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Quasi-Bayesian model selection
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In this paper, we establish the consistency of the model selection criterion based
on the quasi-marginal likelihood (QML) obtained from Laplace-type estimators.
We consider cases in which parameters are strongly identified, weakly identified
and partially identified. Our Monte Carlo results confirm our consistency results.
Our proposed procedure is applied to select among New Keynesian macroeco-
nomic models using US data.
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1. Introduction

Thanks to the development of fast computers and accessible software packages,
Bayesian methods are now commonly used in the estimation of macroeconomic mod-
els. Bayesian estimators get around numerically intractable and ill-shaped likelihood
functions, to which maximum likelihood estimators tend to succumb, by incorporat-
ing economically meaningful prior information. In a recent paper, Christiano, Trabandt,
and Walentin (2011) proposed a new method of estimating a standard macroeconomic
model based on the criterion function of the impulse response function (IRF) matching
estimator of Christiano, Eichenbaum, and Evans (2005) combined with prior density. In-
stead of relying on a correctly specified likelihood function, they define an approximate
likelihood function and proceed with a random walk Metropolis–Hastings algorithm.
Chernozhukov and Hong (2003) established that such an approach has a frequentist
justification in a more general framework and call it a Laplace-type estimator (LTE) or
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quasi-Bayesian estimator.1 The quasi-Bayesian approach does not require the complete
specification of likelihood functions and may be robust to potential misspecification.
IRF matching can also be used even when shocks are fewer than observed variables (see
Fernández-Villaverde, Rubio-Ramírez and Schorfheide (2016, p. 686)). Other applica-
tions of LTEs to estimate macroeconomic models include Christiano, Eichenbaum, and
Trabandt (2016), Kormilitsina and Nekipelov (2016), Gemma, Kurozumi, and Shintani
(2017), and Miyamoto and Nguyen (2017).

When two or more competing models are available, it is of great interest to select one
model for policy analysis. When competing models are estimated by Bayesian methods,
the models are often compared by their marginal likelihood. Likewise, it is quite intuitive
to compare models estimated by LTE using the “marginal likelihood” obtained from the
LTE criterion function. In fact, Christiano, Eichenbaum, and Trabandt (2016, Table 3)
report the marginal likelihoods from LTE when they compare the performance of their
macroeconomic model of wage bargaining with that of a standard labor search model.
In this paper, we prove that such practice is asymptotically valid in that a model with a
larger value of its marginal likelihood is either correct or a better approximation to true
impulse responses with probability approaching one as the sample size goes to infinity.

We consider the consistency of model selection based on the marginal likelihood in
three cases: (i) parameters are all strongly identified; (ii) some parameters are weakly
identified; and (iii) some model parameters are partially identified. While case (i) is
standard in the model selection literature (e.g., Phillips (1996), Sin and White (1996)),
cases (ii) and (iii) are also empirically relevant because some parameters may not be
strongly identified in macroeconomic models (see Canova and Sala (2009)). We consider
the case of weak identification using a device that is similar to Stock and Wright (2000)
and Guerron-Quintana, Inoue, and Kilian (2013). We also consider the case in which pa-
rameters are set identified as in Chernozhukov, Hong, and Tamer (2007) and Moon and
Schorfheide (2012).

Our approach allows for model misspecification and is similar in spirit to the
Bayesian model selection procedure considered by Schorfheide (2000). Instead of us-
ing the marginal likelihoods (or the standard posterior odds ratio) directly, Schorfheide
(2000) introduced the VAR model as a reference model in the computation of the loss
function so that he could compare the performance of possibly misspecified dynamic
stochastic general equilibrium (DSGE) models in the Bayesian framework. The related
DSGE-VAR approach of Del Negro and Schorfheide (2004, 2009) also allows DSGE mod-
els to be misspecified, which results in a small weight on the DSGE model obtained by
maximizing the marginal likelihood of the DSGE-VAR model. An advantage of our ap-
proach is that we can directly compare the quasi-marginal likelihoods (QMLs) even if all
the competing DSGE models are misspecified.2

1The term “quasi-Bayesian” also refers to the procedure that involves data-dependent prior or multiple
priors in the Bayesian literature.

2As established in White (1982), desired asymptotic results can often be obtained even if the likelihood
function is misspecified. The quasi-Bayesian approach is also closely related to the limited-information
likelihood principle used by Zellner (1998) and Kim (2002), among others.
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The econometric literature on comparing DSGE models includes Corradi and Swan-
son (2007), Dridi, Guay, and Renault (2007) and Hnatkovska, Marmer, and Tang (2012).
In particular, Hnatkovska, Marmer, and Tang (2012) proposed hypothesis testing pro-
cedures to evaluate the relative performance of possibly misspecified DSGE mod-
els. We propose a model selection procedure as in Fernández-Villaverde and Rubio-
Ramírez (2004), Hong and Preston (2012), and Kim (2014). In the likelihood framework,
Fernández-Villaverde and Rubio-Ramírez (2004), and Hong and Preston (2012) consid-
ered asymptotic properties of the Bayes factor and posterior odds ratio for model com-
parison, respectively. In the LTE framework, Kim (2014) showed the consistency of the
QML criterion for a nested model comparison, to which Hong and Preston (2012, p.
365) also allude. In a recent paper, Shin (2014) proposed a Bayesian generalized method
of moments (GMM) and develops a novel method for computing the marginal likeli-
hood.

We make general contributions in three ways. First, we show that the naive QML
model selection criterion may be inconsistent when models are not nested. This fact is
why the existing literature, such as Kim (2014), focuses on the nested case. Second, we
develop a new modified QML model selection criterion that remains consistent when
nonnested models are considered. Third, we consider cases in which some parameters
are either weakly or partially identified. The weakly and partially identified cases are
relevant for the estimation of DSGE models but have not been considered in the afore-
mentioned literature.

The outline of this paper is as follows. We begin our analysis by providing a sim-
ple illustrative example of model selection in Section 2. Asymptotic justifications for the
QML model selection criterion are established in Section 3. We discuss various aspects
of implementing IRF matching in Section 4 and provide guidance for the practical im-
plementation of our procedure in Section 5. A small set of Monte Carlo experiments is
provided in Section 6. Empirical applications of our procedure to evaluate New Keyne-
sian macroeconomic models using US data are provided in Section 7. The concluding re-
marks are made in Section 8. The proofs of the theoretical results and additional Monte
Carlo results are relegated to the Supplementary Material (Inoue and Shintani (2018)).
Throughout the paper, all the asymptotic statements are made for the case in which the
sample size tends to infinity or T → ∞.

2. An illustrative example

There are several issues that may arise in model selection. For example, one may com-
pare a correctly specified model and a misspecified model; or one may compare two
correctly specified models where one is more parsimonious than the other. To motivate
our proposed QML, we illustrate these issues in a simple Monte Carlo setup and show
that comparing values of estimation criterion functions alone does not necessarily se-
lect the preferred model.

Consider a simplified version of the model in Canova and Sala (2009):

yt = Et(yt+1)− σ
[
Rt −Et(πt+1)

] + u1t � (1)
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πt = δEt(πt+1)+ κyt + u2t � (2)

Rt = φπEt(πt+1)+ u3t � (3)

where yt , πt , and Rt are output gap, inflation rate, and nominal interest rate, respectively,
and u1t , u2t , and u3t are independent i.i.d. standard normal random variables, which
respectively represents a shock to the output Euler equation (1), New Keynesian Phillips
curve (NKPC) (2), and monetary policy function (3). Et(·) = E(·|It) is the conditional
expectation operator conditional on It , the information set at time t; σ is the parameter
of elasticity of intertemporal substitution; δ ∈ (0�1) is the discount factor; κ is the slope
of the NKPC and φπ controls the reaction of the monetary policy to inflation. Because a
solution is ⎡

⎢⎣ yt
πt

Rt

⎤
⎥⎦ =

⎡
⎢⎣1 0 −σ

κ 1 −σκ

0 0 1

⎤
⎥⎦

⎡
⎢⎣u1t

u2t

u3t

⎤
⎥⎦ � (4)

we have covariance restrictions:3

Cov
([yt πt Rt]′

) =
⎡
⎢⎣ 1 + σ2 κ+ κσ2 −σ

κ+ σ2κ 1 + κ2 + σ2κ2 −σκ

−σ −σκ 1

⎤
⎥⎦ � (5)

Suppose that we use

f (σ�κ) = [
1 + σ2�κ+ σ2κ�−σ�1 + κ2 + σ2κ2�−σκ

]′
� (6)

and the corresponding five elements in the covariance matrix of the three observed vari-
ables, where we set σ = 1 and κ = 0�5. We consider two cases. In case 1, the two param-
eters are estimated in model A, while σ is estimated and the value of κ is set to a wrong
parameter value, 1, in model B. In other words, model A is correctly specified and model
B is incorrectly specified. In case 2, only one parameter (σ) is estimated and the value of
κ is set to the true parameter value in model A, while the two parameters are estimated
in model B. Although the two models are both correctly specified in this design, model
A is more parsimonious than model B.

Suppose that we employ a classical minimum distance (CMD) estimator and choose
the model with a smaller estimation criterion function. Table 1 shows the frequencies
of selecting the right model (model A) when one selects a model with a smaller value of
the minimized estimation criterion function. The number of Monte Carlo replications
is 1000 and the sample sizes are 50, 100, and 200. The column labeled “Diagonal” in-
dicates the selection probabilities when the diagonal weighting matrix whose diagonal
elements are the reciprocals of the bootstrap variances of the sample analogs of the re-
strictions. The column labeled “Optimal” indicates those when the weighting matrix is
the inverse of the bootstrap covariance matrix of the sample analog of the restrictions.

3While there is no unique solution to this model, we simply use a solution from Canova and Sala (2009).
This fact does not cause any problem in our minimum distance estimation exercise based on (5).
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Table 1. Frequencies of selecting model A when the estimation criterion function alone is used.

Case T Diagonal Optimal

1 50 1�000 1�000
100 1�000 1�000
200 1�000 1�000

2 50 0�000 0�003
100 0�000 0�000
200 0�000 0�000

Note: The restrictions

f (σ�κ) = [
1 + σ2�κ+ σ2κ�−σ�1 + κ2 + σ2κ2�−σκ

]′
�

and the corresponding elements of the covariance matrix are used. In case 1, Model A is correctly specified while Model B
is misspecified. In case 2, Models A and B are both correctly specified and Model A is more parsimonious than Model B. T
denotes the sample size. “Diagonal” refers to cases in which the weighting matrix is diagonal and their diagonal elements
are the reciprocals of the bootstrap variances of the sample analog of the restrictions. “Optimal” refers to cases in which the
weighting matrix is set to the inverse of the bootstrap covariance matrix of the sample analog of the restrictions.

