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APPENDIX SA: PROOFS

Throughout the proofs, we use K to denote a generic constant that may change from

line to line. For a sub o-field G € F and a sequence X, of random variables, we write

X, [;_|g) X if the G-conditional law of X,, converges in probability to that of X under a

metric that is associated with the weak convergence of probability measures. By a stan-
dard localization procedure, we can strengthen Assumption 3 as the following without
loss of generality:

AsSUMPTION SAl. Suppose Assumption 3 holds with Ty = oo. Moreover, the processes o,
Ajy Az, by, of, Erjz and Jy,; are bounded, uniformlyin j.

SA.1 Preliminary results

In this subsection, we introduce some notation and preliminary estimates that are used
in the sequel. We consider a sequence (2, of random events defined by (2, = {distinct
jump times of the Poisson process ¢ — u([0, f], E) are at least 2k,A, apart}. Since
knA, — 0 and the jumps of Z is of finite activity, P({2,) — 1. Therefore, we can restrict
our calculations to (2,, without loss of generality. It is (notationally) convenient to extend
the definition of the spot jump beta to all ¢ € [0, 7] such that, on each path, 8, = B, -
for t € [T — k,A,, T+ k,Ay]. This extension is well behaved on (2,, and our analysis only
concerns the behavior of 8, around shrinking neighborhoods around the jump times.
(It should be noted that 3 ; defined as such is not adapted to F;.)
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We also consider the following sequence of events:
{Zl{A,(,, ) = <|Nng}|/2forsomereT . (SA.1)
By Markov’s inequality,

Ny
J ZP(A;’(H’T)JY, j#0) <KA,/q? — 0.

Nﬂ
(Z Lian Jy,j#0) = LqunJ/2> < L—

i(n,7) nqn ':

Since T is finite, we have P({2,,) — 1.
We denote the continuous part of Y; and Z as, respectively,

t t t
Y]/t:/(; aj,udu+/0 Ay dfu+ e, z;E/O AL dfu. (SA.2)

The diffusive residual process is then defined as

t t t
Y], =Y/, Bf’tZ;:/o aj,udu+</0 Ajfudfu—ﬁj,,/o )\},udfu)—l—ej,,. (SA.3)

We denote
A Y
Enjs = 7;,” D (SA.4)
i(n, s)
which can be decomposed as
Enjos = Epjs T En s (SA.5)
where
1 - -
Ejs = E()\L_ (fs = fiitns)-1an) + AL ficnsya, = 1)
N
+ €in,5)A, _Af(i(n,s)fl)An)a
1 i(n,s)A, 1 1
"= du+ A%
€. AZs Jin,s)-1)A, G AU Bitn) T <A”(n WZ AZ )
s oo hT (SA.6)
AZS (is(n,s)fl)A" Pt P !
_Bis (Azu—Az5=) " dfy
AZS (i(n,s)—1DA, ’ ’
1 i(n,s)A, - B].S i(n,s)A, T
+ AZSK ()\j,u_)\j,s) dfu_ AZS/; (/\Z,u_/\Z,s) dfu-
We further rewrite &), s a8
1/2 12
g o=A > wag(X] z/g,,q+R,,,q) (SA.7)

qefs—,s+}
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where we define

fs = flimo-DA, lyon = 312 Jin98, — fs
i ’ n,s+ = f.s W)
\/s — (i(n,s) = 1)A, i(n,s)A, —s
€j,s — €j,(i(n,5)= 1A, _ €in,s)A, — €jis

Rn,j,s— = > R”;/’H‘ = ; ’ SA.8
\/s — (i(n,5) = 1)A, Vi(n,$)Ap —s (5A.8)

1 [s—(i(n,s) —1)A, 1 [i(n,$)A, —s
Wn,s— = 5 Whp,s+ = _—.
AZ; A, AZ; A,

LeMMmA SAl. Under Assumptions 3 and 4, we have for p, q € {7—, 7+, n—, n+}:

-1/2
gn,s— = Zf,ii

@ Ny YN Ry jpRujg = Op(Ny %) when p# g;

—1 Na P .
(b) Ny YR — Me(@);
(© N;! 2&1 Rujphiq= Op(Nn_l/z)?

(d) N;?lA,Zl Zj'v:nl(g;;’jﬂ- - f;:,j)n)z = Op(An)-

ProoFr OoF LEMMA SA1(a). We prove the case with p = 7— and g = 7+ in detail, while
noting that the other cases can be proved in exactly the same way. Note that the jump
times of the Poisson measure p are necessarily independent of the Brownian motions
I/T/j, 1 <j < N,. Let G, be the smallest filtration such that 7; € G, and the jump times
of u are G;-measurable. The processes (I/T/j)lS j<N, remain to be Brownian motions with
respect to (G;)>0. Consequently, €; is a (G;),>o-martingale, and hence,

E[Rn,j,T—Rn,j,r—i-] =0. (SA.9)
Moreover, for j # m,
]E[Rn,j,r—Rn,j,T+Rn,m,77Rn,m,T+] = ]E[Rn,j,f—Rn,m,rfE[Rn,j,T—&-Rn,m,rJr|gr]] = 0, (SA.IO)

where the first equality holds because Ry, j .- Ry, m,-— is G--measurable and the second

equality holds because W] and W, are orthogonal. Since the processes &jz are uniformly

bounded, E[Rﬁ i .1 < K holds due to a standard estimate for continuous It6 processes.

