily adapted by reparameterizing θ to show the identification of the discount factor
is possible.
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