This table shows that although this intuitive procedure tends to select the correctly
specified models over the incorrectly specified models in case 1, it is likely to select an
overparameterized model if the two models have equal explanatory power in population
as in case 2. Our proposed QML model selection criteria overcome this issue as formally
shown in the next section.

Furthermore, the issue of weak and partial identification is often encountered in
macroeconomic applications. In this static model example, suppose f (σ�κ) = [κ +
σ2κ�1+κ2 +σ2κ2�−σκ]′ and the corresponding three elements of the covariance matrix
are used to estimate the model instead of (6). As κ approaches zero, the strength of iden-
tification of σ becomes weaker. In addition, the slope of NKPC κ is known to depend on
several deep parameters that are only partially identified.

Tables A1–A4 in Inoue and Shintani (2018) report the performance of our QML
model selection procedure and others when the parameters are strongly, weakly, or par-
tially identified in this static model. We find that the probability of selecting model A
also tends to approach one as the sample size increases, even when identification is
weak and when some parameters are partially identified.

3. Asymptotic theory

3.1 Quasi-marginal likelihood for extremum estimators

We first consider QMLs based on general objective functions and establish the consis-
tency of the model selection based on QMLs. Models A and B are parameterized by vec-
tors, α ∈ A and β ∈ B, respectively, where A ⊂ �pA and B ⊂ �pB . Let q̂A�T (α) and q̂B�T (β)

be the objective functions for estimating models A and B, respectively, that would be
minimized in the conventional frequentist estimation method. Here, subscript T signi-
fies the fact that both objective functions are constructed using the same data with sam-
ple size T . The conventional extremum estimators are given by α̂T = arg minα∈Aq̂A�T (α)

and β̂T = arg minβ∈B q̂B�T (β). Let qA(α) and qB(β) denote the population analog of
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q̂A�T (α) and q̂B�T (β), and define the (possibly pseudo) true parameter values of α and β

by α0 = arg minα∈A qA(α) and β0 = arg minβ∈B qB(β), respectively.
In this paper, we say model A is nested in model B if there exists a function φ : �pA →

�pB such that qA(α) = qB(φ(α)), for all α ∈ A.4  Rivers and Vuong (2002) generalized
a likelihood ratio test for model comparison originally developed by Vuong (1989) to
the case of extremum estimators and show that q̂A�T (̂αT ) − q̂B�T (β̂T ) = Op(T

−1) if the

models are nested and that q̂A�T (̂αT ) − q̂B�T (β̂T ) = Op(T
− 1

2 ), otherwise. Hnatkovska,
Marmer, and Tang (2012) and Smith (1992) showed similar results for CMD estimators
and GMM estimators, respectively.

Following Chernozhukov and Hong (2003), the quasi-posteriors of models A and B
can be defined by

e−T q̂A�T (α)πA(α)∫
A
e−T q̂A�T (α)πA(α)dα

and
e−T q̂B�T (β)πB(β)∫

B
e−T q̂B�T (β)πB(β)dβ

� (7)

where πA(α) and πB(β) are the prior probability density functions for the two mod-
els. By treating (7) as the posterior, their LTE (e.g., quasi-posterior mean, median, and
mode) is obtained via the Markov Chain Monte Carlo (MCMC) method, which may be
particularly useful when the objective functions are not numerically tractable or when
extremum estimates are not reasonable.

We now define the QMLs for models A and B by

mA =
∫

A
e−T q̂A�T (α)πA(α)dα and mB =

∫
B
e−T q̂B�T (β)πB(β)dβ� (8)

We say that the QML model selection criterion is consistent in the following sense:
mA >mB with probability approaching one if qA(α0) < qB(β0) or if qA(α0)= qB(β0) and
pAs < pBs where pAs and pBs are the numbers of strongly identified parameters in mod-
els A and B, respectively. For example, suppose the parameter α in model A corresponds
to a subset of the parameter β in model B so that two models are nested, and a remaining
part of parameter β are fixed at their true value. Then β0 = φ(α0) and qA(α0) = qB(β0)

hold and the model with the fixed parameter value is preferable because it reduces pa-
rameter estimation uncertainty. This definition of consistency is common in the litera-
ture on the selection of parametric models (see Leeb and Pötscher (2009), Nishii (1988),
and Inoue and Kilian (2006) to name a few), and the model selection criteria, such as
those in Nishii (1988), Sin and White (1996), and Hong and Preston (2012), are designed
to be consistent in this sense.5 For the model selection based on the value of qA(α0) and
pAs relative to the value of qB(β0) and pBs to make sense, every object of model selec-
tion needs to be incorporated in criterion functions and parameter vectors. We will be
more specific about this issue when we remark on Propositions 1 and 2 in the next two
subsections.

4See Vuong (1989) for the formal definition when competing models are nested, strictly nonnested or
overlapping.

5One could also call a model selection criterion consistent in the case of mA >mB with probability ap-
proaching one if qA(α0) < qB(β0). Our model selection criterion is also consistent in this sense.
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It can be shown that the log of the QML is approximated by

ln(mA) = −T q̂A�T (̂αT )− pA

2
ln(T)+Op(1)� (9)

ln(mB) = −T q̂B�T (β̂T )− pB

2
ln(T)+Op(1)� (10)

Because the leading term diverges at rate T , a correctly specified model will be chosen
over an incorrectly specified model. When the model is nested and qA(α0) = qB(β0), a
more parsimonious model will be chosen because of the second term. The problem oc-
curs when the model is not nested and qA(α0) = qB(β0). Because the difference of the
dominant terms can have either sign with positive probability and diverges at rate T 1/2,
a model will be chosen randomly. When two models that are not nested have equal fit,
one may still prefer a more parsimonious model based on Occam’s razor or if a selected
model is to be used for forecasting (Inoue and Kilian (2006)). For that purpose, we pro-
pose the following modified QML:

ln(m̃A) = ln(mA)+ (T − √
T)q̂A�T (̂αT )� (11)

ln(m̃B) = ln(mB)+ (T − √
T)q̂B�T (β̂T )� (12)

In the logarithmic form, the modified QML effectively replaces −T q̂A�T (̂αT ) in the

Laplace approximation by −√
T q̂A�T (̂αT ) so that T

1
2 (q̂A�T (̂αT )− q̂B�T (β̂T )) =Op(1) and

the more parsimonious model will be selected in the equal-fit case, and the modified
QML model selection criterion remains consistent for both nested and nonnested mod-
els.

Let αs and βs denote strongly identified parameters, if any, αw and βw weakly identi-
fied parameters, and αp and βp partially identified parameters. pAs and pBs denote the
number of the strongly identified parameters, pAw and pBw the number of the weakly
identified parameters, and pAp and pBp the number of the partially identified parame-
ters. As and Bs are the spaces of the strongly identified parameters, Aw and Bw are those
of the weakly identified parameters, and Ap and Bp are those of the partially identified
parameters. We consider two cases. Some of the parameters may be weakly identified in
the first case (α= [α′

s α
′
w]′,pA = pAs +pAw , and A = As×Aw) while some parameters may

be partially identified in the second case (α= [α′
s α

′
p]′, pA = pAs +pAp and A = As × Ap).

The parameters may be all strongly identified (pA = pAs ), weakly identified (pA = pAw )
or partially identified (pA = pAp ).

Assumption 1.

(a) A is compact in �pA [B is compact in �pB ].
(b) If pAs > 0, q̂A(α) and qA(α) are twice continuously differentiable in αs ∈ int(As),

supα∈A |̂qA�T (α) − qA(α)| = op(1), supα∈A ‖∇αs q̂A�T (α) − ∇αsqA(α)‖ = op(1) and
supα∈A ‖∇2

αs
q̂A�T (α)− ∇2

αs
qA(α)‖ = op(1) [If pBs > 0, q̂B(β) and qB(β) are twice continu-

ously differentiable in βs ∈ int(Bs), supβ∈B |̂qB�T (β) − qB(β)| = op(1),

supβ∈B ‖∇βs q̂B�T (β)−∇βsqB(β)‖ = op(1) and supβ∈B ‖∇2
βs
q̂B�T (β)−∇2

βs
qB(β)‖ = op(1)].
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(c) If pAs > 0, πAs(αs) is continuous at αs�0 and πAs(αs�0) > 0 [If pBs > 0, πBs(βs) is
continuous at βs�0 and πBs(βs�0) > 0].

Assumption 1(b) requires uniform convergence of q̂A�T (·), ∇q̂A�T (·) and ∇2q̂A�T (·)
to qA(·), ∇qA(·) and ∇2qA(·), respectively, which holds under more primitive assump-
tions, such as the compactness of the parameter spaces, pointwise convergence and
stochastic equicontinuity (see Theorem 1 of Andrews (1992)).

It is well known that some parameters of DSGE models may not be strongly iden-
tified; see Canova and Sala (2009), for example. It is therefore important to investigate
asymptotic properties of our model selection procedure in case some parameters may
not be strongly identified. To allow for some weakly identified parameters, we impose
the following assumptions.

Assumption 2 (Weak Identification).

(a) qA(α) = qAs(αs) + T−1qAw(α) if pAs > 0 and qA(αw) = T−1qAw(αw) if pAs = 0
where qAw(·) is Op(1) uniformly in α ∈ A [qB(β) = qBs(βs) + T−1qBw(β) if pBs > 0 and
qB(βw) = T−1qBw(βw) if pBs = 0 where qBw(·) is Op(1) uniformly in β ∈ B].

(b) If pAs > 0, then there exists αs�0 ∈ int(As) such that for every ε > 0,

inf
αs∈As :‖αs−αs�0‖≥ε

qAs(αs) > qAs(αs�0)

[If pBs > 0, then there exists βs�0 ∈ int(Bs) such that for every ε > 0,

inf
βs∈Bs :‖βs−βs�0‖≥ε

qBs(βs) > qBs(βs�0)]�

(c) If pAs > 0, the Hessian ∇2
αs
qAs(αs�0) is positive definite [If pBs > 0, the Hessian

∇2
βs
qBs(βs�0) is positive definite].

Remarks.

1. Assumptions 1 and 2 are high-level assumptions, and sufficient and lower-level as-
sumptions for CMD and GMM estimators are provided in the next two subsections.

2. Typical prior densities are continuous in macroeconomic applications, and As-
sumption 1(c) is likely to be satisfied.