By the Cauchy-Schwarz inequality, this further implies that

E[RZ ., _R:. . ]<K. (SA.11)

n,j, 7= n, j,7+

From (SA.9), (SA.10), and (SA.11), we deduce

N, 2
]E|:<Nn_l ZRn,j,pRn,j,q> :| <KN,".
j=1

The assertion of part (a) then readily follows.
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(b) We consider the case ¢ = 7— in detail while noting that the other cases can be
proved in the same way. By using Itd’s formula, we can decompose

R, . =U,j+U, , where
1 T
U, = - / &2 du,
P — (i, ) = 1) A S -8, P
2 T ~
U .= / €iy—€i(i(nt)— aw; ,.
= (l'(n, ) — 1)A (i(n,f)—l)A,,( jou ~ €, (i(n,m)—1)A,) U
We note that E[U/ ] =0 for each j and E[U;, ] U, r ] =0 for j # m.In addition, E|U | <
K. From these estlmates it readily follows that
1
_ -1/2
FnZU,;,]._o,,(N,, ). (SA.12)
j=1
Next, note that by Assumption 3(v),
- 12
E|Un;— 57| <E[ sup |52, -2 [] <K/
s, t,|s—t|<Ap
From this estimate and Assumption 4, we deduce
1
N_,,ZU" Z 57, +0p(1) =Mc(r=)+ 0,(1). (SA.13)
j=1

The assertion of part (b) then follows from (SA.12) and (SA.13).
(c) By Assumption 4, A j,q is conditionally independent of R, ;,, and hence,
E[Rn’j’p/\j,q|g0] = E[Rn,j’p|g0]E[)\j,q|go] = 0. In addition, for j # m,

E[Rn,j,pRn,m,pXj,q/N\;;,q|g0] = IE:[Rn,j,pRn,m,p |gO]E[5\j,q5\;,q|g0] =

where the second equality follows from the orthogonality between I/T/] and W,,. Since A iq
is bounded, Ry, j »A;j, has bounded second moment. The assertion of part (c) readily
follows from these facts.

(d) First, since the «;’s are uniformly bounded, it is easy to see that (AZ)! x

fz(n LA,

(i(r.5)— 1A, aj, du=0p(A,) uniformly in j. Hence,

1 Ny 1 i(n,$)A, 2
aidu) =0,(4),). (SA.14)
NnAn Z<AZS /(\i(n,s)l)An P ) PR

Further note that, uniformly in j, we have E|A”  Y/|? < KA,, and hence,

i(n,s) ]

N,A,, 4 Z (Afn.5) ~j) =0p(1). (SA.15)
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It is easy to see that

1 1 12
=0,(A,/7). (SA.16)

Af’(n 0Z - AZ p (A7)

From (SA.15) and (SA.16), we deduce
N 2
1 ~ 1 1
SN (A v — )} —0.(A,). !

NnAy j—1< 1) 1<A?(n,s)z AZS)) Op( 2 © K

We then note that, since the processes A;’s are (1/2)-Holder continuous under L;-
norm uniformly in j (Assumption 3(v)), the following estimate also holds uniformly:

s 2
E[(/ (A,-,M—A,»,S_)Tdfu> }51@%.
(i(n,)—DA,

Hence,
1 er 1 Ky 2
( / (A-u—ms_)Tdfu) = 0p(An). (SA.18)
NnAn =1 AZS (i(n,s)—1)A, b P P
Similarly,
N, 2
1 Bjs fs T >
’ Azu—Azs-) d =0p(An),
NnA j=1<AZ (i(n,s)—1)A, ! * fu PR
1 Nn 1 i(n,s)A, 2
N A Z(AZ / ()\j,u_/\j,s)Tdfu> =Op(An), (SA.19)
n s JS
j=1
Ny i(n.s 2
1 B', i(n,s)A,
. ( cis / (Az,u—Az,stfu) —0,(A).
n s JS
j:

With an appeal to the Cauchy-Schwarz inequality, the assertion of part (d) then follows
from (SA.14), (SA.17), (SA.18), and (SA.19). |

Next, we set
Ny
1

An(s) = N—A Z(f;,m)z, sefn, 7},

N, (SA.20)

1
Bn(”fh T) = m Zf/mjmg;hjﬂ"

The following lemma collects some convergence results that we use for deriving limiting
distributions.

LEMMA SA2. Suppose that Assumptions 3 and 4 hold. Then
(An(m), An(7), B (n,T)) 2 (A, A(T), B(n, ),

L-s .
where — denotes F-stable convergence in law.
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ProoOF oF LEMMA SA2. By Theorem 4.3.1 in Jacod and Protter (2012),
ﬁ_
(wn,qa gn,q)qe{n—,n—ﬁ—,f—,r—k} _S> (wqa gq)qe{n—,n-ﬁ-,r—,rﬂ- (SA-ZI)
Recall the definitions in (SA.7) and (SA.20). We have, for s € {n, 7},

2
(S)—N Z( > weg(A] El/zfnq+Rn1q)>

j=1 “qe{s—,s+}

Nn
12{ 1 iOAT ) s12
SR MR O R
=1

D,q€{s—,s+}
+ Y w < Zanq> (NP, (SA.22)
gefs—,s+}

where the rate for the O, (N,; 1y term in the last line is obtained using Lemma SA1(a), (c).
Similarly,

Bn(”], T)

__Z< Z wn,p(XjT, 2]/2§HP+RMP)>

j=1 “pelr—.7+)

X( Z wn,q( 21/2§Hq+Ran)>

ge{n—m+}

T y1/2 5172
= § § wn,pwn,qfn,p ( 2 :A]P ) gnq
pe{t—,7+} qe{n—,n+}

+0,(N, ). (SA.23)

By Assumption 4 and Lemma SA1(b),

N’I
P P
1/2< Z)\Jp ) 1’/2—>Mc(p q), _ZRn]q—>M€(q). (SA.24)

We further note that the limiting variables M¢(p, q) and M.(gq) are F-measurable.
Hence, by the property of stable convergence in law, we can deduce the assertion of
Lemma SA2 from (SA.21), (SA.22), (SA.23), and (SA.24). O

Finally, we show in Lemma SA3 some consistency results for the spot jump beta es-
timates.