3. Assumption 2(a) postulates that αw is weakly identified while αs is strongly iden-
tified where α = [α′

s α′
w]′. Note that we allow for cases in which the parameters are

all strongly identified as well as cases in which they are all weakly identified. When
there is a strongly identified parameter, Assumption 2(b) requires that its true param-
eter value αs�0 uniquely minimize the population estimation criterion function, and As-
sumption 2(c) requires that the second-order sufficient condition for minimization be
satisfied.

Theorem 1 (The Case When Some Parameters May Be Weakly Identified). Suppose that
Assumptions 1 and 2 hold.
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(a) If qAs(αs�0) < qBs(βs�0), then mA >mB and m̃A > m̃B with probability approaching
one.

(b) (Nested Case) If qAs(αs�0) = qBs(βs�0), pAs < pBs and q̂A�T (̂αT ) − q̂B�T (β̂T ) =
Op(T

−1), then mA >mB and m̃A > m̃B with probability approaching one.

(c) (Nonnested Cases) If qAs(αs�0) = qBs(βs�0), pAs < pBs and q̂A�T (̂αT ) − q̂B�T (β̂T ) =
Op(T

−1/2), then m̃A > m̃B with probability approaching one.

Remarks.

1. Theorem 1(a) shows that the proposed QML model selection criterion selects the
model with a smaller population estimation criterion function with probability ap-
proaching one. Theorem 1(b) implies that, if the minimized population criterion func-
tions take the same value, our model selection criterion will select the model with a
lesser number of strongly identified parameters. In the special case where Model A is
correctly specified and is a restricted version of Model B, our criterion will select Model
A, provided that the restriction is imposed on a strongly identified parameter. This is
because the QML has a built-in penalty term for parameters that are not necessary for
reducing the population criterion function as can be seen in the Laplace approximation
of the marginal likelihood. Note that these results hold even when the parameters are all
strongly identified.

2. This consistency result applies whether or not the models are correctly specified or
misspecified. If one model is correctly specified in that its minimized population crite-
rion function is zero, while the other model is misspecified in that its minimized popula-
tion criterion function is positive, our model selection criterion will select the correctly
specified model with probability approaching one. Arguably, it may still make sense to
minimize the criterion function even when two models are misspecified. In that case,
our model selection criterion will select the better approximating model with probabil-
ity approaching one.

3. When the models are not nested and qA(αs�0) = qB(βs�0), Theorem 1(c) shows that
the marginal likelihood does not necessarily select a more parsimonious model even
asymptotically. This result is consistent with Hong and Preston’s (2012) result on BIC.
Although this may not be a major concern when the models are nonnested, the modified
QML selects a parsimonious model even when the nonnested models satisfy qA(αs�0) =
qB(βs�0). However, because the leading term in the modified QML diverges at rate

√
T ,

the modified QML is less powerful than the unmodified QML if qA(αs�0) < qB(βs�0). We
will investigate this trade-off in Monte Carlo experiments.

Next, we consider cases in which some parameters may be partially identified. We
say that the parameters are partially identified if A0 = {α0 ∈ A : qA(α0) = minα∈A qA(α)}
consists of more than one point (see Chernozhukov, Hong, and Tamer (2007)). Moon
and Schorfheide (2012) listed macroeconometric examples in which this type of identi-
fication arises. Similarly, we define B0 = {β0 ∈ B : qB(β0) = minβ∈B qB(β)}. In addition to
Assumption 1, we impose the following assumptions.
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Assumption 3 (Partial Identification).

(a) There exists A0 ⊂ A such that, for every α0 ∈ A0 and ε > 0 infα∈(Ac
0)

−ε qA(α) > qA(α0),
where (Ac

0)
−ε = {α ∈ A : d(α�A0) ≥ ε} and d(α�A0) = infa∈A0 ‖α − a‖ [There exists B0 ⊂ B

such that, for every β0 ∈ B0 and ε > 0, infβ∈(Bc
0)

−ε qB(β) > qB(β0), where (Bc
0)

−ε = {β ∈ B :
d(β�B0) ≥ ε} and d(β�B0) = infb∈B0 ‖β− b‖].

(b) If pAs > 0, the Hessian ∇2
αs
qA([α′

s�0�α
′
p�0]′) is positive definite for some αp�0 ∈ Ap�0

[If pBs > 0, the Hessian ∇2
βs
qB([β′

s�0�β
′
p�0]′) is positive definite for some βp�0 ∈ Bp�0].

(c)
∫

Ap�0
πA(αp|αs�0)dαp > 0 where πA(αp|αs) is the prior density of αp conditional on

αs [∫Bp�0
πB(βp|βs�0)dβp > 0 where πB(βp|βs) is the prior density of βp conditional on

βs].

Remarks. Assumptions 3(a), (b), and (c) are generalizations of Assumptions 2(b), (c),
and 1(c), respectively, to sets.

Theorem 2 (The Case When Some Parameters May Be Partially Identified).

(a) Suppose that Assumptions 1 and 3(a) hold. If minα∈A qA(α) < minβ∈B qB(β), then
mA >mB and m̃A > m̃B with probability approaching one.

(b) (Nested Case) Suppose that Assumptions 1 and 3 hold. If qAs(αs�0) = qBs(βs�0),
pAs < pBs , and q̂A�T (̂αT )− q̂B�T (β̂T )= Op(T

−1), then mA >mB and m̃A > m̃B with prob-
ability approaching one.

(c) (Nonnested Cases) Suppose that Assumption 3 holds. If qAs(αs�0) = qBs(βs�0),
pAs < pBs and q̂A�T (̂αT ) − q̂B�T (β̂T ) = Op(T

−1/2), then m̃A > m̃B with probability ap-
proaching one.

Remarks. Theorem 2(a) shows that even in the presence of partially identified param-
eters, our criteria select a model with a smaller value of the population estimation ob-
jective function. This result occurs because it is the value of the objective function, not
the parameter value, that matters to model selection.

3.2 Quasi-marginal likelihood for CMD estimators

Since the extremum estimators include a class of important estimators popularly used in
practice, it should be useful to describe a set of assumptions specific to each of the esti-
mators. We first consider the CMD estimator, which has been used to estimate the struc-
tural parameters in DSGE models by matching the predicted impulse response function
(say, DSGE-IRF) and the estimated impulse response function from the VAR models (say,
VAR-IRF) in empirical macroeconomics.

Suppose that we compare two DSGE models, models A and B. Models A and B are
parameterized by structural parameter vectors, α ∈ A and β ∈ B, where A ⊂ �pA and
B ⊂ �pB . Let f (α) and g(β), of dimension k × 1, denote the DSGE-IRFs of models A
and B, respectively. The IRF matching estimator of Christiano, Eichenbaum, and Evans
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(2005) minimizes the criterion functions

q̂A�T (α)= 1
2
(
γ̂T − f (α)

)′
ŴT

(
γ̂T − f (α)

)
�

q̂B�T (β) = 1
2
(
γ̂T − g(β)

)′
ŴT

(
γ̂T − g(β)

)
�

with respect to α ∈ A and β ∈ B� respectively, for models A and B, where γ̂T is a k × 1
vector of VAR-IRFs, and ŴT is a k× k positive semidefinite weighting matrix.6 It should
be noted that the condition for identifying VAR-IRFs must be satisfied in DSGE models.
For example, if short-run restrictions are used to identify VAR-IRFs, the restrictions must
be satisfied in the DSGE model. Otherwise, IRF matching does not yield a consistent
estimator and model selection based on IRF matching may become invalid.

Let

qA(α) = 1
2
(
γ0 − f (α)

)′
W

(
γ0 − f (α)

)
� (13)

qB(β) = 1
2
(
γ0 − g(β)

)′
W

(
γ0 − g(β)

)
� (14)

where γ0 is a vector of population VAR-IRFs and W is a positive definite matrix.
While our model selection depends on the choice of weighting matrices, if one is

to calculate standard errors from MCMC draws, ŴT needs to be set to the inverse of a
consistent estimator of the asymptotic covariance matrix of γ̂T , which eliminates the
arbitrariness of the choice of the weighting matrix. When the optimal weighting ma-
trix is not used, the formula in Chernozhukov and Hong (2003) and Kormilitsina and
Nekipelov (2016) should be used to calculate standard errors.

For CMD estimators, we make the following assumptions.

Assumption 4.

(a)
√
T(γ̂T − γ0)

d→N(0k×1�Σ) where Σ is positive definite.

(b) A is compact in �pA [B is compact in �pB ].
(c) f (α) = fs(αs) + T−1/2fw(α) if pA > 0 and f (α) = T−1/2fw(α) if pA = 0, where fs :

As → �k and fw : A → �k are three times continuously differentiable in the interior of A.
The Jacobian matrix of fs , Fs(αs)= ∂fs(αs)/∂α

′
s , has rank pAs at αs = αs�0 [g(β) = gs(βs)+

T−1/2gw(β) if pB > 0 and g(β) = T−1/2gw(β) if pB = 0, where gs : Bs → �k and gw : B →
�k are three times continuously differentiable in the interior of B. The Jacobian matrix of
gs , Gs(βs) = ∂g(βs)/∂β

′
s , has rank pBs at βs = βs�0].

(d) ŴT is positive semidefinite with probability one and converges in probability to a
positive definite matrix W .

6Jordà and Kozicki (2011) developed a projection minimum distance estimator that is based on restric-
tions of the form of h(γ�α) = 0. While we could consider a quasi-Bayesian estimator based on such restric-
tions, we focus on the special case in which h(γ�α) = γ − f (α).
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(e) If pAs > 0, there is a unique αs�0 ∈ int(As) such that αs�0 = argminαs∈As
fs(αs)

′ ×
Wfs(αs) [If pBs > 0, there is a unique βs�0 ∈ int(Bs) such that βs�0 = argminβs∈Bs

gs(βs)
′ ×

Wgs(βs)].

(f) If pAs > 0,

Fs(αs�0)
′W Fs(αs�0)− [(

γ − fs(αs�0)
)′
W ⊗ IpAs

]∂ vec
(
Fs(αs�0)

′)
∂α′

s�0

is positive definite [If pBs > 0,

Gs(βs�0)
′WGs(βs�0)− [(

γ − gs(βs�0)
)′
W ⊗ IpBs

]∂ vec
(
Gs(βs�0)

′)
∂β′

s

is positive definite].

(g) There is A0 = {α0} × Ap�0 ⊂ A such that, for any α ∈ A0, (γ − f (α))′W (γ − f (α)) =
minα̃∈A(γ − f (α̃))′W (γ − f (α̃)) < (γ − f (ᾱ))′W (γ − f (ᾱ)) for any ᾱ ∈ A ∩ Ac

0 [There is
B0 = {β0} × Bp�0 ⊂ B such that, for any β ∈ B0, (γ − g(β))′W (γ − g(β)) = minβ̃∈B(γ −
g(β̃))′W (γ − g(β̃)) < (γ − g(β̄))′W (γ − g(β̄)) for any β̄ ∈ B ∩ Bc

0].
(h) If pAs > 0, there is αp�0 ∈ Ap�0 such that

Fs(α)
′W Fs(α)− [(

γ − f (α)
)′
W ⊗ IpAs

]∂ vec
(
Fs(α)

′)
∂α′

s

�

is positive definite at α = [α′
s�0 α

′
p�0]′ [If pBs > 0, there is βp�0 ∈ Bp�0 such that

Gs(β)
′WGs(β)− [(

γ − g(β)
)′
W ⊗ IpBs

]∂ vec
(
Gs(β)

′)
∂β′

s

�

is positive definite at β = [β′
s�0 β

′
p�0]′].

Remarks.

1. The root T consistency and asymptotic normality of VAR-IRFs follow from station-
ary data and restrictions that structural IRFs are point-identified.

2. Assumption 4(e) follows Guerron-Quintana, Inoue, and Kilian’s (2013) definition of
weak identification in the minimum distance framework.

The model selection based on the QML computed from quasi-Bayesian CMD Esti-
mators is justified by the following proposition.

Proposition 1.

(a) Under Assumptions 4(a)–(f), Assumptions 1 and 2 hold.

(b) Under Assumptions 4(a)–(d), (g) and (h), Assumptions 1 and 3 hold.
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Remarks. In our framework, the VAR-IRF, γ̂T , is common across different DSGE mod-
els and our proposed QML is designed to select a DSGE model. When it is used to select
VAR-IRFs given a DSGE model, the QML will select all the valid impulse responses, that
is, all the VAR-IRFs that equal the corresponding DSGE-IRFs (see Hall, Inoue, Nason,
and Rossi (2012) on this issue). When it is used to select the number of lags in the VAR
model given an IRF and a DSGE model, the QML will select enough many lags so that
the implied VAR-IRF equals the DSGE-IRF provided that the population VAR-IRF equals
the corresponding DSGE-IRF for sufficiently many lags. Because the criterion function
is not used in the VAR parameter estimation, however, it will not necessarily choose the
smallest lag for which the implied VAR-IRF equals the DSGE-IRF with probability ap-
proaching one. If the goal is to select the number of lags, the criterion function, and the
parameter vector need to be modified.

3.3 Quasi-marginal likelihood for GMM estimators

Another important class of the estimator we consider is the GMM estimator. For GMM
estimators, the criterion functions of models A and B are respectively given by

q̂A�T (α)= 1
2
fT (α)

′ŴA�T fT (α)�

q̂B�T (β) = 1
2
gT (β)

′ŴB�T gT (β)�

where fT (α) = (1/T)
∑T

t=1 f (xt�α), gT (β) = (1/T)
∑T

t=1 g(xt�β) and ŴA�T and ŴB�T are
k× k positive semidefinite weighting matrices.

Let

qA(α) = 1
2
E

[
f (xt�α)

]′
WAE

[
f (xt�α)

]
� (15)

qB(β) = 1
2
E

[
g(xt�β)

]′
WBE

[
g(xt�β)

]
� (16)

where WA and WB are positive definite matrices.
For the GMM estimation, we impose the following assumptions.

Assumption 5.

(a) supα∈A ‖T−1 ∑T
t=1{f (xt�α) − E[f (xt�α)]}‖ = Op(T

−1/2), supα∈A ‖T−1 ∑T
t=1{(∂/

∂α′)f (xt�α) − E[(∂/∂α′)f (xt�α)]}‖ = op(1), and supα∈A ‖T−1 ∑T
t=1{(∂/∂α′) vec((∂/

∂α′)f (xt�α) − E[(∂/∂α′) vec((∂/∂α′)f (xt�α))]}‖ = op(1) [supβ∈B ‖T−1 ∑T
t=1{g(xt�β) −

E[g(xt�β)]}‖ = Op(T
−1/2), supβ∈B ‖T−1 ∑T

t=1{(∂/∂β′)g(xt�β) − E[(∂/∂β′)g(xt�β)]}‖ =
op(1), and supβ∈B ‖T−1 ∑T

t=1{(∂/∂β′) vec((∂/∂β′)g(xt�β) − E[(∂/∂β′) vec((∂/∂β′)g(xt�
β))]}‖ = op(1)].

(b) A is compact in �pA [B is compact in �pB ].
(c) f : X × A → �k is three times continuously differentiable in α in the interior of A,

and Fs(αs) = ∂E[f (xt�αs)/∂α
′
s] has rank pAs at αs = αs�0 [g : X × B → �k is three times
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continuously differentiable in β in the interior of B, and Gs(βs) = E[∂g(xt�βs)/∂β
′
s] has

rank pBs at βs = βs�0].
(d) ŴA�T is positive semidefinite with probability one and converges in probability to a

positive definite matrix WA [ŴB�T is positive semidefinite with probability one and con-
verges in probability to a positive definite matrix WB].

(e) If pAs > 0, E[f (xt�α)] = fs(αs) + T−1/2fw(α), and there is a unique αs�0 ∈ int(As)

such that αs�0 = argminαs∈As
fs(αs)

′WAfs(αs). If pAs = 0, E[f (xt�α)] = T−1/2fw(αw) [If
pBs > 0, E[g(xt�β)] = gs(βs)+ T−1/2gw(β), and there is a unique βs�0 ∈ int(Bs) such that
βs�0 ∈ argminβs∈Bs

gs(βs)
′WBgs(βs). If pBs = 0, E[g(xt�β)] = T−1/2gw(βw)].

(f) If pAs > 0,

Fs(αs�0)
′WAFs(αs�0)+ [

E
(
fs(xt�αs�0)

)′
WA ⊗ IpAs

]∂ vec
(
Fs(αs�0)

′)
∂α′

s

is positive definite [If pBs > 0,

Gs(βs�0)
′WBGs(βs�0)+ [

E
(
gs(xt�βs�0)

)′
WB ⊗ IpBs

]∂ vec
(
Gs(βs�0)

′)
∂β′

s

is positive definite].

(g) There is A0 = {α0} × Ap�0 ⊂ A such that, for any α ∈ A0, E[f (xt�α)]′WAE[f (xt�α)] =
minα̃∈A E[f (xt� α̃)]′WAE[f (xt� α̃)]<E[f (xt� ᾱ)]′WAE[f (xt� ᾱ)] for any ᾱ ∈ A∩Ac

0 [There is
B0 = {β0} × Bp�0 ⊂ B such that, for any β ∈ B0, E[g(xt�β)]′WBE[g(xt�β)] =
minβ̃∈B E[g(xt� β̃)]′WBE[g(xt� β̃)]<E[g(xt� β̄)]′WBE[g(xt� β̄)] for any β̄ ∈ B ∩ Bc

0].
(h) If pAs > 0, there is αp�0 ∈ Ap�0 such that

Fs(α)
′WAFs(α)+ [

E
(
f (xt�α)

)′
WA ⊗ IpAs

]∂ vec
(
Fs(α)

′)
∂α′

s

is positive definite at α = [α′
s�0 α

′
p�0]′ [If pBs > 0, there is βp�0 ∈ Bp�0 such that

Gs(β)
′WBGs(β)+ [

E
(
g(xt�β)

)′
WB ⊗ IpBs

]∂ vec
(
Gs(β)

′)
∂β′

s

is positive definite at β = [β′
s�0 β

′
p�0]′].

The model selection based on the QML computed from quasi-Bayesian GMM esti-
mators is justified by the following proposition.

Proposition 2.

(a) Under Assumptions 5(a)–(f), Assumptions 1 and 2 hold.

(b) Under Assumptions 5(a)–(d), (g), and (h), Assumptions 1 and 3 hold.
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Remarks. It can be shown that the Laplace approximation to the QML has a bonus
term that is increasing in the number of overidentifying restrictions, that is, the number
of moment conditions minus the number of strongly identified parameters, which is
similar to the moment selection criterion of Andrews (1999). Therefore, when our QML
criterion is used for selecting moment conditions, it will select as many correctly spec-
ified moment conditions as possible, as Andrews’ (1999) criterion does. While the se-
lected moment conditions are valid, they are not necessarily relevant. If the goal is to
select correctly specified and relevant moments, the QML cannot accomplish it alone.

4. Discussions

Although our method is applicable to more general problems, one main motiva-
tion for our proposed QML model selection is IRF matching. IRF matching is a
limited-information approach and is an alternative to full-information likelihood based
approaches, such as the MLE and Bayesian approaches. Estimators based on the full-
information likelihood are more efficient when the likelihood function is correctly spec-
ified, while IRF matching estimators may be more robust to potential misspecification
that does not affect the IRF, such as misspecification of distributional forms. In addi-
tion to this usual tradeoff between efficiency and robustness, we discuss very particular
features the IRF matching estimators have.

(a) Bayesian and frequentist inferential frameworks for IRF matching : The use of pri-
ors not only alleviates such numerical challenges inherent in IRF matching but also gives
a limited-information Bayesian interpretation to IRF matching (Kim (2002), Zellner
(1998)). Because the QML is a function of data, the model selection is also a function
of the data. Because the quasi-posterior distribution is conditional on the data and the
result of model selection is a function of the conditioning set, the posterior distribu-
tion remains the same. Therefore, there is no issue of post model selection inference in
the limited-information Bayesian inferential framework. See Dawid (1994) in the full-
information Bayesian inferential framework.

It is often useful to have a frequentist interpretation of Bayesian estimators, espe-
cially if the practitioner is not strictly a Bayesian. Chernozhukov and Hong (2003) pro-
vide consistency and asymptotic normality of LTE that includes IRF matching estima-
tors as a special case. Our paper shows the consistency of the QML model selection cri-
terion in a frequentist inferential framework. When we interpret inference based on the
model selected by our model selection criterion in a frequentist inferential framework,
it is likely to suffer from the problem with post model selection inference (Leeb and
Pötscher (2005, 2009)), which is typical in model selection.