LEMMA SA3. Under Assumptions 3 and 5, the following holds for s € T

(a) SUPj<j<n, |Bn,j,s - Bj,su{A?(n s)fY,j:()} = Op(l);
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1Na A
() Ny ' Y 1Bujr — Bl = 0p(1).

Proor oF LEMMA SA3(aA). Note that

(SA.25)

B ) —,8' _Az(ns) '813 z(ns)Z
n,J,s 1S — Al’l

i(n, s)
By localization, we can assume that &jz, p) frAj and B; are bounded. By a standard esti-

mate for continuous Itd6 semimartingales (applied to the continuous parts of Y; and Z),
we have for any p > 1,

AP/2

[|Az(n s)Y 'B]S i(n, s)Z|p Jyl_O}]

t(n s)

for some constant K ,,. By using a maximal inequality, we deduce that

1/2
sup |Az(n S)Y B.]s z(n S)Z’l{A( Jy]_O - OP( Nn) (SA'26)
1<j<Nn i(n,s)

for some arbitrarily small (but fixed) constant ¢ > 0. Then, by Assumption 5,

sup ‘At(n S)Y B], t(n S)Z|1{A ins) y,j:O} =0P(1),

1<j<Ny

Note that 1 /Al(n S)Z = 0,(1). The assertion of the lemma then readily follows from the
above estimate and equation (SA.25).

(b) It is easy to see that ﬁn, j,» 1 < j < Ny, are uniformly bounded with probability
approaching one. We then note that

L

) 2
N § |,8n,j,7_ﬁj,-r|
n .

j=1

1 1
= N_n.Xl:lﬁn’j’ = Bjyrl 1 an, A)JY,jZO}"‘FnZl:mn,j, = Bjrl 1 AL o T7,j70)
j= j=

N
N K N
= iy . 1 ) + NT 1 n T
B (151.58\/” |Bn,] ! B]’Sl 45 in,s >JY]_O} Np J:Zl {Ai(n,s)‘]Y,HéO}
= 0]7(1)’
as claimed in part (b). -

SA.2 Proof of Proposition 1

ProOOF oF ProPOsITION 1. Recall that the spot jump betas B; ; are bounded by assump-
tion. By Lemma SA3 and the boundedness of J v,j» we further deduce that the beta es-
timates ,én j,s are uniformly (in j) bounded with probability approaching one. Since the



8 Li, Todorov, and Tauchen Supplementary Material

loss function L(-) is Lipschitz on bounded sets (Assumption 1), we can now assume that
L(-) is globally Lipschitz without loss of generality. Hence, by Lemma SA3,

N,
1 " ~ ~
S LB = Bujon) = L.
n =1

Ny

<_ ) . _A . — . ~ ~
= 3, 2L Brjr = Brjom) = LOtim D Ly, 7y v, o)

j=1

N,

K n
A IRTIVREN STUVR S
=1

i(n,m)

<K max B, is— Bis|l = +0,(A
= se{n,r},liijn|Bn’j’S B/,s| {Azr'l(n,s)JY,jzo} p( n)

=o0,(1). (SA.27)

Next, we set
L
bn= 1 2 (L&jn?) ~E[LOGw.0) Fy-]).
n j:1

Under Assumption 6, &, is the average of 7,,_-conditionally independent variables with
zero conditional mean. Hence,

N,
1 n

E[fa}—n*] = N2 ZE[(L(XJ,H,T) - E[L(Xj,n,fﬂ}-n*])zu:n*]
n j=1

Ny

1
=3 ZE[L(XM,T)ZU:TV] = Op(Nn_l) =o0p(D).
n j=1

In particular, this implies that E[|£,| A 1|7, -] = 0,(1). By the bounded convergence the-
orem, we further deduce E[|,| A 1] — 0. But this is equivalent to &, = 0,(1). This, to-
gether with (SA.27), implies that

N, N,
1 n . R 1 n
N E L(Bn,j,f - ,Bn,j,n) = N E ]E[L(Xj,n,f)lfn—] + Op(l)‘ (SA.28)
n . n .
j=1 J=1

Since g% — 0, the winsorized estimator V}, differs from N;,! Zj.v:ﬁ L(Bn,jir — Bn,jn) byan
0,(1) term. The assertion of the proposition then follows from (SA.28). O

SA.3 Proof of Theorem 1

ProoFr orF THEOREM 1. Step 1. The proof proceeds in two steps. Recall 2/, from (SA.1).
Since P(£2))) — 1, we can restrict our calculations to {2/, without loss of generality. In this
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step, we show that

N 1
-1
A= 5 ;L@n i — Enjin) +op(1). (SA.29)
From (SA.26), we see that
5 A2
Sup Bn.js = Bislliar 7y =0y =0,(A;/"Ny,) (SA.30)

1<j<N,

for some fixed but arbitrarily small constant ¢ > 0. In restriction to (2, and the null hy-
pothesis, Bn,n,T is bounded by two times of the left-hand of the above display. Hence,

Bunr=0,(ANY). (SA.31)
We note that
1 M
> \L(1Bnjir = Bu.jim| ABuy.7)

- L('Bl’l,j,’?’ - Bn’]’TI')l {lA,(n T)‘]Y/|+|A,(n n)Jle 0}'

(g} N, | .
= ApNp lssjuSFI)\’n L(|Bn’]’7 B Bn’]’nl) Al V1A, ) T, j1=0}
=0,(qVN;) = 0,(D), (SA.32)

where the inequality follows from the fact that the winsorization is active for at most
[qWN,] terms ([-] denotes the ceiling function); the first equality follows from (SA.30);
the second equality follows from Assumptlons 2 and 5 with « chosen sufficiently small.
Note that in restriction to {|A% . Jy 1AL J v,jl = 0} and the null hypothesis, [7’,1, jr—

i(n,7)
Bn,j,n = &n,j,r — &n,j,n- Hence,

i(n,m)