(b) Identification of structural IRFs: To implement IRF matching, VAR-IRFs and
DSGE-IRFs must be identical when the latter is evaluated at the true structural param-
eter value. Consider two cases. In the first case, the number of structural shocks in a
DSGE model and the number of observed variables are the same. Fernández-Villaverde,
Rubio-Ramírez, Sargent, and Watson (2007) find a sufficient condition for the two sets
of structural IRF to match. One of their conditions is that matrix D in the measurement
equation is square and is nonsingular. Even when this condition is not satisfied (e.g.,
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no measurement error), there are cases in which the two structural IRFs coincide. For
example, consider

xt+1 = Axt +But+1� (17)

yt = Cxt� (18)

where xt is a n× 1 vector of state variables, yt is k× 1 vector of observed variables and ut
is k×1 Gaussian white noise vector of structural shocks, with zero mean and covariance
matrix Ik. Provided the eigenvalues of A are all less than unity in modulus, yt has an
MA(∞) representation:

yt = C(I −AL)−1But = CBut +CABut−1 +CA2But−2 + · · · (19)

and it is invertible. Thus, the structural IRFs, CB, CAB, CA2B, . . . , can be obtained from
a VAR(∞) process together with the short-run restriction that the impact matrix is given
by CB. In practice, the VAR(∞) process is approximated by a finite-order VAR(p) model
where p is obtained by AIC, for example. In the IRF matching literature it is quite com-
mon to build a DSGE model in such a way that CB is lower triangular so that the recur-
sive identification condition can be used to identify structural IRFs from a VAR model.
Many DSGE models do not satisfy typical short-run conditions for identifying struc-
tural impulse responses. There are at least two approaches. First, one can match IRFs
without matching the impact period matrix. Let Aj denote the jth step ahead struc-
tural impulse response matrix implied by a DSGE model with A0 being the impact ma-
trix. Let Bj denote the jth step ahead reduced-form impulse response matrix obtained
from a VAR model. Then we have Σ = A0A

′
0 and BjA0 = Aj , which in turn can be writ-

ten as g(γ�θ) = 0, where γ is a vector that consists of the elements of Bj ’s and the dis-
tinct elements of Σ and θ is a vector of DSGE parameters. In the second approach, one
can match moments (e.g., Kormilitsina and Nekipelov (2016), Andreasen, Fernández-
Villaverde, and Rubio-Ramírez (2018)).

(c) The dimensions of VAR and IRF : The Monte Carlo experiments in Hall et al. (2012)
show that the performance of IRF matching estimators deteriorates as the number of
IRFs increases. Guerron-Quintana, Inoue, and Kilian (2017) show that, when the num-
ber of impulse responses is greater than the number of VAR parameters, IRF matching
estimators have nonstandard asymptotic distributions because the delta method fails.
We conjecture that asymptotic properties of the QML model selection criterion may be
affected because the bootstrap covariance matrix estimator is asymptotically singular.

In general, we recommend to select the order of VAR models by information criteria,
such as AIC, as done in Section 6 because the true VAR representation is likely to be of
infinite order. We then suggest choosing the maximum horizon so that the number of
impulse response does not exceed the number of VAR parameters to avoid the above
issue.

(d) The choice of weighting matrices: The optimal weighting matrix and diagonal
weighting matrices are common choices for the weighting matrix. There are two ar-
guments for the optimal weighting matrix. First, when the optimal weighting matrix is
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used, the IRF matching estimation criterion function can be interpreted as an approx-
imate (log-)likelihood function where the IRF estimate is viewed as “an observation”
because the optimal weighting matrix is the inverse of the bootstrap covariance matrix
of that observation. Thus, it is natural to interpret estimation results from the limited-
information Bayesian inferential framework when the optimal weighting matrix is used.
Second, when the optimal weighting matrix is used, the generalized information ma-
trix equality of Chernozhukov and Hong (2003) is satisfied. Standard errors can be ob-
tained from standard deviations of MCMC draws in the frequentist inferential frame-
work. When the optimal weighting matrix is not used, one needs to use the sandwich
formula in Chernozhukov and Hong (2003) or bootstrap the entire MCMC algorithm to
obtain correct standard errors. The main argument for diagonal weighting matrices is
based on computational tractability of the resulting estimation criterion function. Even
if a proposal density is poorly chosen because of the numerical behavior of the estima-
tion criterion function based on the optimal weighting matrix, MCMC draws should still
converge to the quasi posterior distribution although it may require a larger number of
draws. Third, one can multiply the estimation criterion function by any number without
changing its optimum. Using the optimal weighting matrix eliminates such arbitrariness
in the CMD and GMM frameworks.

(e) The use of modified QMLs: There may be some cases the modified QMLs are rec-
ommended over the (unmodified) QMLs in model selection because of the possible in-
consistency. One possibility is the case of point mass mixture priors which include a
mass at a point mixed with a continuous distribution. For example, suppose two alter-
native models of nominal exchange rates, St , as

Model A (IMA(1) model) α = θ: �St = εt + θεt−1.
Model B (AR(2) model) β = (φ1�φ2): St =φ1St−1 +φ2St−2 + εt .
The two models are nonnested but are equivalent under the random walk specifica-

tion, namely, if θ = 0 in model A and (φ1�φ2) = (1�0) in model B. Because the random
walk model is known to be supported by many previous empirical studies as a preferred
model for the nominal exchange rate, it make sense to employ point mass priors at θ = 0
in model A and (φ1�φ2) = (1�0) in model B. If the true model is the random walk model,
the (unmodified) QML will select model B with positive probability. The modified QML
will select model A over model B with probability approaching one, however, because
the former is more parsimonious.

5. Guide for practitioners

In this section, we describe how to implement our procedure. First, we specify a quasi-
likelihood function and estimate the model by the random-walk Metropolis–Hastings
algorithm. As discussed in the previous section, we recommend using the optimal
weighting matrix, the inverse of the covariance matrix for bootstrap IRF estimates, al-
though we also consider the diagonal weighting matrix in the Monte Carlo experiments
in Section 6. As suggested in An and Schorfheide (2007), we set the proposal distribution
to N(α(j−1)� cĤ−1) where α(0) = α̂, c = 0�3 and Ĥ is the Hessian of the log-quasi-posterior
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evaluated at the quasi-posterior mode, α̂ (here subscript T is omitted for notational sim-
plicity). The jth draw of α from the proposal distribution is accepted with probability

r
(
α(j−1)�α

) = min
(

1�
e−T q̂A�T (α)πA(α)

e−T q̂A�T (α
(j−1))πA

(
α(j−1))

)
� (20)

In Section 6, we use 50,000 draws.
Second, we compute the QML using the last half of the draws. We consider four

methods for computing the QML: Laplace approximation, modified harmonic mean es-
timators of Geweke (1999) and Sims, Waggoner, and Zha (2008) and the estimator of
Chib and Jeliazkov (2001). For the Laplace approximation, we evaluate the QML by

e−TqA(̂α)

(
T

2π

)−pA
2

πA(̂α)
∣∣Ĥ∣∣− 1

2 � (21)

at the quasi-posterior mode, α̂. In our Monte Carlo experiment, we use 20 randomly cho-
sen starting values for a numerical optimization routine to obtain the posterior mode.
We use 1000 bootstrap replications to obtain the bootstrap covariance matrix of IRF es-
timators in the Monte Carlo experiments.

In the modified harmonic mean method, the QML is computed as the reciprocal of

E

[
w(α)

e−T q̂A�T (α)πA(α)

]
� (22)

which is evaluated using MCMC draws, given a weighting function w(α). We consider
two alternative choices of weighting functions that have been proposed in the literature.
The first choice is suggested by Geweke (1999), who sets w(α) to be the truncated normal
density

w(α)= exp
[−(α− α̃)′Ṽ −1

α (α− α̃)/2
]

(2π)pA/2|Ṽα|1/2

1
{
(α− α̃)′Ṽ −1

α (α− α̃) < χ2
pA�τ

}
τ

�

where α̃ is the quasi-posterior mean, Ṽα is the quasi-posterior covariance matrix, 1{·} is
an indicator function, χ2

pA�τ is the 100τth percentile of the chi-square distribution with
pA degrees of freedom, and τ ∈ (0�1) is a constant. The second choice is the one pro-
posed by Sims, Waggoner, and Zha (2008). They point out that Geweke’s (1999) method
may not work well when the posterior distribution is nonelliptical, and suggest a weight-
ing function given by

w(α)= �(pA/2)

2πpA/2|V̂α|1/2
f (r)

rpA−1

1
{−T q̂A�T (α)+ lnπA(α) > L1−q

}
τ̄

�

where V̂α is the sample second moment matrix centered around the quasi-posterior
mode α̂, f (r) = [vrv−1/(cv90/0�9 − cv1)]1{c1 < r < c90/(0�9)1/v}, v = ln(1/9)/ ln(c10/c90), r =
[(α − α̂)′V̂ −1

α (α − α̂)]1/2, cj is the jth percentile of the distance r, L1−q is the 100(1 − q)

percentile of the log quasi-posterior distribution, q ∈ (0�1) is a constant, and τ̄ is the
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quasi-posterior mean of 1{−T q̂A�T (α) + lnπA(α) > L1−q}1{c1 < r < c90/(0�9)1/v}. Fol-
lowing Herbst and Schorfheide (2015), we consider τ = 0�5 and 0�9 in the estimator of
Geweke (1999) and q = 0�5 and 0�9 in the estimator of Sims, Waggoner, and Zha (2008).
In the Monte Carlo and empirical application sections, we only report the results for
τ = 0�9 and q = 0�9 to save space.7

For the estimator of Chib and Jeliazkov (2001), the log of the QML is evaluated by

lnπA(̂α)− T q̂A�T (̂α)− ln p̂A(̂α)� (23)

where

p̂A(̂α) =
(1/J)

J∑
j=1

r
(
α(j)� α̂

)
φα(j)��̃(̂α)

(1/K)

K∑
k=1

r
(̂
α�α(k)

) � (24)

φα(j)��̃(·) is the pdf of N(α(j)� �̃) and r(̂α�α(k)) is the acceptance probability of moving α̂

to α(k) in the Metropolis–Hastings algorithm. The numerator of (24) is evaluated using
the last 50% of MCMC draws and the denominator is evaluated using α(k) from N(̂α� �̃).
In our Monte Carlo experiment, K is set to 25,000 so that K = J. �̃ is either set to cĤ−1

or estimated from the posterior draws.
The modified QML (11) requires minimizing the estimation criterion function,

which may defeat the purpose of using the quasi-Bayesian approach. Instead we ap-
proximate it by averaging the values of the log of the quasi-posterior density over quasi-
posterior draws:

E
[
lnπA(α)− T q̂A�T (α)

]
� (25)

where the expectation is with respect to the quasi-posterior draws. This procedure is
computationally tractable because it can be calculated from MCMC draws. Because the
quasi-posterior distribution will concentrate around α̂ asymptotically, and the log prior
is O(1) and does not affect the divergence rate of the modified QML, the resulting mod-
ified QML model selection criterion remains consistent as analyzed in the previous sec-
tion. Our Monte Carlo results show that this approximation works well.

6. Monte Carlo experiments

We investigate the small-sample properties of the QML using the small-scale DSGE
model considered in Guerron-Quintana, Inoue, and Kilian (2017) that consists of

yt = E(yt+1|It−1)− σ
[
E(Rt |It−1)−E(πt+1|It−1)− zt

]
� (26)

πt = δE(πt+1|It−1)+ κyt� (27)

Rt = ρrRt−1 + (1 − ρr)(φππt +φyyt)+ ξt� (28)

7The Monte Carlo results for τ = 0�5 and q = 0�5 are reported in Tables A5–A9 in Inoue and Shintani
(2018).
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where yt , πt , and Rt denote the output gap, inflation rate, and nominal interest rate,
respectively, and It denotes the information set at time t. The technology and monetary
policy shocks follow

zt = ρzzt−1 + σzε
z
t � (29)

ξt = σrε
r
t � (30)

where εzt and εrt are mutually independent i.i.d. standard normal random variables. Note
that the timing of the information is nonstandard, for example, E(πt+1|It−1) instead of
E(πt+1|It) in the NKPC (27). The idea behind these information restrictions is to cap-
ture the fact that the economy reacts slowly to a monetary policy shock while it reacts
contemporaneously to technology shocks. Specifically, inflation does not contempora-
neously react to monetary policy shocks but it does, in this model, to technology shocks.
We impose such recursive short-run restrictions to identify VAR-IRFs. In the data gener-
ating process, we set κ= 0�025, σ = 1, δ= 0�99, φπ = 1�5, φy = 0�125, ρr = 0�75, ρz = 0�90,
σz = 0�30, σr = 0�20 as in Guerron-Quintana, Inoue, and Kilian (2017).

We consider four cases. In cases 1 and 3, κ, σ−1, and ρr are estimated in model A,
and κ and ρr are estimated in model B with σ−1 = 3. The other parameters are set to the
true parameter values. In cases 2 and 4, σ−1 and ρr are estimated in model A with κ set
to its true parameter value and κ, σ−1 and ρr are estimated in model B. In other words,
model B is misspecified in cases 1 and 3, and model A is more parsimonious than model
B in cases 2 and 4.

We use a bivariate VAR(p) model of inflation and the nominal interest rate to esti-
mate structural impulse responses. To identify structural impulse responses, we use the
short-run restriction that inflation does not contemporaneously respond to the mone-
tary policy shock, which is satisfied in the above model. In cases 1 and 2, all the structural
impulse responses up to horizon H are used in LTE. In cases 3 and 4, only the structural
impulse responses to the technology shock (up to horizon H) are used. We use the AIC to
select the VAR lag order where p is selected from {H�H + 1� � � � � [5(T/ ln(T))0�25]} where
[x] is the integer part of x. We set the lower bound on p to H. When p is smaller than
H, the variance-covariance matrix of the asymptotic distribution of VAR-IRFs is singular
and our theoretical results do not hold. See Guerron-Quintana, Inoue, and Kilian (2017)
for the results in such cases.

We consider T = 50�100�200, and H = 2�4�8. The number of Monte Carlo simula-
tions is set to 1000, the number of random-walk Metropolis–Hastings draws is 50,000,
the number of bootstrap draws for computing the weighting matrix is 1000.

Tables 2 and 3 report the probabilities of selecting model A in cases 1 and 2 and those
in cases 3 and 4, respectively. The lower parts of Tables 2 and 3 show that the model se-
lection method based on the value of the estimation criterion function performs poorly
when two models are both correctly specified and one model is more parsimonious
than the other. The tables show that the probabilities of the QML’s selecting the right
model tend to increase as the sample size grows. As conjectured in Section 3, the QML
performs better than the modified QML when one model is correctly specified and the
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other is misspecified, and the modified QML outperforms the QML when both are cor-
rectly specified and one model is more parsimonious than the other. Using a fewer IRFs,
that is, using the IRFs to the technology shock only, improves the performance of the
QML based on the optimal weighting matrix. These tables show that the different meth-
ods for computing the QML do not produce a substantial or systematic difference in
the performance in large samples. The diagonal weighting matrix provides better per-
formance than the optimal weighting matrix but the difference becomes smaller as the
sample size grows.8

To shed light on the accuracy of QML estimates further, we report the means and
standard deviations of 100 QML estimates from a realization of data in Table 4. Except for
the cases with the longer horizon and small sample size (the second and third rows in the
table), the standard deviations appear reasonably small. Furthermore, the differences
across the methods are small.

7. Empirical applications

7.1 New Keynesian Phillips curve: GMM estimation

In this section, we apply our procedure to choose between alternative specifications of
the structural Phillips curve under nonzero trend inflation when the models are esti-
mated using quasi-Bayesian GMM. Let π̂t = πt − π be the log-deviation of aggregate
inflation πt from the trend inflation π, and ûlct = ulct − ulc be the log-deviation of unit
labor cost ulct from its steady-state ulc.

In Galí and Gertler (1999), the hybrid New Keynesian Phillips Curve (hereafter NKPC)
is derived from a Calvo (1983) type staggered price setting model with firms set prices
using indexation to trend inflation π with probability ξp (see also Yun (1996)). For the
remaining 1 −ξp fraction of the firms, 1 −ω fraction of firms set prices optimally but the
remaining ω fraction are rule-of-thumb (ROT) price setters who set their prices equal
to the average price set in the most recent round of price adjustments with a correc-
tion based on the lagged inflation rate. Under these conditions, a hybrid NKPC can be
derived as

π̂t = γbπ̂t−1 + γfEtπ̂t+1 + κûlct (31)

with its coefficients given by

γb = ω

ξp +ω
[
1 − ξp(1 − δ)

] � γf = δξp

ξp +ω
[
1 − ξp(1 − δ)

] �
κ= (1 − ξp)(1 − δξp)(1 −ω)

ξp +ω
[
1 − ξp(1 − δ)

] �

where δ ∈ (0�1) is a discounted factor.
In Smets and Wouters (2003, 2007), a partial indexation specification is used instead

of the ROT specification of Galí and Gertler (1999). In their specification, firms set prices

8As shown in Tables A5–A8 in Inoue and Shintani (2018), the results are not sensitive to the choice of the
tuning parameters q and τ.
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Table 2. Frequencies of selecting model A when all impulse responses are used.

QML Modified QML

T H
Weight
Matrix q̂T Laplace Geweke SWZ CJ Geweke SWZ CJ

Case 1: Model A is correctly specified and Model B is misspecified
50 2 Diagonal 0�76 1�00 0�99 1�00 0�97 0�66 0�98 0�73

Optimal 0�70 0�84 0�84 0�86 0�83 0�30 0�65 0�33
50 4 Diagonal 0�80 1�00 0�99 1�00 0�98 0�64 0�94 0�71

Optimal 0�69 0�72 0�77 0�76 0�77 0�29 0�56 0�28
50 8 Diagonal 0�79 0�97 0�97 0�98 0�96 0�61 0�84 0�65

Optimal 0�52 0�26 0�45 0�34 0�41 0�28 0�26 0�25

100 2 Diagonal 0�74 1�00 1�00 1�00 0�98 0�87 1�00 0�91
Optimal 0�66 0�91 0�93 0�92 0�90 0�42 0�79 0�44

100 4 Diagonal 0�76 1�00 1�00 1�00 0�99 0�84 1�00 0�91
Optimal 0�74 0�88 0�93 0�90 0�88 0�50 0�83 0�55

100 8 Diagonal 0�82 1�00 1�00 1�00 0�99 0�92 1�00 0�95
Optimal 0�65 0�78 0�85 0�81 0�81 0�48 0�72 0�50

200 2 Diagonal 0�71 1�00 1�00 1�00 1�00 1�00 1�00 1�00
Optimal 0�63 0�93 0�94 0�93 0�91 0�45 0�85 0�56

200 4 Diagonal 0�79 1�00 1�00 1�00 1�00 1�00 1�00 1�00
Optimal 0�75 0�94 0�96 0�94 0�93 0�65 0�90 0�73

200 8 Diagonal 0�84 1�00 1�00 1�00 1�00 0�99 1�00 1�00
Optimal 0�71 0�92 0�95 0�93 0�93 0�72 0�89 0�78

Case 2: Model A is more parsimonious than Model B
50 2 Diagonal 0�03 1�00 0�98 0�96 0�98 1�00 1�00 1�00

Optimal 0�23 0�92 0�89 0�88 0�88 0�96 0�92 0�96
50 4 Diagonal 0�03 1�00 0�97 0�95 0�96 1�00 1�00 1�00

Optimal 0�32 0�91 0�86 0�85 0�85 0�92 0�90 0�93
50 8 Diagonal 0�07 0�99 0�96 0�95 0�92 0�98 0�98 0�98

Optimal 0�39 0�78 0�69 0�68 0�67 0�80 0�81 0�81

100 2 Diagonal 0�03 1�00 0�98 0�97 0�97 1�00 1�00 1�00
Optimal 0�29 0�92 0�89 0�89 0�89 0�94 0�93 0�95

100 4 Diagonal 0�05 1�00 0�98 0�97 0�96 1�00 1�00 1�00
Optimal 0�38 0�93 0�90 0�90 0�90 0�93 0�93 0�94

100 8 Diagonal 0�05 1�00 0�97 0�96 0�98 1�00 1�00 1�00
Optimal 0�37 0�83 0�82 0�81 0�81 0�89 0�86 0�88

200 2 Diagonal 0�04 1�00 0�97 0�97 0�94 1�00 1�00 1�00
Optimal 0�25 0�90 0�86 0�87 0�89 0�93 0�92 0�93

200 4 Diagonal 0�03 1�00 0�98 0�98 0�97 1�00 1�00 1�00
Optimal 0�35 0�94 0�92 0�92 0�92 0�95 0�94 0�94

200 8 Diagonal 0�04 1�00 0�97 0�97 0�95 1�00 1�00 1�00
Optimal 0�36 0�88 0�87 0�86 0�88 0�92 0�89 0�90

Note: T denotes the sample size and H denotes the maximum horizon for impulse responses. “Diagonal” refers to cases in
which the weighting matrix is diagonal and their diagonal elements are the reciprocals of the bootstrap variances of impulse
responses. “Optimal” refers to cases in which the weighting matrix is set to the inverse of the bootstrap covariance matrix of
impulse responses. q̂T refers to the method that chooses the model whose estimated criterion function is smaller. “Laplace,”
“Geweke,” “SWZ,” and “CJ” refer to Laplace approximation, Geweke’s (1999) modified harmonic mean estimator, Sims, Wag-
goner, and Zha’s (2008) modified harmonic mean estimator and the estimator of Chib and Jeliazkov (2001), respectively. The
numbers in the table are frequencies of selecting Model A over Model B over 1000 Monte Carlo iterations.

at an optimal level with probability 1 − ξp. For the remaining ξp fraction of the firms,

prices are determined as a weighted sum of lagged inflation and trend inflation (or

steady state inflation) with an weight ιp on the lagged inflation. Under these conditions,
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Table 3. Frequencies of selecting model A when only impulse responses to the technology
shock are used.