N,
1 - A n _
L ir— Bnjnl AB 1
AnNn 2; (|Bn,],7 Bn,],“f]| n,Tl,T) {|A’<n T)JYJH"Az(n n)JY,j|=0}
J:

N,
1 n
A N ZL(fan ‘fn]’q)l ‘Al(n r)JY}lJrlA

i(n, n)JY,jlz(]}

+o,(1). (SA.33)

Next, we note that

N’I

N A ZL |Bn1, BanBnnT)luA
n
j=1

Ty jI+A% Ty ;>0

i(n,7) i(n,m)
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N)l

<L(Bn,n,7')z ) )
TN, I e T2 00
j:

=0, (ANZ) = 0,(1), (SA.34)

where the inequality follows from the monotonicity of L(-) and the last line follows from
(SA.31) and the fact that P(A"  .J y,j #0) < KA,. Similarly, we can show that

i(n,s)

N,
1 n
Nubo ;L@"’j w = Eni) g gy et v -0 = 0D (SA35)

From (SA.33), (SA.34), and (SA.35), we deduce (SA.29) as wanted.
Step 2. It remains to derive the convergence of (NuA)L Zj.vz”l L(én,j,r — én,jn)- Re-
call the definition of ¢ . _from (SA.6). Let L, be defined as

n,j,s
1 M )
Ln=33 > (€ = Enjin) (SA.36)
n=n ]=1

Recalling the definitions in (SA.20), we can rewrite L,, as

L,=A,(n)+ A,(7) — 2B, (n, 7). (SA.37)
Then, by Lemma SA2,
Lo £3 £(n, 7) = A(m) + A() —2B(n, 7). (SA.38)

From (SA.5), we further see that

1 &
N j_ZlL(fn,,-,T— €njin)

N,
2 n
=L,+ N.A Z(gil,j,f_fii,j,n)(gz,j,q-_fg’jm)
n=n :1
1 M )
N, - (&njr = €njim) ™ (SA.39)

By Lemma SA1(d), the last term in (SA.39) is O, (A,). By the Cauchy-Schwarz inequality,
this estimate and (SA.38) further imply that the second term on the right-hand side of
(SA.39) is 0, (1). Therefore,

Np
> L(énjir— énjin) =Lan+0,(1).
=1

NpA,

The assertion of the theorem then follows from (SA.29) and (SA.38). O
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SA.4 Proofof Theorem 2

We start with the proof of part (a) and part (b). We provide details for the case with g =
7—, while noting that the case with ¢ = 7+ only requires a change of notation. Hence,
we suppress (in most cases) the dependence on ¢ in our notations for simplicity. More
specifically, we write X, En, /in, A%, Eq H, Zf, M’ and M in place of Xn(q), Fn(q),
/in(q), AN, En(q), Hy, 21,4, M7 (q, @), and M{.(q, q), respectively. We denote the jth
column of a generic matrix A4 by A4.;. Recall the sequence (2, of events defined as in
Section SA.1. Since P({2,,) — 1, we can restrict our calculations below in {2,, without loss
of generality.

Below, we denote I',, = {y € R¥» : yTy = k,}. Note that each column of F,, is an ele-
ment of I',,. We collect some useful estimates in Lemma SA4, where we denote

A= Mre = BuaeAZor—s s ANy — BuNyrhzoe ) (SA.40)
We also consider an N, x k, matrix £, = [e;.7 J1<j<N,,1<i<k, defined as

_12 (i(n,7=)+DA, _12 (i(n,7=)+DA, T
e},len / aj,sds—i—An / (Aju— Ajr—) dfy
(i(n,7—)+l-1)A, (i(n,7—)+l-1DA,

_1/2 (i(n,7=)+DA, -
- '8” T / (AZ,u - )\Z,frf) dfu- (SA.41)
(i(n,7—)+1-1)A,

LeMMmA SA4. Under the conditions of Theorem 2, the following statements hold:
@ sup.cr, k2N Yy TE Eny = 0,(1);
(b) sup,.r, k, INSYTETE Yy =0,(1);
(©) sup,er, kn N Y ES Al = 0p(1);
(d) sup,cr, by 'N Iy TET A= 0,(1);
(€) N 'AxT AL =M% +0,(1) and N, AT A% = MY + 0,(1).

PrOOF OF LEMMA SA4. (a) Recall that the (j,/) element of &, is given by e;; =

Al T_)Hej/A,l/Z. We observe
TeT
Y & ény
K2N, "
k2 ZZVW’"Z"LW},
”l 1 m=1
1 ko K 172 ki (4 N 2\ 12
= (72271 7m> <k2 ZZ(mZej,lej,m) )
K I=1m=1 n =1 m=1 j=1
1 kn n 1 N, 2\ 172
- (72 (N_n Zej,lej,m) ) ) (SA.42)
n — j=1
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where the first equality is by definition, the inequality is by the Cauchy-Schwarz inequal-
ity, and the last line follows from y "y = k,,.
We decompose the majorant side of (SA.42) as

n VZ 1 Nn 2

n =1 m=1

1 & ’
kZZ( Ze],> = > (—n;ej,,ej,m) (SA.43)
j:

n =1 nlom,l#m

By a standard estimate for continuous Itd6 semimartingales, E[e? 1=K this holds uni-

formlyin j € {1,..., N,} because the idiosyncratic variances &].2

bounded under Assumption 3(iii). Hence, by Jensen’s inequality,

N, 2 N,
1 o2 1 ¢4
(e 2e) [l
j=1 j=1

From here, it follows that the first term on the right-hand side of (SA.43) is 0, (1). In view
of (SA.42) and (SA.43), it remains to show that the second term on the right-hand side of
(SA.43) is also 0 (1).

To this end, we observe the following for [ # m: (i) E[e ji€iml =0 because the process
€; is a martingale; (ii) ]E[e] Ie 1 < K; and (iii) the variables (e; ;e; u)1<j<n, are uncorre-
lated, which can be shown by using repeated conditioning and the orthogonality among
the Brownian motions (VT/J-) j>1. Hence,

N 2
1 n
E —Zej,lej,m §KNn_l—>0,

which implies, as wanted,

are uniformly (locally)

N 2
1 1 «—
kz Z <_Zej,lej,m> ZOP(Nrfl):Op(l)-
nj:l

n | m,l#m

This finishes the proof of part (a).
(b) Similar to (SA.42), we can derive

1 ko kn N, 2\ 172
T /T /
v (P ( Zeue}’ )) . (SA.44)
n | 1

=1 m=

sup
veln n

In addition, we observe

—12 (i(n,7=)+D A, T
An / (Aj,u _)\j,'rf) dfu
(i(n,7—)+I-1)A,

4
E
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5 r (i(n,7=)+D A, 5 2
fKA; E (/ ||)\j,u_)\j,r—|| du) i|
L (i(n,7=)+I-1)A,

1 r i, 7=)+DA, 4
<Ko 'g| [ Ijs = Ao du}
LJ (i(n,7—)+I-1)A,

r G, m=)+DA,
<KA'E / A — Ajre ||2du:| < KA, (SA.45)
LJ (i(n,7—)+I-1)A,

where the first inequality is by the Burkholder-Davis-Gundy inequality, the second in-
equality is by Jensen’s inequality, and the last line holds because A;, is bounded and
(1/2)-Holder continuous under L,-norm uniformly in j. Similarly,

4

E < KA, (SA.46)

Ly [lT)EDA .
An / ()\Z,u _)\Z,-rf) dfu
(i(n,7—)+-1)A,

Under Assumption 7, (3 jn,7)1<j<N, are uniformly bounded with probability approach-
ing one, so we can assume that these variables are bounded without loss of generality.
Hence, from (SA.45) and (SA.46), we deduce that

Ele,|* < KA. (SA.47)

Hence, by the Cauchy-Schwarz inequality, we further have

N, 2
1 . / /
E[(Vn;eﬂeﬁ”) }SKAH. (SA.48)

The assertion of part (b) then follows from (SA.44) and (SA.48).
(c) We denote the (j, k) element of A}, by /\;fk. We note that for each k € {1, ...,r}
(recalling that AZ & denotes the kth column of A}),

1

W|VT5JA2,-k| =

L (1
k_,,Z”<N_n Zef,lAf,k)
I=1 =1

1 kn 1/2 1 kn 1 N, 2\ 172
2 *
(e27) @x(mzo))
=1 j=1

=

1 kn 1 Ny 2\ 172
= (k_ Z(N_ Zej,,)\;f,k) ) , (SA.49)
n n j:1

=1

where the first line is by definition, the second line is by the Cauchy-Schwarz inequality
and the last line follows from y € I',. Under Assumption 8, ¢;; is independent of /\;’.‘ o
hence, the variables (e;, 1/\;‘ «)1<j<N, are uncorrelated and have zero mean and bounded
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second moment. It is then easy to see that

1 &
[ Z( Ze,,,)\]k) }SK/N,,.
Therefore,

k N 2
1 & n
;TZ( 261,1)‘7,1() ZOP(Nn_l) =o0,(1). (SA.50)
1 —1

The assertion of part (c) then follows from (SA.49) and (SA.50).
(d) Like (SA.49), we can derive

2 2
T /T 1 & v
kN| ETAL L] < —Z Zeb,)\ : (SA.51)

=1t N\ =t
We further note that
1 M 2 1 M )
E|:<N—n ]Z;e},l/\;k) :| < E|:N—n ]Z;(e},l’\;f,k) :|
Ny
= D El(6)] < Ko

where the first inequality is by Jensen’s inequality, the second inequality holds because
A%y ds bounded and the last inequality can be derived similarly as (SA.47). In view of
(SA 51), the assertion of part (d) readlly follows.

(e) From the definitions of A} and A; respectively from (3.9) and (SA.40), we see that
(recallg=71—)

A; - AZ = ((BT,T - Bn,l,T)/\Z,Tfa s (B:,N",T - BNH,N;«;,T)/\Z,T*)T‘

Therefore, by Assumption 7,

N (A - AE) T (A% =A%) =0, (D). (SA.52)

Thatis, N, '| A% — A%|1> = 0,(1). Since N;, ' A%T A% £ M?* by Assumption 8, the estimate
above readily implies the assertions in part (e). O

We are now ready to prove part (a) and part (b) of Theorem 2. We remind the reader
that we fix ¢ = 7— for proving these parts.

ProOF oF THEOREM 2(a). Step 1. We prove part (a) of Theorem 2 in several steps. In this
step, we show that

Sup | Zu(y) — Ex(y)| = 0p(1), (SA.53)
yeln
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where Z,(-) and 5 () are defined as

o 1 O O ot
Enly)= Y X Xy,  Ei(y)= Yy F AXTASF Ty, (SA.54)

k2N, k2N,
Below, we denote the (j, /) element of X, by

n S n
Ay Yi N un Y (=un) = Bu,jr 8 sy Z

gn,j,l = \/A—n

We set

_12 (i(n,7=)+hH A,
f;,,jJEAn / aj,sds
(i(n,7=)+-1)A,

71/2 (i(nsT_)"l‘l)All ~ T 71/2
+4, / (Ajs — .Bn,j,rAZ,s) dfs + A, A;l(n,T,)Jrlfj-
(i(n,7—)+l-1DA,

Note that
2
]E‘fn,j,l - f;,,j,]| <KA,. (SA.55)

We now define X » asa N, x k, matrix whose (j, /) element is given by ¢, i and let

B, = an, v XXy
By (SA.55),
1 9 1 Nu ky 5
BRI g P D) (SA.56)
kN, ” n n” kN, ;;En,bl fﬂ,],l} OP( )