QML Modified QML

T H
Weight
Matrix q̂T Laplace Geweke SWZ CJ Geweke SWZ CJ

Case 3: Model A is correctly specified and Model B is misspecified
50 2 Diagonal 1�00 1�00 0�98 0�99 0�97 0�58 0�95 0�62

Optimal 0�98 0�99 0�97 1�00 0�97 0�38 0�83 0�45
50 4 Diagonal 0�98 1�00 0�99 1�00 0�98 0�63 0�97 0�68

Optimal 0�92 0�93 0�93 0�93 0�92 0�36 0�81 0�41
50 8 Diagonal 0�95 0�99 0�99 0�98 0�98 0�63 0�92 0�64

Optimal 0�64 0�46 0�61 0�53 0�56 0�30 0�47 0�29

100 2 Diagonal 1�00 1�00 1�00 1�00 0�97 0�77 1�00 0�84
Optimal 0�99 1�00 1�00 1�00 0�98 0�65 0�98 0�75

100 4 Diagonal 1�00 1�00 1�00 1�00 0�97 0�81 1�00 0�87
Optimal 0�97 0�99 1�00 1�00 0�98 0�67 0�98 0�77

100 8 Diagonal 0�99 1�00 1�00 1�00 0�98 0�83 1�00 0�89
Optimal 0�84 0�85 0�91 0�86 0�89 0�66 0�81 0�68

200 2 Diagonal 1�00 1�00 1�00 1�00 0�97 0�91 1�00 0�94
Optimal 1�00 1�00 1�00 1�00 0�98 0�87 1�00 0�94

200 4 Diagonal 0�99 1�00 1�00 1�00 0�98 0�91 1�00 0�96
Optimal 0�97 1�00 1�00 1�00 0�98 0�90 1�00 0�92

200 8 Diagonal 1�00 1�00 1�00 1�00 0�98 0�93 1�00 0�96
Optimal 0�85 0�96 0�98 0�96 0�96 0�83 0�89 0�86

Case 4: Model A is more parsimonious than Model B
50 2 Diagonal 0�05 1�00 0�97 0�95 0�97 1�00 1�00 1�00

Optimal 0�09 1�00 0�97 0�95 0�98 1�00 1�00 1�00
50 4 Diagonal 0�04 0�99 0�95 0�94 0�94 1�00 1�00 1�00

Optimal 0�31 0�99 0�97 0�97 0�96 0�99 0�99 0�99
50 8 Diagonal 0�06 0�99 0�97 0�96 0�96 0�99 0�99 1�00

Optimal 0�54 0�86 0�84 0�81 0�82 0�88 0�85 0�90

100 2 Diagonal 0�05 0�99 0�97 0�95 0�97 1�00 1�00 1�00
Optimal 0�07 1�00 0�99 0�98 0�97 1�00 1�00 1�00

100 4 Diagonal 0�05 0�98 0�95 0�93 0�94 1�00 1�00 1�00
Optimal 0�22 1�00 0�99 0�99 0�97 1�00 1�00 1�00

100 8 Diagonal 0�05 0�98 0�96 0�94 0�96 1�00 1�00 1�00
Optimal 0�59 0�97 0�96 0�96 0�95 0�97 0�98 0�97

200 2 Diagonal 0�05 0�96 0�93 0�91 0�91 1�00 1�00 1�00
Optimal 0�12 1�00 0�98 0�98 0�98 1�00 1�00 1�00

200 4 Diagonal 0�09 0�96 0�94 0�93 0�93 1�00 1�00 1�00
Optimal 0�18 1�00 0�99 0�99 0�99 1�00 1�00 1�00

200 8 Diagonal 0�07 0�98 0�96 0�95 0�94 1�00 1�00 1�00
Optimal 0�63 0�98 0�97 0�97 0�97 0�99 0�99 0�98

Note: See the notes for Table 2.

an alternative hybrid NKPC can be derived as (31) with coefficients given by

γb = ιp

1 + ιpδ
� γf = δ

1 + ιpδ
� κ = (1 − ξp)(1 − δξp)

ξp(1 + ιpδ)
�

where ιp ∈ [0�1] is the degree of partial indexation to lagged inflation. Note that when
ω = 0 in the ROT specification and ιp = 0 in the partial indexation specification, both
hybrid NKPCs become the baseline NKPC with only forward looking firms (γb = 0 and
γf = δ).
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Table 4. The mean and standard deviation of the QML estimates.

T H Geweke SWZ CJ

All impulse responses are used (Case 1, Model A)
50 2 −44�51 [0�75] −41�83 [0�68] −41�60 [0�68]
50 4 −69�38 [7�91] −72�32 [7�39] −67�06 [7�36]
50 8 −148�54 [5�00] −151�33 [2�12] −146�40 [4�32]

100 2 −85�68 [0�76] −83�01 [0�67] −82�74 [0�65]
100 4 −81�17 [0�78] −78�55 [0�67] −78�28 [0�64]
100 8 −85�30 [0�81] −82�72 [0�68] −82�49 [0�64]
200 2 −113�45 [0�80] −110�86 [0�66] −110�59 [0�64]
200 4 −85�42 [0�78] −82�99 [0�60] −82�79 [0�63]
200 8 −102�28 [0�81] −99�83 [0�63] −99�61 [0�63]

Only impulse responses to the technology shock are used (Case 3, Model A)
50 2 −24�07 [0�77] −21�37 [0�68] −21�16 [0�65]
50 4 −39�71 [0�82] −37�21 [0�67] −36�98 [0�66]
50 8 −58�66 [0�69] −56�23 [0�70] −56�10 [0�72]

100 2 −27�70 [0�70] −25�06 [0�68] −24�85 [0�64]
100 4 −27�94 [0�72] −25�33 [0�68] −25�10 [0�63]
100 8 −29�19 [0�73] −26�58 [0�68] −26�35 [0�63]
200 2 −31�40 [0�71] −28�90 [0�66] −28�76 [0�64]
200 4 −30�54 [0�72] −28�08 [0�63] −27�90 [0�64]
200 8 −34�65 [0�73] −32�22 [0�64] −32�02 [0�66]

Note: The means and standard deviations (in brackets) in each row are calculated from 100 QML estimates given a realiza-
tion of data. See the notes to Table 2.

In the previous empirical literature, the classical GMM has often been employed to
estimate the hybrid NKPC. In our quasi-Bayesian GMM estimation, we utilize the or-
thogonality condition of expectation error to past information, as well as the definition
of π̂t = πt − π, and estimate structural parameters α = [ξp�ω�π]′ for the first model
and β = [ξp� ιp�π]′ for the second model. In particular, for the first model, the ob-
jective function is q̂A�T (α) = (1/2)fT (α)′ŴA�T fT (α) where fT (α) = (1/T)

∑T
t=1 f (xt�α),

f (xt�α)= [z′
tut� π̂t]′,

ut = π̂t − γbπ̂t−1 − γf π̂t+1 − κûlct

and zt is a vector of instruments. The objective function for the second model can be
similarly defined. The optimal weighting matrix Ŵ is computed from the HAC estimator
with the Bartlett kernel and Andrews’ (1991) automatic bandwidth.

For the estimation, we use US quarterly data of the inflation rate based on the GDP
implicit price deflator for πt and the labor income share in the nonfarm business sec-
tor for ulct . As for the choice of instruments zt , we follow Galí and Gertler (1999): four
lags of inflation, labor income share, long-short interest rate spread, output gap, wage
inflation, and commodity price inflation. We use the same set of instruments so that
the number of moment conditions is the same for the two NKPCs. For the sample pe-
riods, we consider the Great Inflation period (from 1966:Q1 to 1982:Q3) and Post-Great
Inflation period (from 1982:Q4 to 2016:Q4). δ is fixed at 0�99.
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Table 5. Prior and posteriors of parameters of hybrid NKPCs.

Quasi-Posterior

Prior Great Inflation Post Great Inflation

Parameter Dist Mean Std Mean [5%, 95% ] Mean [5%�95%]

(a) ROT specification (Galí and Gertler (1999))
Trend inflation π Norm 3�50 1�50 5�91 [5�37�6�45] 2�24 [2�06�2�42]
Price stickiness ξp Beta 0�50 0�10 0�68 [0�61�0�76] 0�88 [0�83�0�91]
ROT fraction ω Beta 0�50 0�10 0�56 [0�47�0�65] 0�52 [0�38�0�67]
Backward-looking γb – 0�50 0�07 0�45 [0�40�0�51] 0�37 [0�30�0�44]
Forward-looking γf – 0�50 0�07 0�55 [0�49�0�60] 0�63 [0�56�0�70]
Slope of NKPC κ – 0�14 0�09 0�037 [0�019�0�056] 0�006 [0�003�0�009]
(b) Partial indexation specification (Smets and Wouters (2003, 2007))
Trend inflation π Norm 3�50 1�50 5�82 [5�28�6�37] 2�25 [2�07�2�43]
Price stickiness ξp Beta 0�50 0�10 0�79 [0�75�0�84] 0�91 [0�89�0�93]
Price indexation ιp Beta 0�50 0�10 0�65 [0�54�0�75] 0�48 [0�35�0�62]
Backward-looking γb – 0�33 0�05 0�39 [0�35�0�43] 0�32 [0�26�0�38]
Forward-looking γf – 0�67 0�04 0�60 [0�57�0�65] 0�67 [0�61�0�74]
Slope of NKPC κ – 0�40 0�26 0�036 [0�020�0�053] 0�006 [0�003�0�009]

Note: Quasi-posterior distribution is evaluated using the random walk Metropolis–Hastings algorithm.