By the Cauchy-Schwarz inequality and the triangle inequality,

e d U d 1 v > v {
up |2 (y) = Z,(0)| = 7 sup [y (X X, - XXy

yel'y n n yely
< —— sup |lyI?| X, X, — X7 X |
n nyEF,,
1 A A N A
— m”XJXn - XX, [
< 2 &K - R+ e [ — P
= kaN, " " " knNn " e

It is easy to see that ||)A(;l|| = 0, (VkuNy). Hence, by (SA.56),

sup |Zn(y) — B (0| =0p(1). (SA.57)
YELn
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To show (SA.53), it remains to show that sup,,p, |5, (y) — E%(y)| = 0p(1). We note
that, by a standard result for spot covariance estimation

FIFu/kn—> 3. (SA.58)
In particular, || F,|| = Op(k,11/2). Hence,
sup ||y " Fu/kn|| < sup [lyI1Full/ kn=Op(1). (SA.59)
vels yeln

Under Assumption 8, A%T A% = O, (N,). It then follows that

sup 25 (y) = O,(1). (SA.60)
veln

Recall the definitions in (3.9), (SA.40), and (SA.41). We can decompose X/, as
X, =AF] + &, +€. (SA.61)
Hence,
X) — ALF)] = (A — ALF] + &+ &), (SA.62)

We can then decompose

E(y) = Ei(y) = Y E AL (A = A F] + &+ &)y

k2N,
1% * e * ’
+ 2 'yT((An—An)FJ+5n+Er/I) ((An _An)Fr—tr +5ﬂ+5n)7‘
ki N,
(SA.63)
By Lemma SA4(a), (b),
sup y' &1 Eny = 0p(1), s—supy &, &y =0p(1). (SA.64)

an’l yely niVn yely

Further using the Cauchy-Schwarz inequality, we can deduce that sup,,., [v'E, &,y =
o,(1); hence,

sup v (En+&) " (En+ &)y = 0p(1). (SA.65)

nNn VGFn

In addition, by Lemma SA4(e) and (SA.59),

sup ——y F,} (A% — A%) T (A% — A Fy = 0,(1). (SA.66)
yel, ki Np

By (SA.65) and (SA.66), as well as the Cauchy-Schwarz inequality, we deduce
1

o sy (B~ )] + 80+ 0) (A A +60+ E)y=0p(D. (SAGD
ntVn v€ly
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By (SA.60) and the Cauchy-Schwarz inequality, (SA.67) further implies that

2y up [y T FaALT[(Af — AL, + &0+ E)]y| = 0, (D). (SA.68)
nt¥n Y€Elp

By (SA.63), (SA.67), and (SA.68), we deduce sup,.y, |57, (y) — EZ%(y)|=0p(1), and hence,
(SA.53) as wanted.
Step 2. In this step, we show that

Si(FxTFa/kn) 37 P H — 1, (SA.69)

where we recall that S* = diag(sign(F*T F,,(F, F,,/k,)~'/2H)) and H is the ordered eigen-
vector matrix of M. Below, we denote by D; the jth largest eigenvalue of M. and write
D =diag(Dy, ..., D).

We first show that

sup Z(y) — Di. (SA.70)
vels

To see this, we note that we can represent y € I',, as
y=Fu(F] Fu/ky) " PH5 + 7, (SA.71)

where 7 is the projection error of y onto the column space of F, such that F,] ¥ = 0. We
can then rewrite

sup Z(y) = sup 8' H' M ,HS, where
yel, 18)1<1

1/2 1/2
e = FYFENY2 (AT AR\ (FTFN\Y
Cn kn N, kn '

Hence, sup,r, 57 () is the largest eigenvalue of M. . By (SA.58) and Assumption 8,

Mg, — SPPMEs? = M.

Since the mapping for calculating the unique largest eigenvalue is continuous, we de-
duce (SA.70) by using the continuous mapping theorem.
By the construction of F,, its first column F,, . satisfies

En(Fn,~1) = sup Eu(y).
vely

Vel
=

= S e A P
By (SA.53), SUpP,er, Zn(Y) = SUp,r, Z5(y) + op(1), which implies Z,,(F),.1) — D be-
cause of (SA.70). Using the uniform convergence result in (SA.53), we further deduce

g P
Ey(Fn.1) — D (SA.72)
We now represent F,, 1 in the format of (SA.71), that is,

Bt =Fuy(FIFu/kn) P HE, + 91, (SA.73)
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such that F,;r 1 = 0. From (SA.72) and (SA.73), we see
0p(1) = E}(Fn 1) — D

=6/H'M}: H& —D

— Y1 C,n 1 1

=6/ H" (M}, —ME)HS + 6] H' M{HS, — D,

=6]H (M{,, — M{)HS, + 8] D5, — Dy,
where the last line follows from the eigenvalue decomposition M}, = HDH. Since
1811 <1 and M., — M¢ = op(1), the above display implies that

8] D1 — D1 =o0,(1).

Since D is the unique largest eigenvalue, this further implies that 3%1 £ 1and S%j 0
for j > 2. In particular, ||81 I N 1 which implies that ?I?l/kn LN 0.

Let S;;’ i denote the jth diagonal element of S};. Note that by (SA.73),

Bl Fu/ky=8]H (F] Fu/kn)'".

Hence,
3 2 -12
87 = (BT 1Fu/kn)(Fy Fu/kn)”°H.
By the definition of $* |, the first element of §* 1(1:",T,1Fn/ kn)(FT Fy/k,)~'/2H is nonneg-
ative. Hence,
x (pT T ~1/2
n,l(Fn,~lF”/kﬂ)(Fn Fn/kn) H

S * Q * P
:(|611|’Sn,1512"" S 51r)—>(1,0,...,0).

> Ml
By (SA.58), we further deduce that

(B Faf k)3, PH 55 (1,0,..,0),

which shows the convergence in (SA.69) for the first row.
By repeating the same argument (by setting I',, as the subspace orthogonal to previ-
ous eigenvectors), we can prove the convergence in (SA.69) for the jthrow,2 <j <r.
Step 3. In this step, we finish the proof for part (a) of Theorem 2. We denote
Dy =Ny (A% — A3 2 HSS) T (A — AL32HS)).
The assertion of part (a) can be rewritten as Trace[D,] = o (D).
We decompose

D, = Dn,l - Dn,Z - D;,r’z +Dn,37
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where
Dy =N'ATAL, Daa=N;' AT A3 PHSS,
Dy3=N;'S;HTS 24T A5 P HS).

To prove Trace[D,] = o p(1), it suffices to show that

Dpi—D, k=123, (SA.74)

where we recall that D is the diagonal matrix that collects the ordered eigenvalues of
M é Below, we prove (SA.74) for each case.

Case k = 1: Recall that we partition F,, = [F*:F], where F* collects the first r columns
of F,,. We set
. 1 o, n 1, .
Al = — X[ Ff = —(AXF] + &+ &) E} (SA.75)
ky kn
Note that
[ Doy = N AT AR | = N AGT AL = AT AT
=k, NV ERT X Xy — FXT X)X FE| = 0,(1), (SA76)

where the first two equalities are by definition and the last one is by (SA.57). Subse-
quently, by (SA.75), we can decompose D, | as

. 1 e - . R
= BXT(ASFT 4+ 60+ &) (ALE] + &y + E)E: +0,(1)
niv¥n
=Dp1,1+Du12+D, 1 5+ Dpiz+o0,(1),
where
Dn,l,l = (F:TFn/kn)(/IZT/IZ/NH)(FJF:/kn),
~ _ _ A T ~* A
Dp1o= (k"N ST (0 + &) AL (F,F: k),
Duis=k 2N BT (Ea+ )T (En+EL)F
From (SA.69),
1 Frac T 7T vl/2 J PN
BT E =S HTE = 0p(1), T =0p(D). (SA.77)
n n

Hence, recalling that H is the eigenvector matrix of M} = 2}/ ZMXZ}/ % and S is a diago-
nal matrix with +1 on its diagonal, we deduce

D1 =S;H 3 MiSPHS; + 0,(1) = D+ 0, (1),

By Lemma SA4, we see that ﬁ,,,l,z and Dn,1,3 are both o,(1). From these estimates,
(SA.74) for the case k = 1 readily follows.
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Case k = 2: By (SA.76) and the Cauchy-Schwarz inequality,
Dua =N AT AL PHS, + 0,(1).
By (SA.75), we can thus decompose lN),,,z as l~)n,2 = l~)n,2,1 + Dn,z,g + 0,(1) where

Dyai = (EiTFu/kn)(ALTAZ/NY) 2}/2115;,

Duao=(ky' Ny UET (80 + &) T AL)S 2 HS],
By (SA.77) and Lemma SA4(e), we deduce
Dyay=SH' 3> M3 SPHS} + 0,(1) =D + 0, (1),

By Lemma SA4(c), (d), Dn,2,2 = 0,(1). This proves (SA.74) for the case k =2.
Case k = 3: By Assumption 8, it is obvious that

Dy3=S;H 3P Mi3PHS + 0,(1) =D+ 0,(1).
This finishes the proof of (SA.74), and hence, part (a) of Theorem 2. O

ProoF OF THEOREM 2(B). We fix j € {r + 1, ..., 7}. Recall that /fn,.j denote the jth col-
umn of /i,,. By the definitions of /in and Fn,

1 » R
— Al Ay =Eu(F,

Nn n,‘j n,.j —~n ’.j). (SA.78)
Like in (SA.73), for each k € {1, ..., r}, we can represent
7 T -1/2 ;24 ~
F .k =Fn(F, Fu/kn) ' "Ho + ¥k, (SA.79)

where F ,—lr ¥x = 0. Following a similar argument as in Step 2 of the proof of Theorem 2(a),
we can show that, foreach k, k' € {1, ..., r} with k # k/,

St S L, S =0, Vi Vi kn Lo (SA.80)

We also represent

B j=Fu(F) Fp/ky) ™

Hb; + 7, (SA.81)
where F,] ¥; = 0. Since F;J.ﬁn,.k/k,, =0 for 1 < k < r (because F, collects the eigenvec-
tors of X X,,), we have

8] 8k + %] Vi/kn=0. (SA.82)
Since ¥, yk/kn 2,0 and iijifj/k,, <1, we have )”fj.Ti/k/kn = 0p(1) by the Cauchy-
Schwarz inequality. Therefore, SJ.TSk =o0p(1) for 1 <k <r. By (SA.80) above, this implies
3]- =0,(1). Hence,

En(Fu ) =6 HM{ \H"§j=0,(1). (SA.83)
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By (SA.53), 5, (ﬁ n,-j) = 0p(1). The assertion of part (b) readily follows from (SA.78). [

PROOF OoF THEOREM 2(c). By Assumption 8,

1/2A (P AL(Q)

HT
2y N,

ElﬁHq - H)M(p, @)Hy. (SA.84)
We observe

1,4 o

N_n ”A;kz(p)TAZ(lI) — S:(p)H;E}/IZJA:(p)TA*(q)zl/zH S*(q) ”

1 A
< 5 A5 = 431, ) A @3 g H |

1 N
+ 5 ST (@ — AL@ 3 H,S @)

+—||(A*<p>—A*(p)z”szS*@)) (Ax(@) = A @S/ HySi (@) |-

By the Cauchy-Schwarz inequality and Theorem 2(a), we deduce that the terms on the
majorant side of the above display are all 0,,(1). Hence, by (SA.84),

1 - o
N AP AL = (Y H  ME(p, ) HyS;(9) = 0p(1). (SA.85)
n
In particular,
1 - N
AP AL(@) = 0p(D). (SA.86)
n
By Theorem 2(b),
1 .
N An(e) An(@) = 0p (D). (SA.87)
By the Cauchy-Schwarz inequality, (SA.86), and (SA.87), we deduce
1
N A AN @) =0p(1). (SA.88)
n
The assertion of part (c) then follows from (SA.85), (SA.87), and (SA.88). O

PrOOF OF THEOREM 2(D). By part (c) of Theorem 2,
Trace[Mc (g, q)] = Trace[SZ(q)H;rMé(q, DHgS(@)] +0p(1)
= Trace[M{(q, )] + 0,p(1)
= Trace[ M’ (q, 9)214] + 0p(1),

where the second inequality follows from the orthogonality of H,S;(¢) and the last line
holds because M{.(q, q) = Zl/zM* (g, q)El/2 We also note from (SA.56) that

AL X = ||X’(q>|| +op(1).