The list of the structural parameters in our analysis, quasi-Bayesian estimates and
prior distributions are reported in Table 5 and the posterior distributions are shown
in Figure 1 for both ROT specification and partial indexation specification. The prior
and posterior means tend to differ which may suggest that the parameters are strongly
identified in these models. The trend inflation rate became substantially lower after the
Great Inflation period, as expected. The slope of the Phillips curve (κ) was flattened in
the post Great Inflation period compared to the Great Inflation period mainly due to
the increased degree of price stickiness (ξp). The figure also shows that the slope of the
Phillips curve has a wider spread. However, in general, both estimates of structural and
reduced form parameters differ between the two specifications.9

Table 6 reports the QMLs for the two specifications, along with the value of the es-
timation criterion function and Andrews’ (1999) criterion. The results based on com-
paring QMLs suggest that the ROT specification of Galí and Gertler (1999) outperforms
the partial indexation specification of Smets and Wouters (2003, 2007) for both sample
periods we consider. In particular, according to Jeffreys’(1961) terminology, the former
model is decisively better than the latter model.10 For the value of the estimation crite-
rion function and Andrews’ (1999) criterion, the model with a smaller value should be

9While the number of parameters is the same between the two models, the joint restrictions on the range
of parameters are different. For example, the ratio of the forward-looking parameter and backward-looking
parameter (γf /γb) for the ROT specification depends on three parameters (ξp�ω�δ) while the ratio for the
the partial indexation specification depends only on two parameters (ιp�δ). Such a tighter restriction for
the latter model can make the difference in the empirical performance of two models.

10Provided the prior probabilities are equal, the difference in the QML is decisive and very strong accord-
ing to Jeffreys (1961, p. 433) and Kass and Raftery (1995, p. 777), respectively.
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Table 6. QML estimates of hybrid NKPCs.

QML

Laplace Geweke SWZ CJ q̂T Andrews

Great Inflation Period
(a) ROT −15�6 −15�3 −12�7 −17�2 0�0597 −88�7
(b) Partial indexation −20�3 −20�0 −17�4 −21�9 0�0603 −88�6

Post Great Inflation Period
(a) ROT −30�2 −28�8 −26�1 −31�7 0�0490 −99�7
(b) Partial indexation −33�4 −32�1 −29�4 −35�0 0�0484 −99�9

Note: “Laplace”, “Geweke”, “SWZ” and “CJ” refer to Laplace approximation, Geweke’s (1999) modified harmonic mean es-
timator, Sims, Waggoner and Zha’s (2008) modified harmonic mean estimator and the estimator of Chib and Jeliazkov (2001),
respectively. q̂T refers to the estimated criterion function and “Andrews” refers to Andrews’ (1999) model selection criterion.

selected. When these alternative methods are employed, the ROT specification are se-
lected for the first subsample as in the case of QMLs, but conflicting results are obtained
for the second subsample. However, since our Monte Carlo results suggest that QMLs
are more accurate than the value of the estimation criterion function for selecting cor-
rectly specified models in moderate sample sizes, the ROT specification is likely to be
the better-fitting specification in the second subsample.

7.2 The medium-scale DSGE model: IRF matching estimation

As a second empirical application of our procedure, we consider quasi-Bayesian IRF
matching estimation of the medium-scale DSGE Model. For the purpose of evaluat-
ing the relative importance of various frictions in the model estimated by the stan-
dard Bayesian method, Smets and Wouters (2007) utilized the marginal likelihood. Their
question is whether all the frictions introduced in the canonical DSGE model are really
necessary in order to describe the dynamics of observed aggregate data. To answer this
question, they compare marginal likelihoods of estimated models when each of the fric-
tions was drastically reduced one at time. They claim that, among the sources of nominal
frictions, both price and wage stickiness are equally important while indexation is rel-
atively unimportant in both goods and labor markets. Regarding the real frictions, they
claim that the investment adjustment costs are most important. They also find that, in
the presence of wage stickiness, the introduction of variable capacity utilization is less
important.

Here, we conduct a similar exercise using QMLs based on the standard DSGE model
estimated by Christiano, Trabandt, and Walentin (2011). Based on an estimated VAR(2)
model of 14 variables using the US quarterly data from 1951Q1 to 2008Q4, they employ
short-run and long-run identifying restrictions to compute IRF to (i) a monetary policy
shock, (ii) a neutral technology shock and (iii) an investment-specific technology shock.
The model is then estimated by matching the first 15 responses of selected 9 variables
to 3 shocks, less 8 zero contemporaneous responses to the monetary policy shock (so
that the total number of responses to match is 397). Since our purpose is to evaluate the
relative contribution of various frictions, we estimate some additional parameters, such



Quantitative Economics 9 (2018) Quasi-Bayesian model selection 1291

Figure 1. Posterior distribution of hybrid NKPCs.
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Table 7. Prior and posteriors of parameters of the baseline DSGE model.

Prior Quasi-Posterior

Parameter Dist Mean Std Mean [5%�95%]

Price-setting rule
Price stickiness ξp Beta 0�50 0�15 0�66 [0�60�0�72]
Price indexation ιp Beta 0�50 0�15 0�49 [0�32�0�72]
Wage stickiness ξw Beta 0�50 0�15 0�85 [0�83�0�87]
Wage indexation ιw Beta 0�50 0�15 0�30 [0�11�0�46]
Monetary policy rule
Taylor rule: Interest smoothing ρr Beta 0�70 0�15 0�89 [0�88�0�91]
Taylor rule: Inflation coefficient φπ Gamma 1�70 0�15 1�51 [1�37�1�65]
Taylor rule: GDP coefficient φy Gamma 0�10 0�05 0�15 [0�10�0�19]
Preference and technology
Consumption habit b Beta 0�50 0�15 0�75 [0�73�0�78]
Inverse of labor supply elasticity σl Gamma 1�00 0�50 0�14 [0�04�0�25]
Capital share a Beta 0�25 0�05 0�25 [0�22�0�28]
Capital utilization cost curvature σa Gamma 0�50 0�30 0�32 [0�23�0�46]
Investment adjustment cost curvature S′′ Gamma 8�00 2�00 10�4 [8�30�12�9]
Shocks
Autocorr investment specific technology ρΨ Beta 0�75 0�15 0�55 [0�42�0�61]
Std neutral technology shock σz InvGamma 0�20 0�10 0�23 [0�21�0�26]
Std investment specific technology shock σΨ InvGamma 0�20 0�10 0�17 [0�15�0�20]
Std monetary policy shock σr InvGamma 0�40 0�20 0�48 [0�43�0�54]

Note: Quasi-posterior distribution is evaluated using the random walk Metropolis–Hastings algorithm.

as the wage stickiness parameter ξw, wage indexation parameter ιw and price indexa-
tion parameter ιp, which are fixed in the analysis of Christiano, Trabandt, and Walentin
(2011).11 The list of estimated structural parameters in our analysis, quasi-Bayesian es-
timates and the prior distribution, are reported in Table 7. This estimated model serves
as the baseline model when we compare with other models using QMLs.

Following Smets and Wouters (2007), the sources of frictions of the baseline model
are divided into two groups. First, nominal frictions are sticky prices, sticky wages,
price indexation, and wage indexation. Second, real frictions are investment adjustment
costs, habit formation, and capital utilization. We estimate additional submodels, which
reduces the degree of each of the seven frictions. The computed QMLs for 8 models, in-
cluding the baseline model, are reported in Table 8. For the reference, also included in
the table are the original marginal likelihoods obtained by Smets and Wouters (2007)
based on the different estimation method applied to the different data set. Let us first
consider the role of nominal frictions. According to Jeffreys’ (1961) terminology, QMLs
are decisively reduced when the degree of nominal price and wage stickiness (ξp and
ξw) is set at 0�10. In contrast, even if the price and wage indexation parameters (ιp and
ιw) are set at a very small value of 0�01, the values of QMLs are quite similar to that of
the baseline model. Thus, we can conclude that Calvo-type frictions in price and wage

11In our analysis, both price markup and wage markup parameters are fixed at 1.2.



Quantitative Economics 9 (2018) Quasi-Bayesian model selection 1293

Table 8. Empirical importance of the nominal and real frictions.

Nominal Frictions Real Frictions

Baseline ξp = 0�1 ξw = 0�1 ιp = 0�01 ιw = 0�01 S′′ = 2 b= 0�1 σa = 0�1

QML
Laplace 370 341 146 369 373 327 279 366
Geweke 366 340 143 368 371 326 276 364

Quasi-posterior mean
ξp 0�66 [0.10] 0�95 0�68 0�67 0�74 0�68 0�66
ιp 0�49 0�53 0�69 [0.01] 0�51 0�48 0�52 0�52
ξw 0�85 0�88 [0.10] 0�85 0�87 0�80 0�86 0�85
ιw 0�30 0�32 0�53 0�34 [0.01] 0�43 0�37 0�29
S′′ 10�4 10�3 2�74 9�37 9�23 [2.00] 8�07 9�81
b 0�75 0�74 0�53 0�76 0�75 0�69 [0.10] 0�75
σa 0�32 0�44 0�62 0�35 0�32 0�39 0�26 [0.10]

SW −923 −975 −973 −918 −927 −1084 −959 −949

Note: “Laplace” and “Geweke” refer to Laplace approximation and Geweke’s (1999) modified harmonic mean estimator,
respectively. SW denotes marginal likelihood estimates from Smets and Wouters (2007). Numbers in brackets are fixed values

settings are empirically more important than the price and wage indexation to past in-
flation. Let us now turn to the role of real frictions. The remaining three columns show
the results when each of investment adjustment cost parameter (S′′), consumption habit
parameter (b), and capital utilization cost parameter (σa) is set at some small values.
The results show that restricting habit formation in consumption significantly reduces
the QML compared to other two real frictions, suggesting the relatively important role
of the consumption habit. Overall, our results seem to support the empirical evidence
obtained by Smets and Wouters (2007), despite the fact that our analysis is based on a
very different model selection criterion.

8. Concluding remarks

In this paper, we establish the consistency of the model selection criterion based on the
QML obtained from Laplace-type estimators. We consider cases in which parameters are
strongly identified, weakly identified and partially identified. Our Monte Carlo results
confirm our consistency results. Our proposed procedure is also applied to select an
appropriate specification in New Keynesian macroeconomic models using US data.

Our proposed model selection criterion is useful when one selects a model, es-
timates the structural parameters of the selected model and interprets them. While
Bayesian model averaging will select the correct model asymptotically, weights are
nonzero in finite samples. It is not clear how to interpret structural parameters of differ-
ent DSGE models that are estimated simultaneously. Bayesian model averaging may be
more useful for forecasting. The application of Bayesian model averaging to IRF match-
ing is beyond the scope of this paper and is left for future research.
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