22 Li, Todorov, and Tauchen Supplementary Material
Hence, it remains to show that
1 N
v 1@ |* 5 Trace[ M7 (q, )31.4] + Mc(9). (SA.89)
nNn
To show (SA.89), we consider the following decomposition:
| X(@)[|* = Trace[ &) " X;(0)]
= Trace[A}(q) " A} (@) Fu(q) Fu(9)]
+Trace[(E4(q) + Ex(@)) (En(@) +Ep())]
+ 2 Trace[Fa () A%(@) T (En(q) + £1(9)]. (SA.90)

By Lemma SA4(e) and (SA.58),

1 ~ .
~ Trace[ A;(0) T A3 Fu (@) Fu(q)] 55 Trace[M? (¢, )3 1.4 (SA.91)

ntv¥n
In the proof of Lemma SA4(c), (d), we have shown that

2
=o0,(1).

1
o F(&1<q>+5,2<q>)TA;';<q>

n

In addition, by (SA.52),

1 2

1 .
| €t + E1@) (Ax(q) — A% ()

n

2 ~ 2
En(q) +E, An(@) — A,
| (qic & @|” | (‘I)N @] —0,(1).

Hence, [[(£,(q) +E4(q)) T A% (@)l = 0, (Naky'*). Also note that || F, (q) || = O, (k,/*). There-
fore, by the Cauchy-Schwarz inequality,

Consequently,

1 -
@+ En@) AL @Fa(@)T

1 / T % _
< mnFn(q)H [(En() + E(@) Aj( ]| = 0p (D).

1 -
Y Trace[Fa(q) A (@) T (En(q) + E(@))] = 0,(1). (SA.92)

In view of (SA.90), (SA.91), and (SA.92), (SA.89) will be implied by

- Trace[(Ex(@) + E1(@)  (Ea(9) + E3(@)] — Me(q). (SA.93)

Finally, we show (SA.93). For each j, we denote

kn .
é‘: _ 1 Z<A?(n,fp+l€]>2
nj=7- — >
kn =\ /A,
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1 /’i(naq)An+knAn
(

/ —
fn,j  knl,

) _
. Gjudu, & i=Enj— &
i(n,q)A,

Then we can decompose

N,
1 T L — t(n Q+1€
o a6 (@) 6] = ZZ( ™ )

j=11=1

23

We note that conditional on Fj(,,g)a,, the variables (£ )1<j<n, are uncorrelated with

zero mean and bounded variances. Hence,

N,
1 n
N Z & i =0p(). (SA.94)
j=1
In addition, we note that
1 N , N" N i(n,q)An+kulAy -2 -2

=0p(k}/2A}/2) =0,(1).

It readily follows that
1 Nu P
N D& — M(q). (SA.95)
j=1
By (SA.94) and (SA.95),
1
Trace[£4(q) En(q)] —> Me(q). (SA.96)
kN,
We further note that
1 1 Yk,
Trace[E,;(q)TE;l(q)] = Z Z(e} ) =0p(A0). (SA.97)
knNy, knNy i1 =1 ’

With an appeal to the Cauchy-Schwarz inequality, we deduce (SA.93) from (SA.96) and

(SA.97). This finishes the proof of part (d) of Theorem 2.

SA.5 Proof of Theorem 3

O

(a) First, by Theorem 2(c), (d), it is obvious that in(n, 7) = Op(1). Hence, the quantile
cvp,q = Op(1). Next, we consider the case under the null hypothesis, so M¢.(p, g) coin-

cides with M¢(p, q).
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We partition Z; = (¢ ;;T, ZgT), where ¢ » is r-dimensional. By Theorem 2(c), (d), we
have, for s € {n, 7},

An(s)=" Y Wnplngly Sa(pIHy Mc(p, Y HgSi()E;
P.qefs—,s+}

+ ) W M(q) +o0,(1),
qe{s—,s+}

Bu(m,m) = > D i piingly Si(pYHy Mc(p, ) HgSi(q) L + 0,p(1).
pelr—, 7+t qe{n—,n+}

We note that the r-dimensional vectors H,;S;;(q) Z ; are, conditionally on F, standard nor-
mal and mutually independent across g € {r—, 7+, n—, n+}. We also observe that for

se{n,} A;.’(”’S)Z i’)) AZ,. Hence,
* Txo o~ LIF
(Han(Q){q, w”’q)qE{T—,'r+,n—,n+} - (§q7 wq)qe{77,7+,n—,~q+}, (SA.98)
LIF . . o
where 2% denotes the convergence of conditional law in probability. It follows that

(An(), An(r), Ba(n, 1)) 25 (A(0), A(r), B(n, 7).

Consequently, Ln(m, 1) £—|f> L(n, 7). We further note that the F-conditional distribution

function of £(n, 7) is continuous and strictly increasing. Hence, cv; o N CUq.

(b) The assertion on the asymptotic level follows from part (a) and Theorem 1. Un-
der the alternative, A;ll}n diverges to +oo in probability by Proposition 1. The power
property then follows from cv,, o = O,(1).
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